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Recently [P. Varilly, S. Angioletti-Uberti, B. M. Mognetti, and D. Frenkel, “A general theory of DNA-
mediated and other valence-limited colloidal interactions,” J. Chem. Phys. 137, 094108 (2012)], we
presented a general theory for calculating the strength and properties of colloidal interactions me-
diated by ligand–receptor bonds (such as those that bind DNA-coated colloids). In this Communi-
cation, we derive a surprisingly simple analytical form for the interaction free energy, which was
previously obtainable only via a costly numerical thermodynamic integration. As a result, the com-
putational effort to obtain potentials of interaction is significantly reduced. Moreover, we can gain
insight from this analytic expression for the free energy in limiting cases. In particular, the connection
of our general theory to other previous specialised approaches is now made transparent. This impor-
tant simplification will significantly broaden the scope of our theory. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4775806]

I. INTRODUCTION

We consider a general system of many linkers, such as a
solution of colloids coated with DNA strands that are capped
with reactive sticky-ends. At any given time, each linker i can
bind at most one other distinct linker j, with a free energy
change �Gij that depends on the polymer statistics of the link-
ers (e.g., length, flexibility, and grafting position). In many
cases, including those of experimental relevance, the proba-
bility that linker i is unbound is approximately independent
of whether or not any other linker is also unbound. Here, we
show that in this limit, the free-energy of interaction of the
system is given by

βFatt =
∑

i

ln pi +
∑
i<j

pij , (1)

where pi is the probability that linker i is unbound and pij is the
probability that linkers i and j form a bond. Previously,1 we
showed that these quantities are given by the unique physical
solution to the following set of self-consistent equations:

pij = pipje
−β�Gij , (2)

pi = 1 −
∑

j

pij . (3)

In what follows, we first motivate the free energy expres-
sion in Eq. (1) through a calculation that closely resembles
that for mixing entropy of solutions and gases. This free en-
ergy is minimised for the values of {pi} and {pij} that solve
the self-consistent conditions in Eqs. (2) and (3). We then
show that the free energy in Eq. (1) is identical to that ob-
tained through the costly and numerical thermodynamic in-
tegration previously proposed. In Sec. II, we compare the
performance of Eq. (1) with that of the thermodynamic
integration, establish the explicit connection between our

Eq. (1) and a previous treatment of DNA-mediated colloid
interactions,2 and state the analogous result to Eq. (1) for the
mean-field system of plates discussed in Ref. 1.

II. DERIVATION OF THE MAIN RESULT

We consider here an ensemble of N independent copies of
the real system. In each copy, a different set of bonds forms
between the linkers (see Figure 1). Let Ni be the number of
copies where linker i is unbound, and let Nij be the number
of copies where i and j are bound to each other. Conversely,
let N−i, −j be the number of copies where both i and j are un-
bound. These quantities are not independent: each linker i is
either bound or unbound, so

Ni +
∑

j

Nij = N. (4)

The fraction of copies where i is unbound (fi), where i and j
are bound to each other (fij), or where they are both unbound
(f−i, −j) follow immediately:

fi = Ni/N, (5)

fij = Nij/N, (6)

f−i,−j = N−i,−j /N. (7)

Let Z({Nij}) be the partition function of an ensemble under
the constraint that each pair of linkers i and j is bound to
each other in exactly Nij copies. A closed-form expression for
Z({Nij}) can be constructed recursively, by adding each bond
one by one. For a given set of {Nij}, we need to work out how
Z({Nij}) changes upon adding one more i–j bond, which we
do as follows. We call the set of realisations of the ensemble
with {Nij} bonds the old ensemble, and that of realisations
with one more i–j bond, the new ensemble. In the old ensem-
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FIG. 1. Two different realisations of an ensemble of two copies. Linkers are
depicted as straight lines, and bonds are shown as filled circles. Although the
numbers of bonds formed in each ensemble, {Nij}, are equal, the number of
copies where both i and j are unbound, N−i − j, differs.

ble, there are N−i, −j copies where an i–j bond can be added.
In doing this, all the realisations of the new ensemble are gen-
erated, but not uniquely. For example, given two realisations,
one with an i–j bond in copy X but not in Y or Z, and one
with an i–j bond in Y but not in X or Z, the same final re-
alisation can be obtained by adding an i–j bond to Y in the
former and X in the latter. Conversely, in the new ensemble,
we can generate a realisation of the old ensemble in Nij + 1
ways by removing one of the i–j bonds. For example, the old
realisation with an i–j bond in copy X but not Y or Z can be
obtained by deleting the i–j bond from a new realisation with
an i–j bond in X and Y but not Z, or from one with an i–j bond
in X and Z but not Y. Since the number of ways of going from
the old to the new ensemble is equal to the number of ways of
going from the new to the old ensemble, it follows that

Z(. . . , Nij , . . .)N−i,−j e
−β�Gij

= Z(. . . , Nij + 1, . . .)(Nij + 1). (8)

The value of N−i, −j depends not just on the values of {Nij}
but on the details of how those bonds are distributed between
copies (see Figure 1). To remove this complication, we ap-
proximate the probability of j being unbound as independent
of whether or not i is also bound. Hence,

N−i,−j = Nf−i,−j ≈ Nfifj = NiNj

N
. (9)

Neatly, this approximation allows us to treat N−i, −j as a func-
tion of only {Nij}. From the discussion above, we obtain an
expression for the increase in Z({Nij}) upon adding one i–j
bond to the system:

Z(. . . , Nij + 1, . . .)

Z(. . . , Nij , . . .)
≈ e−β�Gij NiNj

N (Nij + 1)

= e−β�Gij
(
N−∑

k Nik

) (
N−∑

k Njk

)
N (Nij + 1)

.

(10)

This recursion relation, and the fact that Z = 1 when no bonds
form, allows us to write an approximate closed-form expres-

sion for Z({Nij}), namely,

Z({Nij }) ≈
∏

i

N !(
N − ∑

k Nik

)
!

· 1

N
∑

i<j Nij
·
∏
i<j

e−βNij �Gij

Nij !
.

(11)

Using Stirling’s approximation and Eq. (11), the free energy
per copy βf ∗

att = −(1/N ) ln Z({Nij }) is then given by

βf ∗
att({fij }) =

∑
i<j

fijβ�Gij +
∑

i

(
1 −

∑
j

fij

)

× ln
(

1 −
∑

k

fik

)
+

∑
i<j

fij ln fij +
∑
i<j

fij .

(12)

Treating {fij} as continuous in the range [0, 1], the overall free
energy per copy of the ensemble, F ∗

att, follows from a saddle-
point approximation:

βF ∗
att ≡ − 1

N
ln

⎡
⎣∫ (∏

i<j

Ndfij

)
e−Nβf ∗

att({fij })

⎤
⎦

= βf ∗
att({fij }) + O(ln N/N ) ≈ βf ∗

att({fij }), (13)

where the integration is over all positive values of {fij} satis-
fying

∑
jfij ≤ 1 for all i and the values {fij } are obtained by

minimising the free energy per copy,

∂βf ∗
att

∂fij

∣∣∣∣
{fij }

= 0. (14)

When N → ∞, the values {fij } are precisely the average val-
ues of {fij}. Equation (14) implies that {fij } and {pij} obey
identical equations (Eq. (2)), and so are equal:

fij = pij . (15)

Connection to thermodynamic integration

The free energy F ∗
att, defined in Eq. (13), is equal to the

free energy of the real system to the extent that the approxima-
tion in Eq. (9) is valid. Since this is the same approximation
that we used previously1 to calculate the free energy in terms
of a thermodynamic integral, Fatt, it is reasonable to suppose
that F ∗

att and Fatt are equal. We now show this explicitly.
In our original paper, we calculated the exact attractive

free energy for the real system of linkers using thermody-
namic integration. Specifically, we replaced β�Gij by β�Gij

+ λ, whereupon the probabilities {pi} and {pij} become func-
tions of λ. We then integrated the appropriate free energy
derivative over the range 0 ≤ λ < ∞, and obtained

βFatt = −
∫ ∞

0
dλ

dβFatt

dλ
= −

∫ ∞

0
dλ

∑
i<j

pij (λ). (16)

The same replacement of β�Gij with β�Gij + λ can be made
in the ensemble of N copies. In that case, using Eqs. (12) and
(13), we find that

dβF ∗
att

dλ
=

∑
i<j

∂βf ∗
att

∂fij

∣∣∣∣
{pij }

dpij

dλ
+ ∂βf ∗

att

∂λ

∣∣∣∣
{pij }

. (17)
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The first term vanishes owing to Eqs. (14) and (15), and the
second term follows immediately from Eq. (12). We then have

dβF ∗
att

dλ
=

∑
i<j

pij = dβFatt

dλ
. (18)

Moreover, both F ∗
att and Fatt are zero when λ is infinite, so the

two quantities are equal for all λ.
The previous result, together with Eqs. (12)–(15), yields

the following closed-form expression for Fatt:

βFatt =
∑
i<j

pijβ�Gij +
∑

i

(
1 −

∑
j

pij

)
ln

(
1 −

∑
k

pik

)

+
∑
i<j

pij ln pij +
∑
i<j

pij . (19)

This expression is, in fact, equivalent to the much more com-
pact Eq. (1). Concretely,

βFatt =
∑
i<j

pijβ�Gij +
∑

i

(
1 −

∑
j

pij

)
ln pi

+
∑
i<j

pij ln(pipje
−β�Gij ) +

∑
i<j

pij , (20a)

=
∑

i

(
1 −

∑
j

pij

)
ln pi + 1

2

∑
i,j

pij ln pi

+ 1

2

∑
i,j

pij ln pj +
∑
i<j

pij , (20b)

=
∑

i

(
1 −

∑
j

pij

)
ln pi +

∑
i,j

pij ln pi +
∑
i<j

pij ,

(20c)

=
∑

i

ln pi +
∑
i<j

pij . (20d)

III. DISCUSSION

Figure 2 reports the typical computational speedups ob-
tained by using Eq. (1) versus our original thermodynamic
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FIG. 2. Computational speedups obtained by using Eq. (1) vs. Eq. (16), for
a system of parallel plates coated with complementary linkers.

integral, Eq. (16), for systems of M linkers. The speedup is
higher for larger M and for stronger bonds because each eval-
uation of the thermodynamic integrand involves solving a sys-
tem of M equations, and the size of the integration domain
scales linearly with the bond strength. Typically, experimen-
tally relevant regimes deal with hundreds to tens of thousands
of strands, a regime that can now be treated exactly with
Eq. (1).

In the limit of weak-bonds, where pij is close to 0, we find
that

βFatt =
∑

i

ln pi +
∑
i<j

pij =
∑

i

ln
(

1 −
∑

j

pij

)
+

∑
i<j

pij ,

≈ −
∑
i,j

pij +
∑
i<j

pij = −
∑
i<j

pij .

This approximate result has been widely used by previous
authors2–5 under the name of the “Poisson approximation”
or the “weak binding regime.” However, in experiments with
micron-sized DNA-coated colloids, this approximation can
be significantly inaccurate.6 At the nanoscale, where high
bond strengths are commonly used, the Poisson approxima-
tion is expected to break down (see Figure 3 for comparison).
Equation (1) is instead quantitatively accurate for bonds of
any strength.1

Equations (1)–(3) also make explicit the connection be-
tween our theory and previous treatments. For example, Drey-
fus et al.2 model the attraction between two DNA-coated
spheres by first estimating the maximum number Np of link-
ers on each sphere that could form a bond with a linker on
the second sphere, and then assuming that each such linker
can independently bind any of k linkers with an average free
energy �Ftether. For later convenience, we define a small ex-
pansion parameter x as

x ≡ ke−β�Ftether , (21)

and note that the experiments in Ref. 2 take place mostly
in what the author call the “weak-binding regime,” where

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6 7 8 9 10

β
F

a
tt
/N

p

x = k exp(−βΔFtether)

Present model

Poisson approximation

FIG. 3. Free energy per linker in the “Poisson approximation” and the
present model. Higher values of x = k exp(−β�Ftether) lead to higher bond-
ing probabilities, either because bonds are stronger or because linkers have
more binding partners. The two models agree in the “weak binding regime”
(x � 1), but disagree when correlations between neighbouring strands be-
come significant.
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x � 1 and Npx 	 1. In their model, the partition function
of the system is

Z ≈ (1 + x)Np , (22)

from which the free energy Fatt follows:7

βFatt ≈ − ln[(1 + x)Np ] = −Np ln(1 + x) (23)

≈ −Np(x − x2/2 + · · · ). (24)

In the present framework, which does not treat the linkers as
binding independently, every linker has the same probability
p of being bound, given by the solution to

p = 1

1 + xp
⇒ p =

√
1 + 4x − 1

2x
. (25)

The free energy then follows from Eqs. (1) and (2):

βFatt = Npp2x + 2Np ln p (26)

≈ −Np(x − x2 + · · · ). (27)

Thus, our theory recovers the results of Dreyfus et al.2 in the
weak binding regime. However, there is significant disagree-
ment already at second order in x, where linkers begin to com-
pete for binding partners.

Finally, using the same procedure as in our original paper,
we can directly write an attractive free energy density for a
pair of plates, treated at a more approximate, spatial mean-
field level. In the notation of Ref. 1,

βfatt = 1

2

∑
α,β

σαpαKαβpβσβ +
∑

α

σα ln pα. (28)

This result also follows from a large-area limit of Eq. (19)
with random grafting points.1, 8 We expect the simplifica-
tion provided in this Communication will boost the use of

our model for calculating interactions free-energy for general
ligand–receptor-mediated systems.
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