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Abstract 4 

Multi-strake cylindrical and conical shells of revolution are complex but commonplace 5 

industrial structures which are composed of multiple segments of varying wall thickness. They 6 

find application as tanks, silos, circular hollow sections, aerospace structures and wind turbine 7 

support towers, amongst others. The modelling of such structures with classical finite elements 8 

interpolated using low order polynomial shape functions presents a particular challenge, 9 

because many elements must be sacrificed solely in order to accurately represent the regions of 10 

local compatibility bending, so-called ‘boundary layers’, near shell boundaries, changes of wall 11 

thickness and at other discontinuities. Partitioning schemes must be applied to localise mesh 12 

refinement within the boundary layers and avoid excessive model runtimes, a particular concern 13 

in incremental nonlinear analyses of large models where matrix systems are handled repeatedly.  14 

In a previous paper, the authors introduced a novel axisymmetric cylindrical shell finite element 15 

that was enriched with transcendental shape functions to capture the bending boundary layer 16 

exactly, permitting significant economies in the element and degrees of freedom count, mesh 17 

design and model generation effort. One element is sufficient per wall strake. This paper 18 

extends this work to conical geometries, where axisymmetric elements enriched with Bessel 19 

functions accurately capture the bending boundary layer for both ‘shallow’ and ‘steep’ conical 20 

strakes, which are characterised by interacting and independent boundary layers, respectively. 21 

The bending shape functions are integrated numerically, with several integration schemes 22 

investigated for accuracy and efficiency. The potential of the element is illustrated through a 23 

stress analysis of a real 22-strake metal wind turbine support tower under self-weight. The work 24 

is part of a wider project to design a general three-dimensional ‘boundary layer’ element. 25 

Keywords 26 

Conical shell; thin axisymmetric shell; bending boundary layer; Bessel functions; finite element 27 

method.  28 
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1. Introduction 29 

Cylindrical shells find widespread application as containment structures, supporting structures 30 

and aerospace vehicles. Their ubiquity is a result of the relative ease of construction of 31 

cylindrical geometries and of the relative simplicity of their manual dimensioning, typically 32 

performed using shell membrane theory. This determinate theory is based on balancing external 33 

loads with internal membrane stress resultants only, disregarding the high local bending stresses 34 

that may arise in response to kinematic compatibility requirements at a boundary or change of 35 

wall thickness. These stresses decay away from the discontinuity at an exponential rate, forming 36 

a ‘boundary layer’ whose length can be taken as two bending half-wavelengths λ [1]. For a thin 37 

cylinder, λ is usually small relative to the length of the strake, and the membrane theory solution 38 

is therefore valid over the majority of the cylinder. Where this is not the case, a manual 39 

application of axisymmetric shell bending theory is just about practical for uniform thickness 40 

cylinders [1, 2, 3]. The membrane theory treatment of cones is straightforward due to their 41 

straight meridian, however their classical bending theory to cones is made quite challenging by 42 

the necessity for the analyst to manipulate Bessel functions [1, 4, 5, 6]. Cui et al. derived an 43 

analytical theory that circumvents the use of Bessel functions while delivering a better accuracy 44 

than the equivalent cylinder method [7], but numerical methods tend to be preferred even for 45 

stress analyses, although they require a careful mesh design to capture the boundary layer effect. 46 

The authors’ previous ‘proof of concept’ study [8] adopted the novel approach of distinguishing 47 

between the ‘membrane’ and ‘bending’ components of the shell’s kinematic degrees of freedom 48 

(DOFs) and interpolating these separately to create a linear axisymmetric ‘Cylindrical Shell 49 

Boundary Layer’ (CSBL) element. The membrane displacements were interpolated with simple 50 

polynomial functions, but bending displacements were interpolated with transcendental 51 

functions derived from the governing differential equation, enriching the element’s 52 

interpolation field to support the boundary layer natively. An illustration on a number of 53 

realistic multi-strake civil engineering shell structures showed that the CSBL offered significant 54 

advantages in terms of reduced elements and DOFs counts, mesh design and accuracy over a 55 

‘classical’ shell element with polynomial shape functions based on Zienkiewicz et al. [9].  56 

The same approach will be followed in this paper to derive a conical version of this element, 57 

here termed ‘CoSBL’. The authors first present a brief derivation of axisymmetric bending 58 

theory for conical shells in order to establish the strong form differential equation (following 59 

Flügge [4]), as its solution will provide the functional form for the interpolation field of the 60 

bending component of the total displacements (the membrane component will be interpolated 61 
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with simple functions, as for the CSBL). Various integration schemes for the CoSBL stiffness 62 

matrix are explored (with results presented in the Appendix for compactness), and two 63 

dimensionless parameters are identified to characterise the relationship between the two 64 

boundary layers of a CoSBL element. Finally, the potential of the element is illustrated on a 65 

complex and realistic 22-strake civil engineering structure. 66 

Readers are invited to consult Chapelle and Bathe [10] for a detailed review of the widespread 67 

literature on classical shell finite elements. The authors are aware only of the work of Bhatia 68 

and Sekhon that is of direct relevance to this paper, who successfully developed ‘macro’ 69 

cylindrical, conical and spherical linear axisymmetric shell elements [11, 12, 13] using a 70 

method described in [14]. It does not rely on the definition of bending shape functions, using 71 

instead the integration constants of the solution to the governing differential equation as implicit 72 

DOFs. The solutions presented accommodate constant distributed loads, although the method 73 

supports extension to arbitrary load distributions. Single-strake problems are used for 74 

illustration, but the physical significance of the solution and its governing parameters are not 75 

discussed in detail. 76 

2. Axisymmetric bending theory for thin isotropic conical shells 77 

The present derivation of the bending theory for isotropic conical shells is adapted from Flügge 78 

[4], specialised for axisymmetric cones of constant thickness with all assumptions stated before 79 

any equation manipulation. The first step in the derivation, first introduced by Reissner [15], is 80 

to solve for the shear force and shell midsurface rotation rather than the radial or meridional 81 

displacements. The second step is the identification of the Meissner differential operator [16] 82 

allowing for the decoupling of the resulting equations. The last step involves a change of 83 

variable from the slant height to a dimensionless parameter to reveal Bessel’s differential 84 

equation. The physical significance of this parameter and the boundary-layer behaviour of the 85 

bending solution is discussed in a later part of the paper. 86 

2.1. Equilibrium, kinematics and constitutive relations 87 

A conical shell of apex half-angle π/2 – α (where 0 < α < π/2) and thickness t may be subject 88 

to distributed loads pn and ps that are respectively normal and tangential to the midsurface 89 

(Fig. 1). Assuming axisymmetry of the loading, boundary conditions and geometry, five stress 90 

resultants act on the mid-surface: the meridional and circumferential membrane stress resultants 91 

ns and nθ, the bending moment stress resultants ms and mθ, and the meridional transverse shear 92 

stress resultant qs. No displacements, shears or gradients arise in the circumferential θ direction. 93 
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It is assumed that the conical shell is a frustum bounded by its slant height coordinates s1 and 94 

s2 (s1 < s2), leading to the following radial and vertical coordinates: 95 
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 97 

Fig. 1 – a) Shell stress resultants diagram, b) corresponding geometry of a conical shell 98 

section and c) alternative cone orientation. 99 

Equilibrium considerations yield the following system of equations, where the superscript • 100 

denotes differentiation with respect to the slant height s: 101 

 

( )

( )

( )

•

•

•

+ tan(

0

)

s s

s n

s s

s n n s p

s q n s p

s m m s q

θ

θ

θ

α

⋅ − = − ⋅

⋅ = ⋅

⋅ − − ⋅ =

⋅   (2) 102 

The following classical linear-elastic constitutive and thin-shell kinematics relationships for a 103 

conical shell are adopted (where w and u are the normal and meridional midsurface 104 

displacements respectively, while χ is the midsurface rotation about the circumferential axis): 105 
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2.2. Uncoupled differential equation 108 

The key to identifying the conical shell bending differential equation is to solve for the variables 109 

s∙qs and χ. This requires recasting the membrane kinematic relations as the following: 110 

 ( )( )•

sc s θχ ε ε= −   (5) 111 

From this and the equilibrium equations (Eq. (2)), the following two differential equations are 112 

obtained, where the Meissner differential operator Λ can now be identified: 113 
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A further application of Λ on the second differential equation achieves the decoupling: 115 

 ( ) ( )4
s ss q s q gµ⋅ + ⋅ = Λ Λ Λ  where 
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4

2

12 1

t

ν
µ

−
=   (7) 116 

Solutions to this fourth-order real differential equation are the superposition of a particular 117 

solution responsible for balancing the loads, referred to as the ‘membrane’ solution and a linear 118 

combination of four functions solution to the homogeneous equation (i.e. for pn = ps = g = 0), 119 

referred to as the ‘bending’ solution that accommodates boundary conditions. The total value 120 

of any quantity is obtained by superposition, e.g. w = wb + wm and ns = ns
b + ns

m. 121 

Once a solution for s∙qs is obtained, the associated stress, strain and displacement fields can be 122 

deduced. The second equation from Eq. (6) is used to obtain χ, while the second equilibrium 123 

equation in Eq. (2) yields nθ which, in combination with the first, yields ns. The bending 124 

kinematic relations (Eq. (4)) lead to curvatures which, when combined with the bending 125 

constitutive relations (Eq. (3)), are used to obtain ms and mθ. The inverse of the membrane 126 

constitutive relations (Eq. (3)) can be used to obtain membrane strains from membrane stresses, 127 

from which u and w are then finally deduced. 128 

2.3. ‘Bending’ homogeneous solution 129 

The fourth-order real differential equation can be reduced to the following two second-order 130 

complex differential equations: 131 

 ( ) 2 0b
s s

bs q i s qµ ⋅Λ ⋅ ± =   (8) 132 
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It is enough to solve one of these two equations as they are complex conjugates of one another. 133 

The real and imaginary parts of its two solutions will offer four independent solutions to  134 

Eq. (7). The equation to be solved is thus: 135 
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This equation may be reduced to a Bessel differential equation of order two by introducing a 137 

change of variable: 138 
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The real and imaginary parts of the solutions to Eq. (10) can be expressed in terms of Kelvin 140 

functions of the transformed variable y, so that: 141 

 
( )

1 2 2 23 4

1/4
2

( ) Ber ( ) Bei( ) Ker (

2
2

) Kei( )

3 1with 

s
bs q s A y A y A y

s

A y

y
c t

ν 

⋅

=

= + +

 

+

−
⋅

 (11) 142 

The bending components of the displacements wb and ub, needed to identify the bending shape 143 

functions, may now be deduced as: 144 
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  (12) 145 

In the above, the argument y of the Kelvin functions has been omitted for compactness. 146 

2.4. ‘Membrane’ particular solution 147 

As the distributed loads pn and ps are arbitrary, it is impossible to propose a ‘general’ particular 148 

solution. It is however possible to identify the functional form of the particular solution under 149 

polynomial distributed loads as a starting point for a finite element implementation: provided 150 

the finite element has shape functions that include this functional form, such loads can then be 151 
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solved for exactly. For distributed loads defined by polynomials of degree N, the process to 152 

identify the functional form of the corresponding membrane displacement fields is given here: 153 
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  (13) 154 

It can be noted that both membrane displacement fields are polynomials of order N+2 in s, with 155 

wm lacking a linear term in s. Both contain a logarithmic term, responsible for balancing vertical 156 

edge loads, whose respective coefficients satisfy the following equation: 157 

 ln lnw c u= − ⋅  (14) 158 

3. Axisymmetric conical shell boundary layer (CoSBL) element kinematics 159 

The present approach aims to directly translate the mathematical and physical properties of 160 

conical shell bending theory in the implementation of a finite element, as was done for its 161 

cylindrical counterpart [8]. The distinction between the particular and homogeneous solutions 162 

is thus reflected by the introduction of two independent sets of shape functions and DOFs: the 163 

‘membrane’ components responsible for balancing the applied loads, and the ‘bending’ 164 

components responsible for accommodating boundary conditions. 165 

3.1. Membrane shape functions and degrees of freedom 166 

It is proposed, as a compromise between generality and complexity, to implement a finite 167 

element able to exactly accommodate distributed loads pn and ps that are polynomials of up to 168 

second order. However, this formulation can easily be extended to accommodate loads of higher 169 

order by adding more polynomial shape functions, or specialised for more complex loads by 170 

adding ad hoc shape functions derived from Eqs (2) to (7). 171 

A set of four shape functions (similar in design to the Hermite cubics) is first derived from 172 

S = {1, s², s³, s4}. The displacement field w can be expressed either as a linear combination of 173 

the polynomials of S, or as a linear combination of some shape functions H whose associated 174 
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DOFs dwm are the values of the membrane component of w and its first derivative χ at both 175 

ends of the cone (i.e. at s1 and s2), here termed ws1
m, χs1

m, ws2
m and χs2

m respectively:  176 
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By definition, dwm can also be expressed in terms of the wj constants: 178 
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Combining Eqs (15) to (16) and solving the system yields four basic membrane shape functions 180 

as linear combinations of the functions in S: 181 
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The last step is valid only if Mm is invertible, which can be checked through its determinant: 183 
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This determinant will always be strictly positive and thus the shape functions will always be 185 

well-defined since s2 > s1 > 0 (elements cannot include the apex). 186 

The logarithmic term present in both wm and um (Eq. (13)), and the linear term in um also require 187 

shape functions. Static condensation will ultimately be used to reduce the number of DOFs to 188 

6, so the value and first derivative of the logarithmic and linear shape functions are brought to 189 

0 at both ends of the element by combining them with the H functions as follows: 190 
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Although the logarithmic shape function could be used once for each displacement to 192 

interpolate the logarithmic term, Eq. (14) can be exploited so that only one ‘logarithmic’ DOF 193 

(corresponding, for instance, to uln) is required. Considering only the membrane component of 194 

displacements, the vector of membrane DOFs dm would then be the following: 195 

 { }
T

• •
1 1 2 2 1 1 2 2

Lm m m m P m m m m
s s s s s s s s

m u uw uw u uuχ χ=d   (20) 196 



9 

 

The displacement and strains are obtained through matrix multiplication by the appropriate 197 

vectors of shape functions N, whose expressions can be derived using the kinematic relations: 198 
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3.2. Bending shape functions and degrees of freedom 200 

The bending shape functions of the CoSBL element are derived from the displacement and 201 

strain functions associated with the solution to Eq. (10) to allow a native representation of the 202 

compatibility bending boundary layer. The bending component of all displacement and strain 203 

fields will be obtained from a vector of bending DOFs db in the following manner: 204 
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The constituents of db are taken as the bending counterparts of those of dwm (Eq  (15)): 206 
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The process used to derive the polynomial membrane shape functions (Eqs (15) to (17)) is 208 

identically applied, starting from the expression of wb in Eq. (12): 209 
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Combining these two equations yields the definition of g, the matrix needed to obtain the 211 

bending shape functions from the solution of the homogeneous equation: 212 
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The bending component of all fields derived from Eq. (10) can now be transformed using g: 214 

 { } [ ]{ }bx =G g X  (26) 215 

where x is a field and Xb its Kelvin functions expression. Finally, the DOFs must be made 216 

internal using the membrane polynomial shape functions in preparation for static condensation, 217 

which is trivial for wb and similar to Eq. (19) for ub: 218 
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These linear combinations also effect other fields, as deduced from the kinematic relations: 220 
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3.3. Element shape functions and degrees of freedom 222 

The membrane and bending shape functions and corresponding DOFs can now be combined to 223 

express the full displacement and strain fields as a product of two vectors:  224 

 { } { }
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d

d
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N

N
 (29) 225 

Though the number of bending DOFs and shape functions is fixed, the set of ten membrane 226 

DOFs and shape functions may always be expanded with additional internal DOFs to 227 

accommodate more complex distributions of pn and ps.  228 

3.4. Physical interpretation of the bending shape functions 229 

The CoSBL element’s bending shape functions enable the exact representation of the bending 230 

behaviour of individual conical shell strakes, and a brief investigation of their functional form 231 

allows the identification of dimensionless parameters helpful in characterising conical shell 232 

bending. Ker0 and Bei0 are shown in Fig. 2 to illustrate the behaviour of the Kelvin functions 233 

featured in Eq. (12). Ker and Kei functions are not defined at the apex (y = 0) and decrease 234 

exponentially with y, while Ber and Bei are defined at the apex and increase exponentially with 235 

y. All exhibit an oscillatory behaviour.  236 
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 237 

Fig. 2 – Illustration of the oscillatory and exponential behaviour of Kelvin functions. 238 

It can be confirmed through their asymptotic expansion that the behaviour of Kelvin functions 239 

becomes increasingly regular with growing y. For example, the first term of the asymptotic 240 

expansion of Ker0 is the following:  241 

 2
0Ker cos

2 82

y y
y e

y

π π−  
+ 

 
∼   (30) 242 

Eq. (30) means that for a large enough argument y, Ker0 is equivalent to the product of an 243 

exponential function of y, a trigonometric function of y and a power of y. This asymptotic 244 

expansion function form, shared with the other Kelvin functions, is similar to the transcendental 245 

functions identified as solution to the cylindrical bending problem in Boyez et al. [8]. The above 246 

expression also provides π√2 as the dimensionless half-wavelength of the oscillation. 247 

3.4.1 The dimensionless y variable 248 

The y variable defined in Eq. (11) is a composite of material (kmat – containing a ratio of the 249 

shell membrane to bending stiffnesses) and geometric (kgeo – containing a dependency on the 250 

slant angle α) parameters and constitutes a dimensionless measure of the distance to the apex:  251 
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b
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 (31) 252 

From Eq. (31), derivatives may be used to determine the relative influences of the three 253 

dimensionless parameters ν, r/t and α on y independently of one another: 254 

 
2

1 d 1 1 d 1 1 d 1
; ; tan( )

d 2 1 d( / ) 2( / ) d 2 tan( )

y y y

y y r t r t y

ν
α

ν ν α α

−
= = = +

−
 (32) 255 
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It is clear that both ν and r/t exhibit only a modest influence on y, as both parameters remain at 256 

stable orders of magnitude for typical thin conical metal shells. However, an increase in the 257 

slant angle α results in a dramatic increase in y when α is close to 0 (cone departs from a circular 258 

plate) or is close to π/2 (cone approaches a cylindrical shell). With the exception of very 259 

moderate slant angles, y should therefore be expected to assume high values in thin cones. 260 

3.4.2 Boundary Layer Independence (BLIF) and Asymmetry (BLAF) Factors 261 

The length of the conical element Δs = s2 – s1 (Fig. 1) plays a key role in determining whether 262 

the element will exhibit an oscillatory or decay/growth behaviour in y-space (Fig. 2). A 263 

dimensionless Boundary Layer Independence Factor (BLIF) is defined in Eq. (33) as a measure 264 

of how many bending half-wavelengths separate the two ends of a conical strake in y-space: 265 

 
( )

( )2
1

1
2

2 tan

2

matky y
BLIF s s

α

ππ

−
= = −   (33) 266 

A high value of the BLIF (> ~ 4) signifies a complete absence of interaction between the 267 

boundary layers at either end and an element dominated by membrane behaviour, as illustrated 268 

in Fig. 3. As such, the BLIF can be thought of as an ‘effective length’ metric. 269 

 270 

Fig. 3 – Variation of the first two Gw bending shape functions with the BLIF. 271 

An additional measure of the exponential decay and oscillations in terms of the slant height s 272 

can also be derived in the form of a bending half-wavelength λ: 273 
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2

2 2

sin( )3 1

r t
s

y

π π
λ

αν

⋅
= =
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  (34) 274 
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Unlike that of a cylinder, a conical shell’s boundary layer length varies from one edge to the 275 

other: the further an edge is from the apex, the larger its associated bending half-wavelength. 276 

The Boundary Layer Asymmetry Factor (BLAF), defined as the ratio of the two bending half-277 

wavelengths at either extremity of the element, captures this effect: 278 

 
2

1

2 2 2

1 11

1
s r y

s r
A

y
BL F

λ

λ
= == = >   (35) 279 

A conical shell segment with a BLAF close to 1 (i.e. BLAF – 1 < 10-2) exhibits symmetric 280 

boundary layers and effectively behaves like a cylinder, so that the BLAF can be thought of as 281 

an ‘effective shallowness’ metric. Its effect can be observed in Fig. 4 for two values of the 282 

BLIF. It is noted that when the BLIF and BLAF both approach 0 and 1 respectively, the conical 283 

shell effectively becomes a short cylinder fully dominated by the boundary layer, and the 284 

bending shape functions converge to the Hermite cubics (a property also exhibited in the 285 

cylindrical case as shown in Boyez et al. [8]). 286 

 287 

Fig. 4 – Influence of the BLIF and BLAF on selected bending shape functions at either end of 288 

the CoSBL element: a) ‘long’ and ‘steep’ cone; b) ‘long’ and ‘shallow’ cone; c) ‘short’ and 289 

‘steep’ cone; d) ‘short’ and ‘shallow’ cone. 290 

To ensure the validity of the thin shell assumptions, lower bounds should be respected for r/t 291 

and Δs/t (e.g. 50). Further, manufacturing ability or material resistance limit both Δs and Δs/t 292 

so that practical ranges for the BLIF and BLAF in actual conical shell strakes (and thus for 293 

individual CoSBL elements) can be suggested as:  294 

 2 210  10  
1

BLIF

BLAF

−
 

< < 
− 

  (36) 295 
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4. Stiffness matrix, equivalent force vector, assembly and solution 296 

4.1. Derivation of the stiffness matrix and equivalent force vector 297 

4.1.1 Element stiffness matrix 298 

The stiffness matrix is derived classically by considering the strain energy E  of the element, 299 

reduced from a double to a single integral of strains within the cone due to symmetry: 300 
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The products of strains are expressed as matrix products using Eqs (21)-(22) and (29), with care 302 

being taken to maintain matrix symmetry, which leads to the identification of six elementary 303 

stiffness matrices kj:  304 
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  (38) 305 

Computing a ki sub-matrix typically involves the following product of interpolation vectors N: 306 
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  (39) 307 

The Nb and LP shape function vectors can further be decomposed with references to the 308 

polynomial functions H and coefficients V using Eqs (19) and (28):  309 
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The combination of Eqs (38) to (40) leads to the identification of various sub-blocks required 311 

to compute each kj sub-matrix, as illustrated by the expansion of sub-block (2,2)  312 

from Eq. (39):  313 
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  (41) 314 

GGT blocks involve only Kelvin functions, blocks such as HHT involve only elementary 315 

functions and blocks such as GHT involve both. The differences between these three types of 316 

blocks calls for adequate integration methods to be defined and investigated in the following 317 

subsection. 318 

4.1.2 Equivalent force vector 319 

The derivation of the equivalent nodal force vector f is similar to that of the stiffness matrix k, 320 

starting with the total work W done by the distributed loads pn and ps.  321 

 { } { } { } { } { }( )T T
   or   s sn nW W W= + = +d f d f f   (42) 322 

For a vector of shape functions N|p, the distributed loadings are expressed as follows: 323 

 { } { }
T

|n np p= N p  and { } { }
T

|s sp p= N p  (43) 324 

Combining Eqs (42) and (43) yields the expression of load matrices Pn and Ps: 325 
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  (44) 326 

Similar to the stiffness sub-matrices, Pn and Ps are better expressed as linear combinations of 327 

sub-blocks whose computation can be adequately handled: 328 
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  (45) 329 

4.2. Practical computation of the stiffness and equivalent force terms 330 

The stiffness and equivalent force matrices are computed in sub-blocks depending on whether 331 

the terms include contributions from bending or membrane shape functions. Most integrands 332 

involving only the membrane shape functions are polynomials and may be integrated 333 

analytically in closed form, while the others may be easily integrated using Gauss-Legendre 334 

quadrature. On the other hand, integrands involving bending shape functions or ‘bending 335 
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integrands’ do not have closed form analytical integrals, and integrating them is not 336 

straightforward, hence the discussion in this section. 337 

4.2.1 Behaviour of the ‘bending integrands’ 338 

Some integrands involving bending shape functions are featured in Fig. 5 for a BLIF of 5, i.e. 339 

a relatively ‘long’ cone. The integrands referred to here as ‘BB’ are sums of products of two 340 

Kelvin functions multiplied by a power of y, while those that involve bending shape functions 341 

that are sums of products of one Kelvin function and a power of y are referred to as ‘B’. Terms 342 

of the latter form have roughly the same behaviour as bending shape functions on their own at 343 

high values of y1, as illustrated in Fig. 5a. 344 

 345 

Fig. 5 – Normalised integrands for k1 associated with the first bending DOF wb
1 (BLIF=5). 346 

‘BB’ terms are better understood by further distinguishing the products of shape functions 347 

associated with the same node and those associated with opposite nodes of the element, 348 

identified with suffixes ‘-nodal’ and ‘-inter’ respectively. Their behaviour for high values of y1 349 

is readily explained by their asymptotic expansion: ‘-nodal’ terms see their exponential terms 350 

combined for a faster decay (Fig. 5b), while ‘-inter’ terms see these terms cancelled and see 351 

their oscillation period halved (Fig. 5c). For a high enough BLIF, ‘-inter’ terms become 352 

negligible compared with ‘-nodal’ ones, independently from y1, which remains true for other 353 

‘BB’ sub-matrices and integrands associated with the χb DOF. 354 
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4.2.2 Precision issues associated with the ‘bending integrands’  355 

The bending shape functions from which the ‘bending integrands’ derive (Eq. 26) are obtained 356 

by a normalisation process that involves combinations of Kelvin functions evaluated at both 357 

ends of the conical element. Their exponential behaviour, combined with high values of y1 and 358 

y2 for steep thin conical shells, can lead to exponents exceeding the limit for ‘double’ precision 359 

numbers so that more significant digits must be used in the computation of the stiffness terms. 360 

This problem is exacerbated by the fact that solving FE problems requires implicit linear system 361 

inversions at the static condensation and global solving steps, operations which are highly 362 

precision-sensitive. The implementation of the CoSBL element in the Matlab programming 363 

environment [17] therefore also linked to the symbolic Maple mathematical package [18] in 364 

order to support arbitrary levels of precision. 365 

4.2.3 Integration scheme used for the ‘bending integrands’ 366 

The rich range of oscillatory and decay behaviours featured by the ‘bending integrands’ for 367 

different geometric and material parameters makes it difficult to pick a good integration 368 

scheme. A selection of integration schemes was devised and compared in a process presented 369 

in the Appendix to this paper. The scheme that was finally selected is a ‘blunt’ Gauss-Legendre 370 

numerical integration with a high number of Gauss points to accommodate the wide range of 371 

behaviours of the ‘bending integrands’ and maintain an acceptable precision. 372 

The comparison process also showed that the stiffness terms were especially precision-sensitive 373 

for values of the BLAF approaching 1 i.e. for very ‘steep’ cones (Fig. A1). One way to 374 

circumvent this problem would be to use a rotated Cylindrical Shell Boundary Element (CSBL) 375 

rather than the CoSBL in these cases. The limited tests done by the authors in this regard showed 376 

a numerically stable behaviour and precise results.  377 

4.3. Static condensation 378 

Given the elements stiffness matrix k and element force vector f, static condensation can be 379 

performed to work on an overall system with three DOFs per node. The matrix system is 380 

reordered so that equilibrium equations related to the six nodal (index no) and remaining 381 

element-specific (index el) DOFs are separated: 382 
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The element-specific DOFs can be expressed in terms of the nodal ones as follows: 384 
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Introducing this definition in the first group of equation yields the condensed matrix system: 386 
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4.4. Assembly and solution 388 

In order to allow for CoSBL elements to be assembled with any axisymmetric thin shell 389 

element, the fields defined previously must be transformed from the local (s,n,θ) to the global 390 

cylindrical (Z,R,Θ) coordinates (Fig. 1b & c). This can be achieved using a transformation 391 

matrix t: 392 
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A transformation matrix T is similarly introduced to transform the local nodal DOFs dno into 394 

their global counterparts D: 395 
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0 t
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This relation is also used to recast the element equilibrium condition expressed in Eq. (48) into 397 

the global system, yielding the global element stiffness matrix K and equivalent force vector F: 398 
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  (51) 399 

The assembly of the overall system must also include the contribution from edge loads. This is 400 

accounted for by the addition of nodal force vectors Fj, derived directly in the global coordinate 401 

system to express the work Wj done by edge loads at node j: 402 

 ( ) { } { }
T

2 j r j j z j j jj r f R m fW Zπ δ δ δ= ⋅ + ⋅ Θ + ⋅ = D F   (52) 403 

Nodal boundary conditions are set following the usual methods. Solving the resulting linear 404 

system of equations yields the nodal DOFs, which in turn yield the element-specific DOFs using 405 

Eq. (47). All displacement, strain and stress fields may then be deduced from Eq. (29) and the 406 

constitutive relations. 407 
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5. Illustration of the CoSBL element on two examples 408 

The current capabilities of the CoSBL element are illustrated in this section on two example 409 

problems of non-trivial linear elastic stress analysis, arguably the first type of analysis that 410 

should be performed in any structural design. The predictions and performance of the CoSBL 411 

element are compared against those of two axisymmetric elements, ‘classical’ in the sense that 412 

they rely on h-refinement to capture the complex boundary layer behaviour and are therefore 413 

representative of the traditional manner in which structural problems of this nature would 414 

usually be solved. Following the formulation given in Zienkiewicz et al. [9], the ‘ThinAxi’ 415 

element employs four Hermite cubics to interpolate the normal displacement w, and two linear 416 

functions to interpolate the meridional displacement u. It uses the same kinematic and 417 

constitutive relations as the CoSBL and is also implemented in Matlab for better comparability. 418 

SAX2 is the quadratic axisymmetric shell element of Abaqus [19], a general purpose 419 

commercial FE program, and constitutes a reliable comparison point. 420 

5.1. Discretisation algorithm for meshing and plotting 421 

A discretisation algorithm was designed to allow for an efficient automated scheme to mesh 422 

each conical strake segment with ThinAxi (or similar) elements, based on the rationale that a 423 

denser coverage of such simple elements is necessary near the ends of the strake to accurately 424 

capture the local curvatures associated with the bending boundary layers. It should be noted 425 

that the CoSBL requires no such meshing scheme. Starting from an initial state (state [A]), the 426 

conical strake is assumed to accommodate up to 5 partitions with n ThinAxi elements in each. 427 

If the strake geometry permits it, a partition AA’ containing n uniformly-spaced elements is 428 

created on one side of the element, A’ being a  λ1/2 distance away from the edge A, where λ1 is 429 

the bending half-wavelength associated with that edge (state [B]). The same operation is then 430 

attempted at the other edge B of the strake (state [C]). A further internal partition is attempted, 431 

2λ away from either edge (states [D] and [E]). The algorithm stops when any partitions are 432 

found to overlap (more likely for short and shallow conical shell strakes, low BLIF and high 433 

BLAF respectively) or the final partitioned state is reached (state [E]). The procedure is 434 

illustrated in Fig. 6, where dAB is the element density on a segment AB, for example. This 435 

algorithm is used in the examples that follow with various choices for the n values, and may be 436 

easily adapted to create partitions at other multiples of λ. The same algorithm is also used to 437 

compute representative sampling points for plotting the solution fields computed by the CoSBL 438 

element, allowing an accurate and efficient rendering of the variation of stresses and 439 

displacements within the boundary layer and a minimal plotting cost within the membrane 440 
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region. It should be added that n = 10 constitutes a ‘rule of thumb’ boundary layer refinement 441 

typically used in analyses of this type, corresponding to an element edge length of 1/10th of a 442 

bending half-wavelength λ [8]. 443 

 444 

Fig. 6 – Illustration of the discretisation algorithm for meshing of ThinAxi elements and 445 

plotting of CoSBL element fields for one conical shell strake segment. 446 

5.2. Two single-strake conical shell segments of opposing geometry 447 

This example aims to illustrate how the CoSBL element offers a superior solution to a typical 448 

stress analysis for two individual single-strake conical shell segments (one ‘short’ and ‘shallow’ 449 

and the other ‘long’ and ‘steep’; Table 1). The objective at this stage is to show that a single 450 

CoSBL element is able to support a rich displacement and stress field with an accurate solution 451 

to the bending stresses in the boundary layer, and to compare it against the solution offered by 452 

meshes of ThinAxi and SAX2 elements obtained with the algorithm introduced above. Use of 453 

a single conical shell strake also allows a direct assessment of the accuracy of either element 454 

against the analytical solution to the differential equation (Section 2). The two example 455 

geometries assume a slant length of Δs = 1000 mm, a thickness t = 5 mm, a Young’s modulus 456 

E = 200 GPa and Poisson’s ratio ν = 0.3. Both are submitted to a constant downward traction 457 

pz = 0.05 MPa (resolved into pn and ps components) and a downward vertical load Nz = 5 kN 458 

distributed over the top edge, with their bottom edge totally restrained (Fig. 7). The numerical 459 

values were chosen purely for convenience. 460 
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Table 1 – Properties of two single-strake conical shell segments. 461 

 Short and shallow cone Long and steep cone 

 Lower edge (1) Upper edge (2) Lower edge (1) Upper edge (2)

r 50.00 1034.81 500.00 673.65

s 50.77 1050.77 2879.39 3879.39

y 4.86 22.13 207.77 241.17

λ 92.74 421.88 123.14 142.93

α 10° 80° 

BLIF 3.89 7.52 

BLAF 4.55 1.17 

 462 

Fig. 7 – a) Geometry and loading for the example; initial shape and scaled deformation and 463 

partitioning of the b) short and shallow cone, and c) long and steep cone. 464 

The predictions of the three element solutions for both conical shell segments are shown in 465 

Fig. 8. The short and shallow cone exhibits plate-like behaviour dominated by bending, since 466 

the boundary layers span the entirety of the segment (BLIF < ~4). By contrast, the long and 467 

steep cone exhibits cylinder-like behaviour where the loads are carried predominantly by 468 

membrane compression, with only very localised and near-symmetric boundary layers near the 469 

segment ends.  470 

A density of n = 10 points per element in the ThinAxi and SAX2 mesh was used to sample 471 

displacement and stress fields f in order to build the accuracy measure δf, defined in Eq. (53), 472 

with the solution to the governing differential equation forming the reference solution. A 473 

summary of these accuracies for all solutions is given in Table 2. 474 
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 476 

Fig. 8 – Plot of the a) normal (w) and meridional (u) displacements and b) meridional stresses 477 

surface stresses (σz), each normalised by the max. absolute computed value at the midsurface, 478 

against the slant coordinate s normalised to be between zero and unity. 479 

Table 2 – Accuracy of the ThinAxi, SAX2 and CoSBL solutions for displacement  480 

and stress fields, compared with the solution to the governing differential equation. 481 

 Short and shallow cone Long and steep cone 

 ThinAxi SAX2 CoSBL ThinAxi SAX2 CoSBL

δu (%) 0.37 0.06 < 0.001 0.24 0.01 < 0.001

δw (%) 0.16 0.10 < 0.001 0.74 0.47 < 0.002

δχ (%) 0.57 0.81 < 0.001 1.10 1.04 < 0.002

δσs,int (%) 1.19 3.13 < 0.001 0.68 0.85 < 0.001

δσs,ext (%) 0.39 0.78 < 0.001 0.40 0.54 < 0.001

δσθ,int (%) 2.16 4.30 < 0.001 2.80 2.00 < 0.003

δσθ,ext (%) 1.88 0.98 < 0.001 1.46 0.57 < 0.001

The meshing algorithm described in Fig. 6 allows both the ThinAxi and SAX2 elements to offer 482 

a reasonable solution for the displacement fields but a slightly worse one for the stress fields, 483 

as expected from low-order polynomial displacement elements. On the other hand, the accuracy 484 

of the single-CoSBL element solution is excellent for both geometries, with a maximum 485 

normalised error remaining below 5×10-3%, and at least 10 and 50 times smaller than the error 486 

for the ThinAxi and SAX2 solutions for displacements and stresses respectively.  487 
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5.3. Multi-strake wind turbine support tower under self-weight 488 

A recent computational study by Sadowski et al. [20] investigated the behaviour under seismic 489 

excitation of a real wind turbine support tower consisting of 22 truncated conical wall strakes 490 

with and without realistic weld depression imperfections. Structural details of the tower are 491 

shown in Fig. 9 where the reader may verify that a perfect tower (without geometric 492 

imperfections) exhibits 14 discontinuities (boundaries, rigid flanges and step changes of wall 493 

thickness) and thus 26 boundary layers. Each of the boundary layers signifies local 494 

compatibility bending of the shell wall and potentially high surface stresses, necessitating 495 

extensive local mesh refinement in the meridional direction. Where several adjacent wall 496 

segments of the perfect tower exhibit the same wall thickness and are strictly aligned, they may 497 

in fact be modelled using a single CoSBL element for greater efficiency. Construction of the 498 

model with classical 3D linear shell finite elements in Abaqus required extensive use of Python 499 

scripting to partition the geometry and apply the appropriate mesh refinement scheme in an 500 

automated manner. Other authors which have modelled similar structures [21, 22, 23] do not 501 

appear to have given special consideration to a mesh refinement within boundary layers, and it 502 

is clear that the technology to model such complex multi-strake structures would benefit from 503 

a qualitative advance. 504 

The steel tower is modelled assuming a Young’s modulus E = 200 GPa, a Poisson’s ratio 505 

ν = 0.3 and a relative density RD = 7.85, while gravity is taken as g = 9.81 m/s². The loading 506 

consists of the self-weight of the shell (~82 tonnes in total), distributed down the height, as well 507 

as that of the wind turbine machinery (90 tonnes), applied as a uniform vertical edge load at the 508 

top edge of the tower (point P0; Fig. 9a). The DOFs at the top edge are free while those at 509 

bottom boundary are fully restrained. The intermediate flanges at P1 and P2 are modelled as 510 

radially rigid but free to displace vertically, restricting only the radial displacement and 511 

midsurface rotation DOFs at these locations. The amplified deformed shape is displayed as a 512 

dotted line in Fig. 9b, illustrating the global behaviour of the tower as a downward and outward 513 

deformation consistent with the vertical loading and the Poisson effect. The radial displacement 514 

and meridional stresses obtained with the CoSBL element are shown in Fig. 9c, where the 515 

stresses mainly mirror the radial displacement but also feature inter-strake discontinuities and 516 

boundary bending. The highest local bending stresses occur near P1, P2 and P3 where the 517 

restrictions of the displacement and rotation DOFs are most severe. 518 
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 519 

Fig. 9 – a) Geometric overview of the tower – b) Detailed geometric description and 520 

amplified deformed shape – c) Computed meridional stresses and radial displacements.  521 
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An accuracy measure δt was built (Eq. (54)) by taking the maximum over all strakes of the δ 522 

measure, defined similarly to Eq. (53), and used to observe the h-convergence of both the 523 

ThinAxi and SAX2 predictions for meshes generated using the procedure described in 524 

Section 5.1. The number of elements per partition n was varied (Fig. 6), with the ‘reference’ 525 

solution taken as the prediction n = 50 (Table 3 and Table 4Table  respectively). In both tables, 526 

the last column also shows a comparison of the reference mesh with n = 50 against the 527 

predictions of the CoSBL assembly, as its solution is effectively indistinguishable from an 528 

analytical solution aside from negligible errors introduced during numerical integration of the 529 

stiffness matrix. 530 
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  (54) 531 

Table 3 – Convergence of the ThinAxi solution for displacement and stress fields with mesh 532 

refinement against a reference result for n = 50. 533 

Parameter n = 1 n = 2 n = 5 n = 10 n = 25 n = 50‡ 

Total DOFs† 198 393 978 1953 4878 9753 

δtu (%) 0.44 0.11 <0.02 <0.01 <0.01 <0.01 

δtw (%) 5.43 1.23 0.51 0.26 0.07 0.03 

δtσs,int (%) 20.81 9.84 3.06 1.30 0.46 0.22 

δtσθ,int (%) 35.72 31.45 14.47 7.35 2.66 1.28 

† The total DOFs for the CoSBL assembly was 169. 534 
‡ The last column compares the n = 50 ThinAxi solution against the CoSBL solution. 535 

Table 4 – Convergence of the SAX2 solution for displacement and stress fields with mesh 536 

refinement against a reference result for n = 50. 537 

Parameter n = 1 n = 2 n = 5 n = 10 n = 25 n = 50‡ 

Total DOFs† 429 819 1989 3939 9789 19539 

δtu (%) 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 

δtw (%) 20.15 1.00 0.10 0.03 0.01 0.68 

δtσs,int (%) 13.46 4.71 0.99 0.26 0.04 0.58 

δtσθ,int (%) 82.65 13.06 2.94 0.80 0.12 1.46 

† The total DOFs for the CoSBL assembly was 169. 538 
‡ The last column compares the n = 50 SAX2 solution against the CoSBL solution. 539 

SAX2 is a quadratic element and requires almost double the DOF count as the ThinAxi for the 540 

same value of n, yet its rate of h-convergence towards its n = 50 reference solution does not 541 

appear to greatly outperform that of the very simple ThinAxi. Both elements obviously require 542 

a much higher number of DOFs to converge to a satisfactory result, in particular for stress 543 

variables, than the 169 DOFs of the CoSBL ‘mesh’. Yet even at a high refinement of n = 50, 544 
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the ThinAxi solution retains a significant error in the stress variables (Table 3). The shell theory 545 

employed by ABAQUS in the SAX2 solution may be slightly different to the one employed 546 

here, so the final column in Table 4 should be considered with care although it appears to tell a 547 

similar story to the ThinAxi result (which uses the same shell theory as CoSBL).  548 

The rather poor performance of the ThinAxi and SAX2 elements in accurately predicting the 549 

bending stresses within the boundary layers of this realistic structure should give the analyst 550 

pause. Wind turbine support towers are routinely subject to dynamic excitations arising from 551 

wind and blade oscillations [24, 25, 26] in addition to seismic actions where fatigue and cyclic 552 

plasticity are the most important limit states and for which an accurate assessment of local 553 

bending stresses near discontinuities is crucial. Additionally, in ‘real’ construction there would 554 

usually be a depression-like imperfection at the weld connection between any two adjacent 555 

strakes, even those of the same thickness and slant angle. Consequently, the imperfect tower 556 

modelled by Sadowski et al. [20] actually exhibits 23 discontinuities and 44 boundary layers. 557 

Each one requires careful local mesh refinement which, when implemented using classical 3D 558 

shell elements, results in large models with long runtimes, especially in nonlinear analyses. The 559 

authors’ development of the ‘boundary layer’ element aims to alleviate both of these concerns. 560 

Conclusions 561 

This paper has extended upon a recent ‘proof of concept’ study by the authors to present the 562 

linear formulation of a ‘boundary layer’ shell finite element for an efficient analysis of multi-563 

strake or multi-segment conical shells. One of the key difficulties in modelling such structures 564 

is accurately capturing the high local curvatures and surface stresses associated with 565 

compatibility bending between two shell strakes, a task requiring extensive mesh design and 566 

optimisation when such structures are analysed using classical axisymmetric shell elements. 567 

For 3D shells and nonlinear analyses, the problem is compounded several-fold, with the 568 

resulting locally-refined meshes coming at a significant penalty in terms of DOFs count and 569 

runtime. The proposed element offers to alleviate this difficulty entirely by supporting the 570 

boundary layer natively within an enriched displacement field, such that only a single element 571 

is necessary per shell segment. 572 

This paper has additionally explored the physical interpretation of the parameters governing the 573 

local bending in conical shells. Two important dimensionless groups have been identified, 574 

arising naturally from the governing differential equation, which control the extent of the 575 

interaction of the boundary layer at either end of a conical shell segment as well as their relative 576 
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asymmetry. The authors find it surprising that these dimensionless groups do not appear to have 577 

been documented in the literature despite conical shells being a classical structural form with 578 

several authoritative texts.  579 

The proposed formulation is applicable to a wide range of complex multi-strake conical shell 580 

problems, where it has been shown in a real example to offer major computational benefits in 581 

terms of increased accuracy and reduced modelling effort. This new approach offers a solid 582 

foundation for future developments, and the authors are currently extending the formulation to 583 

support asymmetric responses and nonlinearities, starting with Linear Buckling Analysis. 584 
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Appendix: selection of an integration scheme for the bending integrands 648 

Three integration schemes were investigated to formulate the CoSBL element stiffness matrix:  649 

−  a ‘blunt’ Gauss-Legendre quadrature over the full CoSBL 650 

element domain with a high number of points,  651 

−  a ‘selective’ Gauss-Legendre quadrature over a reduced 652 

domain interval, 653 

−  an ‘analytical’ integration using asymptotic expansions.  654 

A normalised matrix norm for the element stiffness matrix k was used as a measure of accuracy 655 

(Eq. 54) for which a ‘reference’ (i.e. very accurate) stiffness matrix kref was obtained using a 656 

30-point Gauss-Legendre quadrature for all ‘B’ and ‘BB’ integrands, with the final evaluation 657 

delivering 50 digits of precision. A sample of 2,275 realistic sets of inputs of t, α, Δs and r1 was 658 

generated with limitations within the confines of a thin shell assumption, and for every 659 

combination trial stiffness matrices k were computed with a final evaluation delivered to 30 660 

digits of precision. 661 

 Error relative to 
ref

ref

ref

−
=

k k
k

k
  (A.1) 662 

‘Blunt’ Gauss-Legendre quadrature 663 

Each additional Gauss point increases the order of the interpolating polynomial by two degrees, 664 

helping to offset the localised nature of the ‘B’ and ‘BB’ integrands within the boundary layer. 665 

The number of Gauss points ngp was not varied across integrands, allowing the costlier Kelvin 666 

function evaluations to be performed only once at each point and combined as required in the 667 

evaluation of each integrand. This method was tested for different values of ngp (6, 10, 16, 20 668 

and 30 Gauss points), showing as expected that adding Gauss points improves the accuracy (the 669 

error relative to kref is plotted against BLIF and BLAF – 1 with logarithmic scaling in Fig. A1a). 670 

It may be noted that all versions of this integration scheme struggle when the BLAF approaches 671 

unity (i.e. BLAF – 1 tends to zero), i.e. for very steep cones that are increasingly cylindrical. 672 

This method should arguably work best for very low values of the BLIF since for such very 673 

short cones the boundary layers interact strongly and the localised exponential behaviour of the 674 

integrands is attenuated. It was observed that, for decreasing values of the BLIF, the accuracy 675 

indeed improved, but only down to ~1 with lower values of the BLIF getting progressively 676 

worse. 677 
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 678 

Fig. A1 – Accuracy of the different integration schemes evaluated with 30 digits of precision 679 

(‘Blunt-30gp’ evaluated with 50 digits used as a reference). 680 
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‘Selective’ Gauss-Legendre quadrature 681 

This approach exploits the exponential decay of the integrands away from the CoSBL element 682 

ends, aiming to perform quadrature on the integrand only within the boundary layer to reduce 683 

the computational effort. While this selective scheme is not appropriate for ‘BB–inter’ 684 

integrands due to their oscillatory behaviour not being confined to the width of the boundary 685 

layer (Fig. 5c), their contribution to the stiffness matrix becomes negligible for high values of 686 

the BLIF (‘long’ cones). In this scheme, ‘BB–inter’ terms were thus ignored and only ‘BB-687 

nodal’ terms retained. For short conical shells (low BLIF), ngp Gauss points were used over the 688 

whole element domain to accommodate the interacting boundary layers, but for longer cones 689 

(higher BLIF) these were placed only over a distance nλλj from the element edge j where the 690 

integrand is biggest, with nλ an integer value and λj the associated bending half-wavelength. 691 

A set of integer values of nλ between 1 and 9 was tested for two values of ngp (10 and 16 Gauss 692 

points) to determine the influence of both parameters. For very low values of the BLAF (‘steep’, 693 

near-cylindrical cones), all versions struggle equally for the same reasons as the ‘blunt’ scheme. 694 

It was found that, in the remaining sample, the version with nλ = 4 seemed most consistent for 695 

ngp = 10, while nλ = 6 seemed overall better for ngp = 16 (Fig. A1b). However, for cones with a 696 

high BLIF (i.e. featuring independent boundary layers) and reasonable BLAF, for which a 697 

selective scheme was expected to be most beneficial, the selective quadrature apparently does 698 

not offer any advantage in terms of precision over the simpler ‘blunt’ scheme with 30 Gauss 699 

points over the full element domain.  700 

Asymptotic expansions 701 

This approach, theoretically valid only for high values of y, permits a closed-form analytical 702 

integration by using the asymptotic expansion to obtain integrands that involve only elementary 703 

functions (no Kelvin functions), though some of these approximated integrands require a further 704 

asymptotic expansion to obtain a closed-form integral. For example, a typical term of a ‘B’ 705 

integrand has the following form: 706 
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The first step is to identify a suitable candidate for the integral of functions of this form: 708 
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The residual term on the right-hand side is cancelled out by adding a term on the left-hand side: 710 

 
2

d e ( 1)
1 e 1

d ( )

qy
qym m

m m m
y y

y q qy qy

    −
− = −    

    
  (A.4) 711 

This can be repeated to obtain an asymptotic series whose derivative is equivalent to the 712 

integrand. Similar expressions can be derived for other problematic ‘B’ and ‘BB’ integrands.  713 

Both asymptotic expansions (for Kelvin function integrands and selected integrals) are 714 

performed at the same order p, which should determine the precision and validity range of the 715 

method. This method was tested for asymptotic expansions orders 1 and 2, with results shown 716 

in Fig. A1c. Low values of the BLAF (near-cylindrical cones) similarly prove problematic for 717 

either scheme involving asymptotic expansions, as do low values of the BLIF where the 718 

cylinder is short and dominated by interacting boundary layers. For high values of the BLIF, 719 

the 2nd order performs better overall, while for very high values of the BLAF (very ‘shallow’ 720 

cones) the 1st order seems to work best. 721 

Comparison of the three integration methods 722 

A comparison of the best version of each of the three methods is shown in Fig. A1d, suggesting 723 

that the 30-point ‘blunt’ Gauss-Legendre quadrature consistently outperforms the other 724 

schemes in terms of accuracy. It can be noted that all integration schemes face the same issue 725 

of loss of precision for very steep cones, which can only be alleviated by adding more digits of 726 

precision or, ideally, switching to the CoSBL element’s cylindrical counterpart, the CSBL 727 

element [8]. For values of the BLIF beyond ~20, each of the investigated schemes exhibits a 728 

relative error below 0.01% and any one would work reasonably well. In terms of computation 729 

time, however, the asymptotic schemes performed consistently worst of all, with runtimes up 730 

to 10 times higher than any other scheme due to the large number of individual floating-point 731 

operations required to evaluate the rather lengthy expansions. The ‘selective’ and ‘blunt’ 732 

scheme exhibited a comparable runtime, and for an equal number of Gauss points ngp the ‘blunt’ 733 

scheme requires fewer Kelvin functions evaluations as the same Gauss points are shared for all 734 

integrands. As the ‘blunt’ version is overall more accurate and requires a simpler computational 735 

implementation, it was retained as the preferred scheme in the illustrations shown in Section 5 736 

where it was used with 30 Gauss points. 737 


