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ABSTRACT
We present a numerical study of a simple density functional theory model of fluid
adsorption occurring on a planar wall decorated with a narrow deep stripe of a
weaker adsorbing (relatively solvophobic) material, where wall-fluid and fluid-fluid
intermolecular forces are considered to be dispersive. Both the stripe and outer
substrate exhibit first-order wetting transitions with the wetting temperature of
the stripe lying above that of the outer material. This geometry leads to a rich
phase diagram due to the interplay between the pre-wetting transition of the outer
substrate and an unbending transition corresponding to the local evaporation of
liquid near the stripe. Depending on the width of the stripe the line of unbending
transitions merges with the pre-wetting line inducing a two-dimensional wetting
transition occurring across the substrate. In turn, this leads to the continuous pre-
drying of the thick pre-wetting film as the pre-wetting line is approached from above.
Interestingly we find that the merging of the unbending and pre-wetting lines occurs
even for the widest stripes considered. This contrasts markedly with the scenario
where the outer material has the higher wetting temperature, for which the merging
of the unbending and pre-wetting lines only occurs for very narrow stripes.

KEYWORDS
Wetting; classical density functional theory

1. Introduction

The resurgence of interest in wetting in the last few decades began with the recog-
nition that it constituted a new example of a surface phase transition which could
be of first or second-order [1–3]. Quickly it became apparent that continuous wetting
transitions were extremely sensitive to the interplay between fluctuation effects, di-
mensionality and intermolecular forces leading to a rich variety of universality classes
and fluctuation regimes [4–7] - see for example the comprehensive reviews in Refs. [8–
10]. It was also recognized that wetting plays an important role in determining the
quantitative and qualitative aspects of fluid adsorption in capillary slit (parallel plate)
geometries [11, 12]. This is particularly important when the walls are competing for
which respective wetting and drying properties determine completely the nature of
the interfacial delocalization and drive the allowed phase coexistence and criticality
[13, 14]. In all of these studies, density functional theory (DFT) has proved a valuable
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tool for investigating the phase equilibria and also correlation function structure at a
microscopic level [15, 16] and complements other approaches for example those based
on mesoscopic interfacial models - again see [10] for a comprehensive review.

More recently attention has focused on more complex geometries such as wedges [17–
20], capped capillaries (capillary grooves) [21–24] and other geometries [25–28] where
wetting competes with other phase transitions such as filling and capillary conden-
sation to induce further examples of interfacial phase transitions. These fundamental
studies of fluid adsorption are further motivated by the fact that adsorption at the
nanoscale is important in many technological processes, including the design of lab-
on-a-chip devices, superhydrophobic surfaces and the burgeoning field of nanofluidics
[29–36]. Returning to the more fundamental statistical mechanical issues, it is now
apparent that even relatively simple confining geometries can produce very rich phase
diagrams due to the competition between different phase transitions [37] – these more
subtle issues go beyond the classical concepts of Cassie-Baxter and Wenzel states of
sessile drops on rough and patterned surfaces.

An example is the fluid adsorption occurring on a planar substrate decorated with
a stripe of a different material. In a recent paper we investigated this problem for
the case in which the stripe has stronger preferential adsorption of liquid, i.e. is rel-
atively solvophilic compared to the outer substrate [38]. In this case, the pre-wetting
transition of the outer substrate competes with a local surface condensation (unbend-
ing) transition occurring near the stripe. Two effects emerge from this; first, the local
nucleation of liquid near the stripe leads to phenomena of complete prewetting, a
two-dimensional (2D) surface phase transition occurring across the substrate as the
pre-wetting line (of the outer wall) is approached from below [39, 40]. The possibility
of this transition was overlooked in earlier studies of wetting on similarly patterned
walls [37, 41–47]. Secondly, when the width L of the stripe is very small, of order ten
molecular diameters, the line of unbending transition merges with the pre-wetting line
which in turn leads to a new 2D wetting transition also occurring along the substrate.

In the present paper, we study the reverse scenario where the material of the stripe
is weaker, i.e. relatively solvophobic, so that its wetting temperature is higher than
that of the outer wall. In this case, we can similarly expect complete pre-wetting will
occur, but now as a film of low-density gas which spreads out along the wall from
the stripe as the pre-wetting line (again of the outer wall) is approached from above.
However just because the strength of the inner and outer regions are flipped, this
does not imply that surface phase diagrams are simple mirror images; the bulk phase
remains gas in both cases but now the outer wall becomes completely wet as bulk
coexistence is approached. We shall show that this “symmetry breaking” effect has a
very strong influence on the possible merging of the pre-wetting and unbending lines.

2. Density functional model and methodology

As mentioned above, our methodology is based on classical DFT, and follows closely
our previous work, discussed in further detail in reference [38]. All intermolecular
interactions are given by the Lennard-Jones (LJ) potential with well depth ε and
range σ:

ϕLJ
σ,ε(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
. (1)
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Consider a flat wall of material type (w), whose adatoms exert a potential ϕLJ
σw,εw(r)

on the fluid molecules. For such a wall, located in the plane y = 0, the cumulative
potential acting on the fluid is obtained by integrating ϕLJ

σw,εw(r) over the volume of
the wall:

V0 (y) = 4πρwεwσ
3
w

[
−1

6

(
σw

H0 + y

)3

+
1

45

(
σw

H0 + y

)9
]
, (2)

where ρw is the average density of the material (w) and H0 is a near-wall cut-off,
introduced to avoid a non-physical divergence of V0 (y) at contact with the fluid. The
effect of varying the finite H0 > 0 on planar wetting is investigated in, e.g., Appendix
1 of Reference [48], where it is shown that such low-y cut-off does not qualitatively
affect the wetting phenomenology.

When a macroscopically deep stripe of material type (s) of width L with the pairwise
fluid-substrate potential ϕLJ

σs,εs(r) is inserted into the wall, the total potential of the
decorated substrate is modified to

VL (x, y) = V0 (y)− ρw

∫
νL

dr′ ϕLJ
σw,εw

(∣∣r− r′
∣∣)+ ρs

∫
νL

dr′ ϕLJ
σs,εs

(∣∣r− r′
∣∣) , (3)

where the integration is carried out over the volume νL of the stripe, excluding the
coating: νL = {(x, y, z) : −L/2 ≤ x ≤ L/2,−∞ < y ≤ −H0,−∞ < z < ∞}. Clearly,
VL=0 (x, y) ≡ V0 (y), and VL→∞ (y) is the potential of a homogeneous wall made up of
material (s). Translational invariance is assumed in the z direction.

The density profile ρ (r) of the fluid, adsorbed on a striped wall at temperature T
and chemical potential µ, can be obtained by unconstrained numerical minimization
of the grand free energy functional [15, 16, 49, 50]:

Ω [ρ] = F [ρ]−
∫

dr ρ (r)
(
µ− VL (x, y)

)
. (4)

Here F [ρ] is the intrinsic Helmholtz free energy functional, for which we use a simple
local density approximation to model the hard sphere contribution, together with a
mean-field treatment of the attractive forces [16]:

F [ρ] =
∫

dr [ fid (ρ (r)) + ρ (r)ψ (ρ (r)) ]

+1
2

∫
dr
∫

dr′ ρ (r) ρ (r′)ϕattr (|r− r′|) , (5)

where fid (ρ) = kBTρ
(
ln
(
λ3ρ
)
− 1
)

is the free energy density of ideal gas (λ is the
thermal de Broigle wavelength), and ρψ (ρ) is the Carnahan-Starling free energy den-
sity of a gas of hard spheres of radius σ:

ψ (ρ) = kBT
η (4− 3η)

(1− η)2 , η = πσ3ρ/6. (6)

The attractive part of the fluid intermolecular interaction ϕattr (|r− r′|) closely follows

3



the Barker-Henderson approximation[51]:

ϕattr (r) =

{
0, r ≤ σ
ϕLJ
σ,ε(r), r > σ.

(7)

In the uniform limit, the approximation for F [ρ] of the LJ fluid free energy in
Equation (5) is equivalent to the random phase approximation of the bulk pair cor-
relation function [16]. Although the local treatment of repulsive interactions does not
recover the oscillatory behaviour and layering when a high-density liquid is near a
substrate, we do not anticipate that this affects the qualitative aspects of the new
phase transitions occurring on the decorated substrate considered here.

To proceed we define the adsorption on the striped wall relative to the homogeneous
(w)-wall:

Γ =

∞∫
−∞

dx

∞∫
0

dy [ ρL (x, y)− ρL=0 (y)] , (8)

where ρL (x, y) and ρL=0 (y) are the respective fluid density profiles near the wall
with and without the stripe, computed at the same values of T and µ. Note that Γ in
Equation (8) is adsorption per unit length along the stripe. The excess grand potential,
which is the thermodynamic conjugate to the adsorption, is given by

Ωex = Ω [ρL]− Ω [ρL=0] , (9)

and obeys the surface Gibbs adsorption equation:

Γ (T, µ) = − 1

L

(
∂Ωex

∂µ

)
T

, (10)

where L is the system’s transverse dimension along the z-axis.
In the present mean-field analysis, phase coexistence is associated, as per usual, with

hysteresis loops for the adsorption isotherms Γ(µ). Thus, the coexisting fluid phases
(i.e., configurations ρ(x, y) whose grand potentials are equal) are associated with a
generalized Maxwell equal area construction imposed on the hysteresis loops of the
adsorption isotherms. This allows us to perform a fully consistent mean-field analysis.
Further details on the approximations involved in (4)–(7), as well as full details of the
numerical scheme, used to minimize the grand free energy functional and trace the
full isotherms can be found elsewhere [28, 48, 52].

3. Results and discussion

For the computations presented here, we use the hard-core diameter σ and the well
depth ε of the fluid–fluid LJ interactions as the units of length and energy, respectively.
In these units the bulk critical temperature of the LJ fluid occurs at Tc ≈ 1.006.
Without loss of generality, we further set ρw = ρs = 1 and H0 = 5 in (2) and (3), and
fix the values of the parameters of the wall (w) and stripe (s) materials to εw = 0.8, εs =
0.6 and σw = σs = 2. This separates the wetting temperatures of the inner and outer
substrates, allowing us to identify a temperature regime where the stripe is relatively
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Figure 1. Phase diagram (a) and representative adsorption density profiles (b) for a homogeneous wall of

material type (w). A first-order wetting trasition occurs at temperature T
(w)
w ≈ 0.70 (red circle) and the line of

pre-wetting terminates at a critical point T
(w)
pw, c ≈ 0.93 (black circle). Also shown for reference is the location

of the wetting temperature for the homogeneous substrate of material type (s), which occurs at the higher

temperature T
(s)
w ≈ 0.81 (grey circle). The representative density profiles in (b) correspond to the thick pre-

wetting films at the points indicated in (a). Note that the black curve corresponds to the mean-field pre-wetting

critical point.

solvophobic, compared to the outer material, see Figure 1. As mentioned above, our
analysis of the phase behaviour is based on a standard thermodynamic method of
van der Waals loops, with the control parameters being temperature T and chemical
potential µ. Since we are investigating a scenario where the stable bulk thermodynamic
phase is gas, it is most convenient to plot isotherms and phase diagrams in the T–∆µ
plane, where ∆µ (T ) = µ − µsat ≤ 0 is the deviation of the chemical potential from
the saturation value µsat.

3.1. The homogeneous planar wall

To begin, we first compute the surface phase diagram for a homogeneous wall of
material type (w), described by the potential in Equation (2). The computed phase

diagram is shown in Figure 1(a). The pre-wetting line ∆µ
(w)
pw (T ) approaches bulk

coexistence (∆µ = 0) tangentially, as expected, at a wetting temperature identified

numerically as T
(w)
w ≈ 0.70. Note, that since εw < εs, the wetting temperature of the

homogeneous (s)-wall is higher, occurring at T
(s)
w ≈ 0.81 > T

(w)
w , which is shown for

comparison. Figure 1(b) depicts a set of representative density profiles corresponding
to the thick pre-wetting films at different temperatures along the pre-wetting line.
As can be seen, these profiles have near-constant plateaus of density near the values
of the bulk coexisting liquid and gas densities. As coexistence is approached (along
the pre-wetting line) it is apparent that the thickness of the wetting layer of liquid
diverges. Near saturation the thickness of the adsorbed liquid film grows according to
the expected Derjaguin law O(∆µ)−1/3 where the exponent is specific to the O(r−6)
tail of the LJ forces. We have also checked that close to saturation the pre-wetting line
is described by the expected asymptotic law T − Tw ∝ (∆µ)3/2, and therefore merges
with the saturation line tangentially.
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Figure 2. Surface phase diagrams for fluid adsorption near a solvophobic stripe for different stripe width L.

Pre-wetting lines for uniform (w)-wall (solid black) and (s)-wall (dashed grey) remain there for all L and are
shown together with the unbending lines, the locations of which are different for different L. The pre-wetting

lines approach the bulk coexistence line ∆µ = 0 tangentially and similarly, each unbending line merges with

the pre-wetting line tangentially. The respective temperatures T ∗ at which the lines merge occur at T ∗ ≈0.89,
0.86, 0.81 and 0.75 and approach the pre-wetting critical point as the width decreases.

3.2. Heterogeneous wall with a solvophobic stripe

Surface phase diagrams for a wall with a solvophobic stripe, corresponding to four
different widths, are shown in Figure 2. The black line corresponds to the pre-wetting
line of the outer wall of material type (w), the location of which is, of course, unchanged
from that shown in Figure 1 for the homogeneous (w) wall. For reference, we also
show the pre-wetting line of the homogeneous (s) wall (grey dashed) which lies at
considerably higher temperatures. For each strip width L a line of unbending phase
transitions extends away from the pre-wetting line ending in an unbending critical
point. The line of unbending transitions always merges tangentially with the pre-
wetting line with the temperature T ∗ at which these lines merge approaching the
pre-wetting critical point as the width L is reduced.

Each phase diagram illustrates a number of distinct surface phase transitions. As
the pre-wetting line is approached from below, a first-order thin-thick phase transition
occurs, very similar to that occurring at a planar wall of type (w). The pre-wetting
transition is also first-order when approached from above for temperatures T which
lie below T ∗. However when T > T ∗ the pre-wetting transition is continuous when
the pre-wetting line is approached from above. In this case, the solvophobic stripe
is on each side wet by a layer of the “thinner” pre-wetting phase, the size of which
grows, spreading laterally away from the stripe, as we approach the pre-wetting line.
This means the relative adsorption Γ is negative and diverges continuously similar to
a 2D complete wetting transition occurring across the substrate. The divergence of
the adsorption along an isotherm lying above T ∗ is shown in Figure 3 for a narrow
stripe, with L = 4, where it is compared to the theoretical prediction Γ ∝ (µ−µpw)−

1

4

[40]. Density profiles illustrating this will be discussed later. This example of complete
pre-wetting is the converse of what happens for a solvophilic stripe, which nucleates
the thicker pre-wetting phase, the lateral size of which grows as the pre-wetting line is
approached from below. The temperature T ∗ must, therefore, correspond to a 2D wet-
ting transition occurring in the x− z plane. This transition is first-order at mean-field
level, although fluctuation effects associated with the unbinding thin-thick interface,
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Figure 3. Adsorption isotherm, at T = 0.80 for a wall with a stipe of width L = 4, showing the continuous

divergence of the adsorption (complete pre-wetting), as the pre-wetting line is approached from above. In this
limit a gas-like film of the thinner pre-wetting phase spreads out laterally across the substrate (that is, in the x

direction), away from the stripe. The dashed line is a guide to the eye, corresponding to the expected asymptotic

divergence Γ(µ) ∝ (µpw − µ)−1/4. Note that at small |Γ| we see a part of the hystersis loop associated with
the unbending trnasition.

must alter this to continuous when the thermal wandering is allowed for.
The striped substrate also induces an unbending transition corresponding to the

local condensation of liquid near the stripe. The line of unbending transitions meets
the pre-wetting line tangentially at T ∗, analogous to the merging of the pre-wetting
and bulk saturation curves – this again reflects the first-order nature of the 2D wetting
transition occurring at T ∗. Theoretical considerations based on mesoscopic interfacial
models predict that with T → T ∗ + 0, the pre-wetting and unbending lines merge as

O
(

(T − T ∗)4/3
)

, which is quantitatively different to the merging of the pre-wetting

and saturation lines, due to the reduced dimensionality of the wetting transition oc-
curring at T ∗ and reflects the −1/4 power-law characterizing the divergence of Γ(µ)
for the complete pre-wetting. Isotherms for unbending transition and representative
coexisting profiles are shown in Figures 4 and 5.

Figure 4(a) shows characteristic adsorption isotherms for three different tempera-
tures T = 0.85, 0.88 and 0.93 for a stripe of width L = 8. At T = 0.88 a prominent
hysteresis loop in Γ (µ) is apparent, and a Maxwell equal areas construction deter-
mines the value of chemical potential at which the unbending transition occurs. The
density profiles of the coexisting fluid configurations are represented in Figure 4(b),
and demonstrate the local drying of the thick pre-wetting film, caused by the stripe.
The isotherm at T = 0.93 corresponds to the limit where the hysteresis loop vanishes,
corresponding therefore to the unbending critical point. The critical density profile
is given in Figure 4(c) and illustrates the narrowing of the dry region at this higher
temperature. In contrast, the isotherm at T = 0.85 does not permit an equal areas
construction. This is because T = 0.85 lies below the temperature T ∗, and therefore
no unbending transition is possible. In each of the isotherm shown in Figure 4(a) the
vertical dashed lines correspond to the respective locations of the pre-wetting transi-
tions. We remark here that the present mean-field considerations will be altered when
fluctuation effects are included, leading to the rounding of the first-order unbending
transitions.

In Figure 5 we show coexisting profiles at three different temperatures along the
unbending line for a wall with a stripe of width L = 32. Notice that as the temperature
is decreased towards T ∗, three things happen; the lateral extent of the dry region near
the stripe (lower panel in each figure) grows, the height of the adsorbed liquid layer
away from the patch increases, and finally, the interface from the thin to thick phases
sharpens. As the temperature is further decreased to T ∗, the dry region nucleated at
the stripe [lower panel in Figure 5(a)] grows continuously, consistently with complete
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Figure 4. Representative adsorption isotherms at three different temperatures for a stripe of width L = 8.
In figure (a) we illustrate the generalized Maxwell constructions for the unbending critical point occurring at

T = 0.93, and an equal areas construction for the coexistence of different phases, at T = 0.88, corresponding to

a first-order unbending (local surface condensation) phase transition. The corresponding unique and coexisting
density profiles are shown in figures (c) and (b), respectively. In figure (a) we also show an isotherm for T = 0.85,

which does not exhibit an equal areas construction, meaning that there is no unbending transition. The vertical

asymptotes of each isotherm correspond to the locations of the pre-wetting transitions, at ∆µpw = (−3.37,
−4.43, −6.36)× 10−2.

pre-wetting discussed earlier.

4. Conclusion

In this paper we have investigated the surface phase equilibria and criticality occur-
ring on a planar wall decorated with a deep stripe of a weaker adsorbing (relatively
solvophobic) material. Both materials would exhibit, as homogeneous walls, first-order
wetting transitions with corresponding pre-wetting lines. The surface phase diagram is
with, one crucial exception, similar to that occurring when the stripe is solvophilic. Let
us first summarise the similarities. The pre-wetting transition of the outer substrate
remains a phase boundary and the order of the pre-wetting transition is changed to
continuous when approached from the appropriate side. This reflects the scenario of
2D complete pre-wetting when either a thin or thick pre-wetting layer spreads away
from the stripe. Similarly both phase diagrams show first-order unbending transitions
corresponding to the local condensation/evaporation near the stripe. In both cases the
line of unbending transitions can merge with the pre-wetting line at a temperature
T ∗, which corresponds to a 2D first-order wetting transition, and this temperature
approaches the pre-wetting critical point as L is reduced.

There is however one major difference between the solvophilic and solvophobic sce-
narios. As mentioned in the Introduction, when the stripe is solvophilic, the unbending
and pre-wetting lines only merge when L is sufficiently small [38]. For larger stripe
widths the unbending and pre-wetting lines are distinct and as L increases the line
of unbending transitions approaches the pre-wetting transition of the homogeneous
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Figure 5. Representative coexisting configurations along the unbending line for a wall with a stripe of width
L = 32. Panels (a) – (c) correspond to increasing temperatures T = 0.76, 0.88 and 0.92. The lower panel in

each figure illustrates the extent of the thin gas-like coexisting phase, which spreads out away from the stripe.

The extent of this drying layer increases as the temperature T is decreased towards T ∗ ≈ 0.75.

striped phase as expected. This does not seem to be the case when the stripe is solvo-
phobic when even for the largest stripe widths considered our computations indicate
clearly that the unbending and pre-wetting lines still merge at a temperature T ∗. In-
deed preliminary results for even larger widths (L = 64) still show this merging with
the value of T ∗ lying very close to , but above, Tww . Of course in the limit L → ∞
the unbending line must coincide with the pre-wetting line of the inner striped phase.
But our study indicates that this does not happen in the same, smooth manner as for
the case of a solvophilic stripe. This is reminiscent of the phase equilibria occurring
in a parallel plate geometry with competing (one critically wetting, one critically dry-
ing) walls for which as the slit width L increases the line of phase coexistence ends
at a critical temperature which tends towards the wetting temperature rather than
the bulk critical temperature [13]. Similarly we conjecture that in the present case of
a solvophobic stripe the temperature at which the unbending and pre-wetting lines
merge T ∗ approaches the wetting temperature of the outer wall Tww as L → ∞. This
is very strongly suggested by the surface phase diagrams shown in Fig 2 where we
observe that additionally for the largest stripe widths L = 32 the unbending critical
point lies very close to the pre-wetting critical point of the inner (stripped) substrate.
If this scenario is correct then there must be a reason why, for the solvophobic stripe,
the line of unbending transitions must never touch the bulk saturation curve. For this
we offer a tentative explanation. Imagine that similar to the solvophilic case at some
sufficiently large L the unbending line detaches from the pre-wetting line. In that case
it meets the bulk coexistence curve at some temperature lying above Tww . What would
the coexisting phases look like at this temperature? The “thick” or unbent phase would
correspond simply to the complete wetting of the entire substrate. The “thin” or bent
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state on the other hand must be locally dry near the stripe. This requires that the
local height of liquid-gas interface each side of the patch increases from a microscopic
to a macroscopic value as we move away from the stripe. However for systems with
dispersion forces the excess free-energy associated with this configuration diverges
logarithmically as ∆µ→ 0, similar to the divergence of the line tension at first-order
wetting [53] suggesting that such coexistence is strictly forbidden. No such diverging
contribution to the free-energy occurs for the case of a solvophilic stripe since in that
case neither coexisting phase has macroscopic adsorptions since the outer wall is still
partially wet. This must mean that for very wide solvophobic stripes the unbending
line would lie close to the pre-wetting line of the inner substrate, but breaks away

from it, close to T
(s)
w and runs along, but below, the bulk coexistence curve, meeting

the lower pre-wetting line at a temperature T ∗ ≈ T (w)
w . This would be one mechanism

by which the surface phase diagram converges to both pre-wetting lines as L becomes
macroscopic.

Finally, we mention that the present local density functional model does not include
effects associated with volume exclusion which would give rise to layering transitions, a
Fisher-Widom line and, indeed, at low enough temperatures, freezing. All these would
further complicate the phase diagram and lead to oscillatory structure in the density
profiles in figures 1 2 and 5, as is well documented in the literature [2, 16]. However, our
goal is to show how rich the phase diagram is, even when these additional subtleties
are absent. Importantly, they do not influence the existence of the new 2D transverse
wetting transitions, induced by the merging of the unbending and pre-wetting lines.
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