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ABSTRACT
By applying a kinetic approach, we have developed two models in order to assess the influence
of one main driver of plasma acceleration, the convective electric field, on the cometary ion
distribution at 67P/Churyumov-Gerasimenko (67P/C-G). This electric field is carried by the
solar wind and corresponds to the acceleration undergone by cometary ions ultimately picked
up. We have quantified its contribution on ion number density and mean velocity profiles,
supported by an intercomparison with the recent literature. We found that the ion number
density should reflect a departure from the observed ∼1/r law. We discuss reasons for this
discrepancy.
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1 IN T RO D U C T I O N

For two years, from 2014 August to 2016 September, the European
Space Agency’s Rosetta mission escorted comet 67P/Churyumov–
Gerasimenko (Churyumov & Gerasimenko 1972, hereafter referred
as 67P/C-G) between 3.8 au and perihelion at 1.24 au, reached in
2015 August. During that time, the cometary activity, expected to
reach Q = 4 × 1027 − 8 × 1027 molecules s−1 (Hanner et al. 1985;
Benna & Mahaffy 2006; Hansen et al. 2007; Lamy et al. 2007;
Tenishev, Combi & Davidsson 2008), was observed to be highly
variable and with a heterogeneous coma (Hässig et al. 2015; Fougere
et al. 2016), as probed in situ by the Rosetta Orbiter Spectrome-
ter for Ion and Neutral Analysis (ROSINA)/Comet Pressure Sensor
(COPS) and ROSINA/Double Focus Mass Spectrometer (DFMS)
(Balsiger et al. 2007) and confirmed by other sensors (Hansen et al.
2016). During the escort phase, ROSINA/COPS observed an out-
gassing rate between 5 × 1025 and 4 × 1028 s−1, namely an evolution
over 3 orders of magnitude (Hansen et al. 2016). Observations from
ROSINA/COPS also confirmed that the neutral number density has
a 1/r2-dependence, relative to the cometocentric distance r (Bieler
et al. 2015; Hässig et al. 2015).

For comparison, the ESA Giotto mission probed the coma of
1P/Halley over a few hours at a heliocentric distance of 0.89 au. The
outgassing rate was estimated to be Q = 6.9 × 1029 s−1 ±50 per cent
(Reinhard 1986), 1–2 orders of magnitude higher than at 67P/C-G
near perihelion. At that heliocentric distance, Giotto observed well-
defined boundaries and regions around 1P/Halley, such as:

(i) a diamagnetic cavity: close to the comet, there was a sharp
drop in the magnetic field strength from 50 to 0 nT (Neubauer et al.
1986), consistent with the balance between the magnetic pressure
and the ion-neutral drag (Cravens 1987; Ip & Axford 1987),
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(ii) a contact surface: transition between a magnetic pile-up re-
gion and the diamagnetic cavity. The ion number density exhibited
a sharp decrease and a different behaviour below and above the
boundary. Below, the ion number density seemed to follow a 1/r
dependency, whereas above, it followed 1/r2 (Balsiger et al. 1986;
Altwegg et al. 1993)

These characteristic, cometary features result from the interaction
between the solar wind and ions of cometary origin (Ip 2004).
Magnetic field drops have been observed at 67P/C-G (Goetz et al.
2016a,b) by RPC/fluxgate MAGnetometer (Glassmeier et al. 2007)
as well. Goetz et al. (2016a) determined an empirical law, depend-
ing on the cometary activity for the diamagnetic cavity radius. Nev-
ertheless, recent literature has shown otherwise that the previous
balance found at 1P/Halley for the contact surface does not hold
and the cavity is more extended than originally predicted with a
very dynamic boundary.

During the cometary escort phase, Rosetta probed the coma
and its plasma properties with a wider range of conditions than
at 1P/Halley, at different heliocentric distances and activity levels,
from a few kilometres to a few hundred kilometres from the surface
over the course of a day or over different seasons, giving us the
opportunity to better understand the complex relation between the
comet and the solar wind.

At a heliocentric distance of 3 au, ROSINA/DFMS observed
the presence of refractory species, revealing that, during the low
cometary activity phase, the solar wind was able to penetrate through
the coma and cause the surface to sputter (Wurz et al. 2015). With
the same sensor, it was possible to derive the ion composition which
attested of a cometary origin (Fuselier et al. 2015), dominated by
H2O+ and H3O+ water ions. From the Rosetta Plasma Consortium
(RPC)/LAngmuir Probe (LAP) (Eriksson et al. 2007), Edberg et al.
(2015) showed that for cometocentric distances between 10 and
250 km, the observed electron number density decreased overall as
∼1/r. In addition, they derived an ion-to-neutral number density
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ratio of ∼1 − 2.10−6. This is consistent with a coma outgassing
radially at constant velocity, ionized by solar extreme ultraviolet
radiation and energetic electrons (Galand et al. 2016) and with the
ion velocity equal to the neutral one (Galand et al. 2016; Vigren et al.
2016). A constant ion velocity is however not a suitable assumption
very close to the surface: in that case, adiabatic expansion needs to
be taken into account, as observed on 2016 September 30 at the end
of mission (Heritier et al. 2017a). The plasma seems to be composed
of two electron populations: one dense and warm (Odelstad et al.
2015; Galand et al. 2016), the other, more rarefied and hot to super-
hot (Broiles et al. 2016; Madanian et al. 2016). Near perihelion, a
cold population is also present (Eriksson et al. 2017).

Finally, based on RPC/Ion and Electron Sensor (IES) (Burch
et al. 2007) and RPC/Ion Composition Analyzer (ICA) (Nilsson
et al. 2007), the solar wind particles were observed to be deflected
by a few tens of degrees close to the nucleus and underwent mass
loading (Broiles et al. 2015; Nilsson et al. 2015a,b; Behar et al.
2016). The newborn ions supply a new plasma component and gain
energy from their interaction with the solar wind. Consequently,
the solar wind has to be deflected to conserve the total plasma
momentum (Glassmeier 2017). However, further away, the direction
of H2O+ ions fits well the one of Econv = −vSW × B, the convective
or motional electric field (Behar et al. 2016). Simulations have been
carried out to assess the effect of this electric field on the ion number
density (e.g. Vigren et al. 2015; Madanian et al. 2016).

Near perihelion, the comet behaviour was different with a higher
cometary activity (outgassing rates reached 5 × 1028 s−1; Hansen
et al. 2016), so that the ion-neutral chemistry could take place
before the ions were lost through transport (Fuselier et al. 2016)
and new ion species could be produced (Beth et al. 2016; Heritier
et al. 2017b). This constrains the potential acceleration of newborn
cometary ions: if there is a strong acceleration within the cavity
(where Rosetta was at that time), it would prevent the chemistry
from occurring. However, above the ion exobase, also referred as
the collisionopause (Mandt et al. 2016), significant acceleration has
been observed affecting the chemistry and the H3O+/H2O+ ratio
(Fuselier et al. 2016). Rosetta was observed to be often within or
close to the diamagnetic cavity (Goetz et al. 2016b, 2016a). Within
such a region, there is no convective electric field as the magnetic
field B drops to zero. Nevertheless, the ambipolar electric field is
present, to ensure the quasi-neutrality. Indeed, the newborn photo-
electrons have a very high bulk velocity compared with ions, and
leave the comet faster (e.g. Cravens 1987). The ambipolar field
would ensure the quasi-neutrality by accelerating ions and slowing
down electrons, affecting the ion number density and the chemistry
(Vigren & Eriksson 2017). Finally, the solar wind protons com-
pletely disappeared over the whole summer 2015 as Rosetta was
getting close to and, at times, was within the cavity. The water ion
energy dropped to values similar to the spacecraft potential (Mandt
et al. 2016) and the hot electron energy distribution decreased sig-
nificantly (Nemeth et al. 2016; Madanian et al. 2017) within the
cavity.

In this paper, we have kinetically modelled the contribution of the
effect of the solar wind convective electric field within the cometary
ionosphere of 67P/C-G. The sections are organized as follows.

In Section 2, we present the theory and evaluate the effect of
the convective electric field on the cometary ions from Model A
(Section 2.1) and Model B (Section 2.2), and compare one to the
other (Section 2.3),

In Section 3, we compare the results from Model B with existing
works. In particular, we compare with the widely used Haser model

(Section 3.1) and with the recent work done by Madanian et al.
(2016),

In Section 4, we conclude by summarizing what we have
learned from this modelling work, highlight the potential limits and
strengths of the models presented, and discuss future investigations
to be undertaken in the context of Rosetta observations.

2 TH E O RY

In this section, employing a collisionless kinetic approach, we pro-
pose to model the effect of the convective electric field on ion
number density and to assess the first three moments of the distri-
bution function at large heliocentric distances. We have developed
two models: Model A (Section 2.1), which has two dimensions in
position and three in velocity (2D+3D) and Model B (Section 2.2,
2D+1D), built upon stronger assumptions. We present a comparison
between these two models in Section 2.3.

2.1 Model A: 2D (position) × 3D (velocity) kinetic
collision-free model

2.1.1 Theory and model

In this section, we provide the full description of Model A along
with its assumptions.

2.1.1.1 Trajectories of ions. Model A describes the distribution
function of newborn cometary ions in the vicinity of comet 67P/C-
G at large heliocentric distances where outgassing rates are low
enough, such that any ion-neutral chemistry and optical depth effect
for EUV ionizing radiation can be neglected.

As these newborn cometary ions are immersed within the so-
lar wind plasma, they are picked up by the solar wind convected
magnetic field B. Assuming that the solar wind is a non-resistive
plasma, the electric field in the frame of the solar wind should be 0
and the solar wind satisfies Ohm’s law:

Econv + 〈vSW〉 × B ≈ 0 (1)

where 〈vSW〉 is the solar wind mean speed and Econv, the so-called
convective electric field, required to ensure that the electric field
vanishes in the solar wind rest frame. However, close to the sur-
face, the cometary plasma number density overwhelms the solar
wind density; one should consider to use the mean plasma velocity
〈vplasma〉, between cometary ions and solar wind protons, instead of
〈vSW〉 in equation (1) (e.g. Galand et al. 2016). For the rest of this
paper, we have neglected such a feedback on the electric field and
considered the effect of the solar wind alone. Thus, the trajectory
of cometary ions is described by

m
dv

dt
= q(Econv + v × B) = q(v − 〈vSW〉) × B (2)

where m is the mass of the ion, q, its charge and v, its velocity
along its trajectory. As the initial ion velocity (∼500 − 800 m s−1;
see Section 3.3 of Galand et al. 2016 and references therein) is
significantly lower than that of the solar wind (∼400 − 800 km s−1),
the ion trajectory is decomposed in two components:

(i) a constant drift at 〈vSW〉,
(ii) a motion of gyration in the perpendicular direction with

the gyroradius rg ∼ mv⊥,SW/qB, where v⊥,SW is the perpendicular
component of the solar wind velocity with respect to B.

However, as the interplanetary magnetic field is around 10−9 T
and the solar wind velocity is between 400 and 800 km s−1, the
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gyroradius of newborn water ions (major component of cometary
ions) is about 7.5× 104 km. For our simulation, we explore the
distribution function characteristics up to 20 km from the comet so
that we can neglect this motion of gyration (qv × B). Thus, close
to the comet where the ion velocity is still � ‖〈vSW〉‖, ions expe-
rience a primarily constant acceleration −q〈vSW〉 × B = q Econv,
since ‖Econv‖ 
 ‖v × B‖. These conditions hold as long as the
simulation box size is �rg.

Under these assumptions, the trajectory of ions is a parabola for
which we propose an unusual parametrization in Section 2.1.1.2
(see also Appendix B).

2.1.1.2 Distribution function. For Model A, we assume for the new-
born ions that:

(i) they are H2O+, produced only by photo-ionization of H2O,
(ii) collisions with another species are neglected. The outgassing

rate is sufficiently low to prevent any further reactions with other
species, especially water molecules (to destroy H2O+ and to pro-
duce H3O+) and spectral absorption by water,

(iii) at the time of their production, they have a distribution func-
tion of the same form as that of the neutrals, i.e. a Maxwellian
distribution fn(v) centred at Un = 650 m s−1 in the radial direction,
0 in the transverse ones, with a velocity dispersion σ n = 0.3Un

(corresponding to T ∼ 83 K) in all directions,
(iv) steady-state is assumed.

Under these assumptions, the distribution function of ions is the
solution of the reduced Boltzmann equation:

∂f (r, v)

∂t
+ ∇r · (vf ) + ∇v · (af ) = vs

df (r, v)

ds
= Pion(r, v) (3)

where a is the acceleration induced by external and fictitious forces,
∇r · is the divergence with respect to the position coordinates, ∇v .,
with respect to the velocity coordinates, s is the distance along the
trajectory of an ion in the 6D phase space, vs , the absolute velocity
of the ion, f, the distribution function of ions in the velocity space,
and Pion, the ion production rate from photo-ionization. Because
collisions are neglected and the forces are conservative, the system is
deterministic: the trajectory in the position and velocity coordinates
is perfectly known and is a function of initial conditions and of time.

The ion production rate, Pion due to photo-ionization, is given
by:

Pion(r, v) = νionnn(r)fn(v) = νionnn(r)

(2πσ 2
n )

3
2

exp

(
− (v−Uner )2

2σ 2
n

)
(4)

where the photo-ionization frequency ν ion = 6.10−8 s−1 (see
Table 1), independent of r (as the coma is assumed optically thin),
and nn(r), the neutral number density from the comet. We warn
the reader here that this production rate has the inconvenience to
be invariant by rotation in positon but not by translation, important
for the symmetry of the problem. The neutral density is derived by
assuming a constant outgassing rate Q at the surface and a con-
stant outflow velocity Un with a spherical symmetry and ignore
any chemical loss or production of neutrals in the coma which is
justified at the cometocentric distances considered (Haser 1957):

nn(r) = Q

4πUnr2
(5)

Because we combine the spherical symmetry of the comet and the
constant direction of Econv, the most appropriate coordinate system
is the cylindrical one with the direction z along −Econv, so that our
modelling is invariant by rotation around z.

Table 1. For Model A (Section 2.1) and Model B (Section 2.2): key pa-
rameters used as inputs to drive each model in order to compare one with
the other (2) (Section 2) with Haser (1957) (H) (Section 3.1) and Madanian
et al. (2016) (M) (Section 3.2)

Physical inputs Notation (unit) Value A B

Outgassing rate Q (s−1) 1026(M) ×
1027(2, H) × ×

Neutral radial velocity Un (m s−1) 650(2, H) × ×
1000(M) ×

Photo-ionization rate νion (s−1) 6.10−8(2, H) × ×
1.10−7(M) ×

Comet’s radius rc (m) 2.103(2, M, H) × ×
Convective electric field Econv (V m−1) 5.10−4(2, M) × ×
Neutral dispersion velocity σ n (m s−1) 195 ×
(only relevant for Model A)

In this frame, the distribution function of ions is derived from
equation (3) and Appendix A as follows:

f (r, v) =
∫ S

−∞
Pion(r0(s), v0(s))

ρ0(s)

ρ

ds

vs0

=
∫ T

−∞
Pion(r0(t), v0(t))

ρ0(t)

ρ
dt (6)

where

(i) r is the position where we ‘calculate’ the ion-associated dis-
tribution function and ρ, the associated distance from the z-axis,

(ii) v is the velocity at which we ‘observe’ the ion,
(iii) r0 and v0 are the position and the velocity of the ion along

the trajectory, respectively, vs0 = ‖v0‖, ρ0 is the distance of the ion
from the z-axis during its motion,

(iv) s is the coordinate along the trajectory, r0(S) = r and
v0(S) = v

In Appendix A, we provide details about why we introduce the
factor ρ0/ρ, consequence of the system of coordinates we have
used.

This is not simple to derive a lower bound for the integration in
time in equation (6) to prevent irrelevant calculations and compu-
tation time and/or find an optimized time step. To overcome these
inconveniences, we propose a new parametrization for the trajectory
of ions, detailed in Appendix B, not as a function of time but of the
eccentric anomaly � of the parabola described by the ion, such as:

f (r, v) = mv⊥
qEconv

∫ ω

−π

Pion(r0(�), v0(�))

1 + cos �

ρ0(�)

ρ
d� (7)

The numerical integration of the distribution function and its mo-
ments are described in Appendix C. For a numerical good estimation
of the moments and the distribution function at each r0:

(a) we start with an initial velocity space grid. For each grid
point, we integrate equation (7) to construct f (r, v),

(b) we calculate the moments of f (r, v),
(c) we use those moments to know where the distribution function

has to be more precisely investigated (near the bulk),
(d) we update our grid and reintegrate equation (7) to evaluate

f (r, v) on the new grid
(e) we start again at the step (b) and continue until the moments

(here the zeroth-order one only) converge.

For each point of the velocity grid, we perform an integration
along the trajectory of the ion. Altogether, we have a combination
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of four integrals for the distribution function: one along the parabola
in the position space and three in the velocity space.

Other crossed moments should be considered to estimate accu-
rately our velocity distribution up to the second order. To this end,
we determine also the covariance of the velocity:

nσxy(r) =
∫

(vx − 〈vx〉)(vy − 〈vy〉)f (r, v)d3v = 0 by symmetry

nσxz(r) =
∫

(vx − 〈vx〉)(vz − 〈vz〉)f (r, v)d3v

nσyz(r) =
∫

(vy − 〈vy〉)(vz − 〈vz〉)f (r, v)d3v = 0 by symmetry

(8)

In Appendix D, we detail the derivation of minimum and max-
imum dispersions, as well as the angular deviation linked to the
second-order centred moments.

2.1.2 Results from Model A

In this section, we present the results from the simulations for Model
A (described in Section 2.1.1.1): the ion number density (2.1.2.2),
the mean velocities (2.1.2.3), and the second-order centred moments
(2.1.2).

2.1.2.1 Zeroth-order moment: ion number density. Fig. 1 (top, left-
hand panel) shows the ion number density profile for a downward
convective electric field. Based on equation (4), the production
term and thus the distribution function are directly proportional to
ν ionQ = 6.1019 s−2 (see Table 1), so that the ion number density can
be scaled accordingly as long as other parameters are not changed.

The ion number density, from 107 m−3 at 20 km to 109 m−3 at the
cometary surface, is extremely variable close to the surface: high
on the upward side (z > 0), low on the downward side (z < 0). On
the upward side, the ions produced along the z-axis are repelled by
the electric convective field towards the comet, so that the number
density is not zero at the surface. However, on the downward side,
the newborn ions are taken away from the surface, with the same
force, leaving the ion number density at the surface to be zero.

In addition, the simulation produces a cometary wake (detailed in
Appendix E), physical and numerical, within which the ion number
density does not really seem continuous. Indeed, as mentioned in
Section 2.1.1, the comet cuts the trajectory of some ions leading to
discontinuities in the distribution function. To support this idea, we
have determined the region which ions born at the surface can reach
(see Appendix E). This limit is represented by a black line in Fig. 1.
The discontinuities are linked to this boundary. As we estimate a
function g, here the density and higher order moments, by a numer-
ical integration, there are still numerical errors, proportional to the
n-th derivative of the estimated function g: if the n-th derivative g(n)

is discontinuous, the numerical error is not bounded any more.
Regarding the asymmetry between the ±z regions, the ion number

density is higher for z < 0 than for z > 0 (for the same distance to
the z-axis). On the one hand, for z > 0, ions present in this region
have been all produced in it. On the other hand, for z < 0, ions can
either have been produced in this region or come from the z > 0
region, where they were born.

Finally, the convective electric induces a strong asymmetry within
the ion coma only in the first 10 km from the nucleus.

2.1.2.2 First-order moment: mean velocity. Fig. 1 (top, middle
panel) shows the mean perpendicular velocity in the ρ-direction
of ions between 0 and 650 m s−1 (the other component is perpen-

dicular to the figure and thus zero by symmetry). As the electric
field is a conservative force applied to the z-direction, it does not
affect the perpendicular velocity of the ions which is conserved dur-
ing their motion of the ions. Consequently, the mean perpendicular
velocity 〈v⊥〉 has to be between 0 and Un ± σ n in absolute value,
as observed.

〈v⊥〉 gives an insight into the initial location of ion production:
〈v⊥〉 ≈ 0 means that the ions are mainly produced close to the z-axis
whereas 〈v⊥〉 ≈ Un means that the ions are mainly produced close
to the z = 0 plane passing through the comet.

Fig. 1 (top, right-hand panel) shows the parallel mean velocity.
This reveals extremely high velocities, between 0 and 6 × 103

m s−1, even in the vicinity of the comet. Close to the surface on the
upper side, the mean parallel velocity is nearly zero, whereas the
newborn ions should have gone upward (v‖ > 0). This highlights
that these same ions are coming back (v‖ < 0), repelled by the
convective electric field such that the mean parallel velocity is low
in magnitude.

Moreover, 〈v‖〉 is increasingly downward, up to ∼6000 m s−1

(∼6.5 eV) for decreasing z, showing that ions are strongly accel-
erated compared with their initial velocity, even at 20 km from the
comet.

2.1.2.3 Second-order moments: mean dispersion and covariance.
By providing the full ion distribution function, Model A allows us to
derive any moments. It may be particularly interesting to go up to the
second order as it is linked to the temperature/pressure of the ions.

Lower panels in Fig. 1 show the minimum and maximum disper-
sions, σ min and σ max, as well as the deviation 	. This is reasonable
to assume that there are two dispersions for the plasma, one in the
parallel direction to the electric field and the other, perpendicular to
it. Model A allows us to check this assumption.

The left, lower panel in Fig. 1 shows the minimum dispersion
of the distribution function. This value is relatively close to the
neutral dispersion, σ n. Because we are dealing with a unidirectional,
conservative force, there is one direction for which the dispersion
should be unchanged. In the wake (Section 2.1.2.1 and Appendix E),
the distribution is found to be cooler than in other regions but these
are likely numerical features.

The middle, lower panel in Fig. 1 shows the maximum dispersion
of the distribution function. This dispersion is high between 0 and
2.5 × 103 m s−1, and of the same order of magnitude as the mean
velocity 〈v‖〉. Additionally, this dispersion and thus the tempera-
ture reflect a gradient (outwardly increasing) such that a constant
temperature for ions cannot be assumed. Finally, the dispersion is
higher for z > 0 than for z < 0. For z > 0, a few ions are coming
from below, having been produced close to (ρ, z) depending on the
strength of Econv; there is also the contribution of ions with vz > 0
and vz ∼ 〈vz〉. All this explains the strong dispersion.

The right, lower panel in Fig. 1 shows the deviation of the maxi-
mum dispersion from the electric field direction, i.e. the orientation
of our 3D distribution function, here around ∼±5◦. For fluid and
plasma modelling, one often assumes that there are two tempera-
tures to describe the particles: parallel/perpendicular to the magnetic
field. Here we make the analogy with the electric field. We would
like to check how reasonable it is to consider such assumptions. By
determining the covariance matrix (Appendix D), we can check how
important non-diagonal terms are. They have to be small enough
with respect to the diagonal terms to be able to reduce to parallel
and perpendicular temperatures. The maximum angular deviation
from the electric field direction is ±5◦, which means that two tem-
peratures can be assumed, one along the electric field and the other
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Figure 1. Zeroth, first, and second moments of the ion distribution function up to a cometocentric distance of 20 km from the comet for Model A. By cylindrical
symmetry, the moments are plotted as a function of ρ =

√
x2 + y2 and z. Left, upper panel: ion number density (m−3) in logscale for a downward convective

electric field. Middle, upper panel: mean perpendicular velocity (m s−1). By symmetry, the mean velocity in the perpendicular direction of the page is 0. Right
upper panel: mean parallel ion velocity (m s−1). Negative values mean that the ion flux is going in the same direction as the convective electric field. Left lower
panel: minimal standard deviation σmin (m s−1) in linear scale for a downward convective electric field. Middle lower panel: maximal standard deviation σmax

(m s−1). Right, lower panel: mean angular deviation 	 (◦). The black disc represents the comet with a 2-km radius. The black line demarcates the numerical
wake (see Appendix E): the region which can only be reached by ions born at the surface. The inputs are listed in Table 1 (Model A, Section 2.1)

one, perpendicular to it. Equivalently, the pick-up ion process leaves
the velocity parallel to the magnetic field unchanged and requires a
full gyromotion to deflect the ion acceleration from the direction of
Econv.

2.2 Model B: simplified 2D (position) × 1D (velocity)
collision-free model

In this section, we present a second model, Model B, for describing
the effect of the solar wind convective electric field on cometary

ions. It builds upon additional assumptions (e.g. no velocity
dispersion for neutral) compared with Model A (see Section 2.1.1),
but is less computationally expensive and can therefore be applied
over a larger space domain.

2.2.1 Theory

The basis of this model is the previous work from Vigren et al.
(2015) describing the effect of the solar wind convective electric
field.
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Figure 2. Representation of Model B. The ion, produced initially at S0, reaches to the position S1 in the absence of external forces but goes to S2 in the
presence of the convective electric field. The volume element from S0 to S1 expands as r2

1 /r2
0 . As we are considering a constant force – independent of the

position – the volume element V2 is equal to V1. However, the volume V2 is not a translation along z of the volume V1 but a composition of stretching and
rotation.

The ion is produced exactly radially (without any dispersion), at
a given speed Un corresponding to the bulk velocity of neutrals. In
presence of only the solar wind Econv, the trajectory of the ion is
given by:

ρ(t) = ρ0 + vρ0 t

z(t) = z0 + vz0 t − qEconv

2m
t2

vρ(t) = vρ0

vz(t) = vz0 − qEconv

m
t (9)

from an original location (ρ0, z0) where the ion was produced radi-
ally with the initial velocity Un separated in two components:

vρ0 = Un

ρ0√
ρ2

0 + z2
0

vz0 = Un

z0√
ρ2

0 + z2
0

The ‘philosophy’ is to compare where the ion (produced at S0)
should have been without the convective electric field (position S1)
and where it is in its presence (position S2) (Fig. 2). Let’s use the
subscript 1 for the position of the ion without external forces (radial
motion of the ion) and 2 for the position in the presence of the
convective electric field. The relation between both coordinates is
given by

ρ1 = ρ2

z1 = z2 + qEconv

2m
t2

vρ1 = vρ2

vz1 = vz2 − qEconv

m
t (10)

The meaning is that the newborn ion, instead of reaching the
position S1, reaches position S2. However, there is another point

which we have to worry about: does the initial volume element
(in 3D) at S0 stretch identically from S0 to S1 and from S0 to S2?
The answer is yes and its rigorous demonstration is provided in
Appendix F.

The ion number density is then given by (see Appendix F):

nion(x, y, z) =
∫

I

νionnn

(
x, y, z + qEconvτ

2

2m

)
dτ (11)

as derived by Vigren et al. (2015), except we have removed Cτ . We
prefer to focus on I ⊂ R

+, the interval of integration, instead.
Depending on the final position (x, y, z) of the ion, the interval I

is different. There are three cases:

(i) outside the wake – where the wake is defined in Appendix E
– the radial distance r0 from the comet at which the ion is produced
is higher than the cometary radius rc. This means that ∀τ > 0, the
ion never crosses the comet (r0 > rc) and then I = R

+. For such a
case, we have derived an analytical expression for the ion number
density (see Appendix G),

(ii) inside the wake, but for ρ =
√

x2 + y2 < rc and z < 0 (see
Fig. 3, between the z-axis and the grey line). While for small τ , the
ion is produced above the surface, there exists τ , τmax, beyond which
the ion is produced within the comet or has a trajectory crossing
it before reaching S2. For τ > τmax the integrand should be set to
zero. Thus, I = [0; τmax]. Vigren et al. (2015) did not remove these
ions from their simulation (i.e. they have performed the integration
over [τ 2; +∞[ in addition). This leads to an overestimation by
40–60 per cent of the ion number density in this particular region
for Econv = 1 V m−1 (Vigren, private communication, 2017).1 This
is highlighted by the grey discontinuity on Fig. 3, where our ion
number density and absolute mean parallel velocity are lower than
theirs,

1 However, for such a strong convective electric field, considering the usual
solar wind speed, the gyroradius is about 30 km, of the order of the simulation
box size used here.
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Figure 3. Same as in Fig. 1, but for Model B, with the same inputs as used for Model A in Section 2.1 (see Table 1). The range of values for the colour bars is
however different from Fig. 1. In addition, an additional boundary has been plotted in grey, following the surface for z > 0 and such that ρ = rc for z < 0.

(iii) inside the wake, but for ρ =
√

x2 + y2 > rc or z > 0 (see
Fig. 3, between the grey and black lines), the initial production
site of the ion gets closer and closer to the comet with increasing
τ , crosses the surface of the comet, and crosses or not the z axis.
It ultimately reaches the part of the position space for z > 0 and
0 < θ < π/2. This means that I is defined by two characteristic
times, τ 1 and τ 2. For increasing τ from τ = 0, the first corresponds
to the time at which the production site moves from outside to inside
of the comet. The second corresponds to the opposite. Thus, I =
R

+ \ [τ1; τ2] = [0; τ1] ∪ [τ2; +∞[. The previous case (for which
ρ < rc and z < 0) is equivalent by setting τ 1 = τmax. and τ 2 = +∞.

For some of these cases, we have to determine the initial location
(ρ0, z0) of the ion where it is produced as a function of ρ, z, and τ .
Its initial position is given by:

r1(ρ, z, τ ) =
√

ρ2 +
(

z + qEconvτ 2

2m

)2

ρ0(ρ, z, τ ) = ρ

(
1 − Unτ

r1

)

z0(ρ, z, τ ) =
(

z + qEconvτ
2

2m

) (
1 − Unτ

r1

)
(12)
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One of the condition, necessary but not sufficient, to fulfil is ∀τ ,
(r1(ρ, z, τ ) − rc) > Unτ , always true outside the wake.

Going beyond what was proposed in Vigren et al. (2015), who
computed the mean velocity, we have calculated the first-order mo-
ment components of the ion distribution function:

〈v⊥,ion〉(ρ, z) = νionUn

nion(ρ, z)

∫
I

ρ

r1
nn(r1) dτ (13)

〈v‖,ion〉(ρ, z) =

νionUn

nion(ρ, z)

∫
I

(
Un

z + qEconvτ2

2m

r1
− qEconvτ

m

)
nn(r1) dτ (14)

and the second order ones as well.
In equation (14), we consider the initial velocity of the ion, term

which has been neglected in the mean velocity relation provided by
Vigren et al. (2015).

For a more comprehensive kinetic understanding, for each τ it
corresponds only one 3-tuple in the velocity space at the position
(ρ, z). This means that by integrating along τ , we integrate the
distribution function along a 1D manifold in a 3D-velocity phase
space.

2.2.2 Results from Model B

We present the different results from Model B and the different
moments derived: the ion number density (2.2.2), the mean veloci-
ties (2.2.2), and the second-order centred moments (2.2.2). We have
considered the same conditions as those assumed for Model A (see
Table 1).

2.2.2.1 Zeroth-order moment. Fig. 3 (upper left-hand panel) depicts
the ion number density, between 107 and 1010 m−3. For the same
conditions as for Model A (see Fig. 1) and the same position, the ion
number density from Model B is significantly larger and exhibits a
strong asymmetry with respect to z = 0 with larger values in z < 0.

The wake is clearly apparent: although Model B was built with
a different ‘philosophy’ than Model A, this model highlights the
same typical feature along the wake. Furthermore, Model B resolves
much better the ion number density (i.e. suffers from less numerical
instabilities) along this limit. A second boundary appears which
corresponds to ρ = rc and z < 0. This boundary limits the region
where ions are coming from z > 0 and the region where they cross
the comet such that they are lost.

It is difficult to resolve well near the z-axis. In this region, the
motion of ions is unidirectional (along the z-axis). For z > 0, the
ions can come from below (not captured by the model) and above
whereas for z > 0, they come only from above. Moreover, looking at
the initial derivation, the volume element V(t) shrinks here because
sin θ0 = 0

Finally, we have undertaken a parametric study for a full range
of Econv from 10−4 to 1 V m−1: the ion number density is found to
be proportional to 1/

√
Econv (see Section 2.2.2.2).

2.1.2.2 First-order moments. Upper middle and right-hand panels in
Fig. 3 show the mean velocities in both perpendicular and parallel
directions.

Though the mean perpendicular velocity is to be bounded by
Un, the observed limit is lower: approximatively ∼550 m s−1. An
interesting feature is that the mean perpendicular velocity is constant
along lines passing through the comet such that it is function of the
angle with respect to the z-axis. Because of the strong drift driven

by the electric field, the main contribution to the ion number density
comes from ions produced close. However, for z < 0, there is also
a significant contribution from ions produced along the ρ-axis at
vρ = Un (not possible for z > 0), which explains the asymmetry
between z > 0 and z < 0.

Regarding the parallel velocity, even at a cometocentric of 20 km,
ions are undergoing a strong acceleration and the mean velocity is
going up to 10 km s−1 downward (along the direction of Econv) and
〈v‖〉 ∝ √

Econv derived from the parametric study. The conservation
of mechanical energy yields:

v2 = U 2
n + 2qEconv

m
(z0 − z) (15)

Assuming that the electric field is intense (so Un is negligible) and
the motion is only along z, we get for a given ion:

vz ≈ −
√

2qEconv

m
(z0 − z) ∝

√
Econv (16)

Hence, the total mean velocity ∝ √
Econv. In addition, in order

to have the same flux for different Econv (as this is not affect-
ing the production term), the continuity equation implies nion ∝
1/

√
Econv. This is in agreement not only with our simulations (see

Section 2.2.2.1) but also with our analytical derivation from Vigren
et al. (2015) (see Appendix G) outside the wake. Indeed, by consid-
ering the case I = R

+ (i.e. Cτ = 1 all the time in Vigren et al. 2015),
true outside the wake, it is possible to derive an analytical relation
for the ion number density and mean velocity proposed by Vigren
et al. (2015). The result below is nevertheless slightly overestimated
for the cases for which Vigren et al. (2015) consider Cτ = 0. The full
derivation is described in Appendix G, which yields the following
relation for the ion number density:

nion,V(ρ, z) = νionQ

8Unr

√
m

qEconv(r + z)
(17)

The calculation can be performed for the mean flux along z, i.e.:

nion,V(x, y, z)〈v‖〉V = −
∫ +∞

0
νionnn

(
x, y, z + qEτ 2

2m

)
qEτ

m
dτ

yielding:

nion,V〈v‖〉V = − νionQ

4πUnρ
arccos

( z

r

)
if r �= z, ρ �= 0

= − νionQ

4πUnr
if r = z, ρ = 0 (18)

Thus, the mean parallel velocity is:

〈v‖〉V = −2r

π

√
qEconv

m(r − z)
arccos

( z

r

)
if r �= z

= − 2

π

√
2qEconvr

m
if r = z (19)

The ion-to-neutral ratio is then:

nion,V

nn

= νionπr

2

√
m

qEconv(r + z)
(20)

which is independent of Un as Vigren et al. (2015) neglected the ini-
tial newborn ion velocity. However, as mentioned in Section 2.2.2.1,
the ion number density is expected to be ∝1/

√
Econv.

To prove that these analytical formula are correct outside the
wake, we have plotted the ion number density from equation (17)
(Fig. G1, left-hand panel), nion, V/nion, H (to be compared with Fig. 3a
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Table 2. Characteristics from models A and B: name, dimensions in position and velocity, sampling in the velocity space, main assumption, computing (CPU)
time, numerical inaccuracies, for a simulation of 20 km × 40 km with a resolution of 100 m.

Model
Dimension

(position × velocity) Velocity sampling Assumption CPU time Numerical inaccuracies

A 2 × 3 50 × 50 × 50 = 125000 σ n ∼ 500 h Yes, within the wake continuity equation not fulfilled anywhere
B 2 × 1 500 σ n = 0 <5 min No (except maybe along the z-axis),continuity equation almost

fulfilled everywhere except in some parts of the wake

from Vigren et al. (2015), Fig. G1, middle panel) and the mean ion
velocity from equation (19) (Fig. G1, right-hand panel).

Econv in the denominator should not be misleading. In the model
of Vigren et al. (2015), the acceleration can be 0. However, equation
(20) is valid only outside the wake. For smaller and smaller Econv,
the wake moves away from the comet and the derivation cannot be
applied close to it. A few simulations have been carried out to assess
the effect of a lower and lower convective electric field. There is a
surprising result: the model does not converge to the Haser model
as intuitively expected for Econv −→ 0, except in the area delimited
in grey. Even for a negligible convective electric field but non null,
as we are in the wake, I = [0; τ 1]∪[τ 2; +∞[. The integration over
[0; τ 1] converges towards the Haser model. The integration over
[τ 2; +∞[ (not taken into account in the delimited grey region) does
not converge however towards 0: there is a competition between
τ 2, increasing as Econv decreases, and the integrand being more and
more ‘constant’ (r1(τ ) ≈ r, i.e. independent of Econv). In fact, our
analytical derivation and the dependence on ∝1/

√
Econv still hold

even in the wake, except in the region delimited in grey.
Outside the wake, there is a perfect agreement between this an-

alytical formula (Fig. G1, left- and right-hand panels) and Model
B (Fig. 3, upper left- and right-hand panels) for similar conditions.
There are not strong discrepancies within the wake, except in the
grey delimited region. Econv = 5 × 10−4 V m−1 corresponds already
to the case for which

√
2qEconvδz/m > Un, where δz is the differ-

ence in z between the production and final locations of the ion. The
perpendicular velocity can be neglected with respect to Un, even
close to the comet.

2.1.2.3 Second-order moments. Lower panels in Fig. 3 show the
mean standard deviation in two directions of the ion velocity. It is
linked to the ion temperature and the departure of the σ max direction
from the electric field direction (see Appendix D).

Fig. 3 (lower left panel) represents the minimum standard devi-
ation ranging from 0 to 200 m s−1. There is a strong asymmetry
between z < 0 and z > 0, for similar reasons to what was found
for the perpendicular velocity (Section 2.2.2.2). By decreasing the
range of available velocities for z > 0 (between 0 and Unρ/r), the
minimum deviation (almost in the perpendicular direction) has to
decrease as well. This explains why along the z-axis, the dispersion
is ≈0 supporting the fact that the ion motion is reduced to 1D along
this line.

Fig. 3 (lower middle panel) represents the maximum standard
deviation. There is a huge dispersion up to 10 000 m s−1, of the
same order of magnitude as the parallel velocity itself. The structure
is similar to the ion number density (see Section 2.2.2.1) with an
opposite behaviour: the parallel velocity dispersion and thus the
parallel plasma temperature are increasing more and more outward.
For σ max = 6 km s−1, this represents a parallel ion temperature
around ∼6.5 eV, increasing approximatively with ∼ρ for z = 0.
This model shows that a constant temperature for ions is not a
suitable assumption.

Finally, Fig. 3 (lower right panel) shows the deviation of the maxi-
mum dispersion direction with respect to the electric field direction.
Our results show a very good alignment between both directions
with a deviation within ±3◦ outside the wake.

2.3 Comparisons between model a and model b

In this section, we confront Models A and B and draw the conse-
quences for further and future modelling.

In Table 2, we list a few characteristics from both models. The
difference in CPU time is not only explained by the additional
dimension in Model A compared with Model B but also by the
integration of the production term along the trajectory (about 100
points). The most convenient test for our simulations is the fulfil-
ment of the continuity equation. For the fluid approach, this is one of
the basic equations to solve. For the kinetic approach, this should be
a consequence. Indeed, by integrating equation (A4) in the velocity
space, we derive the continuity equation:

∇ · (nion〈v〉) = νionnn(r), (21)

where nion and 〈v〉 are the moments of order 0 and of order 1 of the
ion distribution function. Numerically, we consider that the con-
tinuity equation is fulfilled if the relative difference between the
left-hand and right-hand sides is less than a certain percentage (typ-
ically 10 per cent). Model A only gives us a few regions where it is
fulfilled. For most of the computational domain, the left-hand side
and the right-hand side are very different. This probably comes from
the poor spatial resolution of the ion trajectory just at the surface
of the comet: for example, for a given velocity, the first point that
we sampled above the surface is at 100 m from the surface and for
another velocity, the first point is at 200 m, instead of exactly just
above the surface. This accumulation of inaccuracies in the produc-
tion term (discontinuous at the surface) leads to underestimation of
the ion number density from Model A. Moreover, the addition of
integrations (2 more for Model A than for Model B) does not help
for an accurate estimation.

Model B is more computationally efficient and more accurate,
as illustrated in Table 2. The continuity equation is fulfilled within
1 per cent, except at the wake, in the transition region between ρ = rc

and the wake boundary. Moreover, with its good accuracy and its
agreement with other models (discussed in Section 3), despite ad-
ditional assumptions (newborn ions only produced radially at one
specific velocity Un and travelling in a plane containing the z-axis),
Model B and thus the initial work by Vigren et al. (2015), is a
more relevant tool than Model A for the analysis of the interac-
tion between the solar wind, its motional electric field and newborn
cometary ions.

We would like to point out that for very small values of the
convective electric field, Model B is constrained by computing in-
accuracies which are:

MNRAS 469, S824–S841 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/469/Suppl_2/S824/4880454
by Imperial College London Library user
on 19 June 2018



Ion dynamics under the convective electric field S833

(i) the boundaries of the subset I for the integration: the deter-
mination of τmax, τ 1 and τ 2 are not exact and computationally
expensive,

(ii) the upper limit of I – which can be +∞ – has to be numerically
finite and thus adjusted accordingly.

Indeed, the determination of I and its limits start to be difficult
and less accurate for very small Econv < 10−6 V m−1. This part can
be computed aside with the appropriate software. τmax, τ 1, and τ 2

are positive roots, if they exist, of the fourth-degree polynomial P4:

P4(τ ) =
(

qEconv

2m

)2

τ 4 +
(

zqEconv

m
− U 2

n

)
τ 2

− 2Unrcτ + (
ρ2 + z2 − r2

c

)
(22)

P4 has a maximum of two positive roots (Descartes’ rule). Out-
side the wake, P4 does not have positive roots. Inside the wake, it
has two positive roots. By definition, the smallest positive root is
τmax (or τ 1 depending on the region) and the highest positive one
is τ 2. A priori, this is mathematically possible to give the analyti-
cal expression of these roots as the polynomial is of degree 4 (cf.
Abel-Ruffini theorem and Ferrari’s method). Such a formula would
be cumbersome and beyond the scope of this paper. As Econv

decreases, because of the computing finite precision, the numer-
ical roots become less and less accurate. However, a quantita-

tive study shows that τ1 ∼ r−rc
Un

and τ2 ∼ 2m
qEconv

√
U 2

n − zqEconv
m

for
Econv = o(1).

3 C O M PA R I S O N S W I T H OTH E R EX I S T I N G
WO R K S

In this section, we compare the results from Model B with the Haser
model (Section 3.1) and with other existing works on the convective
electric field (Section 3.2).

3.1 General ion density model: the Haser (1957) model

3.1.1 Theory

Assuming a spherical symmetry for the production of neutrals at the
surface of the comet, and neglecting the photo-dissociation or other
chemical loss processes for neutrals, the neutral number density
profile is given by equation (5) (Haser 1957) which is a realistic
representation over the cometocentric distances considered here for
a low outgassing comet.

The continuity equation applied to ions is reduced to:

1

r2

d

dr

(
nion(r)v(r)r2

) = νionnn(r) (23)

leading to:

nion(r) = Q

4πv(r)r2

∫ r

rc

νion(r ′)
v(r ′)

dr ′ (24)

For newborn ions, we assume a constant outflow velocity v(r) = Un.
The same formula is derived from Haser (1957) considering the
ions as a daughter species and water as a parent species, with a
characteristic length Ld = Un/ν ion 
 r for ions and infinite for
neutrals.

Assuming that the coma is optically thin to EUV radiation
(ν ion(r) = constant), the ion number density is given by Galand
et al. (2016):

nion,H(r) = νionQ

4πU 2
n

r − rc

r2
(25)

Figure 4. Plots of the ion number density over the neutral one for our Model
B (left-hand panel) and for the Haser (1957) model (right-hand panel). The
colour bar for the ratio is logarithmic.

and from equation (5), we derive that the ion-to-neutral or electron-
to-neutral number density ratio is:

nion,H(r)

nn(r)
= νion

Un

(r − rc) = r − rc

Ld

(26)

where Ld is the length scale. The mean ion velocity is:

〈vion,H〉 = Uner = Un

ρ

r︸︷︷︸
〈v⊥〉

eρ + Un

z

r︸︷︷︸
〈v‖〉

ez (27)

This model is used as a reference for comparison because it rep-
resents the case where there is no electric field and ions are not
undergoing any acceleration along their trajectory.

3.1.2 Comparison with Model A and Model B

Fig. 4 shows a comparison of nion/nn between our Model B
(section 2.2) and the Haser (1957) model (Section 3.1.1).

The presence of the solar wind convective electric field tends
to decrease the ion number density. If the right-hand side of
equation (23) and the spherical symmetry remain unchanged, as the
force accelerates the ions, the ion number density should decrease
to ensure flux conservation. At a given location, the ion-to-neutral
number density ratio should thus be higher for the Haser model
than for Model B. One exception is close to the comet’s surface, for
z > 0: the newborn ions from the surface facing the electric field are
first decelerated so that v < Un during a short time before reaching
the maximum z in their trajectory and then accelerating by Econv.
Moreover, even produced far away, newborn ions close to the z-axis
(z > 0) are strongly deflected and reach the comet. As seen in Fig. 4,
the ion-to-neutral number density ratio is higher for Model B than
for the Haser model, only in a few kilometres in the z > 0 direction.
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Figure 5. Ion number density from Model B in logscale for the same
conditions as Madanian et al. (2016): Q = 1026 s−1, Un = 1000 m s−1,
νion = 10−7 s−1, Econv = 5.10−4 V m−1 (listed by (+) in Table 1). The
contours are symmetrical with respect to the z-axis and reversed to be
consistent with their paper.

3.2 Comparison with other models which include the motional
electric field

Two main studies on the solar wind motional electric field have
been published by Vigren et al. (2015) and Madanian et al. (2016).
In Section 2.2, we detailed how we have improved and extended
the work by Vigren et al. (2015). We propose here to compare our
results (here Model B) with the work from Madanian et al. (2016).

Madanian et al. (2016) investigated the ion number density up to
1000 km from the comet using a test particle model for conditions
encountered at 3 au. Their model takes into account: the photo-
ionization by solar radiation, the charge exchange with solar-wind
protons, the interplanetary magnetic field, and the motional electric
field. However, the ambipolar electric field is not included as this
caused instability in their model.

In order to compare our findings with those from Madanian et al.
(2016), we carried out a run with Model B (see Section 2.2) under
the same conditions as those chosen by Madanian et al. (2016) (see
Table 1). The derived ion number density is shown in Fig. 5. There
is a very good agreement with fig. 9 of Madanian et al. (2016). The
main departure is a little drift of the ion tail to the left (x < 0) far
from the comet, not seen in the results from Model B. At 1000 km,
the effect of the ion gyration – included in Madanian et al. (2016)
– starts to become important: the ions are first drifting due to Econv

and then picked up by the solar wind coming from the right (x > 0).
However, even at 1000 km, the gyroradius remains large in the solar
wind frame and the deflection remains small.

Nevertheless, by its simplicity and its computing time (a few
minutes CPU time), Model B catches the global behaviour with
good accuracy of the ion distribution by comparison to the test
particle model from Madanian et al. (2016).

4 C O N C L U S I O N

In this paper, we investigate the effect of the convective electric field
on the dynamic of newborn cometary ions based on different kinetic

models for a low cometary activity. In such a case, the solar wind can
penetrate the coma, carrying itself the convective electric field Econv.
We show that such a convective electric field changes the ion number
density profile, to a radial r−3/2 dependency, instead of the observed
1/r decrease. We highlight that there is also a dependency with
respect to the convective electric field direction and its intensity;
asymptotically, for a strong convective electric field, the ion number
density is proportional to 1/

√
Econv. Thus, including only its effect

cannot explain the plasma density observations at large heliocentric
distances.

In reality, the convective electric field does not act alone but is
combined with the ambipolar electric field which counteracts its
effect. Indeed, in order to ensure the quasi-neutrality of the plasma,
the ambipolar electric field is set up to prevent electrons from es-
caping the cometary ionosphere. Further investigations should be
carried out to assess the combined effect of both electric fields on
the cometary ionosphere. For instance, the kinetic modelling of the
coma, solving the Vlasov–Maxwell equations through a particle-
in-cell approach as presented by Deca et al. (2017), could improve
our understanding in such a situation.

AC K N OW L E D G E M E N T S

Work at Imperial College London is supported by STFC of UK un-
der grant ST/K001051/1 and ST/N000692/1. Simulations for Model
A have been conducted on the Imperial College High Performance
Computing Service (doi: 10.14469/hpc/2232). We would like to
thank very warmly S. J. Schwartz and E. Vigren for very useful and
constructive discussions.

R E F E R E N C E S

Altwegg K. et al., 1993, A&A, 279, 260
Balsiger H. et al., 1986, Nature, 321, 330
Balsiger H. et al., 2007, Space Sci. Rev., 128, 745
Behar E., Nilsson H., Wieser G. S., Nemeth Z., Broiles T. W., Richter I.,

2016, Geophys. Res. Lett., 43, 1411
Benna M., Mahaffy P. R., 2006, Geophys. Res. Lett., 33, n/a
Beth A. et al., 2016, MNRAS, 462, S562
Bieler A. et al., 2015, Nature, 526, 678
Broiles T. W. et al., 2015, A&A, 583, A21
Broiles T. W. et al., 2016, J. Geophys. Res. Space Phys., 121, 7407
Burch J. L., Goldstein R., Cravens T. E., Gibson W. C., Lundin R. N., Pollock

C. J., Winningham J. D., Young D. T., 2007, Space Sci. Rev., 128, 697
Churyumov K. I., Gerasimenko S. I., 1972, in Chebotarev G. A.,

Kazimirchak-Polonskaia E. I., Marsden B. G., eds, Proc. IAU Symp.
45, The Motion, Evolution of Orbits, and Origin of Comets. Reidel,
Dordrecht, p. 27

Cravens T. E., 1987, Adv. Space Res., 7, 147
Deca J., Divin A., Henri P., Eriksson A., Markidis S., Olshevsky V., Horányi
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A P P E N D I X A : D I S C U S S I O N A B O U T TH E
B O LT Z M A N N E QUAT I O N

We have introduced in equation (3) a factor depending on the ge-
ometry and the coordinates used for the representation of the distri-
bution function. This factor plays a key role according to the set of
coordinates used for the resolution of the Boltzmann equation. We
strongly invite the reader to look at Tuckerman, Mundy & Martyna
(1999) and Tuckerman et al. (2001) dealing with non-Hamiltonian
systems. By not using the conjugate momenta of the space coordi-
nates, we might introduce a mistake into the distribution function.
Even for a non-Hamiltonian system, Liouville theorem df/dt = 0
stands but – and we strongly insist on that point – the measure
d6xi, the infinitesimal volume element – product of differentials of
each variable xi of the distribution function f – is not necessarily
conserved in the 6D phase space along the trajectory.

Consider a non-Hamiltonian system:

ẋi = ξ i(xi, t)

for the evolution of the i coordinate x = x1, ... , x6 with initial values
x0 = x1

0 , ... , x
n
0 . At time t, the coordinates are:

xt = xt (t ; x
1
0 , ... , x

n
0 )

Now, we define the Jacobian J of the transformation between x0 and
xt:

J (xt ; x0) = ∂(x1, ... , xn)

∂(x1
0 , ... , x

n
0 )

= detM = exp(Tr(log(M))) (A1)

with

Mi,j = ∂xi
t

∂x
j
0

It is possible to show that:

dJ

dt
= J

∑
i

(
∂ξ i

∂xi

)
= Jκ(xt ). (A2)

The term κ = ∑
i ∂ξ i/∂xi represents the compressibility of the

coordinates. The system of coordinates as defined in Hamiltonian
mechanics (known as canonical coordinates) is incompressible by
definition, which is not the case of ours (no canonical). Let’s con-
sider the cylindrical coordinate case, i.e. (ρ, ϕ, z) coordinates. Their
associated conjugate momenta are defined as:

pρ = mρ̇ = mvρ

pϕ = mρ2ϕ̇ = mρvϕ

pz = mż = mvz

and from Hamiltonian equations

∂ρ̇

∂ρ
+ ∂ϕ̇

∂ϕ
+ ∂ż

∂z
+ ∂ṗρ

∂pρ

+ ∂ṗϕ

∂pϕ

+ ∂ṗz

∂pz

= 0. (A3)

During the motion, the volume element dVC = dρ dϕ dz dpρ dpϕ dpz

in the 6D phase space stays unchanged (equation A3). (ρ, ϕ,
z, pρ , pϕ , pz) is a canonical set of coordinates. However, if we
use the volume element dVNC = dρ dϕ dz dvρ dvϕ dvz rather than
dVC, by the change of coordinates, we have dVC = m3ρ dVNC.
(ρ, ϕ, z, vρ, vϕ, vz) is a non-canonical set of coordinates.

Let’s consider now particles produced with the distribution func-
tion f(ρ0, ϕ0, z0, pρ , pϕ , pz) at (ρ0, ϕ0, z0) and propagating to another
location (ρ t, ϕt, zt). Applying the Liouville theorem, undergoing
conservative forces and Hamiltonian coordinates:

f (ρ0, ϕ0, z0, pρ0 , pϕ0 , pz0 ) = f (ρt , ϕt , zt , pρt , pϕt , pzt )

f (ρ0, ϕ0, z0, pρ0 , pϕ0 , pz0 ) dV0 = f (ρt , ϕt , zt , pρt , pϕt , pzt ) dV0

The reader should remember that the Liouville theorem is a Hamil-
tonian mechanics theorem such that the incompressibility of the
coordinates is assumed. Therefore, the number of particles is con-
served along the trajectory. However, if we consider the volume
element dVNC:

f (ρ0, ϕ0, z0, vρ0 , vϕ0 , vz0 ) dVNC(t)

= f (ρt , ϕt , zt , vρt , vϕt , vzt ) dVNC(0)

ρ0f (ρ0, ϕ0, z0, vρ0 , vϕ0 , vz0 ) dVC = ρtf (ρt , ϕt , zt , vρt , vϕt , vzt ) dVC

and thus

ρ0f (ρ0, ϕ0, z0, vρ0 , vϕ0 , vz0 ) = ρtf (ρt , ϕt , zt , vρt , vϕt , vzt )

Depending on the coordinates in which the distribution is described
(Hamiltonian or not, canonical coordinates or not), a corrective
factor has to be applied to take into account the compressibility of
the coordinates in the 6D phase space.

For a more general application, we have to define κ = ẇ (ρ̇/ρ

for our example). Thus, from equation (A2), the Jacobian J can be
written as:

J = exp(w(xt ) − w(x0))

By using (ρ, ϕ, z, vρ, vϕ, vz) instead of the conjugate momenta,
the volume dV1(t) following the particles is not constant along the
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trajectory. However, we have:

exp(−w(xt )) dVNC(t) = exp(−w(x0)) dVNC(0)

or

dVNC(t) = exp(w(xt ) − w(x0)) dVNC(0)

with exp (−w(xt)) = ρ t (for our case) and exp (−w(x0)) = ρ0

(where the ion is produced), due to the cylindrical symmetry in
3D space and the use of velocities instead of conjugate momenta.
This is exactly the factor we get for the transformation between
(x, y, z, vx, vy, vz), a Cartesian-like 6D frame and thus incompress-
ible, and (ρ, ϕ, z, vρ, vϕ, vz).

More generally, exp(−w(xt )) = √
g, where

√
g is the metric de-

terminant factor defined by our system of coordinates. For Hamilto-
nian mechanics,

√
g = 1 (canonical coordinates) and the 6D volume

element do not change along the trajectory so that the distribution
function does not change in collisionless problems (cf. Liouville the-
orem). For non-Hamiltonian cases, the Liouville equation is given
by (Tuckerman et al. 2001):

∂(f
√

g)

∂t
+

∑
k

∂(f
√

gξk)

∂xk
= 0. (A4)

The Liouville equation still holds (df/dt = 0). However, the av-
erage of any property A, such as the moments, has to be determined
from the distribution function f and the invariant measure

√
g dxk:

〈A〉 =
∫

A(xk)f (xk)
√

g(xk) dxk∫
f (xk)

√
g(xk) dxk

.

The invariant measure has to be considered to derive the continu-
ity equation from the Boltzmann equation in cylindrical symmetry
(
√

g = ρ) or spherical symmetry (
√

g = r2) for position-velocity
coordinates which are not canonical, unlike position-momentum
ones.

For these reasons, we have introduced ρ0/ρ (geometry and not
canonical coordinates) in equation (6) and further in this paper to
take into account such a ‘metric’ effect.

A P P E N D I X B: PA R A B O L A
PA R A M E T R I Z ATI O N

In general, particle trajectories are expressed either as a function
of time r = (x(t), y(t), z(t)) or through a relation between position
coordinates. For a particle undergoing a constant acceleration in one
direction – as it is the case here for the electric field – its trajectory
describes a parabola. The newborn ion trajectory is a parabola in
the plane perpendicular to Econv × v, passing through the position
where it is observed (see Fig. B1). We propose here to parametrize
the parabola in cylindrical polar coordinates (ρ, ϕ, z) with respect
to its focus, where the z-axis is along −Econv(see Fig. B1), ‖ and
⊥ refer to directions parallel and perpendicular to Econv (or z-axis),
respectively.

We choose the position A = (x, 0, z)cartesian = (ρ, 0, z)cylindrical

and velocity (vρ, vϕ, vz). The parabola in the plane (Econv, v) is
characterized by its semilatus rectum p and the position of its focus,
F. p is given by:

p = m
(
v2

ρ + v2
ϕ

)
qEconv

= mv2
⊥

qEconv
(B1)

constant during the motion, as v⊥ is a constant of the motion. We
need also to derive the relative position of the focus F of the parabola

Figure B1. Schematic of the ion trajectory and the different considered
frames. The black frame is the frame centred on the comet with the ion in the
Oxz plane. The blue arrows represent the ion velocity and its projection. The
green frame represents the normalized frame with respect to the projected
velocities and centred on the focus of the parabola F. A refers to the point
of observation through which ions are going through and the moments are
derived.

with respect to the final position A:

AF = −mv‖.Econv

qE2
conv

v⊥ + m(v2
‖ − v2

⊥)

2qEconv
ez

= mv‖v⊥
qEconv

ex′ + m(v2
‖ − v2

⊥)

2qEconv
ez (B2)

By definition, the frame Ox′z is oriented such that v⊥ is positive
(see Fig. B1). In the original frame, the parametrization of an ion
trajectory, with respect to �, is then given by:

x = vρ

v⊥

(
p sin �

1 + cos �
+ mv⊥v‖

qE

)
+ ρ (B3)

y = vϕ

v⊥

(
p sin �

1 + cos �
+ mv⊥v‖

qE

)
(B4)

z =
(

p cos �

1 + cos �
+ m(v2

‖ − v2
⊥)

2qE

)
+ z (B5)

with v‖ = v.ez and v⊥ = ‖v − v‖‖, the initial parallel and perpen-
dicular velocities and � ∈ ] − π ; ω], ω is the value of � for which
the ion is at A:

ω = −2 arcsin
( v‖

v

)
(B6)
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The last relation to determine is the one between the time t, s,
and � or between dt, ds, and d�. Let’s call R, the distance between
the ion and the focus F given by:

R(�) = p

1 + cos �
(B7)

Thus:

ds =
√

dR2 + (Rd�)2

=
√

2p2

(1 + cos �)3
d�

= R(�)

√
2

1 + cos �
d�

= R(�)

cos
(

�
2

) d� (B8)

However, we need also to express the ion velocity. Based on the
conservation of the mechanical energy:

v2 = v2
⊥ + 2qEconv

m

(
p

2
− p cos �

1 + cos �

)

= v2
⊥ + qpEconv

m

1 − cos �

1 + cos �

= v2
⊥ + qpEconv

m
tan2

(
�

2

)

= v2
⊥

cos2
(

�
2

) (from equation B1) (B9)

leading to:

dt = ds

v
= R(�)

v⊥
d� (B10)

Therefore, from equations (B1), (B7), and (B10), equation (6) be-
comes:

f (r, v) = mv⊥
qEconv

∫ ω

−π

Pion(r0(�), v0(�))

1 + cos �

ρ0(�)

ρ
d� (B11)

This parametrization is more usable than equation (6), as the
boundaries of integration are finite and easily known according to
the initial conditions.

A P P E N D I X C : N U M E R I C A L E VA L UAT I O N O F
T H E D I S T R I BU T I O N FU N C T I O N
( SUPPLEMENTA RY INFORMATION)

We integrate numerically equation (7) using the Gauss–Legendre
quadrature whose accuracy and order are linked to the number of
considered points for the integration: for NL points, the method
is of the order 2NL − 1. Moreover, the Gauss–Legendre method
is adapted for numerical integration with finite lower and upper
boundaries. For the integration I between a and b of a given function
f, the numerical value is given by:

∫ b

a

f (x) dx ≈
NL∑
i=1

f (xi)w
L
i (C1)

where xi = a+b
2 + rL

i
b−a

2 , rL
i are the roots for the Legendre poly-

nomials of degree NL and wL
i , the associated weights. Their values

are computed from the Numerical Recipes. Typically, we choose
NL = 100.

One of the numerical issues for this computation is the presence
of the comet: some parabolas cross the comet. In that case, the
production term is set to 0 within the comet and any ion crossing
the comet is lost except those leaving the cometary surface and
above. This leads to discontinuities in the distribution function in
the velocity space.

For the determination of the different moments of interest, we
use another numerical approach, the Gauss-Hermite quadrature:∫ +∞

−∞
g(x) dx =

∫ +∞

−∞
h(x)e−x2

dx

≈
NH∑
i=1

h(ri)w
H
i ≈

NH∑
i=1

g(ri)e
(rH

i )2
wH

i (C2)

where rH
i are the roots for the Hermite polynomials of degree NH

and wH
i , the associated weights. This is particularly adapted to

the integration of functions whose shapes are close to a normal
(i.e. Maxwellian) distribution and with infinite lower and upper
boundaries. Typically, we choose NH = 50, which means we use
125 000 points in the velocity space for sampling. The method is
adapted to be applied to 3D with different dispersions.∫ +∞

−∞
f (r, v) d3v ≈

NH∑
i=1

NH∑
j=1

NH∑
k=1

f (r, vi , vj , vk)WiWjWk

vi =
√

2α2rH
i + Vx0, Wi =

√
2e(rH

i )2
wH

i

vj =
√

2β2rH
j + Vy0, Wj =

√
2e

(rH
j )2

wH
j

vk =
√

2γ 2rH
k + Vz0, Wk =

√
2e(rH

k )2
wH

k (C3)

where α, β, γ , Vx0, Vy0, and Vz0 are unknown and flexible: they
fix the points in the velocity space where the distribution function
should be evaluated. We have to optimize these parameters to sample
in the wisest and the most efficient way f, i.e. minimizing the error.
To overcome this issue, we calculate recursively the moments:

(i) We start the computation with α = β = γ = Un and
Vx0 = Vy0 = Vz0 = 0, we compute the moments, n, 〈vx〉, 〈vy〉
〈vz〉, 〈v2

x〉, 〈v2
y〉, 〈v2

z 〉,
(ii) At step 1, the moments provide the density n1, the mean

velocity 〈v1〉, and also the second-order centred moments. These
values are used as inputs to compute new values for vi , vj , and vk ,
adapting the grid and sampling the distribution as wise as possible.
For the next step, the initial inputs are readjusted:

Vx0 = 〈vx〉, Vy0 = 〈vy〉, Vz0 = 〈vz〉, α = σx = √〈v2
x〉 − 〈vx〉2, β =

σy =
√

〈v2
y〉 − 〈vy〉2, γ = √〈v2

z 〉 − 〈vz〉2,

(iii) We repeat the process until the density converges with a
certain tolerance.

This approach is useful as we are presuming nothing about the
different moments of the distribution function, but only what the
shape of the bulk is: we assume that it is a 3D-Maxwellian distribu-
tion.

A P P E N D I X D : STA N DA R D A N D A N G U L A R
D E V I AT I O N S

We would like to confirm whether the distribution function is aligned
with the electric field or not. If we assume a 2D-Maxwellian dis-
tribution, there are two directions over which two dispersions have
to be maximized/minimized, as illustrated in Fig. D1. For our 3D
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Figure D1. Schematic representation of the distribution function, displayed
in red, with the first- and second-order moments. 	 here is negative and has
been exaggerated – not reflecting our simulations for the benefit of the
visualization -.

case, this requires the determination of the eigenvalues and associ-
ated eigenvectors of the covariance matrix (see equation 8):

M =

⎛
⎜⎜⎝

σ 2
x σxy σxz

σxy σ 2
y σyz

σxz σyz σ 2
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ 2
x 0 σxz

0 σ 2
y 0

σxz 0 σ 2
z

⎞
⎟⎟⎠ (D1)

A straightforward eigenvalue is σ 2
y because of the cylindrical sym-

metry. The problem can be reduced by studying the matrix:

N =
(

σ 2
x σxz

σxz σ 2
z

)
(D2)

As the trace Tr(N) > 0 and the determinant det(N ) > 0 (see
Cauchy–Schwarz inequality), the eigenvalues are positive and are
defined as σ 2

max and σ 2
min, where σ 2

max > σ 2
min. Analytically, the eigen-

values are given by:

σ 2
max = σ 2

x + σ 2
z

2
+

√
(σ 2

x − σ 2
z )2 + 4σ 2

xz

2

σ 2
min = σ 2

x + σ 2
z

2
−

√
(σ 2

x − σ 2
z )2 + 4σ 2

xz

2
(D3)

and then the deviation of the main direction of the distribution
(direction for σ max) from the electric field direction is given by:

	 = − arctan

(
σ 2

x − σ 2
min

σxy

)
, σxy �= 0 (D4)

related to the direction of the eigenvectors. Indeed, if σ xy = 0, σ xx

is either σ min (	 = 0) or σ max (	 = π/2), as shown in Fig. D1.

A P P E N D I X E: TH E C O M E TA RY WA K E

As detailed in Section 2.1, our simulations and previous works (e.g.
Vigren et al. 2015) bring to light the presence of a cometary wake
induced by the comet itself. The wake delimits the region where
the ion number density undergoes a discontinuity: this limit is the
upper limit in the z direction that ions born at the surface can reach.
In this Appendix, we propose a detailed demonstration to determine
this boundary.

Considering the motion of ions in the (ρ, z) plane, their trajecto-
ries are given by:

ρ(t) = ρ0 + vρ0t

z(t) = z0 + vz0t − qEconv

2m
t2 (E1)

For the ions which have been just produced on the comet’s surface,
at the distance rc from the comet’s centre and at a radial velocity
Un, we get:

ρ(t) = (rc + Unt) sin θ0

z(t) = (rc + Unt) cos θ0 − qEconv

2m
t2 (E2)

where θ0 is the initial colatitude of the ion at the surface with respect
to the z-axis.

The wake is defined by the maximum z(t), which an ion can have
at a given ρ(t). With the current set of equations, the problem is that
for a given t, all the ions have not the same ρ such that we need to
express z as a function of ρ (and θ0). equation (E2) implies:

z(ρ, θ0) = ρ

tan θ0
− qEconv

2mU 2
n

(
ρ

sin θ0
− rc

)2

(E3)

The position of the wake boundary is then defined by the maximum
value z(ρ, ϑ) for a fixed ρ and ϑ ∈ [0, π ], such that:

(
∂z

∂θ0

)
ρ

(ρ, ϑ) = 0

= − ρ

sin2 ϑ

[
1 − qEconvrc

mU 2
n

(
ρ

rc sin ϑ
− 1

)
cos ϑ

]
(E4)

ϑ is the solution of this transcendental equation. However, some
simplifications can be made:

1 − qEconvrc

mU 2
n

(
ρ

rc sin ϑ
− 1

)
cos ϑ = 0

(
ρ

rc

− sin ϑ

)
cos ϑ = mU 2

n

qEconvrc

sin ϑ

(
ρ

rc

− sin ϑ

)2

(1 − sin2 ϑ) =
(

mU 2
n

qEconvrc

)2

sin2 ϑ (E5)

sin ϑ is a root of the following 4th-degree polynomial:

sin4 ϑ − 2ρ

rc

sin3 ϑ +
(

ρ2

r2
c

− 1 +
(

mU 2
n

qEconvrc

)2
)

sin2 ϑ

+ 2ρ

rc

sin ϑ − ρ2

r2
c

= 0 (E6)

with explicit expression (cf. Ferrari method) but not straightforward

to derive. For
(

mU2
n

qEconvrc

)2
∼ o(1) (here ∼0.0062; see Table 1), the

roots are trivial (i.e. 1 and ρ/rc) and the limit of the wake is:
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z(ρ, ϑ) =
√

r2
c − ρ2 if ρ ≤ rc (sin ϑ = ρ/rc)

= −qEconv

2mU 2
n

(ρ − rc)2 if ρ ≥ rc (sin ϑ = 1) (E7)

The wake plays a key role and is a boundary. On the one hand,
between the comet and the wake, the ion dynamics is dominated by
the initial velocity of ions so that the ion distribution is expected
to follow the Haser (1957) model. On the other hand, far from the
wake, the electric field has enough time to accelerate the ions, which
reach velocities significantly higher than their initial one. Then the
ion number density from the simplified model (see Fig. G1, middle
panel) is expected to follow more likely the original model from
Vigren et al. (2015).

A P P E N D I X F: MATH E M AT I C A L
D E M O N S T R ATI O N O F TH E A P P ROAC H
B Y V I G R E N E T A L . (2 0 1 5 )

The goal of this Appendix is to rigorously demonstrate the
formula proposed by Vigren et al. (2015), here referred as
equation (11).

Let’s consider four vertices of the volume element in the position
space and let’s assess how it varies from the position S0 to S1 (cf.
Fig. 2). The position of the first vertex A with respect to the time is
given by:

xA(t) = (r0 + Unt) cos ϕ0 sin θ0

yA(t) = (r0 + Unt) sin ϕ0 sin θ0

zA(t) = (r0 + Unt) cos θ0 − qE

2m
t2 (F1)

where r0 stands for the initial distance, θ0, for the initial colatitude,
and ϕ0, for the initial longitude of the ion when it is produced. Let’s
consider three other vertices (B, C, D) separated from (xA, yA, zA),
respectively, by an infinitesimal variation of �r (B), �θ (C), and
�ϕ (D):

xB (t) = (r0 + �r + Unt) cos ϕ0 sin θ0

yB (t) = (r0 + �r + Unt) sin ϕ0 sin θ0

zB (t) = (r0 + �r + Unt) cos θ0 − qE

2m
t2 (F2)

xC(t) = (r0 + Unt) cos ϕ0 sin(θ0 + �θ )

yC(t) = (r0 + Unt) sin ϕ0 sin(θ0 + �θ )

zC(t) = (r0 + Unt) cos(θ0 + �θ ) − qE

2m
t2 (F3)

xD(t) = (r0 + Unt) cos(ϕ0 + �ϕ) sin θ0

yD(t) = (r0 + Unt) sin(ϕ0 + �ϕ) sin θ0

zD(t) = (r0 + Unt) cos θ0 − qE

2m
t2 (F4)

The volume element V(t) in the position space for small �r, �θ ,
and �ϕ, is given by:

V (t) = |det(AB(t), AC(t), AD(t))| = (r0 + Unt)
2 sin θ0�r�θ�ϕ

(F5)

such as, at t when the ion reaches S2 (or S1 in the absence of forces;
see Fig. 2):

V2 = V (t) = V (0)(r0 + Unt)
2/r2

0 = r2
1 /r2

0 (F6)

where r1 is the distance of S1 from the comet. This behaviour results
from the following reasons:

(i) The force applied to the ion is independent of the position.
(ii) A slight displacement of the ion position induces a slight

displacement of the velocity, which is not occurring in the general
kinetic picture as the velocity is independent of the position. If
the ion was not produced with a single velocity but according to a
distribution function, this assertion would not be true any longer.

(iii) The initial velocity is radial (∇ · Un �= 0).

Let �N0 be the number of particles produced at S0 dur-
ing a short time �t: �N0 = νionnn(r0)V (0)�t = νionnn(r0)r2

0

sin θ0�r�θ�ϕ�t .2 Along the trajectory, the number of particles is
conserved under conservative forces (Liouville’s theorem) such that
N0 is constant up to the position S2.3 However, as the volume ele-
ment has changed, the ion number density changed such that at S2

it is given by: �nion = �N0/V2 = ν ionnn(r0)(r0/r1)2�tν ionnn(r1�t)
which yields:

dnion(ρ, z, t)

dt
= νionnn(r1) (F7)

where (ρ, z) is the position of S2, r1 is the cometocentric distance
of S1 with the coordinates at the position (ρ, z + qEconvt2/2m),
depending on time. By integrating over time, one gets equation (11).
The same approach can then be applied to derived other moments
such as the mean velocity and the velocity dispersions.

A P P E N D I X G : A NA LY T I C A L D E R I VAT I O N
F O R V I G R E N E T A L . (2 0 1 5 )

We propose an analytical approximation of the ion number density
and mean velocity provided in Vigren et al. (2015) assuming Cτ = 1
everywhere such that (from equations 5 and 11):

nion,V(x, y, z) =
∫ +∞

0

νionQ

4πUn

1

ρ2 +
(
z + qEτ2

2m

)2 dτ

nion,V(x, y, z) = νionQ

4πUn

∫ +∞

0

1

ρ2

1

1 +
(

z
ρ

+ qEτ2

2mρ

)2 dτ (G1)

By introducing a = z
ρ

, b2 = 2mρ

qE
(the electric field is downward, E

is positive, the direction is already taken into account) and T = τ/b,
equation (G1) becomes:

nion,V(x, y, z) = νionQ

4πUn

∫ +∞

0

b

ρ2

1

1 + (
a + T 2

)2 dT

We need to determine the four poles of the function which are
given by:

T = ±(−a ± i)1/2 = ± 4
√

a2 + 1 exp

(
±i

ψ

2

)
= ±

√
r

ρ
exp(±iζ )

2 We are considering the number of particles and not the distribution function
as, in the velocity space, the production term is reduced to δ3(v(t)).
3 During the ion motion, the ion angular momentum is strictly decreasing
from 0 such that one trajectory does never cross another ion production site
except in the absence of force.
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Figure G1. Contours for analytical derivations from Vigren et al. (2015): (left) ion number density nion, V, (middle) the ion-neutral ratio nion/nn with respect to
the Haser (1957) model from our analytical formula (i.e. Ge/n correction factor of Vigren et al. (2015) nion, V/nion, H), and (right) mean perpendicular velocity.
The inputs are the same: Q = 1027 s−1, Un = 650 m s−1, νion = 6.10−8 s−1, Econv = 5.10−4 V m−1 (see Table 1). These plots are perfectly in agreement with
ones from Vigren et al. (2015) and Model B, except within the wake.

where R = √
r/ρ, ψ = arg(−z + iρ) = π − arccos

(
z
r

) = π −
2ζ such that ζ ∈ [

0; π
2

]
.

Now, we should perform a partial fraction decomposition:

1

1 + (
a + T 2

)2 = A1

T − R exp(iζ )
+ A2

T − R exp(−iζ )

+ A3

T + R exp(iζ )
+ A4

T + R exp(−iζ )
(G2)

A1 = 1

2iR sin ζ

1

2R exp(iζ )

1

2R cos ζ
= 1

8iR3 sin ζ
− 1

8R3 cos ζ

A2 = 1

−2iR sin ζ

1

2R cos ζ

1

2R exp(−iζ )

A3 = 1

−2R exp(iζ )

1

−2R cos ζ

1

−2iR sin ζ

A4 = 1

−2R cos ζ

1

−2R exp(−iζ )

1

2iR sin ζ

= 1

8iR3 sin ζ
+ 1

8R3 cos ζ

As the integrand is holomorphic on C except at the poles, we can
apply the residue theorem on the contour going along the real axis
and then counter-clockwise along the semicircle going for +∞ to
−∞. One then finds:

2
∫ +∞

0

1

1 + (
a + T 2

)2 dT =
∫ +∞

−∞

1

1 + (
a + T 2

)2 dT

= 2iπ (A1 + A4) (G3)

because Rexp (iζ ) and −Rexp (−iζ ) are within this contour. The
result is:

A1 + A4 = 1

4iR3 sin ζ
= ρ

√
ρ

4ir
√

r

√
1−cos ψ

2

Thus, equation (G3) becomes:

∫ +∞

0

1

1 + (
a + T 2

)2 dT = 1

2

∫ +∞

−∞

1

1 + (
a + T 2

)2 dT

= πρ
√

2ρ

4r
√

r + z

nion,V(x, y, z)= νionQ

4πUnρ2

√
2mρ

qE

πρ
√

2ρ

4r
√

r + z
= νionQ

8Unr

√
m

qE(r + z)

For the mean flux, we have:

nion,V〈v‖〉V(x, y, z) = − νionQ

4πUn

∫ +∞

0

qEτ

m

ρ2 +
(
z + qEτ2

2m

)2 dτ

as proposed by Vigren et al. (2015). Performing the same substitu-
tions as before, one gets:

nion,V〈v‖〉V(x, y, z) = − νionQ

4πUnρ

∫ +∞

0

2T

1 + (
a + T 2

)2 dT

= νionQ

4πUnρ

(π

2
− arctan(a)

)
(G4)
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Through trigonometry, assuming ρ �= 0, we finally obtain:

nion,V〈v‖〉V(x, y, z) = − νionQ

4πUnρ
arccos

( z

r

)
One can check that:

∂(nion,V〈v‖〉V)

∂z
= νionQ

4πUnr2

The flux along the z-axis is already fulfilling the continuity equa-
tion where the right-hand side corresponds to the production rate,
without having to consider the lateral transport.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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