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Abstract

The plasmonic nanolens was proposed as a de-
terministic method to achieve high �eld en-
hancements and hence enable single molecule
photonic devices, but experimental results have
failed to live up to these expectations, and re-
cent theoretical works have brought its long-
assumed advantages into doubt. To explore
the limits of cascade �eld enhancements we
consider possible quantum solutions (`going
small'), and using phononic materials at longer
wavelengths (`going large'). We �nd that enter-
ing the quantum plasmonic limit, to enhance
the size ratio between constituent nanoparti-
cles, is not a fruitful strategy as the increased
electron-surface scattering decreases the �eld
enhancements by over an order of magnitude.
Using larger nanoparticles is limited in met-
als by retardation but using localised surface
phonon polaritons, which can be excited in po-
lar dielectrics, is an e�ective strategy due to the
lower energy phonon frequency and high quality
factor. We compare the nanolens against the
more usual dimer con�guration and �nd that
the superior geometry depends crucially on the
material used, with noble metal nanolenses un-
likely to o�er better performance to equivalent
dimers. In contrast, SiC nanolenses can o�er a
larger maximum �eld enhancement, upto 104,

compared to the corresponding dimer con�g-
uration, suggesting that future endeavours in
constructing nanolenses should be based on po-
lar dielectrics. This could have wide-ranging
implications for IR/THz surface-assisted spec-
troscopies.
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Research in plasmonics has ushered in a new

era of precise control over light in subdi�raction
volumes.1 One of the most famous examples of
this is the nanolens, �rst proposed by Li et al
in 2003,2 where a �nite chain of self-similar
metallic nanospheres, which support localised
surface plasmons (LSPs), are used to concen-
trate light to a "hot spot" via a cascade e�ect.
Enhancements on the order of 103 were pre-
dicted, which is desirable for applications in
sensing,3 energy conversion,4 nonlinear plas-
monics5 and surface-enhanced Raman spec-
troscopy (SERS)6 (with potential for single
molecule detection) amongst others. Despite
the complex structure there has been a number
of experimental realisations7�15 and continuing
e�orts. For instance, silver nanolenses self-
assembled by DNA origami sca�olds has been
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recently demonstrated.16

The original proposition2 for the nanolens
was formulated within the quasistatic regime,
which limits the size of the constituent nanopar-
ticles to below a few tens of nms for plasmonics
in the visible. In subsequent work,17,18 full
electrodynamic simulations have shown that
retardation e�ects limit the achievable �eld en-
hancement (FE) considerably. Thus, it seems
sensible to stay within the electrostatic regime
when designing a nanolens, but a large size
di�erence between the nanoparticles is essen-
tial for a strong nanolensing e�ect, meaning the
use of small nanoparticles is desirable. Unfortu-
nately, this is experimentally di�cult to realise.
Further, for nanoparticles less than about 10
nm in size, nonlocal e�ects start to become im-
portant19�24 and will shift the LSP resonance
and decrease the maximum FE achievable.
Nonlocality in small nanoparticles is a con-
sequence of the �nite extent of the electronic
wavefunctions which results in a smeared out
screening charge at metallic interfaces, rather
than the in�nitesimally thin layer assumed by
classical electromagnetism. To describe this
within the framework of classical electromag-
netic methods, a spatially dispersive longitu-
dinal dielectric function is necessary. Nonlocal
e�ects are also important for small gaps where
it leads to e�ective increase in the separation
of the particles,23,25 also reducing the FE. For
very small particle sizes further quantum ef-
fects, such as the electron spillout, may become
relevant.26 Even the atomic structure may be
important to include.27 If the system size is
small enough, ab initio quantum mechanical
calculations can be performed which automati-
cally take into account nonlocal e�ects, this is
known as quantum plasmonics.28,29 Recently it
has been shown that few-atom systems can sup-
port large FEs,27,30,31 and are suprisingly well
explained by classical plamonic models,32,33

which has led to the concept of the quan-
tum plasmonic nanoantenna.34 Such structures
could have applications in nano-localised pho-
tochemistry where the large �eld gradients can
induce non-dipole transitions.
Nonlocality can be modelled via the ingenious

method of Luo et al ,22 where it is mimicked,

in local calculations, by the inclusion of a thin
(relative to the metal's skin depth) �ctitious
dielectric boundary layer over the metal. This
model has been shown to accurately describe
the blue shift of the LSP as well as the smear-
ing of the electric �eld at boundaries and allows
modelling of nonlocality within the computa-
tionally simpler local framework.
For nanoparticles smaller than the mean free

path there is an additional surface scattering
contribution (also known as Kreibig or Lan-
dau damping) which can be simply added
to the bulk damping term according to the
Matthiessen's rule. The size dependent term is
usually written in the form35 ∆γ(R) = AvF

R
,

where A is a parameter on the order of unity
but there exists considerable uncertainty in its
value which is a consequence not only of exper-
imental di�culties but also size dependent con-
tributions from other sources such as phonon-
plasmon coupling,31,36 structural phase tran-
sitions37 and adsorbate-induced damping.38

There have been a number of theoretical39,40

and experimental41 works on this topic. Note
that the surface scattering model is only a valid
picture for symmetrical systems such as the
sphere35 and spherical shell structures,42 and
is not easily generalisable to more complicated
geometries.
In this work we perform a study of how retar-

dation and nonlocality limits the nanolensing
e�ect and explore the achievable FE in the
classical and quantum limits. We perform an
in-depth study of sodium which, due to its sim-
plicity and similarities to the free electron gas,
make it ideal for quantum calculations. We
consider the e�ects of nonlocality (i.e. a spa-
tially dispersive longitudinal dielectric function
due to quantum e�ects) and surface-scattering
separately and explore the contribution of each
in limiting the cascade e�ect. We �nd it is the
surface scattering which severely limits large
FEs in self similar spherical nanolenses rather
than spatial dispersion. We consider the e�ects
of the surface scattering and nonlocality sepa-
rately but it must be understood that they are
two faces of the same coin, namely a classical
representation of a quantum phenomena.
We also consider more realistic plasmonic
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metals: gold, silver and aluminium as well as
the polar dielectric silicon carbide (SiC) which
supports localised surface phonon polaritons
(SPhPs)43 and show how a suitable choice of
material and the wavelength regime of opera-
tion can lead to extreme nanolensing. Further,
we compare the nanolens system against dimers
of equal of volume for silver and SiC. Somewhat
surprisingly, we �nd no bene�t of using a sil-
ver nanolens compared to the equivalent dimer
geometry. In contrast for SiC we �nd a sub-
stantial bene�t of using the nanolens geometry,
over a range of geometrical parameters, and
�nd massive FEs approaching 104. This leads
us to the conclusion that the cascade e�ect is
more suitable for the IR/THz region, where the
high quality factor of polar dielectrics and the
large size range at which the quasistatic ap-
proximation holds leads to nanolens operating
close to the idealisation originally envisioned
by Li et al, and FEs orders of magnitude larger
than what can be achieved with metal based
nanolenses.

1 Results And Discussions

We begin by exploring the role of the con-
stituent nanoparticle sizes in a nanolens within
the local approximation (in this section we ig-
nore nonlocality) using the boundary element
method (BEM).44�46 Despite the immense in-
terest in the plasmonic cascade mechanism
there has been few detailed studies of the huge
parameter space available to modify the near
�eld response. In the �gure 1a inset we show
the system to be studied. We use the origi-
nal geometric progression idea of Li et al :2 the
smallest particle has a radius R3, the medium
particle has R2 = κR3 and the largest parti-
cle R1 = κ2R3. Furthermore, we denote the
smallest gap as g23 and the larger gap will be
g12 = κg23. The nanolens concept assumes
κ >> 1 so that the backcoupling of a sphere on
its larger neighbour is only a small perturba-
tion.2 The largest particle acts as an antenna,
coupling with the incident light via the dipole
mode, and then couples with the higher order

(a)

(c)(b)

Figure 1: (a) The maximum �eld enhance-
ment for a sodium nanolens (R3 = 0.94nm and
g23 = 1 nm) for varying κ within the elec-
trostatic approximation (blue) and the full re-
tarded solution (red). As well as the boundary
element method solution (crosses) also the gen-
eralised Mie theory result is show for compari-
son (circles). Shown inset is a schematic of the
nanolens studied and the de�nition of the ge-
ometry parameters used in this work. (b) The
maximum �eld enhancement for varying small-
est nanoparticle radius (R3) for di�erent κ. (c)
Same but for varying smallest gap size (g23).
For all these results the �eld is measured 0.3
nm away from the smallest sphere surface in
the gap g23.

modes of the smaller spheres, which can squeeze
the light into small volumes.47 We remark that
we enforce this self-similar structure for sim-
plicity but there is no guarantee that it leads to
the strongest FEs possible. To explore the FE
we measure the electric �eld 0.3 nm away from
the smallest nanoparticle in the gap between
the smallest and medium nanoparticle. Unless
otherwise speci�ed we set the smallest nanopar-
ticle's radius to be 0.94 nm (which corresponds
to a closed shell Na92 cluster) and the smallest
gap to be 1 nm which it approximately the
closest gap size one can achieve before electron
tunnelling between the nanoparticles can occur
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(which will limit the maximum FE via short cir-
cuiting and we do not account for this, it could
be included within a classical framework using
the quantum corrected model48). In �gure 1a
we show a sweep over κ for both electrostatic
and full retarded BEM simulations and show
the maximum FE over the wavelength range
200 nm → 500 nm. Unsurprisingly for low κ
(. 4) the electrostatic approximation works
well due to the small size of the structure, but
already for κ = 4 (which corresponds to the
largest particle having a size R1 = 15 nm)
there is a noticeable discrepancy. For larger κ
the FE continues to grow with increasing parti-
cles size within the electrostatic approximation,
in contrast the retarded calculations show a de-
crease in EM enhancement with increasing κ
as a result of radiative loss and shift of the
resonances for larger particles. Note that these
maximum electric �eld values may correspond
to di�erent spectral positions as the near �eld
resonance will shift in frequency for di�erent
geometrical parameters. To con�rm our re-
sults, we perform a separate calculation using
the generalised Mie method (GMM)49 and �nd
excellent agreement with the BEM. The results
clearly show that to achieve strong nanolensing
it is desirable to simultaneously have large κ
and be within the electrostatic approximation,
but this is con�icting requirements and leads
to an optimum FE for a given κ.
In �gure 1b we show the role of the smallest

nanoparticle size (R3) on the maximum FEs
achievable for di�erent κ, one can clearly see
that the largest FEs are achieved for simulta-
neously large κ and small R3. This is a con-
sequence of ignoring nonlocal e�ects and will
not be the case if quantum e�ects are included.
Interestingly, for certain values of R3 one �nds
that larger κ is not always advantageous. For
instance, for R3 = 5 nm the κ = 2 nanolens
max FE is 2.7 times larger compared to the
κ = 4 case; a larger κ is not always best! Simi-
larly, �gure 1c shows the role of the gap size g23
and reveals for larger gap sizes it may be prefer-
able to use a smaller κ. Together these results
reveal the complicated interference e�ects at
play which are captured by the full Maxwell's
equations, but not by simple electrostatic mod-

els, and illustrate the need for careful modelling
of a nanolens to ensure an optimum choice of
parameters is chosen.

We now include the e�ects of nonlocality us-
ing the local analogue model of Luo et al 22

within the BEM. Our �ndings in the last sec-
tion revealed that it is desirable to choose a
small R3 and large κ, it is interesting to see
how this breaks down with quantum e�ects in-
cluded. For any practical system, a full nu-
merical quantum calculation is clearly infeasi-
ble due to the large size so we make use of a
number of approximations to model quantum
e�ects. As the smallest sphere is well within
the quantum limit (R3 < 1 nm), here we use the
spherical jellium model within the local density
approximation-TDDFT formalism, which pro-
vides a good description for closed shell clus-
ters, to describe the optical response of the
individual smallest nanosphere. This provides
results accurate to within a few tenths of an
electron volt in comparison to experimental re-
sults.50 We �nd the TDDFT result does not
agree well with the nonlocal model at these sizes
for individual nanoparticle optical response, the
nonlocal result can be 'corrected' following the
prescription of Teperik et al .23 Performing the
TDDFT calculation allows an estimation of the
electron spill out not possible relying on quasi-
quantum nonlocal models and allows modelling
of nanolenses down to the quantum limit.
In �gure 2a we show the FE for a sodium

nanolens of R3 = 0.94 nm, g23 = 1 nm and κ =
4 for 4 di�erent models. The 1st model is purely
local as used in the last section. The 2nd model
is local but with surface scattering contribution
included in the damping as well as an electron
spillout correction to the plasma frequency pro-
vided by the TDDFT calculation. Note that for
the smallest sphere Na92 we use an experimen-
tal value of 0.42 eV50 for the damping rather
than the Kreibig formula which will breakdown
at the smallest scale. Sodium is well modelled
by a free electron gas and as ωP >> γ, where
ωP is the plasma frequency and γ is the Drude
damping parameter, we may take the plasmon
line width to be equal to γ. The 3rd model is a
nonlocal calculation with both an electron spill-
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Figure 2: (a) The �eld enhancement for a nanolens (R3 = 0.94nm, g23 = 1 nm and κ = 4) within the
4 models described in the main text. (b) The extinction cross section for the individual nanospheres
for di�erent models, also shown (in green) is the result for the non-corrected nonlocal model. The
local and nonlocal models with broadening included are multiplied by 10 for clarity. The inset
shows the TDDFT result for Na92 cluster, where S(ω) is the dipole strength function. (c) The
maximum �eld enhancement for a range of κ. (d) and (e) show the �eld pro�le (logarithmic scale)
within the local and nonlocal approximation at the max FE.

out correction and a correction to �x the incor-
rect value of the Feibelman parameter for alkali
clusters.23,51 The non-corrected hydrodynamic
model predicts the screening charge inside the
metal surface leading to a negative Feibelman
parameter, this is contradiction to full quan-
tum calculations and experimental results. The
plasma frequency can be corrected as

ωSP = ωnonlocSP (1− ∆

R
− δ

R
) (1)

where R is the nanosphere radius, ∆ is the po-
sition of the induced charge relative to the edge
and δ is the spillout length.23 The local results
can be similarly corrected ωSP = ωlocSP (1 − δ

R
),

which is done in model 2. Both quantities are
on the order of an so we will take δ ≈ ∆ and �t
according to the TDDFT simulation for a Na92
sodium cluster, we �nd that a value of δ = 0.12
nm gives a good �t to the quantum simulation,
this agrees fairly well with the experimental
value of 0.145 nm.52 The 4th model is a non-
local calculation with the correction and the
surface scattering contribution to the damping.
Note that the δ parameter is calculated from

the single Na92 cluster and that value is used
for the correction for all the spheres in the
nanolens.
By considering these 4 models we can explore

the contribution from the various small size ef-
fects on the FE. In the local model, we �nd a
number of peaks due to a complicated plasmon
hybridisation between the 3 particles. Interest-
ingly, compared to the individual nanosphere
response, the large FE response is rather broad-
band; over a range of about 50 nm a large FE
of over 1000 is possible. It is also worth remem-
bering that we are only recording the �eld at
one point so there may be large FEs at other
points not captured by these results. We �nd
that the nonlocal model with no broadening
leads to a redshift (due to electron spillout)
and a reduction in the maximum FE to about
40% of the local result, there is also a smooth-
ing out of the number of peaks visible. For
both model 2 and 4 there is a serious reduction
in the FE by over a factor of 10 due to Lan-
dau damping, such a reduction means that the
nanolens gives no bene�t over ordinary indi-
vidual nanospheres and dimers which o�er FEs
on the order of Q and Q2 respectively,47 where
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Q is the quality factor and is on the order of
10 for typical plasmonic metals near the LSP
resonance. This leads us to conclude it is the
increased damping via surface scattering that
severely limits the cascade FE rather than the
nonlocal shift of the resonances.
To further understand these results we can

analyse the optical response of each individual
nanosphere. In �gure 2b we show the extinction
cross section,53 for each model, of the individ-
ual nanoparticles in the κ = 4 system. Also
shown (in green) is the non-corrected nonlo-
cal model for comparison. We can see for the
largest particle (R = 15 nm) that, somewhat
surprisingly, retardation is already important
and shifts the resonance to lower energies, at
smaller wavelengths we can see a weak higher
order mode beginning to form. At all 3 sizes,
we can see that the non-corrected nonlocal in-
correctly predicts a blueshift. The corrected
models in contrast show a redshift which is a
consequence of the electron spillout, naturally
this shift is smaller for larger nanoparticles.
For some other metals, such as silver, the non-
local shift is towards higher energies due to the
dynamical screening of d-electrons51 and the
non-corrected nonlocal model will be more ac-
curate, although this should be regarded as a
lucky coincidence. It is interesting that for the
15 nm sodium nanoparticle that both retarda-
tion and quantum e�ects have a visible e�ect,
this hints there is a size regime where fully re-
tarded and quantum calculations are necessary
using models such as the recently developed
quantum hydrodynamic model.54 In the inset
of 2b we show the jellium TDDFT result for
Na92 where S is the dipole strength function,
we use a arti�cial 0.1 eV broadening. We �nd
close to 3 eV a prominent LSP is present, at
lower broadening it is possible to see that in
fact the peak is fragmented via interactions
with single particle excitations. Also present
is a Bennett surface plasmon and the volume
plasmon at higher energies,28 these modes are
not included in the local and nonlocal models
used. The SPP is red shifted compared to the
classical result due to the soft con�ning poten-
tial.
In �gure 2c we show the max FE for the 4

di�erent models over a range of κ. We see that
the trends from �gure 2a continue for di�er-
ent values of κ. Interestingly at larger κ the
surface scattering role in decreasing the FE is
increased, this is a consequence of the smaller
particle not contributing to the cascade e�ect
whilst the larger 2 spheres begin to behave
purely classical; in e�ect, the system behaves
as an asymmetric dimer and we can expect �eld
enhancements on the order of Q2 rather than
Q3 if surface scattering is not included.2 We
also show a logarithmic plot of the FE for the
max FE wavelength at κ = 4 within the local
(model 1) and nonlocal corrected (model 4) in
�gure 2d and 2e respectively. The local result
shows that the largest �eld enhancement is near
the smallest sphere in the gap g23, this agrees
with what was found in the original work on the
nanolens.2 In contrast, the FE spatial pro�le
for the nonlocal models shows only a small FE
in the gap with the largest �elds found solely
within the smallest nanoparticle, this illustrates
a breakdown of the cascade e�ect.
It seems from these results that going smaller

is not an e�ective strategy for building plas-
monic cascade devices. Recently, similarly
drastic reductions (up to 7 times) from non-
locality have been shown for the �uorescence
enhancement of a dipole near a gold nanoparti-
cle.55 We emphasise that the inclusion of elec-
tron tunnneling, a neglible e�ect at these gap
sizes, would only further limit the �eld ehance-
ment. It is worth stressing that nonlocality is
highly dependent on geometry, for instance thin
metallic nanoshells could o�er superior perfor-
mance for ultrasmall nanolenses. Experimen-
tal results have shown that 20 nm thick gold
nanoshells shows no additional broadening.56

This has been backed up by theoretical calcula-
tions within the random phase approximation
which have shown Landau damping decreases
with decreasing nanoshell thickness.57

In the preceding discussions, we have seen
the detrimental e�ects of retardation and non-
locality on the plasmonic cascade e�ect. To
explore di�erent strategies for achieving large
FEs we now consider the e�ect of the mate-
rial. We study the e�ects of changing κ for
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Figure 3: (a) Maximum �eld enhancement, in
log scale, for silver, gold, aluminium and sil-
icon carbide for di�erent κ. the geometry is
R3 = 5 nm, g23 = 3 nm. (b) The �eld enhance-
ment against wavelength for the κ = 4 geome-
try, with the SiC result multiplied by 1/10 to
allow visualisation.

more typical plasmonic metals: silver, gold and
aluminium. We also look at the polar dielec-
tric SiC which, within the Reststrahlen band
that is located in the mid-IR between the lon-
gitudinal and transverse optical phonons, be-
haves as an optical metal and supports localised
surface phonon polaritons (LSPhPs).43 The low
loss and high Q (which can be over an order of
magnitude larger than for noble metals, this is
because the non-radiative loss is determined by
phonon-phonon scattering rather than electron-
electron scattering in metals) makes polar di-
electrics suitable for use in a IR/THz nanolens.
Here we study the maximum FE over a range of
κ, for simplicity we use a local model as we now
set R3 = 5 nm and g23 = 3 nm which are easier
for experimental realisation and are similar to
the geometry used in the original paper by Li
et al .2 In �gure 3 we show the maximum FE
0.3 nm away from the smallest nanosphere. We
�nd that gold, the most commonly used plas-
monic metal, has the lowest maximum FE: al-
ways below 100. This is a consequence of in-
terband transitions close to the plasmon reso-
nance which limits the quality factor. A more
optimum nanolens could be constructed for gold
by structuring (for instance into an ellipsoid or
rod shape) so that that the LSP is shifted to
larger wavelengths. Aluminium exhibits higher
FEs and is useful for achieving large FEs in the
UV. Silver is good choice for achieving large
FEs due to its large Q for a metal (approxi-

mately an order of magnitude larger than gold
at the plasmon frequency43). Of the four ma-
terials, SiC shows the largest FE due to its
high Q combined with a lack of retardation loss.
In contrast to the monotonically increasing FE
with κ for SiC, the metals show a more com-
plicated variation with κ (similar to what is
seen for sodium in �gure 1a), which is a hall-
mark of retardation e�ects. This is con�rmed
by comparison with an electrostatic calculation
for SiC, which is very similar to the full re-
tarded results. This is a consequence of the
low frequency of the SiC LSPhP as compared
to the LSP of the metals. The electrostatic ap-
proximation holds for a nanosphere, at the reso-
nance, if |

√
ε|2πR/λSPhP << 153 which for SiC

is found to be around a micron, hence for κ = 4
where the largest sphere radius is 80 nm this
is very well satis�ed still. In comparison Al,
which has a high frequency SPP, very quickly
deviates from the electrostatic approximation
for very small particle sizes. This suggests that
the nanolens concept is more viable for appli-
cations in the IR/THz where the electrostatic
approximation holds at larger sizes. Note that
the maximum FE is highly sensitive to the ma-
terial data used as shown in reference,58 where
the maximum FE was shown to change by a
factor of 5 depending on the experimental data
used.
The use of SPhPs for the nanolens cas-

cade e�ect o�ers an alternative to using LSPs
and should lead to the larger FEs, although
one must work at longer wavelengths in the
IR/THz. Fortunately, this is a window of the
electromagnetic spectrum that has generated a
huge amount of interest, it coincides with vibra-
tional and rotational transitions of molecules.43

Similar results may also be obtained in this
spectral region for doped semiconductors59 and
graphene.60 The FE values we have obtained
for the SiC nanolens are upper bounds as we
have not included any nonlocal or surface scat-
tering corrections, we expect for the systems
studied here that such e�ects will be small and
should compare favourably to metals. The �at
dispersion of optical phonon in the long wave-
length limit leads to a low group velocity on
the order of ∼ 104 m/s for polar crystals, this
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gives, despite the relatively long scattering time
of around ∼ 102 ps, a short mean free path on
the order of 10 nm. Furthermore, quantum cor-
rections can be expected to be negligible due to
an absence of free carriers.

(a) (b)

(c) (d)

Figure 4: The maximum �eld enhancement of
silver nanolens and dimers for di�erent κ cal-
culated within the electrostatic approximation
(a) and full retarded solution (b). The geome-
try parameters are R3 = 5 nm and g23 = 3 nm.
(c),(d) Same but for silicon carbide.

We now comment on the suitability of the cas-
cade e�ect to achieve large FEs in comparison
to the more usual dimer setup. Recently it was
suggested by Pellegrini et al 58 that there are
no signi�cant improvements achieved with self-
similar nanolenses as compared to plasmonic
dimers of equal or less total volume. This
was a surprising result but was only tested for
a single nanolens geometry; as shown in sec-
tion 2.1, the nanolens geometry can vary in
a non-trivial fashion for di�erent geometries.
Here we explore a range of κ for both silver
and SiC. For a fair comparison we enforce the
dimer volume to be equal to be the same as
the equivalent nanolens for a given κ so that
Rdimer = ((R3

1 + R3
2 + R3

3)/2)1/3 and the gap
is the same as the smallest gap (g23) of the
nanolens. We measure the �eld in the middle of
the gap for the dimer. There is some arbitrari-
ness when de�ning a comparison between the

(a) (b)

Figure 5: The �eld enhancement for: (a) a 3
particle SiC nanolens of geometry R3 = 5nm,
g23 = 3nm and κ = 10, (b) a 4 particle nanolens
of geometry R4 = 5nm, g34 = 3nm and κ = 4.
Both are compared with the equivalent volume
dimer.

dimer and nanolens, for instance the ratio of
the radius to the gap could be used. We choose
to �x the volume as many physically relevant
quantities depend on it, such as the dipole mo-
ment and absorption cross section of a sphere.
Furthermore, if the volume is not �xed then
the di�erence in volume between the nanolens
and dimer will change with κ, hence an analysis
based on changing κ would be less meaningful.
In �gure 4a and b is shown the maximum

FE over a range of κ for a silver nanolens and
the equivalent volume symmetric dimer, for the
electrostatic approximation and full retarded
solution respectively. We �nd for silver that
the �ndings of Pellegrini et al hold for all ge-
ometries considered in the electrostatic approx-
imation and all, expect at κ = 5, for the full
retarded calculation. Our work indicates that
the nanolens geometry holds no signi�cant ad-
vantage over the dimer system in the case of
silver for exciting strong FEs. Whilst more
work is needed over a larger parameter range
and di�erent metals, this does suggest that the
huge amount of work in search for large �eld en-
hancements with nanolens built of noble met-
als may be wasted e�ort when much simpler
dimers are preferable. What is most surprising,
also noticed by Pellegrini et al ,58 is that the
dimer remains superior within the electrostatic
approximation as well (�gure 4a). Thus, it is
not retardation e�ects that limit the nanolens-
ing e�ect, rather it is a limitation of the mate-
rial.

In contrast, for SiC (see �gure 4c and d) we
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�nd that the nanolens become increasingly su-
perior to the dimer for larger κ, at κ = 6 the
nanolens geometry leads to a 29% larger FE.
The suitability of SiC for nanolensing is a con-
sequence of being well within the electrostatic
limit at these sizes, combined with low mate-
rial loss (large Q). The former being con�rmed
by the electrostatic results (�gure 4c) being ap-
proximately equal to the retarded results (�g-
ure 4d). Note that we expect the nanolens to be
further superior to the dimer for larger κ than
shown in �gure 4, where we restrict ourselves
to κ ≤ 6; the BEM calculations become in-
creasingly di�cult to converge as the size ratio
between the constituent spheres increases. To
con�rm this intuition we have performed an ad-
ditional calculation (using the multi-sphere T-
matrix code by Mackowski and Mishchenko,61

which is able to achieve convergence for these
challenging geometries) for a κ = 10 nanolens
(see �gure 5a) and �nd the nanolens geometry
has a 82% improvement of the maximum FE
compared to the equivalent volume dimer. By
using SiC structures we can approach massive
FEs of 104, which corresponds to an intensity
enhancement of 108 and the potential for de-
terministic SERS enhancements of 1016. This
demonstrates that polar dielectrics are a suit-
able material for constructing extreme-cascade
nanophotonic devices. The inset of �gure 5a
shows the maximum FE for κ from 6 to 10 for
both the dimer and nanolens and shows that
the nanolens become increasingly superior for
larger κ, continuing the trend from the BEM
calculation shown in 4d. The drop o� in FE
increment with increasing κ for the dimer is
presumably due to growing retardation loss, for
large enough κ a similar drop o� will be seen
for the nanolens. Interestingly, the spectral in-
formation in �gure 5a shows that the strongest
FE occurs for a narrow single peak and we have
found this to be an hallmark of strong nanolens-
ing, this is in contrast to the dimer which has
multiple peaks due to mode hybridisation. We
have con�rmed that the response of the system
is down to the material resonance rather than
a pure geometric resonance by calculating the
FE for a silver nanolens in the same wavelength
regime as for the SiC nanolens (8µm→ 14µm)

Dimer Superior
Nanolens SuperiorRealistic 

Metal

Figure 6: The maximum �eld enhancement of
a dimer minus that of a nanolens for a �ctitious
Drude metal with variable Q. The geometry
parameters are R3 = 5 nm, g23 = 3 nm and
κ = 4. Indicated in blue are the regions where
the dimer is superior and cream are the region
where the nanolens is superior. The hashed re-
gion indicated the region of realistic Q values
for metals.

where the silver acts, to a good approximation,
as a perfect electrical conductor, and we �nd
only a small FE on the order of 10.
To understand the results shown in �gure

4 further, we model a �ctitious Drude model
(based on silver) and vary the quality factor,
for ω >> γ, this is as simple as changing γ.
We then plot the maximum FE of the dimer
minus the nanolens for κ = 4 (see �gure 6).
Negative numbers correspond to the nanolens
outperforming the dimer. The results show
that the nanolens geometry, for these partic-
ular parameters, is desirable when the quality
factor is very large (Q & 800) which is far be-
yond what is achievable in plasmonics in the
visible (the Q of silver at the LSP resonance
is ∼ 30) and is only just within the reach
of the best of polar dielectrics at much lower
frequencies (SiC has Q ∼ 900 at the LSPhP
resonance).43 Alternative materials suitable for
constructing nanolens could be high index di-
electrics which exhibit very large quality fac-
tors or hybrid dielectric-metal systems where
the loss can be modi�ed over orders of magni-
tude (∼ 103) from metal to dielectric-like.62

It is worth mentioning that in the original
work of Li et al it was shown that a sym-
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metric nanolens increases the FE by a factor
of 2. So far in this work, we have stuck to
3 self-similar nanospheres but higher FEs can
be achieved with a larger number of elements,
although at the cost of added complexity to
build. Such devices have been experimentally
demonstrated12 and lead to improved SERS in-
tensity13 compared to the 3 particles nanolens.
In �gure 5b we show the results for a nanolens
built of 4 spheres. The smallest sphere radius
(R4) and gap (g34) are 5nm and 3nm respec-
tively and κ = 4. We �nd that the nanolens
can achieve a maximum FE of almost double
the equivalent dimer, again demonstrating the
e�ectiveness of the cascade e�ect in SiC devices.
Higher numbers of nanospheres could be consid-
ered and could well lead to even larger improve-
ments. We have also explored 4 particle silver
nanolenses for low kappa and observed no sig-
ni�cant advantage compared to the equivalent
dimer system (results not shown).
As a �nal remark, we note that the geome-

tries shown, whilst demonstrating extreme FE,
may be di�cult to produce for experimental
demonstration due to the large κ and small
gaps. These results should be taken as an in-
dication of the ultimate achievable FEs in po-
lar dielectrics (although we emphasise that fur-
ther geometrical optimisation is certainly possi-
ble). To demonstrate a more attainable device,
we consider a nanolens with both the small-
est nanosphere radius and gap to be 10nm and
limit ourselves to κ = 4, which is inline with
what is experimentally achievable. The results
are shown in �gure 7, we �nd for these geome-
tries that the maximum FE is 52% and 116%
larger for the 3 and 4 particle nanolens geom-
etry, as compared to the equivalent dimer, re-
spectively. The value of the FE is, of course,
lower than the results shown in �gure 5 due to
the larger gap. A wider spacing leads to a lower
number of higher order plasmon modes being
excited and a consequent drop in the �eld con-
centration near the smaller nanosphere. The re-
sults are clear evidence that experimentally re-
alistic SiC devices can utilise the cascade e�ect
to achieve large FEs, beyond what is achievable
with metal based devices.

(a) (b)

Figure 7: The �eld enhancement for: (a) 3 and
(b) 4 particle SiC nanolens, with the smallest
nanosphere radius and gap equal to 10nm, and
κ = 4. Both are compared with the equivalent
volume dimer.

2 Conclusions

We have shown that nonlocal e�ects hugely
limit the possible FE in plasmonics nanolens
and have shown that building smaller metal-
lic nanolens to beat retardation is not a vi-
able strategy because of nonlocality. Our top-
down approach using quasi-quantum models
contrasts with existing studies, based on den-
sity functional theory which have found supris-
ingly large FEs27,30,31 and emphasises the need
for a greater understanding of the loss channels
relevant to plasmonics at these length scales.
A more promising route to achieve large FEs
is to use suitable materials or geometries with
resonances in the IR/THz where higher qual-
ity factors and a much larger span of κ within
the electrostatic regime, are possible. In par-
ticular we have illustrated the potential of SiC
nanolenses to achieve extreme FEs on the or-
der of 104, we can expect even higher FEs for
optimised structures. These nanolenses could
have applications in molecular sensing in the
mid-IR range and could also be suitable for
achieving coupling with graphene plasmons and
molecular excitations to create tunable hybrid
modes.63 The use of high-index dielectrics for
the cascade e�ect is also promising due to their
much superior quality factor compared to met-
als.
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3 Methods

For sodium we use a Drude dielectric function
ε(ω) = 1− ω2

P

ω2+iωγ
with parameters ωP = 6.05eV,

γ = 0.02684 eV. The plasma frequency is deter-
mined by the Wigner-Seitz radius 2.08 which is
also used to determine the Jellium density. For
gold and silver we use experimental data from
Johnson and Christy.64 For aluminium, Drude
parameters of ωP = 15.3 eV and γ = 0.598
eV.65 For SiC we use a Lorentz oscillator model
ε(ω) = ε∞(1 +

ω2
L−ω

2
T

ω2
T−ω2−iωγ ) with the longitudi-

nal and transverse optical phonon frequencies
ωT = 0.0988 eV and ωL = 0.120 eV respectively,
ε∞ = 6.56 and γ = 0.00059 eV.66 Throughout,
where possible, we checked local calculations by
using both the BEM and GMM method and
found excellent agreement.
When using the local analogue model, we

set the arti�cial dielectric thickness to R/200
throughout, we have checked the accuracy of
the method by comparison to coated Mie the-
ory for a single sphere.53 For the TDDFT cal-
culations we used the real space code OCTO-
PUS.67 To test the validity of our simulation we
checked the sum rule

∫
s(ω)dω = N , where N

is the number of valence electrons, and found it
was satis�ed to 99.8%.
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