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Abstract— We consider a multi-agent system consisting of
several populations. The interaction between large populations
of agents seeking to regulate their state on the basis of the
distribution of the neighboring populations is studied. Examples
of such interactions can typically be found in social networks
and opinion dynamics, where heterogeneous agents or clusters
are present and decisions are influenced by individual objectives
as well as by global factors. In this paper, such a problem
is posed as a multi-population mean-field game, for which
solutions depend on two partial differential equations, namely
the Hamilton-Jacobi-Bellman equation and the Fokker-Planck-
Kolmogorov equation. The case in which the distributions of
agents are sums of polynomials and the value functions are
quadratic polynomials is considered. It is shown that for this
class of problems, which can be considered as approximations of
more general problems, a set of ordinary differential equations,
with two-point boundary value conditions, can be solved in
place of the more complicated partial differential equations
characterizing the solution of the multi-population mean-field
game.

I. INTRODUCTION

Due to their wide variety of applications, multi-agent
systems are ubiquitous and have, as a consequence, gained
interest in recent years. Such systems arise in a wide range
of contexts including robotics [1], [2], [3], power systems
[4], [5] and optimization [6], [7]. Consequently, different
approaches for control design for multi-agent systems are
available in the literature. Several of these approaches exploit
notions borrowed from game theory. For instance, in [8]
game theory and cooperative control are applied to the
problem of optimizing energy production in wind farms;
in [9], [10], [11] control laws for monitoring a region
using multiple unmanned vehicles equipped with sensors
are developed through the formulation of a game; in [12],
[13], [14], [15] collision avoidance and formation flying for
multi-agent systems is achieved through the formulation of
a nonzero-sum game. For game theoretic problems with a
large number of players, the framework provided by mean-
field games, first introduced in [16] and [17], may be of
interest.Mean-field games arise in the context of applications
with a large number of agents, such as power systems (see,
for instance, [18]) and opinion dynamics.
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In “classic” mean-field games it is assumed that all play-
ers (also referred to as agents) are indistinguishable [19].
More recently the theory has been extended to problems in
which the agents are not identical. For example, mean-field
games with minor and major agents have been considered
in [20]. Drawing inspiration from the setting considered
in [21], in this paper we consider a system consisting of
several populations of agents, wherein each agent seeks
to minimize (via its control input) a cost function which
depends on neighboring populations. Agents belonging to
different populations satisfy different (linear) dynamics and
seek to optimize different cost functions. Similarly to what
has been done in [22], [23] for a class of single-population
mean-field games, we demonstrate that for the class of
multi-population mean-field games considered herein, the
corresponding control strategies rely on the solution of a
system of ordinary differential equations forming a two-point
boundary value problem.

The remainder of this paper is organised as follows. The
problem formulation and terminology is given in Section II
before a choice of cost function is introduced and discussed
in Section III. The main result of this paper, namely the
formulation of the solution of the multi-population mean-
field game as a two-point boundary value problem, is pro-
vided in Section IV. A stability analysis of the system
and numerical simulations are then presented in Sections V
and VI, respectively. Finally, some concluding remarks are
provided in Section VII.
Notation. We denote with (Ω,F ,P) a complete probabil-
ity space. Let B be a finite-dimensional Brownian motion
defined on this probability space. Let F = (Ft)t≥0 be its
natural filtration augmented by all the P−null sets (sets of
measure-zero with respect to P). We use ∂x and ∂2xx to
denote the first and second partial derivatives with respect
to x, respectively.

II. PROBLEM FORMULATION

We consider a system consisting of N (where N is finite)
populations, each of which is associated with an index
i = 1, . . . , N . We assume that each population consists of
infinitely many indistinguishable agents and that interactions
between the different populations are limited. In particular
the interactions are dictated by a time-invariant communica-
tion topology which is modeled by a static directed graph
as illustrated for a four-population example in Figure 1.
The graph, which we denote by G = (V, E), consists of
a set V = {V1, . . . , VN} of vertices and a set E of edges
connecting pairs of vertices. Each vertex Vi corresponds



Fig. 1. A system consisting of four populations (denoted by dashed circular
lines) of infinitely many agents (represented by solid circular markers). The
arrows indicate interactions between populations.

to population i, i = 1, . . . , N , and the edges represent
interactions between two populations. In particular if (i, j) ∈
E if there is a directed edge from population i to population
j and population i is then said to be a neighbor of population
j. Finally, Ni denotes the set of all neighbors of population
i. Note that while, self loops are omitted in the graph (see
Figure 1), each population is said to be a neighbor of itself,
that is (i, i) ∈ Ni, for i = 1, . . . , N .

Each agent belonging to population i satisfies the linear
dynamics

dxi,t = [αixi,t + βiui,t + σiwi,t] dt+ σixi,tdBt , (1)

where xi(t) ∈ R is the state, ui(t) ∈ R denotes the control
input of agents belonging to population i, wi(t) ∈ R denotes
a disturbance acting on agents belonging to population i and
αi ∈ R, βi ∈ R and σi ∈ R are scalar parameters, i =
1, . . . , N . Note that in (1) and in the remainder of this paper,
the subscript t is used to indicate time dependence.

While the dynamics (1) model individual agents, each pop-
ulation is represented by a probability distribution function

mi : R× [0,+∞[→ R, (x, t) 7→ mi,t(x) ,

which is such that
∫
Rmi,t(x)dx = 1 for every t, and for

all i = 1, . . . , N . The individual states xi,t, i = 1, . . . , N ,
provide a microscopic model of the system, whereas the
probability distribution functions mi,t, i = 1, . . . , N , provide
a macroscopic model of the system. The distribution mi,t

is sometimes referred to as the mean-field corresponding to
population i.

In addition to the possibly differing dynamics (1), agents
belonging to different populations differ in that they strive
towards achieving different objectives. The objective of pop-
ulation i, for i = 1, . . . , N , is described by the cost function

Ji(xi,ui,mNi) = E
(

Ψi(xi,T ,mNi,T , T )

+

∫ T

0

[
qi(xi,mNi,t, t) +

ri
2
u2i,t −

γi
2
w2
i,t

]
dt
)
,

(2)

where T > 0 is the (finite) time horizon,

mNi,t = {mj,t|j ∈ Ni}

denotes the set of probability density distributions of all
neigbours of population i, qi(xi,t,mNi,t, t) is a running
cost, Ψ(xi,T ,mNi,T , T ) is a terminal cost, ri > 0 and
γi > 0. While each agent belonging to population i seeks
to minimise the cost functions (2) via the control input ui,t,
it is assumed that the external disturbance influencing the
dynamics of the agent seeks to maximise (2) via the wi,t.

The problem described above, which we will refer to
as a robust multi-population mean-field game is defined as
follows.

Problem 1: (Robust multi-population mean-field game)
Let B be a one-dimensional Brownian motion defined on
(Ω,F ,P). Let xi,0 be independent of B and with density
mi,0(x), for i = 1, . . . , N . The robust multi-population
mean-field game lies in determining ui,t and wi,t solving
the minimax problems

inf
ui

sup
wi

Ji(xi, ui,m
∗
Ni
, wi) , (3)

for i = 1, . . . , N , subject to the dynamics (1), where m∗Ni,t

denotes the optimal mean field trajectories of the populations
in the neighborhood of population i.
In the setting considered herein, a multi-population version of
classic mean-field game theory, similarly to that considered
in [21], provides convenient tools for designing the control
laws ui,t.

In what follows, we assume that the probability distri-
bution of each population is described by a polynomial
function.

Assumption 1: The probability distribution of each of the
populations i, i = 1, . . . , N , is described by

mi,t(x) = ai,0t +

n∑
j=1

1

j
ai,jtx

j , (4)

where n > 0, ai,jt ∈ R , for j = 1, . . . , n, and where mi(x)
is of compact support. In particular the support is such that∫
Rmi,t(x)dx = 1 for every t.

Remark 1: The probability distribution (4) can be inter-
preted as the n-th order Taylor series approximation of a
more general probability distribution function.

We consider the case in which the running costs qi, i =
1, . . . , N , are quadratic functions of the state. Namely,

qi(xi,mNi) = ci,0t +

2∑
j=1

1

j
ci,jtx

j
i,t , (5)

where ci,jt, for j = 0, . . . , 2, are scalar coefficients, which
are functions of the probability distributions mNi

, for i =
1, . . . , N .1 Similarly, we consider the case in which the
terminal costs Ψi, i = 1, . . . , N , are quadratic functions of
the state, i.e.

Ψi(xi,T ,mNi,T , T ) = ψi,0 +

2∑
j=1

1

j
ψi,jx

j
i,T , (6)

1Note that while the running cost associated with a population i is
quadratic in the state xi, it can also be a function of the distribution of
any population j ∈ Ni, through the selection of the coefficients ci,jt,
j = 0, . . . , 2, as discussed in Section III.



where ψi,j , for j = 0, 1, 2 are scalar coefficients which
are functions of the probability distributions mNi

, for i =
1, . . . , N .

III. COST FUNCTION DESIGN

Each agent belonging to a population i seeks to minimise
the cost function (2). The behaviour of each population will
then depend on the selection of the weights ri and γi as well
as the running cost qi, for i = 1, . . . , N . The behaviour is,
in part, dictated by the design of the coefficients ci,jt and
ψi,jt, for i = 1, . . . , N and j = 0, 1, 2, which appear in the
running cost (5). In this section, a possible design of these
coefficients is discussed in some more details.

Consider the quadratic approximation of the density dis-
tributions of each population given by

mq
i,t(x) = ai,0t +

2∑
j=1

1

j
ai,jtx

j ,

for i = 1, . . . , N . Then the coefficients

ci,jt =
∑
k∈Ni

ak,jt , (7)

and
ψi,j =

∑
k∈Ni

ak,jT , (8)

for j = 0, . . . , 2 and for i = 1, . . . , N yield running
costs and terminal costs which incentivize agents to move
towards regions in which the population of neighboring
agents is low. Thus, the cost function is such that agents are
incentivized to be crowd-averse.

Note that the running cost with coefficients given
by (7) is such that qi =

∑
k∈Ni

mq
k,t(xi,t) and the

terminal cost with coefficients given by (8) is such that
Ψi =

∑
k∈Ni

mq
k,T (xi,T ).

Remark 2: Different choices for the running cost coeffi-
cients are feasible and potentially interesting. For instance,
one might consider the quadratic approximation of the
squared difference between the distributions of two neighbor-
ing populations, this attempting to model a similarity seeking
behavior among the populations.

IV. MAIN RESULTS/TWO-POINT BOUNDARY VALUE
FORMULATION

Let us suppose that ri 6= 0, γi 6= 0, and define the robust
Hamiltonian for the i-th population, i.e., the Hamiltonian of
the robust mean field game (3) as

H̃i(xi,t,pt,mNi,t)=

inf
ui

sup
wi

{
qi(xi,t,mNi,t, t) +

riu
2
i − γiw2

i

2

+ pt(αixi,t + βiui + σiwi)
}
.

Let us begin by computing the supremum part. The function
wi 7−→ −γ

2
iw

2
i

2 + ptσiwi is strictly concave and has a global
maximizer given by

w∗i,t =
σi
γi
pt. (9)

Similarly, the function ui 7−→ r2i u
2
i

2 +ptβiui is strictly convex
and its global minimum is attained by

u∗i,t = −βi
ri
pt. (10)

We introduce vi,t(xi) as the (upper) value of the robust
optimization problem associated with the i-th population
under the worst-case disturbance starting from time t at
state xi. Thus, the generic expressions of the worst-case
disturbance and optimal control input are given by{

w∗i,t = σi

γi
∂xi

vi,t,

u∗i,t = −βi

ri
∂xivi,t,

(11)

where vi,t satisfies the Hamilton-Jacobi-Bellman equation

∂tvi,t(xi) + H̃i(xi, ∂xi
vi,t,mNi,t)

+
σ2x2i

2
∂2xixi

vi,t(xi) = 0,
(12)

vT (xi) = Ψi(xi,T ,mNi,T , T ), (13)

which is coupled with the Fokker-Planck-Kolmogorov equa-
tion for the distribution mi,t

∂tmi,t(xi) + ∂xi

(
mi,t(xi)∂pH̃i(xi, ∂xivi,t,mNi,t)

)
−1

2
σ2∂2xixi

(
x2imi,t

)
= 0, (14)

mi,0(x) = ai,00 +

N∑
j=1

1

j
ai,j0x

j . (15)

Note that the solution to the first PDE is the value function,
which contains the population distributions as scheduling
parameters. Conversely, the second PDE is defined on vari-
able population distributions and is parametrized in the
value functions. The existence of solutions for problem
(12)-(15) are guaranteed whenever the following conditions
are fulfilled. Let the initial distribution mi,0 be absolutely
continuous, with a continuous density function having a finite
second moment. As the integrand of the cost is convex in
the input ui and concave in the disturbance wi, one gets
a family of convex-concave stage cost functions. The drift
dynamics in (1) is linear, and hence Lipschitz continuous
because the coefficients αi, βi, σi are bounded. We assume
that the Fenchel transform of the running cost qi is Lipschitz
in its arguments. Finally, we assume that the function p 7−→
σ2
i

γ2
i
‖p‖2 + H̃i is strictly convex, differentiable and Lipschitz

continuous. Note that this last condition is weaker than the
typical convexity assumption on the Hamiltonian. Under
the above main assumptions, the existence of a solution
is established in [16, Theorem 2.6]. Any solution of the
above system of equations is referred to as worst-disturbance



feedback multi-population mean-field equilibrium.

Recalling that the running cost (5) is defined by a quadratic
polynomial function, by similarity arguments, in the follow-
ing we focus on the search of quadratic value functions of
the form

vi,t(xi,t) = qi,0t +
∑2
j=1

1
j qi,jtx

j
i,t, in R× [0, T ]

vi,T (xi,t) = g(xi,T ,mi,T (xi,T ))

= qi,0T +
∑2
j=1

1
j qi,jTx

j
i,t

= ai,0T +
∑2
j=1

1
j ai,jTx

j
i,t .

(16)
Bearing this in mind, the mean-field system (12)-(15) asso-
ciated to the robust mean-field game for the i-th population
(3) is recast into the system of equations:

∂tvi,t +
[
− β2

i

2ri
+

σ2
i

2γi

]
(∂xi

vi,t)
2

+αixi,t∂xivi,t + ci,0t + ci,1txi, t+ 1
2ci,2txi, t

2

+ 1
2σ

2
i x

2∂2xixi
vi,t = 0, in R× [0, T [,

vi,T (xi,t) = qi,0T +
∑2
j=1

1
j qi,jTx

j
i,t, in R,

∂tmi,t +
∑n
j=1 ai,jt

[
(1 + 1

j )(
αi − β2

i

ri
qi,2t +

σ2
i

2γ2
i
qi,2t

)
xji,t

+
(
− β2

i

ri
qi,1t +

σ2
i

2γ2
i
qi,1t

)
xj−1i,t

]
+ai,0t

(
αi − β2

i

ri
qi,2t +

σ2
i

2γ2
i
qi,2t

)
− 1

2σ
2∂2xixi

(
x2i,tmi,t

)
= 0, in R× [0, T [,

mi,0(x) = ai,00 +
∑n
j=1

1
j ai,j0x

j in R.

(17)

It is worth noticing that interactions between different pop-
ulations are expressed in the above system through the co-
efficients ci,jt, which interconnect the distributions mk as k
varies in the neighborhood Ni. As a matter of fact, whenever
ci,jt, j = 0, 1, 2, only depend on mi, each population acts in-
dependently of the others, i.e. no interaction is enforced. The
problem then reduces to two independent single-population
mean-field games similar to those considered in [23].

A common way to tackle this type of problems is iteratively
solving the Hamilton-Jacobi-Bellman equation for fixed mi

and by entering the optimal ui obtained from (11) in the
Fokker-Planck-Kolmogorov equation in (17), until a fixed
point in vi and mi is reached. However this usually requires
considerable computational effort and the solution cannot be
obtained in closed-form. On the other hand, the following
theorem establishes that the mean-field system (17) can
be equivalently described by a two-point boundary value
problem, which is more readily solved.

Theorem 1: The mean-field system associated to the ro-
bust mean-field game for the crowd-averse system is equiv-
alently described by the following system of ordinary differ-

ential equations:

q̇i,0t +
[
− β2

i

2ri
+

σ2
i

2γi

]
q2i,1t + ci,0t = 0 ,

q̇i,1t +
[
−β

2
i

ri
+

σ2
i

γi

]
qi,1tqi,2t + αiqi,1t + ci,1t = 0 ,

1
2 q̇i,2t +

[
− β2

i

2ri
+

σ2
i

2γi

]
q2i,2t +

[
αi +

σ2
i

2

]
qi,2t

+ 1
2ci,2t = 0 ,

qi,jT = ci,jT ,

ȧi,0t +
[
αi +

(
−β

2
i

b +
σ2
i

2γ2
i

)
q2t

]
ai,0t

+
[
− β2

i

2ri
+

σ2
i

2γi

]
qi,1tai,1t − σ2

i ai,0t = 0,

ȧi,1t + 2
[
αi +

(
−β

2
i

ri
+

σ2
i

γi

)
qi,2t

]
ai,1t

+
[
−β

2
i

ri
+

σ2
i

γi

]
qi,1tai,2t − 6

2σ
2
i ai,1t = 0,

1
j ȧi,jt +

(
1 + 1

j

) [
α+

(
−β

2
i

ri
+

σ2
i

γi

)
qi,2t

]
ai,jt

+
[
−β

2
i

ri
+

σ2
i

γi

]
qi,1tai,j+1t

− (j+1)(j+2)
2j σ2

i ai,jt = 0, j = 2, . . . , n− 1

1
n ȧi,nt +

(
1 + 1

n

) [
αi +

(
−β

2
i

ri
+

σ2
i

γi

)
qi,2t

]
ai,nt

− (n+2)(n+1)
2n σ2ai,nt = 0

ai,j0 given for all j = 1, . . . , n.

,

(18)
for i = 1, . . . , N . The optimal control and worst disturbance
are then given by ũi,t = −βi

ri
(qi,2txi,t + qi,1t),

w̃i,t = σi

γi
(qi,2txi,t + qi,1t) ,

(19)

for i = 1, . . . , N .

Remark 3: Note that the initial conditions ai,j0 are given
for all j, whereas the final conditions qi,jT = ci,jT for
j = 0, 1, 2 are unknown a-priori. Thus (18) is a somewhat
atypical two-point boundary value problem, since one of the
boundary conditions is unknown a-priori. Similarly to what
has been done in [23] the problem is transformed into a
standard two-point boundary value problem by performing
the change of coordinates q̃i,jt = qi,jt− ci,jt for j = 0, 1, 2.
The final condition is then given by q̃i,jT = 0 and the
modified problem is readily solved using numerical methods,
such as the shooting method.

V. STABILITY RESULTS

In this section it is shown that the stochastic differential
equation describing the closed-loop system has an exponen-
tially and asymptotically stable equilibrium. Substituting the
optimal control and the worst-case disturbance (19) into the



dynamics for xi,t yields the closed-loop system

dxi,t =
[
αixi,t + βiu

∗
i,t + σiw

∗
i,t

]
dt+ σxi,tdBt

=
[
αi +

(
− β2

i

ri
+

σ2
i

γi

)
qi,2t

]
xi,tdt

+
(
− β2

i

ri
+

σ2
i

γi

)
qi,1tdt+ σixi,tdBt,

t ∈ (0, T ], x0 ∈ R .

Consider now the following assumption.

Assumption 2: There exists κi > 0 such that

−κixi,t ≥
[
αi +

(
− β2

i

ri
+

σ2
i

γi

)
qi,2t

]
xi,t

+
(
− β2

i

ri
+

σ2
i

γi

)
qi,1t ,

(20)

for i = 1, . . . , N .

With Assumption 2 the stability analysis can be performed
within the framework of stochastic stability theory [24].
Consider the infinitesimal generator

L =
1

2
σ2x2t

d2

dx2t
− κixt

d

dxt
, (21)

and the Lyapunov function V (x) = x2. The stochastic
derivative of V (x) is obtained by applying the infinitesimal
generator to V (x). This yields

LV (xt) = lim
dt→0

EV (xt+dt)− V (xt)

dt
= [σ2 − 2κi]x

2
t .

Proposition 1 ([24]): Suppose Assumption 2 holds. If
V (x) ≥ 0, V (0) = 0 and LV (x) ≤ −ηV (x) on Qε :=
{x : V (x) ≤ ε}, for some η > 0, and for arbitrarily large
ε, then the origin is asymptotically stable “with probability
one”, and

Px0

{
sup

T≤t<+∞
x2t ≥ λ

}
≤ V (x0)e−ψT

λ
,

for some ψ > 0.

From the above theorem we have the following result, which
establishes exponential stochastic stability of the mean-field
equilibrium.

Corollary 1: Let Assumption 2 hold. If [σ2
i − 2κi] < 0

then there exists x̄i such that lim
t→∞

xi,t = x̄i almost surely
and

Px0

{
sup

T≤t<+∞
(xi,t − x̄i)2 ≥ λ

}
≤ V (x0 − x̄i)e−ψT

λ
,

for some ψ > 0 and for i = 1, . . . , N .

VI. NUMERICAL STUDIES

A numerical example illustrating the theory is presented
in this section. We consider two distinct populations, namely
a red population and a blue population, consisting of 3100
and 5400 indistinguishable agents, respectively. We use the
subscripts 1 and 2 to denote the red and blue populations,
respectively. The parameters of the system and the weights

have been selected according to the values reported in
Table I. For the sake of simplicity, uniform weights have
been considered. The red population is initially distributed
along the interval [ 12 ,

3
2 ], while the blue population along

the wider interval [− 5
2 ,−

1
2 ]. The initial distributions are

indicated by the dashed lines in Figures 3 and 4 and are
both second degree polynomials, i.e. n = 2. A bidirectional
communication among the agents is assumed to underlie
the dynamics of the system, namely mNi = {m1,t,m2,t},
for i = 1, 2. Note that this corresponds to a connected
communication graph.

αi βi σi ri γi
red (population 1) -0.01 0.5 0.05 1 0.4
blue (population 2) -0.01 0.5 0.05 1 0.4

TABLE I
SIMULATION PARAMETERS

We examine the scenario in which both populations eval-
uate their best strategy according to the cost (2) with the
coefficients {c1,jt} and {c2,jt} in (5) are given by (7).

The trajectories of the agents belonging to each population
are shown in Figure 2. The probability density distributions
m1,t (red) and m2,t (blue) at three different time instances
are shown in Figures 3 and 4: the initial and final distribu-
tions are denoted by the dashed and solid lines, respectively,
whereas the distribution at an intermediate time is denoted
by the dotted lines. Note that the agents trajectories and
distributions indicate a crowd-averse behavior as expected.
Finally, the solution of the two-point boundary value problem
(18) is shown in Figure 5 for completeness.

VII. CONCLUSION

In this paper we consider a multi-agent system consisting
of several populations of agent. Agents belonging to a par-
ticular population seek to regulate their states on the basis of
their state and the distributions of neighboring populations.
The problem is formulated as a multi-population mean-field
game and it is demonstrated that its solution requires solving

Fig. 2. Time histories of the state of players of red population and blue
population, in the case of uniform cost function (7)



Fig. 3. Distribution of the red population for initial condition (dashed),
intermediate condition (dotted) and final condition (solid)

Fig. 4. Distribution of the blue population for initial condition (dashed),
intermediate condition (dotted) and final condition (solid)

a two-point boundary value problem in place of the partial
differential equations, namely the Hamilton-Bellman-Jacobi
equation and the Fokker-Planck-Kolmogorov equation, that
typically characterise the solution of a mean-field game. The
result is demonstrated on a numerical example involving two
populations.
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