
Building a Self-Adaptive Content Distribution Network

Gawesh Jawaheer

Department of Computing

Imperial College London

gawesh@doc.ic.ac.uk

Julie McCann

Department of Computing

Imperial College London

jamm@doc.ic.ac.uk

Abstract

In this paper, we propose a framework for building

a self-adaptive Content Distribution Network (CDN).
Such a CDN will exhibit self-adaptive behaviour at a

coarse grained granularity. It will be able to cope with

serving heterogeneous resources under unpredictable
conditions. We describe the concepts that underpin our

framework and we discuss the issues that it raises.

1. Introduction

The phenomenal growth of the WWW is straining

its traditional content distribution system whereby

browsers are served content from a web server.

Nowadays, very popular web sites such as those of

portals like Yahoo or large multinational companies

like Microsoft or news sites like MSNBC are using the

Content Distribution Networks (CDNs) provided by

commercial companies such as Akamai to host and

serve their content [1]. A CDN typically consists of a

system of globally distributed web servers which serve

content on behalf of a content provider. These web

servers, also known as edge servers, are strategically

placed on the edge of the Internet in order to be closer

to the clients they serve. Thus, CDNs aim to improve

user access latency, throughput, reliability and

scalability.

Initially, CDNs were used mostly to serve images

[10]. However, they are now faced with demands of

serving web pages with heterogeneous contents of

varying demand characteristics. Already, CDNs face

difficulties in provisioning of web sites during flash

crowd situations [12]. In the future, we anticipate more

acute problems when CDNs will be required to serve

personalised content, dynamic content and

applications. Providing such capability represents a

unique opportunity for CDNs as it gives the latter a

competitive advantage over client-side caching

technologies [11].

The solution to these problems is to enable CDNs

with self-adaptive behaviour. Self-adaptive edge

servers can be scattered around the world to sustain the

scalability of the system. Taking self-adaptive software

as an analogy [3], we define a self-adaptive CDN as a

system which evaluates and changes its own behaviour

when the evaluation indicates that it is not

accomplishing what the system is intended to do, or

when better functionality or performance is possible.

There are several implications that emerge from such a

definition. First, we have to define the behaviour of a

CDN. Then, we need a means of evaluating the

behaviour against predefined goals of the system.

Finally we need a means of implementing the changes

in behaviour.

In this paper, we describe a framework for

developing a self-adaptive CDN that exhibits self-

adaptive behaviour at a coarse grained granularity. We

provide ideas for the realisation of such a framework

and discuss some issues raised by our approach. We do

not discuss implementation issues as these form part of

our future work.

2. Background

A CDN consists of globally distributed web sites

which host web based applications [2]. Each site is

usually made up of a farm of web servers. These web

servers, also known as edge servers, are strategically

placed on the edge of the Internet, hence, closer to the

clients they serve. CDNs operate by replicating content

from an origin server, typically a web server under the

control of the organisation paying for the services of

the CDN, to several of these edge servers. CDNs

transparently route requests from clients (web

browsers) away from the origin servers onto the edge

servers, hence distributing the load. Thus the requested

resources are served from the edge servers. With such

an arrangement, CDNs aim to improve user access

latency, throughput, reliability and scalability. The

essential building blocks of a CDN are:

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

Origin servers: these hold the latest version of

the resources. Typically these resources

would be embodied in web pages. The

resources are replicated from the origin

servers onto edge servers. Ideally, the origin

server would serve to users only the web

pages which embody the resources.

Edge servers: these serve resources to users.

Typically, user requests to an origin server are

transparently redirected to the edge servers.

Whenever, a resource is unavailable on an

edge server, it is requested from its origin

server.

DNS servers: these form part of the

redirection mechanism. The URLs of the

resources embodied in the web pages served

by the origin server are resolved by these

DNS servers. This enables them to redirect

users to the edge servers.

Load balancing mechanisms: these dictate

how the resources are replicated on the edge

servers. They also dictate to which edge

server to redirect a request for a resource.

CDNs serve various types of resources from a

varied set of web sites such as corporate, entertainment

and news sites. Current CDNs serve text, images,

video, audio and streaming media, although images

represent the bulk of the traffic. The next generation of

CDNs will add to this diversity of resources by

supporting the distributed execution of applications

and the provisioning of personalized content. All these

resources have various characteristics which place

requirements, sometimes conflicting, on the CDN.

Furthermore, these characteristics, and hence

requirements change over time. However, the

distribution model of a CDN is rigid and does not cope

well with such varied and changing requirements. In

the following sections, we outline our proposed

solution to this problem, namely a framework for

developing self-adaptive CDNs. We also analyse a few

of the key issues that such a framework raises.

3. Self-adaptive CDN

A self-adaptive CDN will serve resources in an

intelligent manner. It will be able to reason about a

requested resource and in order to satisfy some overall

administrative goal, will adapt its behaviour to serve

that resource. Hence it will be able to cope with

heterogeneous content with varied demand

characteristics and unpredictable events such as flash

crowds. We now present two key concepts for realising

such self-adaptive behaviour in a CDN.

3.1. Contextual characteristics

The behaviour of a CDN is expressed by the way it

consumes resources like cpu capacity and bandwidth to

provide other resources like text, images or video. In

our framework, each resource has a contextual

characteristic. Our notion of context embodies the

application and time domains. Contexts are

hierarchical and have inheritance properties. For

example, the WEB context is the parent of the NEWS

context and the CORPORATE context. And an image

with the NEWS contextual characteristics inherits the

WEB contextual characteristics. Our definition of

context distinguishes among different types of web

sites such as corporate, news, personal etc and also

among different events in time such as a flash crowd.

Within our framework, all the resources consumed by a

CDN and the resources provided by an origin server

are described using a semantically rich language. The

aim is to use such a language to capture several types

of relationships:

among resources consumed

among resources provided and

between resources consumed and resources

provided.

3.2. Encapsulating the behaviour of a CDN

Having defined the properties of the resources

served by a CDN, we now tackle the issue of

describing its behaviour. In an open system like a CDN

which works under varying operational conditions,

describing its behaviour using a description language is

unfeasible. Such a language would have had to

describe the interactions of all the pertinent

components of the CDN. It is also highly likely that not

all of those interactions may be known at design time.

For example, we cannot predict what will be the most

accessed resource on a particular web site. The

description language if we were to create one, would

also have to describe the various interactions of these

components in response to some adaptation. This is an

unrealistic approach that is bound to fail in the case of

a CDN.

Instead, we describe the architectural constraints of

the CDN in terms of its resources. This enables us to

succinctly encapsulate the behaviour of the CDN. [4]

have shown a similar approach to work in the field of

adaptive software. However, this does not resolve the

issue of how self-adaptive behaviour will be achieved.

The behaviour of a CDN is altered by changing the

relationships between its resources. Hence, given the

architectural constraints, self-adaptive behaviour can

be achieved by solving the constraint satisfaction

problem between all the consumed and provided

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

resources. As the case in the software engineering

domain, this problem is best solved through a set of

rules which specify how resources can be consumed

and provided. It is an approach that has been

experimented in a previous work on developing an

adaptive web server system where adaptivity is

achieved through a set of rules [6] [7]. We advocate the

same for realising the self-adaptive CDN. Self-adaptive

behaviour will be achieved through a set of rules about

resource interaction. These rules, together with the

architectural constraint specifications will drive the

change in relationships among resources.

The work by [4] has provided the motivation for

describing self-adaptive behaviour of a CDN using

architectural constraints in terms of its resources.

However, we do not carry out adaptation at such high

levels of granularity as in [4] and [5]. Indeed, the latter

works propose to design and implement adaptive

software components, whereas our framework enables

adaptation in a CDN at a lower level of granularity and

a higher level of abstraction. For example, we do not

support unbinding or rebinding of the software

components of the CDN at run time. This distinction in

the granularity at which adaptation is carried out

characterises autonomic systems surveyed in [9]. In the

following section, we discuss several issues that our

framework raises.

4. Issues in a self-adaptive CDN

These issues can be summed up by the following

diagram in Figure 1.

The pseudo-first issue of how to enable adaptive

behaviour formed the crux of this paper and has

already been addressed in Section 3. We now discuss

the other issues.

4.1. Where do we adapt?

Although our framework does not specify where

adaptive behaviour will be enabled, it does make

certain implicit assertions. For example, by realising

self-adaptive behaviour through architectural

constraints in terms of resources, it excludes having

any self-adaptive software component per se. We felt

that any other approach would not have been able to

meet the performance requirements for a CDN.

Furthermore, we exclude adaptive behaviour at the

network level, an approach that would have been

favoured by researchers in active networks. As

advocated by [8], it is our design philosophy to push

the complex functionalities of a system in its higher

layers as much as possible.

4.2. What do we adapt?

In section 3.2, we mentioned that self-adaptive

behaviour in our framework would be achieved

through a set of rules about resource interaction. These

rules dictate “what” to adapt. For example, a CDN

could increase its load in order to improve throughput

or decrease its load in order to improve access latency.

The elaboration of these rules would be based on

general principles about consumption of resources on

the WWW and overall administrative goals.

4.3. When to adapt?

Our framework does not specify when to execute

self-adaptive behaviour. We may provide execution of

self-adaptive behaviour through an event trigger.

Otherwise, such execution may be user-triggered. In

the latter case, one may argue that this defeats the

purpose of a self-adaptive system. However, having

such flexibility in our framework enables us to

concentrate on the pseudo-first issue of how to enable

self-adaptive behaviour rather than investigating event

detection mechanisms on the WWW. For example,

developing an accurate flash crowd detector is a non-

trivial task. Furthermore, the flexibility in our

framework makes our development of the self-adaptive

CDN independent of progress on works in event

detection.

where

Self-

adaptive

system

4.4. Evaluation

There are no clear metrics by which to evaluate

self-adaptive systems. One can think of measures like

latency or QoS. However, a lack of definite metrics

will lead to adhoc evaluations which make comparison

of different self-adaptive systems within the same

application domain impossible. [9] discuss this issue

further.

5. Related work

The need for moving away from the traditional

design of CDNs has been recognised. [11] propose a

evaluationwhat

when

Figure 1. Issues in a self-adaptive system

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

CDN for serving applications. They describe the

architecture and algorithms for such a CDN. They also

carry out a preliminary performance study. We note

that such a study was based only on serving one type of

resource, namely Internet applications. Hence, no

testing with a heterogeneous group of resources was

carried out. Different resource types have different

characteristics which influence the design of a CDN.

The emergence of CDNs as platforms for transforming

content is highlighted by Kinno et al in [13]. They

propose a framework for transforming XML data based

upon environment descriptions. Their emphasis is on

serving multimedia content and being able to transform

the content according to user characteristics. They

provide an application scenario for carrying out such

adaptation on a CDN. Their work is strong on

implementation details which may be useful to us

when we come to the implementation stage. Similar to

our framework, they propose to have rules to enable

adaptation of the content. However, they fail to capture

the behaviour of the CDN as we do by defining the

architectural constraints. This limitation prevents an

implementation of self-adaptive behaviour.

6. Conclusion

This paper describes a framework for developing a

self-adaptive CDN. This will enable a CDN to cope

with the heterogeneity of resources on the WWW, the

emergence of new demands and unpredictable events.

We presented the main concepts of our framework

that enables reasoning about resources and

encapsulation of the behaviour of the CDN. We also

described how to enable self-adaptive behaviour. We

then discussed several issues raised by our framework.

Our future work will be to carry out an

implementation of our framework. We would like to

explore various resource delivery scenarios. In

particular we would like to see how the system copes

with a flash crowd and the delivery of applications.

References

[1] Akamai, www.akamai.com

[2] Verma D, Content Distribution Networks: An

Engineering Approach, John Wiley & Sons Inc, 2002

[3] DARPA Broad Agency Announcement on Self-adaptive

Software (BAA-98-12), 1997

http://www.darpa.mil/ito/Solicitations/PIP_9812.html

[4] Georgiadis I, Magee J, Kramer J, Self-organising

software architectures for distributed systems, ACM

SIGSOFT Workshop on Self-Healing Systems, WOSS 02,

Charleston, South Carolina, Nov 2002

[5] Waewsawangwong P, A constraint architectural

description approach to self-organising component-based

software systems, To appear in the Doctoral Symposium,

International Conference on Software Engineering ICSE

2004, Edinburgh May 2004

[6] McCann J, Jawaheer G, Sun L, "Patia: Adaptive

Distributed Webserver(a Position Paper)", IEEE Proceedings

for The Sixth International Symposium on Autonomous

Decentralized Systems, ISADS 2003, Pisa, Italy, Apr 2003

[7] McCann J, Jawaheer G, "Experiences in Building the

Patia Autonomic Webserver", IEEE Proceedings of 14th

International Workshop on Database and Expert Systems

Applications (DEXA), Prague, Czech Republic, Sep 2003

[8] Saltzer J, Reed D, Clark D D, End-To-End Arguments In

System Design, ACM Transactions on Computer Systems,

V.2, N.4, p. 277-88. 1984

[9] McCann J, Huebscher M, Evaluation issues in autonomic

computing, 2004 (submitted for publication)

[10] Krishnamurthy B, Wills C, Zhang Y, On the use and

performance of content distribution networks ACM

SIGCOMM Internet Measurement Workshop 2001

[11] Rabinovich M, Xiao Z, Aggarwal A, Computing on the

edge: a platform for replicating applications, Eighth

International Workshop on Web Content Caching and

Distribution, 2003

[12] Jung J, Krishnamurthy B, and Rabinovich M, Flash

crowds and denial of service attacks: Characterization and

implications for CDNs and web sites, Proceeding of 11th

World Wide Web conference, 2002

[13] Kinno A, Yonemoto Y, Morioka M, Etoh M,

Environment adaptive XML transformation and its

application to content delivery, Proceedings of the 2003

Symposium on Applications and the Internet (SAINT’03)

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

	footer1:

