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Abstract—Optimization of wind farm (WF) layout has been
studied in the literature with the objective of maximizing the
wind energy capture. Based on the power spectrum density
(PSD) theorem, this paper shows that the WF layout affects
not only the total harvested energy but also the level of power
fluctuation, which in turn influences required capacity of battery
energy storage system (BESS) needed to mitigate the inherent
power fluctuation of the wind farms. Since both harvested energy
level and BESS capacity directly influence the profit of WF
owner, the effect of WF layout on these quantities are taken into
account simultaneously and WF layout optimization problem is
redefined. Genetic algorithm (GA) is then employed in order to
optimize the resulting objective function. The proposed method
and optimization process are performed on the layout of an actual
offshore WF using real wind data. A new index is introduced
to quantify the power fluctuations, and energy curtailment is
assessed. The comparative analysis between the actual layout
performance and the optimal layout in different scenarios is
conducted, showing the reduction of power fluctuations and
improvement of energy curtailment. In addition, different BESS
technologies have been analyzed to study the impact of their
parameters on the optimization results.

Index Terms—Power fluctuation, wind farm, battery energy
storage, optimal layout, genetic algorithm (GA)

NOMENCLATURE

E (·) Expected value
Sii PSD function of the measured wind speed at the ith

wind turbine
Sij Cross PSD function between turbines i and j
SH PSD function of the variation components at high

frequency
SL PSD function of the variation components at low

frequency
Vw0 Mean wind speed at 10-minute interval
σ2
w Standard deviation of wind speed at 10-minute interval
z Hub height of the wind turbine
L1 Length scale
αL, βL Constant values of low frequency component function
γij Coherence function
amn Decay factor between turbines m and n
dmn Distance between turbines m and n
τmn Wind traverse time from turbine m to turbine n
αmn Wind inflow angle between turbines m and n
Along Decay factor with longitudinal wind direction
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Alat Decay factor with lateral wind direction
Sii,eq Equivalent PSD of wind speed at the ith turbine
Fwt,ii Wind turbine admittance function
Pti Power output of the ith turbine
PWF Total power output of the wind farm
PO Aggregated power output of integrated wind farm and

storage
Pb Power output of BESS
Tper Length of simulated wind speed time series
Pf Forecasted power output of wind farm
P rb Rated power capacity of BESS
Eb Stored energy level of BESS
Erb Rated energy capacity of BESS
ηc, ηd Efficiency of charging / discharging of battery
Ns, Nd Number of intervals for speed/direction of wind
Vi Wind speed at ith bin
dj Wind direction at jth bin
Nij Number of occurrence of (Vi, dj)
Prij Probability of occurrence of (Vi, dj)
Pb,opt Optimum power capacity of BESS
Eb,opt Optimum energy capacity of BESS
Pannual Average annual power production of wind farm
PWF,av Average steady state wind farm power production

with wake effect
CBESS Cost of battery energy storage system
cP , cE Cost coefficients for power/energy capacities of BESS
I Inflation rate
TBESS Service life span of BESS
ρWE Price of wind energy sold to the utility company
dmin Minimum distance allowed between turbines
xi, yi Coordinates of ith turbine in x-y plane
XT Tilt factor of wind farm layout
θr Rotation angle of wind farm layout
dPx Unacceptable power deviation
Nx Number of occurrence of unacceptable power devia-

tions
Ecurt Curtailed energy
Pcurt Curtailed power

I. INTRODUCTION

POWER fluctuation of wind farms (WF) is considered as
one of the major challenges to realize electricity supply

through 100% [1]. Wind power variations are hard to predict
with high accuracy. The prediction error has the effect on sys-
tem operational and control performance including generation
dispatch [2], [3].
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Energy Storage System (ESS) is a viable option for miti-
gating the impact of wind generation fluctuation and enabling
the integrated WF and storage system that can be dispatched
in the same manner as that of a conventional generating
unit [4]. The concept of an ESS-integrated WF is to store
the generated wind energy during high wind speed time
intervals and supply the stored energy during low wind speed
time intervals. Since ESS is an expensive and energy limited
resource, optimizing its capacity and utilizing a proper control
strategy are important.

Basically, ESS can be characterized by its energy capacity,
power capacity, ramping capability, and round-trip efficiency.
The evaluation of the optimal capacity of ESS for wind farm
integration has been addressed in numerous papers and various
methods are presented [5]–[8]. So far, several approaches have
been proposed for integration of ESS into WF. In [5] Fourier
analysis in frequency domain has been employed with the aim
of mitigating three kinds of fluctuations, i.e. intra-day, intra-
hour and real time. Authors in [6] have had the objective
of limiting 10-minute and 30-minute fluctuations of a wind
farm by adding an optimal amount of ESS by means of an
adaptive washout filter dispatch strategy. Brekken et al. have
demonstrated simple rule-based and fuzzy dispatch controllers
and compared the optimal amount of required ESS in each
case, in order to achieve ±4% of hour-ahead forecast in 90%
of times [7]. In [8], the Area Control Error (ACE) parameter
has been minimized using signal processing techniques like
Fourier and Wavelet transforms.

In the present paper, a novel perspective to the problem of
sizing of BESS for WF integration is introduced, in which the
impact of WF layout on the required BESS capacity is inves-
tigated. Wind farm layout affects not only the total harvested
energy but also the required capacity of BESS. Since both
harvested energy level and BESS capacity directly influence
the revenue, the effect of WF layout on these quantities are
taken into account simultaneously and WF layout optimization
problem is redefined.

Relative position of wind turbines (WT) according to speed
and direction of wind flow directly affects the level of cor-
relation of wind speed fluctuation in each turbines location
[9]. The higher the correlation of wind fluctuation between
pairs of turbines, the bigger capacity of BESS is needed to
mitigate the impact of power fluctuations. A simple illustration
of this phenomenon is given in Fig. 1, where the steep rise
of the aggregated power output of a row of turbines placed
perpendicular to wind flow can be compared to the more
smooth and successive changes of the one with parallel posi-
tioning. It is obvious that the latter case requires lower BESS
capacity to alleviate the output power fluctuations. Meanwhile,
the wake effect which decreases the power production of
downstream turbines compromises the required capacity of
BESS. The effect of WF layout on power fluctuations has
been examined in [10], but the authors have only investigated
a snapshot of wind speed fluctuation over a specific time
period and applied it to three different layouts, hence their
approach does not take the stochastic property of wind into
account. Furthermore, loss of production in WF due to the
wake effect is not considered. Other researchers in the area
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Fig. 1. The smoothing effect of different WF layouts.

of WF layout design and optimization have not discussed the
effect of relative position of WTs on power fluctuations [11]–
[17].

This paper proposes a method to quantify the aforemen-
tioned correlation and its effect on the optimal capacity of
BESS while considering the stochastic behavior of wind and
resulting power fluctuation of wind farm. Wind speed variation
in different turbine locations are treated as correlated stochastic
processes with known power spectral density. Historical data
of wind speed and direction are examined in a probabilistic
manner. The method for determination of BESS power and
energy capacity is taken from [7], which expresses total
aggregated output of WF and ESS should be in ±4% of hour-
ahead forecast in 90% of the times. Persistence method is
employed in this work for wind speed forecast. The proposed
scheme has been tested by real wind data from Kentish Flats
offshore wind farm in the UK in order to find an optimum
layout.

The rest of the paper is organized as follows. Section
II describes the methodology of the optimal sizing of the
BESS for a specific WF layout. Section III is devoted to
the objective function definition based on BESS capacity and
annual harvested energy of the WF. The analytic formulation
of the WF layout is also introduced and Genetic Algorithm
is presented as the optimization method. Simulation of case
studies in different scenarios is carried out in Section IV in
order to evaluate the performance of the proposed method.
Section V concludes the paper.

II. METHODOLOGY OF SIZING THE BESS

In this section, the Power Spectrum Density (PSD) theory
is briefly described. Then, the methods of simulation of
wind speed time series and calculation of BESS capacity are
described. At the end, BESS optimum capacity for a specific
layout is determined by means of historical data analysis.
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A. Power Spectrum Density for a Stochastic Process

If x(t) is considered as a stochastic time-domain signal, the
following time average represents its power:

P = lim
T→∞

1

2T

T∫
−T

x(t)
2
dt (1)

A truncated version of the signal over time period of T can
be defined as:

xT (t) =

{
x (t) |t| ≤ T
0 |t| > T

(2)

By integrating the truncated signal, Truncated Fourier Trans-
form (TFT) is calculated and the frequency content of the
signal can be analyzed over a finite time interval:

XT (f) =

+∞∫
−∞

xT (t)
−j2πft

dt =

T∫
−T

xT (t)
−j2πft

dt (3)

The PSD of the signal is then defined as [18]

Sxx (f) = lim
T→∞

1

2T
E
(
|XT (f)|2

)
(4)

where Sxx is the ensemble average of the TFT results. The
distribution of power of the signal in different frequencies is
described by the PSD given by (4).

B. Simulation of Wind Speed Time Series

Wind speed can be treated as a stochastic variable. Suppose
vector v (t) = [v1 (t) , v2 (t) , . . . , vNt (t)] represents wind
speed time series at each turbines hub height, in which every
element is a stationary stochastic variable. The Nt×Nt Cross
PSD (CPSD) matrix S(f) for vector v(t) is defined as:

S (f) =

 S11 (f) · · · S1Nt (f)
...

. . .
...

SNt1 (f) · · · SNtNt
(f)

 (5)

Diagonal elements are PSDs of wind speed in fixed turbine
positions. By using curve fitting methods, analytical equations
for PSD function in frequency domain can be obtained as
explained in [19]. Equation (6) represents such a relationship:

Sii (f) = SH (f) + SL (f) (6)

Various expressions for SH(f) and SL(f) can be found in the
literature and in the IEC standards [19], [20].

Here the concern is about fluctuations in the time scale
of several seconds to a couple of hours, hence the proposed
function in [20] for SH(f) is employed, which is valid for fre-
quencies between 1

0.02s
−1 to 1

600s
−1 (50 Hz to 1.67 mHz):

SH (f) = σ2
w

2 L1

Vw0(
1 + 6 L1

Vw0
f
)5/3 (7)

L1 =

{
5.67 z, z < 60 m

340.2 m, z ≥ 60 m
(8)

In order to include the frequencies below 1
600s

−1, Sorensen
[21] proposed an expression for PSD of wind fluctuation at

dmn

mn
αVw

m

n

Fig. 2. Definition of inflow angle between turbines m and n.

low frequencies:

SL (f) = (αL.Vw0 + βL)
2

z
Vw0(

z.f
Vw0

)5/3 (
1 + 100 z.f

Vw0

) (9)

where αL = 0.0046 and βL = 0 are based on the field
measurements [22].

Off-diagonal elements are CPSD functions between each
pair of vi(t) and vj(t), i, j = 1, 2, , Nt , i 6= j and can be
determined by:

Sij (f) = γij (f)
√
Sii (f)Sjj (f) (10)

where γij(f) depends on both the distance between wind
turbines and the inflow angle of wind. Corresponding to the
CPSD matrix, the coherence matrix can be given by:

Γ (f) =


1 γ12 (f) · · · γ1Nt

(f)
γ21 (f) 1 · · · γ2Nt

(f)
...

...
. . .

...
γNt1 (f) γNt2 (f) · · · 1

 (11)

A Davenport-type [23] coherence function is chosen to be
implemented, and the decay factor is taken from [24]:

γmn (f) = e−amn
dmn
Vw0

f × e−j2πfτmn (12)

where amn depends on the inflow angle αmn as shown in Fig.
2. The second term in γmn(f) definition corresponds to the
time delay for the wave to traverse from turbine m to turbine
n, which takes τmn seconds. The decay factor suggested in
[23] can be shown by the following expression:

amn =

√
(Alongcos(αmn))

2
+ (Alat sin(αmn))

2 (13)

In order to include the smoothing effect on wind speed
due to weighted averaging over the rotor of wind turbine,
the equivalent PSD of wind speed at ith turbine location is
represented by:

Sii,eq (f) = Fwt,ii (f)× Sii (f) (14)

A numerical solution for Fwt,ii(f) that gives an analytical
expression is presented in [22], which depends on WT param-
eters as well as mean wind speed.

By using S(ii,eq)(f) instead of Sii(f) in (10), an equivalent
CPSD matrix can be obtained denoted by Seq(f).

The mathematical method of generating random realizations
of the stochastic wind speed time series v(t) from the known
Seq(f) and (f) in frequency domain, is based on [19] which
is originally taken from [25].

The important point about Seq(f) and Γ(f) matrices is that
they are dependent on the mean wind speed, and Γ(f) also
depends on the wind direction and location of turbines in the
farm.
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C. Calculating Required Capacity of the ESS

At a first step, the wind speed time series at turbine
locations should be converted and aggregated to yield wind
farm total power output. For the purpose of conversion of
wind fluctuations to power fluctuations, a steady-state model
of wind turbine is applied, taken from power curve of wind
turbine. This assumption is reasonable because in this study
the focus is on power fluctuations in the range of 1 minute to
a couple of hours. Having power output of individual turbines,
total power output of the wind farm can be found:

PWF =

Nt∑
i=1

Pti (15)

And aggregated power output of integrated WF and BESS
would be:

PO = Pb + PWF (16)

Next, the forecasted value of power output (i.e., the power
the utility operator is expecting from the WF and BESS)
should be determined. In this research, persistence method is
used meaning the prediction of WF production of every hour
is equal to the mean production of the previous hour. Because
Tper is set to 2 hours in this study, mean value of PWF in one
hour is considered as the forecasted value for the other hour.
P rb is defined as the minimum power rating of battery which

keeps PO in the desired ±4% band of the hour-ahead forecast.
In order to calculate Pb,opt value, Pb is defined as:

Pb =

 Pf − PWF − 0.04 Pf − PWF > 0.04
Pf − PWF + 0.04 Pf − PWF < −0.04
0 |Pf − PWF | ≤ 0.04

(17)

P rb would be the maximum amplitude of Pb in the time period
of simulation:

P rb = max {|Pb (t)|} 0 < t ≤ Tper (18)

The energy capacity of ESS is calculated from the following
equations:

η =

{
ηc Pb > 0
1/ηd Pb < 0

∆Eb = η

Tper∫
0

Pbdt (19)

Erb = max (∆Eb)−min (∆Eb) (20)

where for the sake of simplicity, it is assumed that the State
of Charge (SoC) of battery can vary between zero and 1.

0 ≤ SoC ≤ 1 (21)

D. Historical Data Analysis and Determining ESS Optimum
Capacity for a Specific Layout

Two-dimensional Probability Density Function (PDF) of
historical wind speed and direction data for the specific site of
WF is generated. To obtain this PDF, the range of wind speed
(from zero to maximum speed - Vmax) is divided into Ns
equal intervals, and 360 degrees direction is divided into Nd
equal intervals and all data are distributed in the corresponding
bins.

Each bin is specified by wind speed Vi and wind direction
dj and can be shown by a pair of (Vi, dj). All Ns×Nd bins
can be represented by the below wind speeds and directions:

Vi =
Vmax
2Ns

+ (i− 1) .
Vmax
Ns

; i = 1, 2, . . . , Ns (22)

dj =
360◦

2Nd
+ (j − 1) .

360◦

Nd
; j = 1, 2, . . . , Nd (23)

Prij can be found by dividing the number of data in the
(Vi, dj) bin denoted by Nij , by the total number of available
data points:

Prij =
Nij∑
Nij

(24)

For each pair of (Vi, dj), WF power time series is simulated
repeatedly in order to generate a set of time series. The number
of repetition is proportional to Prij . First, P rb is determined
for each realization of WF power time series according to
the method described in Section II-C. Then, optimum battery
capacity can be statistically quantified: take the resulting
values of P rb and compute its Cumulative Density Function
(CDF). From the CDF of P rb , the rated power capacity of
battery can be chosen to be the minimum value of which
corresponds to the CDF equals or greater than 0.9, so the
BESS can meet power fluctuation requirements for 90% of
the time.

CDF (P rb = Pb,opt) ≥ 0.9 (25)

After determining the Pb,opt, the same procedure is per-
formed to find Eb,opt. Erb values are calculated according to
(20), with an exception that the value of Pb is restricted to
Pb,opt, determined previously. Eb,opt would be the maximum
value in the set of the entire Erb values.

It is worth mentioning that as a consequence of applying
stochastic method for simulation of the time series, each
realization of WF power time series leads to different values
for P rb and Erb . Thus, the resulting Pb,opt and Eb,opt vary in
each simulation.

III. OBJECTIVE FUNCTION DEFINITION AND
OPTIMIZATION

A. Calculating Average Annual Production of the WF Con-
sidering Wake Effect

Due to wake effect, the average wind speed drops behind the
rotor of wind turbines and the turbulent wind passes through
downstream wind turbines. Hence, the wake effect is the major
cause of reduction in power production of wind farms.

Different wake effect modeling approaches have been ad-
dressed in the literature [26]–[28]. Based on its relative
simplicity [27], [28] and reasonable results for power system
studies [29], the current study is conducted on the basis of
Jensen model [26]. The method of calculation of wake effect
is described in Appendix A.

Considering the PDF of wind speed and direction, mean
annual harvested power (corresponding to the capacity factor
of the WF) can be determined by the following formula:

P̄annual =
∑
i,j

Prij × PWF,av (Vi, dj) (26)
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where PWF,av(Vi, dj) denotes steady state WF power produc-
tion with mean wind speed Vi and with direction dj , taking
wake effect into account.

B. Objective Function Definition and Optimization of WF
Layout

The WT arrays in most large, existing offshore WFs are
arranged in rectilinear grids (e.g. Nysted, Egmond aan Zee
and Kentish Flats). This simple approach is based on a rule
of thumb: the distance between turbines in the prevailing
wind direction is between 5 to 9 rotor diameters, and 3
to 5 in the crosswind direction [30]. Despite its simplicity,
this method may miss the opportunity of better energy yield
of the WF. Extensive research has been conducted to date
on the WF layout optimization. In previous studies, various
heuristic optimization techniques have been applied, including
Genetic Algorithm (GA) [11], [12], Particle Swarm Optimiza-
tion (PSO) [14], [17], Simulated Annealing (SA) [13] and
Random Search (RS) [15]. In [30] a comparative study of these
methods has been conducted. Sequential Convex Programming
(SCP) has been used in [16] which outperforms GA in terms
of finding the optimum solution.

The objective function is defined from the viewpoint of the
wind farm owner in order to maximize its benefit. The benefit
of wind farm owner consists of two parts, total revenue of
electricity production during the WF lifetime, and investment
costs. Here only the investment cost of BESS is taken into
account since other investment costs are irrelevant to wind
farm layout1. Based on [7], the cost model for flow battery
energy storage devices is defined as:

CBESS = cP × Pb,opt + cE × Eb,opt (27)

where cP mainly depends on the power conversion system,
while cE is based on BESS technology. Empirical values
of 600 $/kW and 650 $/kWh are assumed for cP and cE ,
respectively [31], [32]. The value of cE is based on Lithium-
ion batteries which is taken from Table I, where four major
BESS technologies and their respective parameters are listed
[31], [32]. Lithium-ion technology exhibits high efficiency
while having a reasonable price per kWh.

TABLE I
PARAMETERS OF DIFFERENT BESS TECHNOLOGIES

Battery Technology cE($/kWh) Efficiency(%)
Vanadium redox (VR) 700 70
Advanced lead-acid
(Pb-acid)

1000 80

Lithium-ion (Li-ion) 650 90
Sodium Sulphur (NaS) 450 85

The present value of the total revenue of wind farm during
the battery lifetime period is calculated as follows:

PV(RevWF ) =
(1 + I)

TBESS − 1

I(1 + I)
TBESS

× P̄annual × 8760× ρWE

(28)

1Actually array cable length depends on WF layout, but for optimal layout
turbines are placed as far as possible in a confined area due to wake effect.
Thus comparing different layouts with maximum annual power production,
there are small changes of array cable length that are negligible.

The first term accounts for converting the annual values to
the present value [33], while the rest presents the annual
revenue of selling energy to the grid considering 8760 hours
of operation per year.

Optimization of the overall objective function is given as:

Max {PV(RevWF )− CBESS} (29)

where the BESS cost is deducted from the present value of
the revenue in order to yield the net profit. Then the resulting
function is maximized.

Based on each (Vi, dj) wind characteristics and for a given
wind farm layout, objective function can be evaluated.

In general, WT locations in a WF can be shown by a set
of x and y coordinates. Let X = {x1, x2, . . . , xNt

} and Y =
{y1, y2, . . . , yNt

} be sets of x and y coordinates of Nt WTs
in the plane. The goal is to find a set of coordinates such that
the defined objective function is maximized. Furthermore, the
layout has to satisfy certain constraints.

Two main restrictions for each turbine coordinates should
be considered: placement inside the confined area of the wind
farm, and the minimum distance between each pair of the
turbines. The WF boundaries can be represented by linear x-y
equations according to the shape of the area. The minimum
distance constraint can be expressed as:

(xi − xj)2 + (yi − yj)2 ≥ dmin
2 (30)

∀i, j ∈ {1, 2, . . . , Nt}
where dmin is practically three to five times of the diameter
of the WT rotor. In this paper, it is chosen to be four times of
the rotor diameter.

Due to the fact that most offshore WFs are organized
in rectilinear grids, the shape of WF layout is basically
considered as a rectangle which is tilted and rotated. The
coordinates inside a rectangular area can be expressed in the
form of:

Xmin < xi < Xmax ; Ymin < yi < Ymax (31)
∀i, j ∈ {1, 2, . . . , Nt}

And the tilt can be formulated as

x′i = xi +
(Ymax − yi)

Ymax
∗ XT (32)

∀i, j ∈ {1, 2, . . . , Nt}
where x′i is the new x coordinate after tilting. With XT value
of zero, the resulting layout is rectangle and with increasing
tilt factor it becomes more like a parallelogram. After tilting,
the rotation around the origin is performed to create the final
layout. Hence, the values of XT and rotation are considered
as two decision variables.

There are two general approaches for solving this problem,
continuous space and discrete. As x and y coordinates can
have any real value inside the boundaries of the problem,
our search space is continuous. Due to the complexity of WF
layout optimization, Genetic Algorithm (GA) is employed to
solve the problem in this work which is also widely used by
many researchers in this field, e.g. [11], [12], [34]. Unlike the
traditional calculus-based methods, GAs are global and do not
require the derivatives of objective functions.

GA first generates a population of chromosomes randomly.
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Fig. 4. Kentish Flats WF layout.

Every chromosome is an individual which represents a WF
layout. The three major steps of GA after initialization are
selection, crossover and mutation, which are not explained
here for the sake of brevity. The algorithm repeats until the
maximum number of generations is reached. More details
about implementation of GA can be found in the literature,
e.g. [35] and [36].

The definition of chromosome is illustrated in Fig. 3. Values
of the x and y coordinates are put first in the chromosome,
followed by rotation angle and tilt factor of the layout.

IV. CASE STUDY AND DISCUSSION

The stochastic simulation procedure and optimization
method described in previous sections have been applied to
Kentish Flats WF. It is located in South East coast of the UK
and is in operation since 2005. It comprises 30 wind turbines
rated at 3 MW each, with rotor diameter of 90 m. The details
of WT parameters are given in Appendix B. The layout of
Kentish Flats WF is shown in Fig. 4. The distance between
the turbines in a column and in a row is 700 m corresponding
to 7.8 rotor diameter.

Wind speed and direction data are gathered from a meteo-
rological mast in WF location, averaged on 10-min intervals
during 2010 [37] . The corresponding wind rose is depicted
in Fig. 5. The number of bins for wind speed and direction
are Ns = 20 and Nd = 36 in the simulation.

To show the performance of the introduced method in
Section II, it is applied to the actual Kentish Flats WF
layout first and the detailed results are presented. Then, two
different scenarios are presented and the optimization results
are discussed.

Fig. 6 illustrates the wind speed time series of three WTs
in Kentish Flats WF for a period of 2 hours with mean wind
speed of 11 m/s, wind direction of 260◦ and turbulence
intensity of 5%. As Fig. 6 shows, the average wind speed at
WT F2 location is the lowest due to wake effect. Furthermore,
comparing wind speed at locations of WT A2 and WT F2
indicates a delay of about 5 minutes which corresponds very

Wind Rose
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Fig. 5. Wind rose for Kentish Flats.
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Fig. 6. Wind speed at different WT locations.

well to the expected delay for 11 m/s with 5×700 m distance.

Fig. 7 demonstrates how the battery parameters are cal-
culated based on power output of the WF and the hourly
forecasted values. The base power for the per unit values
equals the installed capacity of the WF, which is 90 MW.

In order to assess the effectiveness of the proposed method
in reduction of fluctuation of WF power output, the difference
between the forecasted power and the actual output of the WF
is defined as dP .

dP = Po − Pf (33)

The histogram of dP is depicted in Fig. 8, which is
calculated before integration of BESS into WF. Furthermore,
considering power deviations greater than 0.04 p.u. are not
acceptable, a Power Fluctuation Index (PFI) can be assigned
to the WF power output, formulated as follows:

PFI =

∑
Nx × |dPx|∑

Nx
× 100 (34)

which sums the unacceptable power deviations (dPx) and
normalizes the result.

Energy curtailment is the other important indicator that
can demonstrate and quantify the power fluctuation of WF,
which is previously employed in the area of wind energy
studies [38]–[40]. If curtailment is required by the grid, the
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Fig. 7. WF and BESS output power and forecasted value.

output power of WF should be curtailed to meet the power
setpoint. This condition occurs when dP is greater than a
certain threshold, which is set to 0.04 of the forecasted power
in our study.

dPcurt =

{
dP − 0.04× Pf dP > 0.04× Pf
0 otherwise

Ecurt =

∫
Pcurt.dt (35)

Table II shows the required battery parameters, annual
harvested energy and capacity factor for Kentish Flats WF
based on 2010 data, as well as annual curtailed energy and PFI.
Energy curtailment is calculated without considering BESS
in order to demonstrate the impact of WF layout on power
fluctuation comparing with the original layout. In objective
function evaluation, the values of ρWE , TBESS and I are 0.1
$/kWh , 15 years and 0.03, respectively.

TABLE II
RESULTS FOR THE ACTUAL LAYOUT OF KENTISH FLATS WF

Pb,opt(p.u.) 0.120
Eb,opt(p.u.) 0.056
Rotation of the layout (degree) 9.0
Tilt factor of the layout 1400
Annual harvested energy (GWh) 251.3
Capacity factor (%) 31.89
Energy curtailment-without BESS (GWh/year) 29.1
PFI (%) 10.45
Objective function value ($) 290.4 × 106

The optimization method is performed on two scenarios: the
first scenario considers constant wind speed and direction, and
the second one uses real wind data. The GA parameters are
shown in Table III. In order to generate initial population of the
GA, random deviations are added to the x and y coordinates
of the WTs in the actual WF layout.

TABLE III
PARAMETERS OF GENETIC ALGORITHM

Population size 50
Selection rate 0.85
Mutation rate 0.05
Maximum number of generations 200
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Fig. 8. Histogram of dP for WF in original layout..
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Fig. 9. Convergence curves of the objective function during 200 iterations.

A. First Scenario: Constant Wind Speed and Direction

Constant wind speed and direction are set to the long term
average values in Kentish Flats site, which are 210◦ and
8.2 m/s, respectively. The results are provided in Table IV.
Comparing the capacity factors in Table IV in two conditions

TABLE IV
RESULTS FOR THE OPTIMUM LAYOUT-FIRST SCENARIO

Pb,opt(p.u.) 0.161
Eb,opt(p.u.) 0.106
Rotation of the layout (degree) 11.8
Tilt factor of the layout 1471
Capacity factor-considering wake effect (%) 37.52
Capacity factor-without wake effect (%) 37.79
Energy curtailment-without BESS (GWh/year) 35.6
PFI(%) 10.87
Objective function value ($) 338.2 × 106

reveals that with constant wind direction, GA can optimize the
layout in a way that minimum wake loss occurs in the farm,
hence the maximum energy harvesting is guaranteed in this
case. PFI and curtailed energy are increased comparing with
the original layout.

Fig. 9 shows the iteration curve of the optimization process
by GA, repeated five times. All the iteration curves reached
the same optimal value, while different runs exhibit different
evolution paths through the final value. It can be seen that GA
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Fig. 11. Histogram of dP for WF in the first scenario.

finds the optimum layout almost around 150th generation. The
spikes along the iteration curve is caused by the varying Pb,opt
and Eb,opt, which in turn results from the stochastic nature
of the time series simulation method, as described earlier
in Section II-D. The optimum layout in the first scenario is
illustrated in Fig. 10. One can observe that the rotation and
tilt values are increased comparing to that of the actual layout
in accordance to the prevailing and constant wind direction.

Fig. 11 shows the histogram of output power deviation of
the WF in absence of BESS, for the first scenario. Compared
to the histogram of the original layout, it can be observed
that the acceptable power deviations in the range of ±0.04
p.u. are decreased. In contrast, the increment of unacceptable
power deviations is well aligned with the larger value of PFI
compared to the original layout.

B. Second Scenario: Real Wind Data

In this scenario, real wind data from 2010 are utilized and
the numerical results are provided in Table V.

The objective function value in this scenario is increased
by 0.79% comparing with the actual WF results. However,
the increase in capacity factor is only 0.50% which is smaller
than that of objective function value. The reason lies in the fact
that the actual layout has been optimized based on maximizing
the capacity factor, but in the current optimization, the BESS
capacity is also taken into account. Hence, the improvement in
BESS capacity is more evident, i.e. 9.2% and 7.1% decrease

TABLE V
RESULTS FOR THE OPTIMUM LAYOUT-SECOND SCENARIO

Pb,opt(p.u.) 0.109
Eb,opt(p.u.) 0.052
Rotation of the layout (degree) 6.7
Tilt factor of the layout 1388
Capacity factor (%) 32.05
Energy curtailment-without BESS (GWh/year) 33.4
PFI(%) 10.03
Objective function value ($) 292.7 × 106
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Fig. 12. Convergence curves of the objective function during 200 iterations.

for power and energy capacity of BESS, respectively. It is
worth noting that the increment in objective function value of
$2.2106 can justify the implementation of a custom layout,
taking into account the installation costs of about tens of
million dollars for offshore WFs [41].

Fig. 12 shows the iteration curves of the optimization
process by GA. The same as previous scenario, the optimal
value of all five runs are the same. It can be seen that GA
finds the optimum layout almost around 170th generation. The
optimum layout is depicted in Fig. 13. In this scenario, the
rotation and tilt factor are decreased compared to that of the
actual layout.

The histogram of output power deviation in second scenario
is illustrated in Fig. 14. Same as the first scenario, BESS is
not considered in evaluation of histogram. Compared to the
histogram of the original layout, the unacceptable deviations
are decreased, which can be observed from the improved PFI
value.

C. BESS efficiency analysis

Different BESS technologies have various efficiency
values(η), as shown in Table I. It is assumed that η2c = η2d = η
in (19). In order to assess the impact of different efficiencies
on the outcome of the optimization process, objective function
is evaluated for all presented BESS types. The results are
presented in Table VI. It can be concluded that the impact of
BESS efficiency on Eb,opt value is more evident than the other
parameters. The other important factor is cE which causes
the objective function value to differ among the four cases.
For advanced lead-acid battery which has the largest cE , the
objective function value is even degraded comparing with the
original layout. In contrary, NaS battery which has the lowest
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Fig. 14. Histogram of dP for WF in the second scenario.

TABLE VI
OBJECTIVE FUNCTION EVALUATION CONSIDERING DIFFERENT BESS

TECHNOLOGIES

BESS Technology Pb,opt(p.u.) Eb,opt(p.u.) Objective Function
Value (×106$)

Vanadium redox 0.110 0.058 291.6
Advanced lead-acid 0.111 0.055 290.2
Lithium-ion 0.109 0.052 292.7
Sodium Sulphur 0.109 0.053 293.6

cE performs better than Li-ion battery in terms of objective
function value, while Li-ion has slightly better efficiency.

Fig. 15 depicts the optimum layouts with different BESS
technologies. The optimum layouts have slight differences, and
one can observe that the case with advanced lead-acid battery
which is the most expensive alternative and has the lowest
efficiency, is more similar to the original layout.

V. CONCLUSION

In contrast to the conventional methods of WF layout op-
timization which maximize the energy production, this paper
proposed a novel method to optimize the energy production
and the required capacity of BESS in a WF, simultaneously.
Based on the PSD theory, it has been shown that the layout
affects the level of output fluctuation of a WF. The level of
fluctuation of a WF directly influence the power and energy
capacities of the required BESS. Thus, the joint optimization
has been realized by defining an objective function including
both the BESS cost and the revenue from the sale of wind
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Fig. 15. Optimum layouts with different BESS technologies.

energy. The GA-based optimization method performed well
on the real data of Kentish Flats WF in terms of reduction of
power fluctuation which has been quantified by the introduced
Power Fluctuation Index (PFI). Furthermore, unacceptable
power deviations have been reduced in the optimum layout,
leading to less energy curtailment. Two different scenarios
have been analyzed and the results have been compared with
the actual WF layout, suggesting that the proper design of WF
leads to lower power fluctuation and hence less required BESS
capacity. Various BESS technologies with different efficiency
and cost parameters have been studied, and the sensitivity
analysis suggested a compromise between storage cost and
efficiency. In future studies, advanced BESS control schemes
can be employed to further optimize the BESS capacity. In
addition, operation and maintenance costs can be taken into
account in objective function definition.

APPENDIX A
In Jensen model for the wake effect, it is assumed that the

wake expands linearly behind a WT. The velocity deficit inside
the wake area (u) is defined as the fractional reduction of
the free wind speed, which in distance x from the turbine is
computed as:

u =
1−
√

1− Ct
(1 + (2kx/D))

2 (36)

where Ct , k and D are the thrust coefficient, decay factor
and rotor diameter, respectively. In the current study, a decay
factor of 0.075 is chosen, according to [22].

When the turbine n is influenced by the wakes of multiple
turbines, the aggregated velocity deficit un is calculated as:

un =
√∑

u2 (37)

Partial wake occurs when one turbine cuts the wake area of
another turbine. Detailed discussion about formulation of the
partial wake can be found in [29]. Taking wake losses into
account, PWF,av in (26) is formulated as follows:

PWF,av (Vi, dj) =

Nt∑
n=1

Ptn (Vn) ; Vn = Vi. (1− un) (38)
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TABLE VII
PARAMETERS OF THE WIND TURBINE

Nominal power (MW) 3.0
Hub height (m) 70
Rotor diameter (m) 90
Thrust coefficient - CT 0.82
Rated speed (m/s) 15
Cut-in speed (m/s) 4
Cut-off speed (m/s) 25
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