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A B S T R A C T

The design of laminated glazing for blast resistance is significantly complicated by the post-crack behaviour of
glass layers. In this research, a novel numerical method based on a semi-analytical energy model is proposed for
the post-crack behaviour of crazed panes. To achieve this, the non-homogenous glass cracks patterns observed in
literature experimental and analytical work was taken into consideration. It was assumed that, after the glass
crazing, further deformations would occur in the cracked edge areas, whilst the central window surface would
remain largely undeformed. Therefore, different internal work expressions were formulated for each zone and
were then combined in the overall model. The resulting differential equation was then solved numerically. The
results obtained were compared with data from four experimental full-scale blast tests for validation. Three of
these blast tests (Tests 1–3) were presented previously (Hooper et al., 2012) on 1.5× 1.2m laminated glazing
samples made up with two 3mm glass layers and a central 1.52mm PVB membrane, using a 15 and 30 kg charge
masses (TNT equivalent) at 13–16m stand-off. The fourth blast test (Test 4) was conducted on a larger
3.6× 2.0m pane of 13.52 mm thickness, using a 100 kg charge mass (TNT equivalent) at a 17m stand-off. All
blast tests employed the Digital Image Correlation (DIC) technique to obtain 3D out-of-plane deflections and
strains.

The proposed analytical method reproduced the experimental deflection profiles, with the best estimates
obtained for the more severe loading cases. Reaction forces were also compared with experimental estimates.
The predictive ability of the proposed method could permit more accurate designs to be produced rapidly,
improving structures resistance to such loadings.

1. Introduction

The blast resistance of glazing is an important consideration when
designing against explosions. Monolithic annealed glass panes produce
dangerous shards due to the inherent low fracture toughness of the
material. Fragments are propelled both inside and outside the building
space and can cause significant injuries and damage. After fracture,
residual blast pressures are able to penetrate the building envelope,
causing further injuries to occupants and equipment.

Laminated glazing, comprising layers of glass and Polyvinyl Butyral
(PVB) membranes, is significantly more resilient to blast loads [1].
After the glass layers craze, the glass fragments remain bonded to the
polymer membrane, which need to be retained in the frame. The PVB

membrane can then deform significantly, absorbing large amounts of
energy and preventing blast pressures from entering the interior.

The behaviour of the crazed pane is complex to model in detail. To
gain understanding of the laminated material, several experimental
studies have been performed on glazing panels subject to shock loading,
either with blast tests [2–9] and in shock tubes [10]. The results of such
tests have been used recently by many researchers to validate finite
element analyses (FEA) of both impact and blast loading [2,3,11–17].
Whilst these models are often able to predict the behaviour of the
system, their use requires significant specialist knowledge and com-
puter time.

Analytical solutions instead can produce relatively rapid results,
though they cannot account for the same variety of situations as FEA
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models. A commonly used analysis method is given by single degree of
freedom approximations. These can use constants derived either em-
pirically or from first principles to estimate the windows behaviour and
therefore produce structural designs [1,18]. This approach is currently
used for the design of elements, as it can produce accurate data based
on extensive tests databases [1]. Some authors [19–22] proposed in-
stead more detailed analytical models, as these could be used to predict
additional aspects of the glazing behaviour. Wei and Dharani [23]
employed Von Karman large deflection theory to simulate the de-
formation of window panes. The authors used their results to also cal-
culate the probability of window failures and the likely crack locations
[24]. In this analysis the authors used a single cosine function to re-
present the deflected shape of the window. Their work was expanded
by Del Linz et al. [25] employing a higher order deflection function and
comparing the analytical results with DIC recorded data. The research
used three sets of blast test data (Tests 1–3) and showed that the ana-
lytical technique considered could accurately predict deflections before
the glass failure and likely crack concentrations in the failed panels, as
well as the reaction forces imposed on the supporting structures. It
therefore could provide additional details on the structural behaviour
compared with previous approaches, using potentially a smaller
number of initial assumptions.

The condition of a glazed pane after it has crazed is more complex
than before the glass failure. The crazed pane material is no longer
homogenous as its properties are likely to depend on the density and
orientation of the cracks. As shown experimentally [4] and through the
pre-crack solutions mentioned above [25], in cases where the blast
pressures deform the glass impulsively, the crack pattern tends to be
denser along bands corresponding to the higher bending stresses in the
pane at the points of initial fracture. This influences the deformation
which follows, especially in the case of stronger blast excitations. A
significant change in the panes curvature occurs at these higher crack
density locations throughout the glass deformation history. This effect
is indicated by the arrows in Fig. 1 for Test 3, where a clear change in
curvature is visible approximately 1/3 of the distance from the edge to
the centre of the pane. Fig. 2 shows the locations of the surface cuts
plotted in Fig. 1 and in subsequent figures. In all cases the shortest pane
side was assumed to be aligned with the x-axis.

Whilst the detailed physical characteristics of the systems are dif-
ferent, the presence of these lines of high curvature highlight a simi-
larity with the plastic large deflection of plates commonly analysed
with yield line theory [26]. This analysis is based on equating the ex-
ternal work performed by the loads to the internal energy stored in the
system, which is localised at a series of failure yield lines. For laminated
glass panes, the energy absorbing capacity due to out-of-plane bending
of the cracked glass is close to zero, therefore a different energy ab-
sorption method needs to be assumed. As the deflections of the system
cannot be assumed to be small, the membrane forces acting on the pane
will be significant and represent a possible mechanism for the devel-
opment of internal energy. Therefore, whilst in other applications the
internal work is calculated using the increase of rotation angle at the

yield lines and a plastic bending capacity, in this case the elongation of
the membranes was considered. As mentioned above, the glass cracks
were shown to be concentrated along the edges of the panes in the
blasts tests considered in previous studies. Therefore, for this research,
it was assumed that the material deformations due to the membrane
forces would also be concentrated in these areas, which would be
limited by the window supports and the lines of high curvature high-
lighted in Fig. 1. The behaviour of such cracked glass was assumed to be
similar to that measured by Hooper et al. [4]. A differential equation
solution for the systems of interest was derived equating the external
energies applied by the blast to the internal membrane energy caused
by the deformation of these highly cracked areas, respecting the as-
sumptions of the behaviour described above.

To validate the proposed analytical methods using data comprising
different pane dimensions and aspect ratios, data from four blast tests
were used. Three of these (Tests 1–3) were obtained from Hooper et al.
[4] and have been used previously to validate the pre-crack analytical
solution [25]. Additionally, the results from a further test (Test 4)
conducted by Hooper are presented here and compared with both pre-
crack and post-crack analytical solutions [27]. The glazing pane used
for Test 4 was 3.6m×2.0m. The glass make-up was given by two
6mm glass layers interlayered with a 1.52mm PVB layer.

The analytical solution for the post-crack behaviour was therefore
compared with the experimental data from four tests. An estimate of the
reactions based on the model results was also produced for the first
three tests so as to compare these results with those produced from
experimental data [28]. Due to possible uncertainties in the derivation
of the loading function, a small sensitivity study was also conducted to
assess the influence of the fitting paramaters.

The aim of this work was to provide a more flexible tool for de-
signers, which could provide additional details, such as the entire de-
formation history and reactions forces calculated in this work, com-
pared with previously used design methods. Additionally, as per the
single degree of freedom approach, calculations would be relatively
rapid, therefore offering a useful tool for the practical design of these
structures.

2. Method

2.1. Experimental program

The evaluation procedures for all four tests were very similar. Tests
1–3 have been described in Hooper et al. [4]. They were conducted on
1.5×1.2m laminated glazing samples made up with two 3mm glass
layers and a central 1.52mm PVB membrane. The blast loading was a

Fig. 1. Deformation along a centre line of the window in Test 3 (adapted from
[4]).

Fig. 2. Cuts locations used in the data presentation.
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15 and 30 kg charge masses (TNT equivalent) at 13–16m stand-off. Test
4, conducted by Hooper [27] on a pane, 3.6 m×2.0m, was aimed at
measuring the blast response of larger laminated samples. The blast
loading was produced by a 100 kg charge mass (TNT equivalent) at a
stand-off of 17m. The glazing pane make-up was two 6mm layers of
annealed glass bonded to a central 1.52mm thick PVB membrane. No
additional treatments besides the normal lamination process were ap-
plied to bond the layers of the sample. A white enamel coating was
applied to the inside face to facilitate the DIC instrumentation. The
glazing pane was mounted in a mild steel frame using a two part sili-
cone sealant joint. This provided a continuous support which had
properties close to a pin condition. The test piece was positioned in a
concrete cubicle.

During the test, the DIC technique was employed to collect full field
3D deformations and strains of the back face of the pane, as was done in
tests 1–3 [4]. To achieve this, a random pattern of black dots
(“speckles”) was applied over the white enamel. Two high speed cam-
eras were employed to capture simultaneous pictures of this pattern
from different angles. GOM Aramis DIC software [29] was used to
analyse the captured images and produce the strains and deflections in
three dimensions over the whole surface. The software was firstly ca-
librated using the procedure indicated by the manufacturer. With this
information, the program could determine the relative positions of the
cameras as well as correct for lens distortions in the images. The
speckles on the samples surface were then tracked and the deflections
and strains determined following the methods described by Schreier
et al. [30]. The test arrangement is shown in Fig. 3. In this case, Photron
type SA3 cameras were employed and data were recorded at a fre-
quency of 2000 Hz.

The pressure gauges employed failed. Therefore the reflected peak
pressure and impulse were calculated using Air3D [31] and CONWEP
[32] at the gauge location.

2.2. Analytical method

The results from Tests 1 to 4 were employed to validate analytical
solutions for the deflection of the blast loaded glazing panes. The pre-
crack solutions were found following the method described by Del Linz
et al. [25], though the solution method is summarised below. A post-
crack solution was then developed using a technique based on the yield
line theory, as the new condition of the system required a different
approach compared with the pre-crack situation. Both these systems
required several assumptions to be made regarding the loading and the
material properties of the glazing panes both before and after the glass
crack.

2.2.1. Dynamic loading
It was decided to represent the blast loading using the same ap-

proach as earlier authors [23,25,33–35] by employing the equation
[36]:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

−p t p t
t

e( ) 1
d

αt t
0

/ d

(1)

where p(t) is the pressure at time t, p0 is the initial peak, td is the positive
phase duration and α is an exponential decay coefficient. The equation
can represent both the positive and the negative phases of the blast
loading. Whilst in the cases considered in this work the positive pres-
sure phase tended to cause the glazing failure, the flexibility of the
pressure representation could be useful for more general application.
The shape of the curve is shown in Fig. 4. As discussed in previous work
[25], the reflected pressure was not experimentally recorded during the
first three tests considered. Therefore in these cases the results of
computational fluid dynamics analyses were used to fit the parameters
of the equation above. The same procedure was also applied to the data
of test 4. The CONWEP based tool included in LS-Dyna [37] was used.
Whilst it would have been equivalent to use the original curves on
which the tool was based, it was decided that using the inbuilt tool
would be more convenient in this study. A simple FEA model was
created including the glazing pane. This was modelled as continuously
supported for simplicity, as the software simulation did not include
fluid-structure interactions. The 2D mesh used was composed of 50mm
square elements. The thickness was assumed to be 13.52mm. Glass
material properties were employed. It should be noted that the purpose
of the finite element analysis was solely to determine the blast loading
pressures. Therefore, the details of the material model and sections
would not influence the results. The blast was modelled using the
command LOAD_BLAST_ENHANCED and assuming a surface burst. The
blast height was assumed to be at the mid height of the panel, and the
experimental stand-off of 17m was used. The charge weight was also
assumed to be 100 kg as per the experiment. The equation given above
was fitted to the pressure time history using a simple minimisation of
square error technique. The final parameters for all the cases are given
in Table 1. Data regarding the blast tests set ups, including the charge
weight used and the stand-off distances, were also included in the same
table. The positive impulse applied was calculated integrating the

Fig. 3. Typical test and DIC set up (adapted from [25]).
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Fig. 4. Plot of the function used to represent the blast pressure.
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theoretical results. As the lack of direct measurements caused some
uncertainty in the pressure estimates, it was decided to also conduct a
small sensitivity study with the proposed models varying the impulse,
peak pressure and the positive phase durations. The cases considered
are listed in Table 2. The central deflections were compared to assess
the influence of these parameters.

2.2.2. Material properties
For the pre-crack analysis, the same material properties used in the

previous study [25] were employed. The composite Young’s modulus
and Poisson ratio were found using the rule of admixture:

=
+
+

E
E h E h

h h
2

2
g g p p

g p (2)

where E is the equivalent Young’s modulus of the composite material, Eg
and Ep are the Young’s moduli of the glass and PVB membrane re-
spectively, and hg and hp are the thicknesses of the glass and PVB.
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+
+

υ
ν h ν h

h h
2
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where υ is the Poisson’s ratio of the composite material and υg and υp are
the Poisson’s ratios of the glass and PVB layers. The total mass per unit
area was found through the formula:

= +μ ρ h ρ h2 g g p p (4)

where μ is the mass per unit area and ρg and ρp are the densities of the
glass and PVB layers. The glass and PVB material constants are listed in
table 3.

As before, a failure stress of 100MPa was assumed to determine the
failure time of the glass [25]. This value is assumed to take into con-
sideration the strain rate effects magnifying the material capacity
during dynamic deformations. The value of 80MPa assumed by pre-
vious authors [1,4] was equivalent to the 90% exceedance failure
strength at a loading rate of 2MPa/s (50MPa) enhanced by strain rate

effects. However, the results of the pre-crack solution [25] indicated
that this value under predicted the panes failure times. As the de-
formation shapes were accurately predicted, it was considered likely
that the material used had a capacity higher than previously assumed. A
strength of 100MPa instead produced realistic failure times. Cormie
et al. [38] suggested that the dynamic effects on the material can be
represented by Eq. (5):
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where t1 and σ1 were the original failure time and stress and t2 and σ2
were the new failure time and stress. k was a constant given as 16 at
temperatures below 150 °C. As t2 was approximately 2.5ms in the tests
considered, a failure stress of 100MPa would require a 2MPa/s capa-
city of 56MPa, still below the median failure limit of the data reported
by Cormie et al. Therefore, the limit used was considered realistic in the
cases considered in this study.

The post-crack material behaviour of the glazing pane instead
showed more complex, inelastic characteristics during the blast tests
and in laboratory experiments [4,39–41]. Specifically, it appeared that
during laboratory tensile tests a load plateau was reached after small
deformations and that subsequent elongations took place at this stress
level [4]. A material model showing this behaviour therefore needed to
be applied to the present analysis. Galuppi and Royer-Carfagni [42]
proposed an analytical method to calculate an equivalent elastic mod-
ulus of the cracked section. Alternatively, in previous work [4,28] a
Johnson Cook material law was assumed for FEA models and experi-
mental analysis as it could represent both the plateau stress behaviour
and the influence of strain rate on the results. Whilst such a material
model could be used for this work, it was decided that its mathematical
representation would complicate unduly the differential equations to be
derived. Additionally, due to the inherent simplifications needed to
derive the analytical solution, incorporating the full Johnson Cook law
was not considered necessary. However, as it was important to include
a material model which could represent the effect of the strain rate, the
relationship presented by Hooper [27] was included. In his work,
Hooper suggested that the plateau stress levels reached could be related
to the strain rate of the tests through a logarithmic function. This was
given by Eq. (5):

⎜ ⎟= ⎛
⎝

⎞
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̇p p10
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where mp, σP, and ε0̇ are material constants given in table 4. The fit is
shown in Fig. 5. Therefore, in this work, the crazed panes were assumed
to behave in a perfectly plastic manner, with the plateau stress level
determined with the calculated strain rate.

2.2.3. Pre-crack solution
The analysis of the pre-crack deformations was performed following

the method described by Del Linz et al. [25], which employed a solution
of the von Karman large deflection equations. These are given by:

∇ = −F E w w w( )xy xx yy
4

,
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, , (7)
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Table 1
The blast curve constants used in the analytical calculations and the blast im-
pulse for each case considered.

Test C4
charge
weight
(kg)

TNT
equivalent
charge
weight (kg)

Stand-
off (m)

po (Pa) Td (s) α Impulse
(Pa s)

1 12.8 15 13 92,000 0.0106 1.90 284
2 25.6 30 16 99,000 0.010 0.88 344
3 25.6 30 14 127,000 0.00693 1.1096 413
4 90.9 100 17 199,000 0.0179 1.8730 835

Table 2
The blast curve constants used for the sensitivity study on the blast parameter
effects on the deflection predictions.

Case po (Pa) Td (s) α Impulse (Pa s)

Test 3 model 127,000 0.00693 1.1096 413
1 – Higher impulse 127,000 0.007675 1.087 350
2 – Lower impulse 127,000 0.010142 0.954 480
3 – Higher peak pressure 150,000 0.00753 1.024 413
4 – Lower peak pressure 100,000 0.0109 0.885 413

Table 3
Material properties of the glass and PVB layers.

Material Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio

Glass 2530 72×109 0.22
PVB 1100 0.53× 109 0.485

Table 4
Material properties of the Johnson Cook material
model, from Hooper [27].

Constant Value

mp 4.9× 106 Pa
σP,0 11.0×106 Pa
ε0̇ 1.0 1/s
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where F is the Airy’s stress function, E is the Young’s modulus of the
material, w is the out of plane deflection at all points, D is the plate
bending stiffness and μ is the mass per unit area of the structure. The
loading function described above was assumed for this stage. The letter
subscripts after the commas indicate differentiations of the variable in
the space coordinate indicated, such that w,xy is equal to d w

dxdy

2
.Pinned

boundary conditions were used:

= = ± ∂
∂

= = = = ± ∂
∂

= =

w x a w
x

x w y b w
y

y

0 at /2; 0 at 0; 0 at /2;

0 at 0

2

2

2

2

(9)

where a and b are the dimensions of the panel and the 0,0 point is in the
centre of the system.

To solve the equations, the following deflection shape was assumed,

∑ ∑= × × ⎛
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w h ϕ πmx
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πny
b

cos cos
m n
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where h is the total thickness of the panes, m and n are integer odd
constants and φmn(t) are a series of constants varying in time char-
acterising the amplitude of each mode of vibration at each time point.

This assumption was employed together with Eq. (7) to derive the
Airy’s stress function (F):
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Finally, Eq. (8) was changed as shown in Eq. (12) and the previous
results were substituted in. The Galerkin method was applied and the
system of equations shown in Eq. (13) was obtained. This could then be
solved numerically to obtain the constants φmn and therefore the de-
flections at all points.
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These results were then used to calculate the bending and mem-
brane stresses acting at all points of the pane, as done previously. With
this data the failure time of the glass was estimated employing the
limiting stress described above. Additionally, a crack density across the
pane was calculated making use of the strain energy results. The
method derived by Wei and Dharani [24] and utilised by Del Linz et al.
[25] was applied for this exercise. In this, the energy changes due to the
crack formations are used to equilibrate the internal energy at the time
of the cracks. The internal energy in the system is given by the com-
ponents:

= − +U U U Ua γ0 (14)

where U is the total energy, U0 is the strain energy, Ua is the drop in
energy due to a crack being formed and Uγ is the surface energy re-
quired to create a crack. The total and the strain energy reduce to 0
when a crack is being formed, giving:

=U Ua γ (15)

where

=U l h γ2γ c g s (16)

In this, lc is the length of crack and γs is 3.9 J/m2 [43].
Ua is instead:
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Δx and Δy are the dimension of each facet. Equating the energies lc for
each facet can be found. This can then be used as an indication of the
likely crack density at the facet.

2.2.4. Post-crack solution
The post-crack solution was derived representing the deformation of

the system by assuming the presence of some yield lines which would
act as hinges in the panel. All further deformation was assumed to take
place between such locations and the supports, where the glazing
presented a higher crack density and therefore a lower stiffness. This
implied that the areas in between such lines would not undergo further
deformation, potentially limiting the accuracy of the simulations. The
implications of this assumption are discussed at length in the discussion
section using the results of the validation presented below.

A key requirement of the method was to choose the location of the
yield lines. These parameters can influence the results significantly. The
yield lines were assumed to be parallel to the window edge and to
connect the junctions of these lines to the corners, as shown in Fig. 6.
This was done with reference to the results obtained from both ex-
perimental and analytical results obtained previously [25].

The critical parameters of the analysis are the dimensions P and Q.
They were assumed to be determined by the location of the highest

Fig. 5. Crazed glass plateau stresses plotted against the strain rate. Hooper’s
[27] logarithmic fit is also shown.
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principal tensile stress derived in the elastic plate analysis. However, it
was considered that, whilst this point would indicate the position of the
finest cracks, a lower crack density could be sufficient to justify the
positioning of the yield line. Therefore, it was decided to site the lines
further towards the centre, at the point at which the crack concentra-
tion in the pane dropped below a predetermined percentage of the
maximum. This percentage was determined through trial and error in
test 1 and finally it was decided that a value 60% below the peak crack
concentration in each pane provided the best results and was kept
constant in all cases.

A basic equation for the full internal and external work equilibrium
of a plate was given by Jones [44]:
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where pi is the externally applied load in horizontal direction i (x or y),
ui are the deformations in the horizontal directions, p3 is the out of
plane load, w are the out of plane deflections, Nij are the membrane
forces in direction ij, vi is the normal vector of each yield line, Mij is the
bending moment in direction ij and s is an index varying from 1 to the
total number of yield lines considered, r. The left hand side of the
equation represent the external rate of work done on the system and the
rate of change of the kinetic energy. The right hand side instead in-
cludes the components of the rate of change of the internal energy in
the sample considered. These comprise the components due to the
membrane forces and to the bending moments applied to the system.
Both these are then considered both at the yield line locations, whose
contributions are calculated through the line integrals, and in the areas
between these locations, which are accounted for by the area integrals.

The main assumption made in the mathematical derivation was that

all the deformations were taken into account as if they took place at the
yield lines locations. Therefore, all the area integrations could be as-
sumed not to contribute to the internal work. Whilst, as indicated
previously, the deformations in the system were assumed to occur in the
areas between the yield lines and the supports, it was found to be
convenient to calculate the displacements and hence the energy ab-
sorbed at the yield lines locations. The internal energy could then be
integrated along such lines, simplifying the required algebra and the
final differential equation. As a further simplification, the bending
moments at the yield lines were assumed to be 0 and therefore were not
considered in the final solution. The deflections ui and the in plane
external forces were also assumed to be 0. Therefore Eq. (18) reduced
to:
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If only forces perpendicular to the yield lines are assumed, the right
hand side of the equation can be proven to be equivalent to multiplying
the membrane force by the rate of deformation of the membrane in the
force direction. As this is a more convenient expression, it was used in
this research:

∫ ∫∑− =
=

p μw w A Sl C( ¨ ) ̇d ḋ
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s
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1 m (20)

where l is the length of the membrane.
As shown in Fig. 6, the area of the pane could be split into three

zones. In the central area “a”, it was assumed that the material moved
out of plane by a uniform deflection W. The external work was:

∫ ∫− = −p μw w a p μW W a( ¨ ) ̇d ( ¨ ) ̇ d
a a (21)

which, after solving the integral, becomes:
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c

(22)

In the areas “b” and “c” the deflection was assumed to be equal toW
at the central yield line location and to decrease linearly to 0 at the
support. Substituting this into the equation, the external work for areas
“b” and “c” were given respectively by:
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In the equations above L, Q, B and P are defined as shown in Fig. 6.
Therefore, after some simplification, the total external work and kinetic
energy for a quarter area is given by:
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The internal work needed to be calculated along lines 1, 2 and 3.
Along line 1, the rate of change in length of the membrane is given by:

=
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The material strain and strain rates can be shown to be equal to:
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where ε1 is the strain of the material between line 1 and the top support.
The stress in the membrane is:

Fig. 6. Typical location of the yield lines assumed in the system.
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With some algebraic manipulation, the internal energy is given by:
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where z is a coordinate along the line length. A similar derivation for
line 2 gives:
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The derivation of the internal work for line 3 follows the same
principle, although the algebra is more complex due to the varying
deflection along the yield line and its inclined orientation. It can be
proven though that the rate of change of length of the membrane be-
tween the line and the top support is:
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where = +K P Q2 2 is the length of the yield line. The rate of change
of length between the line and the side support is:
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These results were used to derive a strain and strain rate level on
both sides of the line. Finally, the stress on the two sides of the yield line
was found to be equal to:
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Therefore, the internal work calculated along this line was:
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Combining the external and internal work components calculated
above, the overall equilibrium differential equation could be con-
structed. After some simplification, this was found to be:
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This equation was then solved using the material properties and
loading described above. Matlab [45] was employed to produce a nu-
merical solution. The pre-crack solution at the failure time was used to
obtain the initial conditions of the deflection velocity and acceleration
of the pane. It should be noted that the equations above were solved
equating the change in external work with the changes in the internal
and kinetic energies. As the strain energy accumulated before cracking

was assumed to be dissipated with the failure of the glass layers, the
system energy was not conserved. It was instead assumed that the in-
ternal energy would be zero at the beginning of the post crack de-
formation phase. This is similar to the assumptions made in single de-
gree of freedom systems, where often the resistance function is assumed
to decrease to close to zero at the glass failure deflection, dissipating
significant amounts of energy [18].

Once the deflections were found, the reaction forces could also be
calculated for comparison with the experimental results. To achieve
this, the membrane force of each area was multiplied by the sine of the
glass inclination angle to find the out of plane components, which were
then plotted together with the data obtained in previous research [28]
for Tests 1–3.

3. Results

3.1. Experimental

The data collected during Test 4 were analysed as described above.
The peak pressure estimated with Air3D was equal to 176 kPa, deli-
vering a total impulse of 773 kPams. The CONWEP estimate used for
the analytical simulation was as shown in table 1.

The DIC data allowed the analysis of the pane deflections and
strains. The results at a few time points are shown in Fig. 7, where the
general deflected shapes and principal strain distributions are presented
alongside the experimental images. The central deflection is in Fig. 13
below. This reached 200mm at 12ms. After this point the pane showed
distinct signs of failure around the edges. The data showed that the load
deformed the window, producing the highest strain concentrations
along lines parallel to the support frame, as was seen in previous tests
[4]. These concentrations affected the distribution of the fractures of
the glass, as can be seen by the higher strains along such a pattern at
later times. The glass panes failed approximately 1.5ms after the blast
wave arrival.

The ultimate failure was caused by a failure of the bond between the
glass and the silicone. This was facilitated by the enamel coating, which
could have weakened the adhesion between the two materials.

3.2. Analytical calculations

3.2.1. Pre-crack solution
The solution detailed above was applied to Tests 1–3 as shown in

previous research [25] and additionally to Test 4. The results of this
analysis for the latter test are presented in Fig. 8. These showed that the
technique could be applied successfully to glazing panes of different
dimensions and aspect ratios to the ones considered previously. The
predicted deflections tended to be close to the experimental records at
the centre of the window, with a maximum difference of 2mm. The
shape nearer the supports was not approximated as closely as seen in
previous tests. The experimental data suggests that significant support
deflections, up to 5mm, took place at this early stage, which would not
have been modelled by the analytical method. The calculated crack
concentrations are shown in Fig. 9. The analysis showed that the peak
crack concentrations could be found near the corner of the pane. As was
done in previous work [25], the crack concentration was expressed as
the total crack length for each 10mm×10mm facet.

3.2.2. Post-crack solution
As described above, the pre-crack results were firstly employed to

determine the position of the yield lines in the cases considered. A ty-
pical result, in this case for Test 3, is shown in Fig. 10.

The differential equation was then solved numerically for each case,
employing the last step of the pre-crack solution to provide the initial
conditions for the displacement and velocities of the pane. Typical final
results for Tests 1–4 are shown in Figs. 11 and 12, where the deflections
along a cut across the centre of the window pane are compared with
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Fig. 7. DIC results for Test 4.

Fig. 13. Calculated and experimental central deflection for Tests 1–4.
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experimental deflections at the same time.
The central deflections were also compared to estimate whether the

overall dynamic behaviour corresponded to the experimental records
with regards to its period and maximum deflections. These results are
shown in Fig. 13. The data showed that in most cases the movements
calculated with the present method were comparable with the experi-
mentally recorded values. Tests 2–4 showed the most accurate results,
with relative errors generally below 5%. Test 1 instead showed the least
accurate deflections, with a maximum relative error of 25%. In general,
most discrepancies were due to the analytical solution underestimating
the maximum deflections. In Tests 2 and 3, the panes images were
showing clear signs of edge failure at 13ms and 7ms respectively.
Therefore, especially in the case of the latter test, it is possible that
some of the discrepancies in the results were due to this. The only case

where the deflections were overestimated was test 4. In this the ana-
lytical results showed a higher deceleration than the experimental
measurements after 10ms. The periods of the structures were also si-
milar, with a similar deceleration observed in the experimental and
analytical data.

The total out of plane reaction forces were calculated for Tests 1–3
so as to compare them with the values from previous studies [28]. The
values shown include the total reactions along the four edges of each
pane. In all cases the calculated values were of similar magnitude to the
experimentally estimated data. The results for Test 1 agreed closely
with the experimental estimates. Instead, in Tests 2 and 3 the analytical
solution overestimated the reaction forces by up to 10.2 kN. A plateau
level was present in all cases, showing that the simulated mechanism
was realistic, though the forces predicted could be too high, as shown in
Fig. 14. The more accurate prediction for Test 1 also indicated that the
quality of this estimate was not affected by the correlation of the cal-
culated and measured central deflections.

The results of the sensitivity study are shown in Fig. 15. The curves
indicated that all the parameters had an important effect on the model
behaviour. Reduction in the impulse and in the positive phase duration
in cases 1 and 3 caused a marked reduction in the deformations, whilst
when these parameters were kept to a similar or higher level the
changes in the central deflection seemed to be smaller.

4. Discussion

The experimental results showed that the larger pane behaved in a
similar manner to the smaller windows considered before. The blast
impulse and peak pressures were estimated to be relatively high and it
is likely that this caused the bands of cracks to be close to the edge of
the window and the post-crack deformations to remain concentrated in
this narrower band. The elongated aspect ratio of the window did in-
fluence the few cracks which appeared in the central area later, which
connected the two longer sides. The deflection at initial cracking could
be estimated to be approximately 25mm, lower than the previously
analysed cases. The final deformation at ultimate failure was instead
similar at close to 200mm, though the failure mechanism was different
from those previously observed [4].

Whilst it is unfortunate that no direct pressure measurement could
be obtained during the test, the CFD and CONWEP analyses had proved
to be accurate in previous cases [4]. Therefore it was decided to use
numerical techniques as a data source to fit the simplified reflected
pressure time history equation for the analytical solutions. Using this
input, the pre-crack analysis displayed a good agreement with the ex-
perimental DIC data. The central deflections and the deflected shape
were realistic, with the latter showing significant deflection and cur-
vature peaks near the edges. Whilst, as mentioned above, the calculated
magnitude of the movement was not as accurate away from the central
plateau, the strain concentrations also mirrored the DIC results as can
be seen comparing Figs. 7 and 9.

The post-crack analysis produced realistic estimates of the deflec-
tions and reactions forces in most of the cases considered. Whilst all
four cases showed higher discrepancies with the experimental results
than the pre-crack solution, this could be expected since the complexity
of the analysis was significantly increased after the glass crazed and a
practical analytical model required a larger set of assumptions than the
pre-crack solution. The main assumption was that all further de-
formation would take place between the yield line locations and the
supports. This implied that the central area of the glass would not de-
form after initial cracking. A second assumption was that the yield lines
would not move throughout the analysis time. The results for Test 1
especially showed that these conditions were not always met. The DIC
data indicated that the central area increased its curvature as time
passed, and the yield line solution underestimated significantly the final
deflection, with an error of 23%. The deflected shapes also showed that
the position of the higher curvature point (the “yield line”) seemed to
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vary, shifting towards the centre of the window as time passed. This
effect was significantly weaker in the cases where the blast loads were
higher, such as Test 2–4. In these tests, the DIC results indicated that the
window deflected impulsively until ultimate failure was reached, with
only small amounts of further deformation taking place in the window
centre, and the analytical results were much closer to the experimental
data.

The assumed position of the yield lines could also affect the results
significantly. As explained above, this parameter was assumed to be
related to the peaks in crack concentrations calculated in the pre-crack
phase of the loading. However, it proved difficult to derive a physically
based criterion to account for this. Instead, the empirical method

described was used. Whilst this represents a less general solution, the
limit used in this work was fitted to one case and used for the other
blast loading and panes dimensions with good outcomes. It is therefore
suggested that the proposed parameter is a good approximation for
these common loading and structural details combinations.

The small sensitivity study showed that the impulse and the positive
load duration were the key parameters of the pressure function. The
positive phase duration was similar to the time required to reach the
maximum pane deformation and its failure. Therefore, a small reduc-
tion in the load time would have caused the negative loading phase to
affect the deflections more significantly, causing the marked reduction
in the central deflection seen in cases 1 and 3. Instead, whilst the

Fig. 11. Post-crack results compared with experimental data at three time steps for Tests 1–4 in the x direction. In these plots time= 0ms is the glass failure time.

Fig. 12. Post-crack results compared with experimental data at three post-crack time steps for Tests 1–4 in the y direction. In these plots, time= 0ms is the glass
failure time.
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changes in the impulse and pressure in cases 2 and 4 affected the overall
results somewhat, these effects were much less significant, especially at
later times.

The pre-crack results for Test 4 show that the methods currently
cannot account for support movement. However, this limitation seemed
to be less important for the post crack solutions, which were accurate
also for cases where more significant support movement was observed
due to its relatively small magnitude of generally less than 10mm.

The reactions estimates produced results similar to the experimental

values calculated in previous work [28]. It is likely that the dis-
crepancies observed were due to the assumptions made. The reactions
could have been especially affected by the yield lines movement in the
tests. This meant that in the experiments the angle of the laminate re-
mained approximately constant after reaching a maximum close to 30°
[4], whilst in the simulations the inclination continued to increase,
producing higher out of plane reaction forces.

It should be noted that the results presented here were validated
using blast tests with scaled distances between 3.6 m/kg1/3 and 5.3m/
kg1/3. At this level of loading, the glass panes generally behaved im-
pulsively at the beginning of the loading, causing the observed pattern
of cracks to form. This pattern was then used in this work to calculate
the yield line position and to assume a deformation mechanism for the
system. Should the loading be significantly lower than the levels con-
sidered here, it is possible that a more sinusoidal shaped deformation
would be present before the glass failure, invalidating the basic as-
sumptions used for the derivation. Additionally, as mentioned above,
lower blast levels would also cause relatively more deformation in the
central un-cracked area, as observed in the results for Test 1. However,
such lower levels of loading might also represent a less critical case for
the glazing, as its ultimate failure would be less likely. It is therefore
suggested that the methods presented here, whilst unable to simulate
the behaviour of all loading levels in their present state, could be useful
for a critical range of blast pressures which can cause failures in the
glazing system. The results indicated that these distances should not
exceed significantly 5m/kg1/3. With the available data it is more dif-
ficult to establish a lower limit, though it is likely that the system would
be accurate at values lower than 3.6m/kg1/3 .

Further research could be performed to improve on these issues.
Ideally, a solution allowing the yield line positions to move should be
developed, as this would resolve the issues encountered here. However,
the present solution can already provide a powerful and fast tool to
analyse laminated glazing panels up to their ultimate failure, providing
guidance for the design of structures.

5. Conclusions

A yield line approximation was derived to model the post-crack
behaviour of laminated glazing loaded by blast. Membrane forces were
considered dominant for this phase of the deformation and the standard
derivations available in literature had to be modified to account for
this. Results from a previous analytical solution covering the pre-crack
phase of deformations were employed to obtain the starting conditions
of the panel after glass failure as well as likely positions of the yield
lines. This new method was then applied to four blast tests to validate
its results. These included the three blast tests considered when de-
veloping the pre-crack analytical solution and a new experiment con-
ducted on a panel with a different aspect ratio and thicker make-up.
The aim of this was also to verify whether such panes would behave
similarly to the smaller units tested previously. The experimental re-
sults suggested that this was the case. The DIC technique was able to
capture the deflections and strains, and hence the likely crack locations,
well and the data could be used to validate the proposed analytical
solutions. The ultimate failure mode of the pane also showed the im-
portance of the bond between the glass and the supports, as in this case
the pane capacity is likely to have been limited by the rebate joint
failure. This was probably caused by the enamel coating employed,
highlighting the effect of relatively minor aspects of glazing design.

The analytical results indicated that the proposed method is able to
represent the post-crack deformation of the panels. The central de-
flections were closely matched in three of the four tests, whilst the
reactions magnitudes and time history behaviour were approximately
reproduced in all cases. The results did though highlight some limita-
tions in the proposed approach. One of the basic assumptions made was
that all the deformation after the glass failure would take place at the
yield lines, which was not the case in Test 1. Additionally, the yield

Fig. 14. Out of plane reaction force calculated from the analytical solution
results compared with the experimentally estimated values.

Fig. 15. Central out of plane deflection for the cases run as part of the sensi-
tivity analysis on the blast pulse parameters.
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lines were assumed not to move, which is likely to have caused the
discrepancies in the reaction forces seen in Tests 2 and 3.

There is scope to incorporate the possibility of deformations in the
central, non-cracked area and for the yield lines to shift. However, the
present results have produced realistic estimates of the system beha-
viour for this complex physical problem. It is, therefore, hoped that the
method will be useful to produce safer and more economical glazing
designs under these extreme conditions.
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