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S1 The Microwave Method

Figure S1 depicts a schematic of the experimental apparatus used to measure the linewidth per-
turbation of the graphene coupled dielectric resonator.

Figure S1: Schematic of the graphene coupled to the microwave dielectric resonator cavity.

By measuring the perturbation of the resonant mode the dielectric cavity due to the presence
of a graphene sample, the graphene sheet resistivity can be calculated. The technique relies on
a number of crucial factors. First, that graphene is atomically thin. Therefore, the presence of
graphene does not significantly perturb the total field distribution around the resonator and its
permittivity is close to unity. Secondly, the presence of graphene and substrate will shift the
resonant frequency position and linewidth of the resonator. Consequently, the sheet resistance
(Rs) of graphene can be calculated by measuring the perturbation of the resonance frequency and
linewidth of a dielectric cavity in the presence of a graphene coated substrate as follows:

Rs =
∆fs

πf0ε0(∆wg −∆ws)(ε′ − 1)ts
(S1)

Here ∆fs is the frequency shift of the bare substrate, f0 is the unperturbed resonant frequency
of the cavity, ∆wg and ∆ws are the changes of linewidth in the presence of the graphene coated
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Figure S2: Comparison of the linewidth and calculated 2D sheet resistivity of graphene during 50
ppm NO2 exposure.

substrate and the bare substrate respectively, ε0 is the permittivity of free space, ε′ is the real
permittivity of the substrate and ts is the substrate thickness. The full derivation of equation (S1)
can be found in reference [1]. Therefore, by placing the cavity in an isolated chamber where the
atmosphere can be controlled, the doping level of graphene can be ascertained by following the
change of linewidth; which is inversely proportional to the 2D sheet resistivity.

S2 Sample Fabrication

CVD graphene/Cu (purchased from Graphenea) was transferred onto a pure silicon substrate,
(purchased from CrysTec GmbH) using a modified wet transfer procedure [2, 3, 4, 5, 6]. To sum-
marise the procedure, first the graphene/Cu stack was protected with a thin layer of (polymethyl
methacrylate) PMMA A4 495 by spin coating. The PMMA film was approximately 200 nm thick.
The copper was then etched by floating the stack on a 0.1 M solution of ammonium persulfate
and leaving it over night. The resulting PMMA/graphene stack was rinsed using deionised water
to remove any ion residuals. The stack was ’scooped’ out of the deionised water using the target
high resistance silicon substrate. After drying, the sample was annealed for 30 minutes at 180◦C
to facilitate polymer reflux and encourage graphene adhesion to the substrate. Finally the PMMA
was removed in acetone and rinsed in isopropyl alcohol (IPA). Once dry the graphene sample was
annealed again at 180◦C for 10 minutes to further improve substrate adhesion.

S3 Sensor Recovery and Reproducibility

The conductivity of graphene is directly dependent to the number of occupied adsorption sites on
the 2D surface facilitating charge transfer. Since the linewidth is inveresely proportional to the
graphene sheet resistivity, a consistent initial linewidth value was chosen for each concentration
measurement. In other words, the sensor response is normalized by this initial linewidth. The
initial linewidth needs to be equal for all considered NO2 concentrations, in order to have consistent
numbers. We use the value of 8.7 MHz.

To illustrate this, Figure S3 compares five adsorption measurements, three exposed to 0.3 ppm
of NO2 and two exposed to 3 ppm. All measurements start at a different initial linewidth value
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(a) (b) (c)

Figure S3: (a) Change in linewidth during gas exposure when starting at different initial linewidth
values, and (b) the resulting sensor response curves. (c) Offsetting the linewidth data along the
x-axis clearly shows that the sensor responses are dependent on occupancy of the graphene surface.

(Figure S3a). Clearly, the sensor responses are not comparable as shown in Figure S3b since the
initial doped state of the graphene is inconsistent. Interestingly, when offsetting the measurements,
as shown in Figure S3c, it is clear that there is an overarching response trend dependent on the gas
concentrations. The data was offset such that the linewidth values of the“slow” phase overlapped.
This is easiest to see in the 0.3 ppm data as the concentration is low enough that only the adsorption
sites with lowest adsorption energy barrier are occupied. The 3 ppm concentration measurement
show two distinct responses, a rapid initial adsorption followed by a slower response. The initial
slopes of the 3 ppm curves match very well (Figure S3b) and when the curves are offset (Figure
S3c, the higher linewidth values overlap, the slow adsorption region. This indicates an overall
sensor response shape that is dependent upon only the degree of doping of the sample i.e. how
many gas molecules are adsorbed and donating a charge carrier. This confirms the importance of
sensor responses having comparable initial linewidths.

In order to have comparable initial linewidths, the sample was recovered by allowing NO2 to
desorb and diffuse out of the system. To promote NO2 desorption air was flowed through the
system. Figure S4 follows the recovery of a graphene sensor. In region 1 the sensor is exposed
to 3 ppm NO2 gas where the increase in linewidth is due to NO2 adsorption. In region 2 the
NO2/ synthetic air mixture inlet valve is closed; leaving the gas to diffuse through the system
and exit through the outlet valve. In region 3, air is flowed through the system enhancing the
removal of NO2 through the outlet and encouraging the desorption of NO2 from the graphene
surface. The desorption time scale is much longer than the adsorption timescale. In this work, to
ensure graphene integrity, the desorption of NO2 was not enhanced by increasing the temperature,
exposure to UV light or pumping down the system to vacuum.
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Figure S4: The full sensor response and recovery for 3 ppm NO2. In region 1 NO2 is flowed through
the sensor. In region 2, the valves are closed and the samples is left to desorb NO2. In region 3
air is then flowed into the system to promote further desorption of NO2.

S4 Empirical Data Fitting

Aside from the low concentration curve at 0.3 ppm, where a single exponential expression is
sufficient to fit the data (Figure S5a), a minimum of two exponentials were required to fit all other
response curves (Figure S5b). In principle it was found that a stretched exponential expression,

St = Se−K exp {−t/τs}β , also known as a Kohlrausch function, can also be used to approximately
fit the sensor response (Figure S5c). Here St is the linewidth at time t, Se is the value at equilibrium,
K is an amplitude coefficient, τs is the time constant associated with the exponential term and β
is an exponent such that 0<β ≤ 1. The drawback of this function however is that for β < 1, which
is the regime required to the experimental data, it has an unphysical infinite slope at t = 0, while
the experimental data always starts with a finite slope. The two exponentials were therefore used
instead for the fitting, as they avoid this unphysical behavior, and also allow for more flexibility in
the functional form.

(a) (b) (c)

Figure S5: (a) Fitting the 0.3 ppm sensor to both a single and a double exponential expression.
(b) The 50 ppm sensor response cannot be fitted with both a single exponential and a double
exponential expression for comparison purposes. (c) The stretched and the double exponential
expressions fit the 50 ppm data equally well.
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S5 KPFM Analysis

Full Kelvin Peak Force Microscopy (KPFM) data for a monolayer only graphene region and a region
of both multi and monolayer graphene regions, Figure S6 and Figure S7 respectively. In both cases
the atomic force microscopy (AFM) images show a continuous graphene film transferred onto the
substrate. From the KPFM and tip adhesion maps (Figure S7b and c), the small multilayer region
island is clearly visible. The corresponding histogram (Figure S7d) is the convolution of two normal
distributions. This is due to a charge screening effect preventing the substrate from influencing the
top graphene film in the multilayer region as strongly as the monolayer region [7]. Although there
are two distinct regions associated with monolayer and multilayer graphene, it is clear that the
overall distribution of energy states is still continuous, although slightly skewed from the normal
distribution.

(a) (b)

(c) (d)

Figure S6: (a)AFM, (b) KFM, (c) tip adhesion, and (d) histogram of total KFM map of monolayer
region on the graphene sample.
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(a) (b)

(c) (d)

Figure S7: (a)AFM, (b) KFM, (c) tip adhesion, and (d) histogram of total KFM map of monolayer
and multilayer regions on the graphene sample.
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S6 Raman Maps

Figure S8 shows the local variation of the Raman properties of graphene. Raman maps of the
D, G and 2D peak show the peak intensity (figure S8a-c), full width and half maximum (figure
S8e-g) and peak position (figure S8h-j) variation over a 10 x 20 µm area. The large quantity of
black pixels present in the D maps correspond to unsuccessful fitting of the D peak due to a lack
of spectral intensity. Consequently, since the D peak is nominally present at the edges, boundaries
or defected regions of graphene, the inability for the curve fit procedure to distinguish a Raman
peak from the baseline noise is indicative of a low defect concentration. Histograms comparing the
intensity, position and full width at half maximum of the D, G and 2D Raman peaks are shown in
figures S8j-l respectively. As part of the peak fit procedure, if the peak fit fails the value is set to
zero which is clearly shown in the histogram data.

(c)

(f)

(i)

(b)

(e)

(h)

(a)

(d)

(g)

(j) (k) (l)

Figure S8: Raman maps of graphene the D, G and 2D Raman peaks with respect to peak (a-c)
intensity, (d-f) full width at half maximum and (g-i) position. Corresponding histograms (j-l)
compare the D, G and 2D Raman peak intensity, full width half maximum and position data. The
D peak histogram data of (l) was shaded black as a guide for the eyes. Raman peaks that were
unsuccessfully fitted were set to zero. Note that the D peak histogram data has 1213 counts in the
zero value bin which is not shown in the graph.
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S7 Theoretical Model

In this section we present a detailed description of the theoretical model. We start from a general
model for the adsorption rate of NO2 molecules on graphene, and show that the experimental data
can only be described by a sticking probability that is exponentially decaying with increasing NO2

coverage. We present the resulting model for the adsorption of NO2 molecules on graphene, and
relate the number of adsorbed molecules to the measured sensor response.

We assume that the NO2 molecules remain intact upon adsorption, and denote the total number
of available binding sites on the graphene surface as NS , and the total number of bound NO2

molecules as N . We set the time t = 0 to the instant where the NO2 is added into the gas flow.
Note that at t = 0 the surface is not completely free from NO2 molecules, since there will be
those bound to very strong binding sites. We consider these sites as inert, and assume that these
NO2 molecules will remain bound to these sites throughout, so that they are not part of the NS
available binding sites, and we do not include them in the total number of bound NO2 molecules
N . The adsorption rate is then proportional to the density of NO2 molecules in the gas phase,
nG, times the number of free adsorption sites, NS − N . We denote the proportionality factor
as the sticking probability, kA, and it includes the probability of a gas phase molecule hitting
the graphene surface in a given time-interval, and all the subsequent physical processes that NO2

undergoes upon adsorption, which can be described with their effective adsorption barrier, EA, so
that kA ∝ e−EA/kBT . Here kB is the Boltzmann constant and T is the temperature. The desorption
rate is proportional to the number of adsorbed NO2 molecules, and we denote the proportionality
factor as the desorption coefficient, kD, which includes all physical processes that NO2 undergoes
upon desorption, and which are described by the energy barrier ED, so that kD ∝ e−ED/kBT . For
a pristine graphene surface EA is approximately zero, and ED is equal to the binding energy, EB .
In the experiments considered here the graphene surface is exposed to ambient air also before the
NO2 is added, so that part of the surface is covered with ambient molecules such as N2 and O2.
The activation energy then corresponds to the energy barrier for replacement of these ambient
molecules by NO2.

The total rate of change of NO2 molecules on the graphene surface can then be written as a
Langmuir type differential equation

dN

dt
= nGkA (NS −N)− kDN, (S2)

where t is the time. We can now introduce the relative change in the number of adsorbed NO2

molecules, n = N/NS (0 ≤ n ≤ 1), which allows us to rewrite equation (S2) as

dn

dt
= nGkA (1− n)− kDn. (S3)

The experimentally measured sensor response, S, is given by the relative difference between the
time-dependent linewidth, ω(t), and the linewidth at time 0, ω0

S(t) =
ω(t)− ω0

ω0
. (S4)

We now assume that S(t) = n(t), so that a change in relative NO2 coverage leads to an equal change
in the sensor response, and we can rewrite equation (S6) directly in terms of sensor response as

dS

dt
= nGkA,S (1− S)− kD,SS, (S5)

where the additional subscripts “S” in kA,S and kD,S indicate that these are effective coefficients
for the changes in the sensor response, which are not necessarily equal to the ones for the change
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in n. We will consider the general case S(t) = c(n(t)) n(t), with an arbitrary monotonic function
c(n), at the end of this section. Equation (S5) can be solved analytically to give

S(t) = n(t) = S∞

(
1− e−(nGkA,S+kD,S)t

)
, with S∞ =

nGkA,S

nGkA,S + kD,S
. (S6)

We can now obtain estimates for the parameters kA,S and kD,S by fitting this equation to the
experimental data. In all our calculations we fit the theoretical models to the data at the lowest,
nG = 0.3 ppm, and highest, nG = 100 ppm, NO2 gas phase concentrations. We denote these data
sets as our training data sets. We then use the experimental data at the remaining concentrations
to test the quality of the fit. The resulting values for kA,S and kD,S are given in Figure S9a, and in
Figure S9f where the model data is compared to the experiment. The agreement between model
and experiment is not good, which indicates that the use of constant kA,S and kD,S is not a realistic
assumption.

S7.1 Position dependent adsorption and desorption coefficients

Figure S9: (a-e) The effective rate of adsorption kA,S/γD as a function of effective surface position,
x, and the resultant theoretical sensor responses (f-j). The theoretical fittings (blue curves) are
superimposed on top of the experimental data (brown curves). The theoretical parameters are
obtained by fitting the theoretical model to the 0.3 and 100 ppm NO2 data (solid blue curves). The
dashed blue curves are the theoretical sensor response for the other NO2 gas phase concentrations,
not used for the fitting, which therefore correspond to the test set for the validity of the model.
The step-wise curves in (a-d) are calculated with equation (S9) (1 step for a, 2 for b, 3 for c, and
5 for d), the continuous red curve in e is calculated with equation (S13), and the black dash curve
with equation (S15). The dash-dotted brown curve in 3 is a copy of the curve in d, and shows that
the continuous functions smoothly average the step-wise functions.

To better describe experiment we can subdivide the total number of active sites on the graphene
into imax smaller subsets, NS,i, so that

∑imax

i=1 NS,i = NS . The relative weight of each subset, wi,

is defined as wi = NS,i/NS , so that
∑imax

i=1 wi = 1. We can then generalize equation (S5) as

dS

dt
=

imax∑
i=1

wi [nGkA,S,i (1− Si)− kD,S,iSi] , with S =

imax∑
i=1

wiSi, (S7)

and where kA,S,i (kD,S,i) is the sticking (desorption) coefficient for the subset with index i. In
this way we describe the graphene surface as having i distinct regions with different properties,
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so that each has its own adsorption and desorption coefficient. The analytic solution for each
Si(t) = ni(t) has analogous form to the one given in equation (S6). When comparing the model
to the experiment we find that subdividing kD in smaller subsets does not significantly improve
the agreement with experiment, so that in what follows we therefore use a constant value for kD.
We will discuss this in more detail further down in this section, in general this shows that the
adsorption process is dominated by variations in the sticking rate rather than the desorption rate.

Without loss of generality we can order the subsets in such a way that kA,S,i+1 ≤ kA,S,i. We
now introduce the variable x ∈ [0, 1], and write the sticking rate as function of this variable as

kA,S(x) =



kA,S,1 0 ≤ x < w1

kA,S,2 w1 ≤ x < w1 + w2

kA,S,3 w1 + w2 ≤ x < w1 + w2 + w3

...
kA,S,imax

1− wimax
≤ x ≤ 1

, (S8)

or in a more compact notation

kA,S(x) =

imax∑
i=1

kA,S,i [θ(x− xi)− θ(x− xi − wi)] ,with xi =

i−1∑
j=1

wj , (S9)

where θ(x) is the Heaviside step function. This corresponds to a step-wise monotonically decreasing
function, where the value at each step is equal to a given kA,S,i, and the width of the step is equal
to wi. We interpret x as an effective variable describing different positions of the graphene surface,
and write the position dependent occupation probability in analogous form as

Sx(x) = nx(x) =

imax∑
i=1

Si [θ(x− xi)− θ(x− xi − wi)] ,with xi =

i−1∑
j=1

wj . (S10)

This allows us to write equation (S7) in an equivalent integral form as

dS

dt
=
dn

dt
=

∫ 1

0

[nGkA,S(x) (1− Sx(x))− kD,SSx(x)] dx, with S =

∫ 1

0

Sx(x)dx, (S11)

which has the analytic solution

S(t) = n(t) =

∫ 1

0

S∞(x)
(

1− e−(nGkA,S(x)+kD,S)t
)
dx, with S∞(x) =

nGkA,S(x)

nGkA,S(x) + kD,S
.

(S12)
Instead of a sum over discrete values S(t) is expressed as an integral over the effective position
variable x. The advantage is that this integral form is valid for any arbitrary kA,S(x), not only for
the stepwise decaying function discussed so far.

We start by presenting results for imax = 2 in Figure S9bg, and find that kA,S,1 is about two
orders of magnitude larger than kA,S,2, and that the weight of the first region is much smaller than
the one of the second region. While the agreement with experiment is improved compared to using
only one region, it is still rather poor. This shows that while for each individual value of nG one
can fit the experimental data well with two exponentials, since the fitting parameters for a each
nG are independent of the ones at a different nG, to have a physically consistent model across
varying nG (equation (S12)) two exponentials are not enough. The agreement between theory
and experiment becomes reasonable for imax = 3 (S9ch), and becomes eventually rather good for
imax = 5 (S9di). Also in these cases the values of the kA,S,i decrease on an exponential scale as x is
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increases, and the weights become progressively larger as kA,S,i decrease. For small x the function
kA,S(x) therefore exhibits exponentially decreasing behavior. For large x the value of kA,S(x) is
very small, so that the model function does not significantly change when replacing the value with
zero.

Having determined that the general kA,S(x) needs to be an exponentially decaying function, we
can replace the step functions with continuous exponential functions with piecewise linear variation
of the exponents as

kA,S(x) = kA,S,0 e
∑imax

i=1 [fi−αi(x−xi)][θ(x−xi)−θ(x−xi−wi)] [θ(x)− θ(x− 1)] , (S13)

with

xi =

i−1∑
j=1

wj , and αi =
fi − fi+1

wi
, (S14)

where f1 = 1, and kA,S,0, fi, and wi are arbitrary parameters. Note that this function is zero
outside the range x ∈ [0, 1]. We then obtain n(t) by numerically evaluating equation (S12). While
this function is now continuous, it still has discontinuous derivatives. An alternative exponentially
decreasing function with continuous derivatives can be obtained adding up exponential terms with
different exponents, which gives the simpler form

kA,S(x) =

imax∑
i=1

kA,S,i e
−αix, (S15)

where now both kA,S,i and αi are parameters.
When fitting equation (S13) or equation (S15) to experiment for imax = 1 the agreement is

not very good. For imax = 2 on the other hand the agreement is already excellent (Figure S9ej).
The required number of parameters for the exponentially decreasing continuous kA,x(x), 5 for
imax = 2, is therefore much smaller then the one required for a good agreement with experiment
for the stepwise function considered earlier, where imax ≥ 5 is required (Figure S9). This further
confirms that the exponentially decaying functional form is a good representation of the underlying
physical processes. We note that the fitted kA,x(x) is essentially identical using either equation
(S13) or equation (S15) (Figure S9e), except that when using equation (S13) there is a kink in
the function, while with equation (S15) the function is smooth everywhere, so that in general we
choose this functional form. For nG = {0.3, 1.0, 100.0} ppm the agreement is essentially perfect.
For nG = {3.0, 10.0, 50.0} the agreement is still good, and can be brought into perfect overlap with
experiment when rescaling the function by a constant, or evaluating it at a slightly shifted nG. We
attribute this to slightly varying experimental conditions across the experimental runs for different
nG, as also discussed further down in Figure S10. For example, one can see that the experimental
curves for 1 and 3 ppm are very close to each other, while one would expect the spacing to be more
similar to the one between 0.3 and 1 ppm. Indeed the model predicts such a larger spacing. For
larger imax the agreement with experiment does not improve significantly, which shows that the
true shape of kA(x) is well captured with two exponentials.

Since as discussed at the beginning of this section kA ∝ e−EA/kBT , we propose that the phys-
ical origin of the observed variation in the exponent of equation (S13) is mainly determined by
the variation of EA across the surface. The good agreement of equation (S13) with experiment
for imax = 2 shows that this variation is approximately piece-wise linear with two different slopes.
In general the adsorbed NO2 molecules interact with each other, for example due to electrostatic
repulsion of these negatively charged molecules, so that the activation barrier is expected to in-
crease with increasing coverage, even for a perfectly homogeneous graphene surface. Moreover, the
charge transfer per NO2 molecule will generally decrease for increasing coverage due to electro-
static interactions, and the change in mobility for a given adsorbed molecule can also vary with
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coverage. The extracted kA,S(x) in Figure S9e therefore is a universal unction, which includes the
variation of the activation barrier due to an inhomogeneous surface, and implicitly also due to the
inter-molecular interactions, as well as the changes of charge transfer and mobility with coverage.

S7.2 Coverage dependent adsorption and desorption coefficients

As an alternative/equivalent way, instead of expanding the sticking coefficient as a function po-
sition, x, we can also expand it as function of surface coverage, n, or equivalently of S, since we
assume that S = n. The variations of the sticking coefficient with S = n includes both the effects
due to molecule-molecule interactions, but also implicitly the graphene surface inhomogeneities.
In analogy to equation (S15) we can write this dependence as a sum of exponentially decaying
functions

kA,S(S) =

imax∑
i=1

k̄A,S,i e
−ᾱiS , (S16)

with parameters k̄A,S,i and ᾱi.
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Figure S10: Time dependent sensor response for all the measured NO2 concentrations: (a) 0.3
ppm, (b) 1 ppm, (c) 3 ppm, (d) 10 ppm, (e) 50 ppm, and (f) 100 ppm. Brown curves are the
experimental data, black curves the theoretical results, obtained using equation (S17) for constant
kD,S. The fitted kA/D,S(S) are shown as green dashed curves in Figure S11. The agreement between
theory and experiment is rather good for all curves. For the fitting sets (0.3 ppm and 100ppm,
also denoted as training sets) the agreement is essentially perfect, and also for the test set in (b).
For the test sets in (c-e) there are some quantitative deviations between experiment and theory.
Theory and experiment can be brought to essentially perfect overlap also for these cases if the
calculations are performed for concentrations that slightly differ from the nominal experimental
values (dashed cyan curves). We therefore attribute the quantitative deviations in the test sets
to slightly different experimental conditions for each measurement run. For example, the orange
curves in (c) are for a second experimental run at 3 ppm, and these are significantly closer to the
theoretical model, indicating the range of variability in the experimental measurements.

We then obtain S(t) by numerically solving the differential equation

∂

dt
= nG kA,S(S) (1− S)− kD,S(S) S. (S17)

Here we have also added the possibility of having a coverage dependent desorption coefficient,
kD,S(S). This equation corresponds to equation (S5), generalized to include S−dependent sticking
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and desorption coefficients. We first present results for a constant kD,S. As found for the x-
dependent case, also here for imax = 2 the theoretical model agrees well with experiment (Figure
S10 and Figure 3d in the main manuscript). The resulting kA/D,S are shown in Figure S11. The
quality of the fit is essentially identical to the one for position, x, dependent kA/D,S, showing that
the two models capture the same physical processes.
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Figure S11: (a) Effective sticking coefficient as function of sensor response (equation (S16)), S, and
(b) effective desorption coefficient as function of S (equation (S18)), as well as (c) the resulting S as
function of time (equation (S17)). The green dashed curves are for a constant desorption coefficient,
while the black solid curves are for the monotonically increasing desorption coefficient. As can be
seen in (c) both models for the desorption coefficient give essentially identical theoretical sensor
response, showing that S(t) is mainly determined by the adsorption coefficient. Good agreement
is also found when comparing to experiment, as shown in Figure S10.

We now demonstrate that the results are rather insensitive to the functional form of kD,S(S)
by comparing the results so far with the ones obtained with a non-constant kD,S(S). Here we
use a monotonically increasing function, since in general it can be expected that the desorption
coefficient increases with increasing NO2 coverage. As an example we choose the following form
for the desorption coefficient

kD,S(S) = kD,S,0 +

iD,max∑
i=1

kD,S,i

(
1− e−βiS

)
, (S18)

with fitting parameters kD,S,0, kD,S,i, and βi. For imax = 2 and iD,max = 1 the results fitted to
experiment shown in Figure S11, and compared to the ones with constant kD,S(S). As can be seen,
the fitted non-constant kD,S(S) is approximately 0 for small S, and rises for increasing S, and is
therefore significantly different from the constant kD. Nevertheless, kA,S(S) is almost unchanged
when compared to the case of constant kD, showing that obtained functional form of kA,S(S) is
robust, and largely independent on the shape of kD,S(S). In Figure S11c it can be seen that the
model gives essentially identical results for both constant kD,S and non-constant kD,S(S), and the
agreement with experiment is only marginally improved. These results show that for the available
experimental data we cannot extract the detailed shape of kD,S(S), while they allow us to reliably
obtain kA,S(S), which determines the adsorption process in these experiments. Using a constant
kD,S we obtain an approximate average value for the large coverage regime. For small coverage the
true kD,S(S) can be smaller than this value, but not larger.

We conclude this section by discussing the effect of varying the arbitrary monotonic function
c(n), which relates the sensor response to the NO2 surface coverage,

S(t) = c(nc(t)) nc(t), (S19)

where the subscript “c” explicitly denotes that the dependence of the NO2 surface coverage on
the function c(n). A non-constant c(n) can be caused for example by the fact that the charge
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Figure S12: Molecular sticking, kA, and desorption, kD, coefficients calculated with Eqs. (S25,S26),
using kA,S and kD,S fitted to experiment for constant kD,S (Figure S11a,b, green dashed curves),
for different functional forms of c(n).

transfer per NO2 molecule to graphene is reduced as more NO2 molecules are adsorbed due to the
electrostatic repulsion between the transferred electrons. Since in the experiments considered here
the graphene surface is already p-doped at t = 0, we expect that this variation is rather small and
continuous. The possible range of c(n) is limited by physical constraints. Its lowest possible value
set by the largest measured sensor response, Smax = c(nmax)nmax ≤ c(nmax). The experimentally
measured maximum sensor response is about 0.26, so that in our case we have c(n) ≥ 0.26. Since
S(t) appears to still be rising at the largest measured times, we can expect the minimal c(n) to be
somewhat larger. Furthermore, we expect the maximum c(n) to be of the order of about one, in
which case a given change in the surface coverage leads to an equal change in the sensor response.

We will now show that nc(t) can be obtained from n1(t), where the subscript “1” indicates
that it is obtained for c(n) = 1, as calculated in the previous part of this section. To reproduce
the same signal for both cases the condition

S = n1 = c(nc)nc (S20)

needs to be satisfied. With this relation we first rewrite the differential equation (S17) as

dn1

dt
=
dS

dt
= nG kA,S(S) (1− S)− kD,S(S) S. (S21)

Using the relation n1 = c(nc)nc this equation can be written in terms of nc as

dnc
dt

= nG
1

g(nc)

1

c(nc)
kA,S(c(nc) nc) (1− c(nc)nc)−

1

g(nc)
kD,S(c(nc)nc) nc, (S22)

with

g(n) = 1 + n
d ln [c(n)]

dn
. (S23)

If we assume that nc � 1, we can approximate the term (1 − c(nc)nc) ≈ 1 ≈ (1 − nc). We can
then approximate equation (S22) as

dnc
dt

= nG kA(nc) (1− nc)− kD(nc)nc, (S24)

with

kA(n) ≈ 1

g(n)

1

c(n)
kA,S(c(n) n) (S25)

kD(n) ≈ 1

g(n)
kD,S(c(n) n). (S26)
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For a given S(t) we therefore first evaluate the functional form of the universal functions kA,S(S)
and of kD,S(S), and can then use Eqs. (S25,S26) to obtain adsorption and desorption coefficients
for any arbitrary c(n), and with them the NO2 surface coverage by numerically solving equation
(S24) with these coefficients.

To illustrate the process we present kA and kD, evaluated using Eqs. (S25, S26), for three
representative choices for c(n) (Figure S12): c(n) = 1, c(n) = 1/(1 + 2n), and c(n) = 0.4. For
kA,S and kD,S we use the previously obtained results for constant kD,S, shown as green dashed
lines in Figure S12. The first choice of c(n) corresponds to a constant and rather large value of
c, while the third one corresponds to a small constant value close to the lowest possible limit. It
can be seen that kD is identical for both cases, and that for the smaller c(n) = 0.4 the value of
kA is larger than for c(n) = 1. This corresponds to the expected behavior, since for a smaller
c(n) more NO2 molecules are needed to produce the same sensor response obtained for larger
c(n). The second chosen functional form, c(n) = 1/(1 + 2n), corresponds to a c(n) decreasing with
increasing n. This is the generally expected behavior, since for increasing charge transfer between
NO2 molecules and graphene the electrostatic repulsion between electrons in the graphene sheet
makes it increasingly difficult to further increase the charge inside the graphene, and therefore
the rise of the sensor response is reduced. In this case both kA and kD are changed compared
to c(n) = 1, with kD increasing with increasing n. The decay of kA with increasing n is reduced
compared to the c(n) = 1 case, since progressively more adsorbed NO2 molecules are needed to
produce the same sensor response.
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Figure S13: Sensor response for S = n (solid black curves) and for S = c(nc)nc (red dashed
curves), as well as NO2 surface occupation nc (green curves), and c(nc) (blue curves) as function
of time, for various NO2 gas phase concentrations, nG [(a-c) nG = 0.3 ppm, (d-f) nG = 100 ppm],
and functional forms of c(n) [(a,d) c(n) = 1, (b,e) c(n) = 1/(1 + 2n), (c,f) c(n) = 0.4]. The
corresponding kA and kD are shown in Figure S12. Note that to have all plots on a similar scale
in the upper panels we show the values of c(nc) divided by hundred (dot-dashed blue curves).

To evaluate the validity of Eqs. (S25,S26) for such systems we calcualte S(t) both from kA/D,S,
as well as using kA/D,n from these equations, which we denote as Sc(t). As can be seen in Figure
S13 S(t) and Sc(t) are either identical or very close to each other for all considered cases, which
confirms the validity of the equations. In Figure S13 one can also see that the smaller c(n), the
larger n compared to S, showing that more NO2 molecules need to be adsorbed to produce the
same sensor response.

We conclude by noting that we can also invert equation (S20) and express nc as function of S,
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nc = S/c̃(S), and then write these quantities in terms of sensor response as

kA,S(S) ≈ g(
S

c̃(S)
) c̃(S) kA(

S

c̃(S)
) (S27)

kD,S(S) ≈ g(
S

c̃(S)
) kD(

S

c̃(S)
). (S28)

This explicitly shows that the effective sticking and desorption coefficients, kA,S(S) and kD,S(S),
include both the effects of the molecular sticking and desorption coefficients, kA and kD, as well as
of the sensor response as function of molecular coverage, c̃(S). Using these effective sticking coef-
ficients, kA,S(S) and kD,S(S), it is therefore possible to describe the experimental sensor response
without explicit knowledge of c(n).
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