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Energetic instability of passive states in
thermodynamics
Carlo Sparaciari 1, David Jennings2,3 & Jonathan Oppenheim1

Passivity is a fundamental concept in thermodynamics that demands a quantum system’s

energy cannot be lowered by any reversible, unitary process acting on the system. In the limit

of many such systems, passivity leads in turn to the concept of complete passivity, thermal

states and the emergence of a thermodynamic temperature. Here we only consider a single

system and show that every passive state except the thermal state is unstable under a

weaker form of reversibility. Indeed, we show that given a single copy of any athermal

quantum state, an optimal amount of energy can be extracted from it when we utilise a

machine that operates in a reversible cycle. This means that for individual systems, the only

form of passivity that is stable under general reversible processes is complete passivity, and

thus provides a physically motivated identification of thermal states when we are not

operating in the thermodynamic limit.
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W ithin thermodynamics, heat engines are devices that
operate in a thermal context so as to extract ordered
energy in the form of work. The canonical scenario

involves an engine that operates cyclically between two tem-
peratures Thot, Tcold and performs a quantity of mechanical work.
To do so, the engine absorbs heat from the hot reservoir, converts
some of this energy to mechanical work and releases heat into the
cold reservoir in accordance with the second law of thermo-
dynamics. The largest possible efficiency, η ¼ 1� Tcold

Thot
, occurs for

the reversible Carnot engine1, 2 and provides a fundamental
thermodynamic bound on the amount of ordered energy that can
be obtained. Carnot engines, and more in general heat engines,
have been extensively studied in the microscopic regime3–28 (as
well as, of course, in the macroscopic regime).

However, the issue of ordered energy extraction can also be
considered in scenarios in which no notion of temperature exists,
and can provide a broader notion of equilibrium states. For
example, more general equilibrium states can occur in physical
realisations when a system has been perturbed and has not had
enough time to fully thermalise. They can also arise in the context
of non-equilibrium steady states29, and even when we consider
closed systems in a pure state, but we only have access to a small
portion of the system. Given a quantum system in a state ρ one
can ask if it is possible to extract energy from it solely by per-
forming a reversible unitary transformation on the system. The
largest amount of ordered energy that was previously thought to
be extractable (the ‘ergotropy’, see refs. 30–32) depends non-
trivially on the quantum state. If no energy can be extracted in
this way, then ρ is called passive33–37 and constitutes a primitive
form of equilibrium.

In this work, we consider a scenario that is intermediate
between heat engines and passive states, and is motivated by the
fact that a work extraction machine should be considered as a
system, which is involved in the process. Our core question is
whether there exist passive states ρS for which energy can be
extracted if one performs a reversible unitary process over the
system S together with a second quantum system M, which starts
and finishes in the same quantum state ρM. This second quantum
system is the machine which, in analogy with the working body of
a Carnot cycle, undergoes a cyclic evolution. This class of pro-
cesses (which have been termed catalytic thermal operations38) is
reminiscent of the ones taking place inside heat engines. How-
ever, there are some important differences between heat engines
and our machine, not last the fact that our scheme does not
involve actual thermal reservoirs, and there are not physical
temperatures involved.

Rephrasing our core question (namely, whether it is possible to
reversibly reduce the energy of a single passive state) in terms of
optimal work extraction performed by a thermal machine appears
to be rather convenient. In this setting, the main system S,
described by the passive state, plays the role of both thermal
reservoirs of an heat engine, while the additional system M can be
seen as the machine, which exchanges energy between these two
reservoirs in a cyclic manner. It is worth noting that, while the
above identification of a passive state in terms of two thermal
reservoirs is convenient for analysing our protocol, one ought to
be cautious about assigning a physical meaning to it, due to the
obvious differences between single systems in a passive state and
thermal reservoirs.

Our study on passivity extends the set of allowed operations
(which is originally composed solely of unitary operations) with
the possibility of interacting with an additional system, which
undergoes a cyclic dynamics. Extending the set of operations to
this broader class seems reasonable, especially in light of the fact
that microscopic machines can nowadays be realised in the
laboratory4, 7, 11, 12, 39, 40.

In this paper, we show that energy can always be extracted
from single copies of athermal passive states by means of the
above set of allowed operations. We provide an explicit protocol
for the energy extraction, involving an ancillary system whose
local state is left invariant by the evolution. We show that, in
general, correlations between the main system and the ancilla are
created during the extraction protocol. However, when the
dimension of the ancillary system goes to infinity, these correla-
tions can be reduced to an infinitesimal amount, which results in
a reversible (energy-extracting) dynamics on the main system.
Crucially, this result has fundamental implications for the notion
of passivity. In fact, if energy can be extracted from a passive state
with these reversible processes, and no entropy is generated, then
it seems that associating passivity of the state is a restricted
idealisation, unstable under this simple extension. Thus, our work
provide a way to single out the thermal state, and consequently to
recover a notion of temperature, without having to take the
thermodynamic limit, or to consider thermalisation scenarios.
Within the passivity setting, the thermal state was previously
identified as the only passive state from which no work could be
extracted in the thermodynamic limit. Indeed, all other passive
states become active in this limit, that is, work can be extracted
from many copies of them with a global unitary operation31.
However, since a theory of thermodynamics can also be for-
mulated without taking the thermodynamic limit, one should be
able to single out the thermal state even when considering single
systems, and the results of our study show how this is possible.

Results
Passive states. Consider a finite-dimensional quantum system
associated with the Hilbert space H � Cd (a qudit), with
Hamiltonian H ¼ Pd�1

i¼0 Ei ij i ih j, and described by the state ρ. We
say that the state ρ is passive iff its average energy cannot be
lowered by acting on it with unitary operations, that is,

Tr Hρ½ � � Tr HUρUy� �
; 8U 2 B Hð Þ ; UUy ¼ UyU ¼ I: ð1Þ

This implies that no work can be extracted from the state via a
unitary process, since by conservation of energy, lowering the
energy of a system would mean that this energy has been
transferred to a work storage device.

We can also introduce a more restrictive notion of passivity.
Let us consider n 2 N independent and identically distributed
(i.i.d.) copies of our system, with a total Hamiltonian
H nð Þ ¼ Pd

i¼1 Hi, where each Hi is a single system Hamiltonian
acting on a different copy of the system. The state of this global
system is described by ρ�n. Then, we say that the state ρ is
completely passive if and only if the state ρ�n is passive for all
n 2 N, while the state ρ is k-activable if ρ�n becomes active for
n � k. It can be shown33 that the completely passive states of a
system with Hamiltonian H are the ones satisfying the KMS
condition41–43. Specifically, these states are the ground state and
the thermal states with temperature β≥ 0, that is, τβ ¼ e�βH=Z
with Z ¼ Tr e�βH

� �
. Any state which is not of this form, is called

athermal.
A characterisation of all passive states can be easily obtained. A

system in a passive state is such that the ground state has the
highest probability of being occupied, and the probability of
occupation decreases as the energy associated with the eigenstate
of H increases, Fig. 1. Specifically, a state ρ is passive iff ρ= f(H),
where f is a monotone non-increasing function. Simply put, this
means that the state can expressed as

ρ ¼
Xd�1

i¼0

pi ij i ih j ; such that pi � piþ1 8i ¼ 0; ¼ ; d � 2; ð2Þ
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where ij if gd�1
i¼0 are the eigenvectors of H, ordered so that Ei≤ Ei+1

for all i (for the case of equal energies Ei= Ei+1 we must make an
additional stability assumption to ensure that pi= pi+1).

We can describe the probability distribution of the passive state
ρ by using virtual temperatures15, 44. In fact, for any given passive
state, we can associate a (non-negative) virtual temperature with
each pair of its eigenstates. For example, if we consider the pair
( ij i; jh j), we define the virtual temperature associated with them
as the β�1

ij � 0 such that
pi
pj
¼: e�βij Ei�Ejð Þ; ð3Þ

where pi is the probability of occupation of the state ij i, and Ei is
the energy associated with the state (similarly for j). Thus, each
pair of states can be regarded as an effective thermal state at a
specific temperature. When all pairs of states has the same virtual
temperature, we have that the passive state is completely passive,
that is, it is the thermal state of H at that temperature.

The core protocol. We now introduce a device that extracts work
by acting individually on a passive state. The device is composed
by two elements, namely, a main system in a specific passive state,
and a qudit “machine” system. As we will see, the following
protocol is independent of the Hamiltonian of the machine, and
we set it to be the trivial Hamiltonian H ¼ I for simplicity.
Furthermore, we consider the main system to be a qutrit, since
the protocol can be easily generalised to quantum d-level systems.
The Hamiltonian of the main system is

HP ¼
X2
i¼0

Ei ij i ih jP; ð4Þ

where Ei≤ Ei+1, and it is described by the state

ρP ¼
X2
i¼0

pi ij i ih jP; ð5Þ

where pi≥ pi+1 (Fig. 1).
In the following we parametrise the passive state ρP in terms of

virtual temperatures. We utilise such parametrisation because it
allows us to draw a conceptual link between the current scenario

and the one of heat engines. This link turns out to be very
convenient for the exposition of our protocol, but one should not
assign to it any physical meaning; in fact, our scenario is
completely different from the one in which heat engines operates.
We are here considering single systems in a passive state, no
physical temperatures are involved, and no actual thermal
reservoirs are present.

The passive state is parametrised as follow; the virtual
temperature Thot ¼ β�1

hot > 0 is associated with the pair of
eigenstates ( 0j iP, 1j iP), and the virtual temperature Tcold ¼ β�1

cold >
0 is associated with the pair ( 1j iP, 2j iP). We assume for simplicity
that Thot> Tcold, but a similar analysis applies for Thot< Tcold. In
Supplementary Note 1 the cycle is presented in full detail. The
relation between the probability distribution of ρP and the
temperatures Thot and Tcold is given by

p1
p0

¼: e�βhotΔE10 ; ð6Þ

p2
p1

¼: e�βcoldΔE21 ; ð7Þ

where ΔE10= E1 − E0≥ 0, and ΔE21= E2 − E1≥ 0. Thus, by
referring again to the conceptual link with heat engines, the pair
of states ( 0j iP, 1j iP) can be visualised as if it was a hot reservoir,
while the pair of states ( 1j iP, 2j iP) can be visualised as if it was a
cold reservoir. It is worth noting that the other pair of states,
( 0j iP, 2j iP), is associated with a virtual temperature that is
intermediate between Tcold and Thot, as we can easily verify from
Eqs. (6) and (7).

The protocol extracts work by means of the following cycle. A
single system, described by the state ρP, is put in contact with the
machine, described by the state ρM ¼ Pd�1

j¼0 qj jj i jh jM. Then, we
perform m swaps (we refer to them as hot swaps) between the hot
“virtual” reservoir of the passive state and m different pairs of
states of ρM, followed by n swaps (cold swaps) between the cold
“virtual” reservoir and other n different pairs of states of ρM. In
order to perform the swaps on different pairs of states, we need
the machine to have at least m + n levels, and therefore we fix d=
m + n. Specifically, we apply the following unitary operation to
the global system

Sm;n ¼ Sð0;mÞ
ð1;2Þ � Sðm;mþ1Þ

ð1;2Þ � Sðmþ1;mþ2Þ
ð1;2Þ � ¼

�Sðmþn�2;mþn�1Þ
ð1;2Þ � Sðm�1;mþn�1Þ

ð0;1Þ

�Sðm�2;m�1Þ
ð0;1Þ � Sðm�3;m�2Þ

ð0;1Þ � ¼ � Sð0;1Þð0;1Þ;

ð8Þ

where the operator Sðc;dÞða;bÞ is a swap between system and machine,
performed through the permutation aj iP dj iM$ bj iP cj iM. A
graphical representation of this global operation is shown in
Fig. 2, where each swap is depicted by an arrow acting over the
states of the machine. Although in the figure we represent the
eigenstates of ρM in a ladder, they are all associated with the same
energy, and therefore the order in which we present them is only
functional for visualising the cycle Sm,n.

In order for the protocol to be cyclic, we need the local state of
the machine to end up in its initial state. Therefore, we impose
the following constraint on the state of the machine,

ρM ¼! TrP Sm;n ρP � ρMð ÞSym;n

h i
: ð9Þ

Through Eq. (9) we can express the probability distribution of
the machine in terms of the passive state ρP. In our model, we do
not explicitly include an additional system (a battery) for storing
the energy we extract from the passive state. Instead, we implicitly

p

p0

p0

�cold

�hot

p1 p1
p2

p2E2

E1

E0E0 E1 E2
E

a b

Fig. 1 Passive state spectrum and virtual temperatures. a The spectrum of a
qutrit passive state ρ ¼ P2

i¼0 pi ij i ih j over the eigenbasis of its Hamiltonian
H ¼ P2

i¼0 Ei ij i ih j. The occupation probabilities are ordered in a decreasing
order, from the one associated with the ground state of H to the one
associated with the maximally excited one, as per definition in Eq. (2). b A
passive state can equally be described by virtual temperatures. Indeed, for
each pair of eigenvalues of ρ, say pi and pj, we can define a virtual temperature
βij through the relation pi=pj ¼ e�βij Ei�Ejð Þ, where Ei (Ej) is the energy level
associated with the eigenstate ij i jj ið Þ. In the figure, the pair of eigenstates 0j i
and 1j i is associated with the hot temperature β�1

hot , while the pair 1j i and 2j i is
associated with the cold temperature β�1

cold. The temperature associated with
0j i and 2j i is an average of the other two temperatures
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assume the existence of this work storage system, and we define
the work extracted, ΔW, as the difference in average
energy between the initial and final state of the main system (as
the machine M has a trivial Hamiltonian, and no interaction
terms are present between system and machine). Thus, we have
that

ΔW ¼ Tr HP ρP � ~ρPð Þ½ �; ð10Þ

where the final state of the system is

~ρP ¼ TrM Sm;n ρP � ρMð ÞSym;n

h i
: ð11Þ

It is worth noting that the final state of system and machine
will in general develop correlations. These correlations are
classical, and without them work would not be extracted during
the cycle. However, they do not compromise the re-usability of
the machine if applied to another uncorrelated quantum
system.

For a given system Hamiltonian HP and a given cycle Sm,n, we
can investigate the amount of work we extract from the state ρP.
In Supplementary Note 1 we provide all the necessary steps to
evaluate ΔW in terms of the probability distribution of ρP. We
can express this quantity as

ΔW ¼ α mΔE10 � nΔE21ð Þ eβcoldnΔE21 � eβhotmΔE10
� �

; ð12Þ

where α is a positive coefficient depending non-trivially on the
probability distribution of ρP. For the class of passive states, we
are considering (namely, the one in which βcold> βhot), we find
that work can be extracted (ΔW> 0) iff

1. The Hamiltonian HP is such that mΔE10> nΔE21.
2. The temperatures of the two virtual reservoirs are such that

βcold >
mΔE10
nΔE21 βhot.

Thus, for a fixed cycle (defined by the parameters m and n),
and for a fixed Hamiltonian HP, we find that work can only be

extracted if the virtual temperature Tcold is lower than Thot by a
multiplicative factor, which depends on the energy gaps
of the Hamiltonian, see Fig. 3 for an example. In the
next section we will show that, for a given Hamiltonian HP,
work can be extracted from any passive (but not completely
passive) state, and we characterise the cycle which allows for this
extraction.

If we analyse in a more detailed way the cycle, we find that the
same amount of energy is gained during each swap between the
machine M and the hot virtual reservoir, that is

qhot ¼ αΔE10 eβcoldnΔE21 � eβhotmΔE10
� �

; ð13Þ

where α is the same positive coefficient of Eq. (12). Moreover, the
same amount of energy is spent during each swap between the
machine M and the cold virtual reservoir,

qcold ¼ αΔE21 eβcoldnΔE21 � eβhotmΔE10
� �

: ð14Þ

Knowing the amount of energy exchanged during each swap
allows us to evaluate the heat exchanged with the virtual
reservoirs. In fact, if we identify the pair of levels ( 0j iP, 1j iP) with
the hot virtual reservoir, then the energy exchanged during a
swap with these levels can be considered as heat coming from the
hot virtual reservoir. In this way, the total heat absorbed by the
machine is

Qhot ¼ mqhot; ð15Þ

while the total heat provided to the cold virtual reservoir is

Qcold ¼ n qcold: ð16Þ

From Eqs. (15) and (16), we obtain that the work extracted can
be expressed as ΔW ¼ Qhot � Qcold, as in a standard heat engine
exchanging energy between two reservoirs. Once Qhot and Qcold

: Swap with (|0〉P, |1〉P)

: Swap with (|1〉P, |2〉P)

|m + n – 1〉M

|m + n – 2〉M

|m + 1〉M

|m – 1〉M

|m – 2〉M

|1〉M

|0〉M

|m 〉M

Fig. 2 The action of the cycle over the machine. The cycle Sm,n is
represented in a pictorial way over the eigenstates of the d-dimensional
machine (where d=m + n). Notice that the machine has a trivial
Hamiltonian, and we order the eigenstates to only simplify the visualisation
of the cycle. The upward arrow connecting two eigenstates of the machine
represents a swap between these two states and the pair ( 0j iP, 1j iP) of the
passive state. The downward arrow connecting two eigenstates of the
machine represents a swap between this pair and the pair ( 1j iP, 2j iP) of the
passive state. We initially perform m − 1 swaps between ( 0j iP, 1j iP) and

jj iM; jþ 1j iM
� �� �m�2

j¼0 , and one swap between ( 0j iP, 1j iP) and
m� 1j iM; mþ n� 1j iM

� �
. Then, we perform n − 1 swaps between ( 1j iP, 2j iP)

and jj iM; jþ 1j iM
� �� �mþn�2

j¼m , and one swap between ( 1j iP, 2j iP) and
0j iM; mj iM

� �
. If we consider the arrow representation of swaps, we can see

that the cycle is close, and this allows us to recover the local state of the
machine M while extracting work

ΔW �

�Carnot
ΔE21

ΔE21

�cold

�hot
ΔE21

�cold

�hotΔE21
ΔE10

ΔE10

0

0

a b

Fig. 3 Energy extraction and efficiency with a qubit machine. Consider a
qutrit system with Hamiltonian HP ¼ P2

i¼0 Ei ij i ih jP, in the passive state
ρP ¼ P2

i¼0 pi ij i ih jP. The simplest energy-extracting protocol involves a
qubit machine, and energy is extracted from the passive state by
performing a single hot and cold swap between system and machine. This
cycle is analogous to the one studied in ref. 13. a The energy extracted from
a given passive state depends on the Hamiltonian of the system. This
energy is positive iff the hot energy gap ΔE10= E1 − E0 lies inside the range
ΔE21; βcoldβhot

ΔE21
� 	

, where ΔE21= E2 − E1 is the cold energy gap, and β�1
hot

(β�1
cold) is the virtual temperature associated with the pair of eigenstates 0j iP

and 1j iP ( 1j iP and 2j iP). The above range is obtained from conditions 1 and
2. b The efficiency of the protocol η is defined as the ratio between the
energy extracted at the end of the protocol and the energy extracted when
performing hot swap (that is, the total positive energy extracted during the
cycle). When the hot energy gap ΔE10 lies in the correct range, the
efficiency takes values between 0 and the Carnot efficiency
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are defined, we can evaluate an efficiency of this cycle, that is

η ¼ ΔW
Qhot

¼ 1� nΔE21
mΔE10

: ð17Þ

The efficiency of our protocol (when the machine is finite-
dimensional) is sub-Carnot in the virtual temperatures, see Fig. 3.
In fact, work can only be extracted when conditions 1 and 2 are
satisfied, and these conditions implied 0<η<1� Tcold

Thot
. When we

consider the case of an infinite-dimensional machine, we find that
by a judicious choice of parameters we may obtain Carnot
efficiency.

Once the cycle Sm,n is ended, the local state of the main system
is moved to a less energetic state. By solving Eq. (9), we find that
the final state of the main system ~ρP has the following probability
distribution

p′0 ¼ p0 þmΔP; ð18Þ

p′1 ¼ p1 � mþ nð ÞΔP; ð19Þ

p′2 ¼ p2 þ nΔP; ð20Þ

where the unit of probability ΔP depends on the initial state ρP,
and it is given by

ΔP ¼ α eβcoldnΔE21 � eβhotmΔE10
� �

; ð21Þ

with α the same positive coefficient of Eq. (12). Due to condition
2, the unit ΔP> 0, so that the probability of occupation of 1j iP is
reduced in favour of the probabilities p0 and p1. Thus, energy is
extracted from the passive state when mΔP is moved from p1 to
p0 (during the hot swaps), and part of this energy is used to move
the probability nΔP from p1 to p2 (during the cold swaps), see
Supplementary Fig. 1.

Work extraction from any passive state. We now show that, for
a given Hamiltonian HP, work can be extracted from any passive
but not completely passive state. In particular, we first show this
for qutrit passive states, and we then generalise to the qudit case.
Work extraction is achieved with the cycle presented in previous
section, for specific values of the parameters m and n. In what
follows, we represent the passive state with the probabilities of
occupation {p0, p1, p2}, as opposed to the previous case in which
the virtual temperatures were used. In this way, we can consider
all possible scenarios, and we are not limited to the case in which
a specific pair of eigenstates has a colder (hotter) virtual tem-
perature than the other pair.

The Hamiltonian of the system HP is defined in Eq. (4), where
the energy gap between ground and first excited state is ΔE10, and
the gap between first and second excited states is ΔE21. We
assume that

9M;N 2 N such thatMΔE10 � N ΔE21 ¼ 0; ð22Þ

that is, we ask the ratio between the two energy gaps to be
rational. Notice that, even if the ratio is irrational, we can find a
suitable N and M such that the condition is approximatively
satisfied. Once the relation between energy gaps is defined, we can

divide the set of passive states into three different subsets, namely

R1 ¼ ρP passive
p1
p2


 �N

>
p0
p1


 �M
�����

( )
; ð23Þ

R2 ¼ ρP passive
p1
p2


 �N

<
p0
p1


 �M
�����

( )
; ð24Þ

R3 ¼ ρP passive
p1
p2


 �N

¼ p0
p1


 �M
�����

( )
: ð25Þ

The union of these three subsets gives the set of all passive
states. In particular, one can verify that the subset R3 contains all
the completely passive states, that is, the thermal states of HP at
any temperature β�1 � 0. Moreover, R1 corresponds to the set of
passive states with βhot associated with the pair of eigenstates 0j iP
and 1j iP, and βcold associated with the pair 1j iP and 2j iP. The set
R2, instead, contains the passive states with opposite hot and cold
virtual temperatures. Since we are considering qutrit systems, we
can represent the set of passive states in a two-dimensional
diagram, using their probability distribution. Each point in this
diagram represents a passive state. In Fig. 4, we show the three
subsets of Eqs. (23), (24) and (25).

In the previous section, we have seen that a cycle defined by the
parameters m and n can activate a passive state ρP with
Hamiltonian HP if conditions 1 and 2 are satisfied. These
conditions apply to the case in which the passive state is described
by Eqs. (6) and (7), with βhot< βcold. In the present, more general
scenario we find that work is extracted by the cycle if and only if

1
2

p1 p1

p0
p0

1 1
2

1
3

0 0

1
2

1
3

1
3

1 1
2

1
3

a b

Fig. 4 The region of qutrit passive states and the activable set. Consider a
qutrit system with Hamiltonian HP ¼ P2

i¼0 Ei ij i ih jP, whose state ρP ¼P2
i¼0 pi ij i ih jP is passive. The Hamiltonian is fixed by choosing two N;M 2 N

such that MΔE10 − NΔE21= 0, where ΔE10= E1 − E0 and ΔE21= E2 − E1. In
both panels we set M= 2 and N= 1. a The space of passive states can be
represented in a two-dimensional plot, whose axes represent the
probability of occupation of the ground state p0, and first excited
state p1. The purple region represents the subset R1, defined in Eq. (23),
while the light blue region represents the subset R2, defined in Eq. (24). The
black line is R3, that is, the set of completely passive states, see Eq. (25). b
For a given cycle Sm,n we can draw the set of passive states from which
energy can be extracted, Rþm;n. In this plot, we show the regions Rþ3;1 (light
blue), Rþ5;2 (orange) and Rþ11;5 (yellow), which cover the region R1 (purple)
better and better as m and n (the number of hot and cold swaps,
respectively) grow
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the passive state belongs to the following subset

Rþ
m;n ¼ ρP passive j p1

p2

� 	n
> p0

p1

� 	m
whenmΔE10 � nΔE21 > 0

n
_ p1

p2

� 	n
< p0

p1

� 	m
whenmΔE10 � nΔE21<0

o
;

ð26Þ

where these conditions can be obtained by analysing the general
expression of the extracted work. We now show that, by tailoring
the value of the parameters m and n, we can make Rþ

m;n to
(asymptotically) cover either the region R1 or R2. Here, we focus
on R1 solely, since R2 follows from similar arguments. As a first
step, we ask mΔE10 � nΔE21 > 0, which implies m > M

N n, due to
Eq. (22). Then, in order to satisfy this condition, we set
m ¼ M

N nþ 1, where we ask n to be large enough for m to be
an integer. The set of passive states activated by the cycle is such
that

p1
p2


 �n

>
p0
p1


 �m

) p1
p2


 �n

>
p0
p1


 �M
Nnþ1

) p1
p2


 �N

>
p0
p1


 �MþN
n

:

ð27Þ

We notice that, since ρP is passive, p0≥ p1, which implies that

p0
p1


 �MþN
n

� p0
p1


 �M

: ð28Þ

Thus, Eq. (27) and (28) together assure that Rþ
M
Nnþ1;n

	 R1.
Moreover, if n→∞, we have thatM þ N

n ! M, which implies that
Rþ

M
Nnþ1;n

! R1. Thus, we have that, for a given Hamiltonian HP,

and a given passive state ρP 2 R1, there exist a cycle Sm,n such that
ρP 2 Rþ

m;n. However, the closer (in trace norm) the state ρP is to
the set of completely passive states (R3), the larger the parameters
m and n have to be, that is, the larger the machine has to be
(Fig. 4).

Work extraction from a generic qudit passive state can be
achieved straightforwardly by applying the cycle of the previous
section to just three of the d possible levels of the system. The
only requirement for the three levels is that their virtual
temperatures have to be different. In this case, as we show in
more details in Supplementary Note 2, work is extracted from the
qudit state by letting the machine interact with the three levels of
the system.

General instability of passive states. We can now establish our
central claim: that any athermal passive state is energetically
unstable under a reversible process that does not generate
entropy. We analyse the evolution of a passive state, which
sequentially interacts with an infinite-dimensional machine M,
and find that the system moves through a continuous trajectory
of passive states towards the set of minimum energy states, that is,
the set of the states45.

We consider a cycle composed of infinitely many hot swaps,
m→∞, and infinite many cold swaps, n→∞, with the assumption
that n= αm, where α is a parameter taking values in a specific
range, we will describe shortly. Let us now consider the situation
in which the main system is a qutrit with Hamiltonian HP given
in Eq. (4), described by the passive state ρP whose probability
distribution satisfies the equalities of Eqs. (6) and (7). Then, ρP
belongs to the subset R1 defined in Eq. (23), and the cycle Sm,n has
to satisfy conditions 1 and 2 in order to extract work from it.
These conditions are reflected in the allowed range of the

parameter α, that is

βhotΔE10
βcoldΔE21

< α<
ΔE10
ΔE21

: ð29Þ

If we set α equal to a value inside the range specified by the
previous equation, and we send m→∞, we find that (see
Supplementary Note 4 for details) the state of the machine as
obtained from Eq. (9) is given by a mixture of two ‘thermal’
states, one with effective temperature β�1

hot, the other with effective
temperature β�1

cold (note we still have HM= 0 for the machine).
These distributions have support in two different subspaces, and
their weight depends non-trivially on the energy gaps of HP and
on the virtual temperatures of ρP. In fact, we can loosely interpret
the state of the machine in terms of a thermal mixture

ρM ¼ λτβhot þ 1� λð Þτβcold ; ð30Þ

where

τβhot ¼
e�βhotHhot

Zhot
;withHhot ¼

Xm�1

j¼0

jΔE10 jj i jh jM andZhot ¼ Tr e�βhotHhot
� �

;

ð31Þ

and

τβcold ¼
e�βcoldHcold

Zcold
;withHcold

¼
Xn�3

j¼0

jΔE21 jþmj i jþmh jM andZcold ¼ Tr e�βcoldHcold
� �

:

ð32Þ

Notice that in order to define these “thermal states”, we have
introduced two fictitious Hamiltonians, namely, Hhot and Hcold.
These operators are necessary if we want to consider the
distribution of the machine as the mixture of two thermal
distributions, but they do not enter in any way in the derivation
of the extractable work. Indeed, as we specified before, the
machine M can have any Hamiltonian (it does not modify the
amount of work we extract during the cycle), and we choose to
use a trivial one HM= 0, so that the machine acts as a memory.
The weight λ in the mixture is given by

λ ¼ 1� e�βcoldΔE21

1� e�βhotΔE10�βcoldΔE21
: ð33Þ

Thus, during the cycle, the passive state ρP first interacts with
the “hot reservoir”, by performing a sequence of swaps between
the pair of states 0j iP and 1j iP and the levels of τβhot . Then, the
state interacts with the “cold reservoir”, performing a sequence of
swaps between the pair 1j iP and 2j iP and the levels of τβcold .

In this scenario, we find that the probability distribution of the
passive state ρP is infinitesimally modified, and consequently the
work extracted is infinitesimally small. In particular, we find that
the unit of probability, defined in Eq. (21), tends to 0 with an
exponential scaling, ΔP / e�βhotmΔE10 for m→∞. Let us consider
the probability distribution of the final state of the system ~ρP.
Since the distribution only changes infinitesimally during the
cycle, we can recast Eqs. (18), (19) and (20) as a set of differential
equations. Thus, we can imagine the situation in which infinite
many machines are present, so that we can keep infinitesimally
changing the state of the main system. In this case, the evolution
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of the state ρP is governed by the following equation

dp1
dt

¼ � 1þ α p0 tð Þ; p1 tð Þð Þð Þ dp0
dt

; ð34Þ

where the parameter t provides a continuum label for the
sequence of cycles we perform on the passive state. We
can then solve this equation for extremal cases for the function
α(p0, p1). When the parameter function α(p0,(t), p1(t)) is equal to
one of its limiting values, Eq. (34) assumes a clear meaning. In
fact,

when α p0 tð Þ; p1 tð Þð Þ ¼ ΔE10
ΔE21, then the differential equation can

be recast as a condition over the average energy of the system,
that is,

Tr HP ρP½ � ¼ Tr HP ~ρP½ �: ð35Þ

Then, for α taking this value, the passive state evolves along a
trajectory that conserves the energy of the system.

when α p0 tð Þ; p1 tð Þð Þ ¼ βhot tð ÞΔE10
βcold tð ÞΔE21, instead, the differential equa-

tion can be recast as a condition over the entropy of the system,
that is,

S ρPð Þ ¼ S ~ρPð Þ; ð36Þ

where S ρð Þ ¼ �Tr ρ log ρ½ � is the Von Neumann entropy. Then,
for this α, the passive state evolves along a trajectory that
conserves the entropy of the system.

For α taking values inside the allowed range, we have that any
trajectory between the two presented above is possible, and the set

of achievable states is shown in Fig. 5. It is possible to show that
the evolution of the system moves the passive state toward the set
of thermal states, which are the stationary states of this dynamic.
In Fig. 5, we also show the same set of achievable states,
represented this time in the energy-entropy diagram32. It is clear
that, through this evolution, we can obtain any passive state with
a smaller average energy and a bigger entropy than ρP. In
Supplementary Note 5, we show that these states are also the only
ones that we can reach with our protocol (and with a broader
class of maps, called activation maps).

It is interesting to consider the limiting values of work
extraction that can be achieved following the scheme suggested in
this section. When the system evolves along the energy-
preserving trajectory, the final state we obtain is the thermal
state of HP at temperature β�1

min, that is, τβmin
, where the

temperature is such that Tr HP ρP½ � ¼ Tr HP τβmin

� �
. In this case,

it is easy to see that the protocol does not extract work, and its
only effect consists in raising the entropy of the system. If we
consider the efficiency of this cycle, Eq. (17), we see that η= 0, as
expected.

The opposite limit is more interesting. This is the case in which
the system evolves along the entropy-preserving trajectory, and
the transformation which acts on the system is therefore
reversible. The final state we obtain is τβmax

, that is, the thermal
state of HP at temperature β�1

max, such that S ρPð Þ ¼ S τβmax

� �
. The

work extracted by the cycle is

ΔW ¼ Tr HP ρP � τβmax

� �� �
; ð37Þ

which, interestingly, is the maximum amount one can extract by
means of reversible operations31, 32. We refer to the
quantity shown in Eq. (37) as the catalytic ergotropy associated
with the passive state ρP, since it is the maximum
energy extracted from the state when reversible operations are
allowed in the presence of an additional system (the machine). It
is worth noting that the catalytic ergotropy is the optimal
work that can be reversibly extracted from a closed system
when a catalyst is allowed. In the case of open quantum
systems, work extraction aided by auxiliary systems has been
considered in refs. 38, 46–48.

Significantly, if we compute the efficiency of the process, Eq.
(17), we find that it is equal to the Carnot efficiency,
ηCarnot ¼ 1� βhot

βcold
. Thus, we see that our set up allows for

maximal work extraction from passive states, and the protocol
extracting this energy is reversible. In fact, no correlations are
created between the machine and the system, so that the entropy
of the system is preserved. The reversibility of the asymptotic
protocol implies (via a Carnot argument49) that our result
must be optimal, and model-independent. Therefore, even
though we extract energy from passive states with a very specific
protocol, our result is independent of such protocol, and any
other reversible protocol would extract the same amount of
energy.

Discussion
In the paper, we have presented a protocol that allows us to
extract work from any single copy of an athermal passive state.
The protocol utilises an ancillary system for the work extraction,
and the local state of this system is recovered at the end of the
cycle. In this way, the cycle can be run multiple times, and each
time it acts on a new copy of the passive state. The dimension of
the ancillary system grows as the distance between the state and
the set of completely passive states is reduced. Moreover, with an
infinite dimension machine we can evolve a passive state
smoothly towards the set of thermal states. Optimal work
extraction can be obtained in this case, and it is achieved by

1
p1 S

log d

S (�P)

E (�P) E
–

�P

p0

E0
E

d
�P

�min �max

��min

��max

2

1 1
2

1
3

1
3

0
0

a b

Fig. 5 Instability of passive states and their dynamics. a The state space of a
qutrit system, where the region of passive states is highlighted in light blue.
The black line contained in the passive region is the set of thermal states.
We fix an initial state ρP, represented by the black point in the diagram.
Then, we evolve this state by applying the cycle Sm,n (where m, n→∞) an
infinite number of times. The evolution is then modulated by the parameter
α ¼ n

m. For α equal to ΔE10
ΔE21 , the system evolves along the yellow trajectory,

and the final state is the thermal state at temperature βmin (with same
average energy of ρP). For α ¼ βhot tð ÞΔE10

βcold tð ÞΔE21, the system evolves along the
purple line, and the final state is the thermal state at temperature βmax (with
same entropy of ρP). The dark blue region represents the subset of
achievable states when the initial state is ρP. b A partial representation of
the state space of a d-level quantum system in the energy–entropy
diagram32. In this diagram, quantum states are grouped into equivalence
classes defined by their average energy E and their entropy S. Each point
between the x-axis (the set of pure states) and the dark blue curve (the set
of thermal states) represents one of these equivalence classes. The
diagram depends on the Hamiltonian HP of the system. Here, we only
represent the states with average energy lower than E ¼ Tr HPρmm½ �, where
ρmm ¼ I

d is the maximally-mixed state, since all passive states are contained
in this set. For a given initial state ρP, the light blue region contains all the
passive states, which can be achieved with the process
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mapping the initial state into the thermal state with the same
entropy.

The present work provides some evidence that a resource
theory for thermodynamics with an imperfect thermal reservoir
presents non-trivial challenges. Such a resource theory could be
realised by providing passive states for free. However, an
obvious restriction we should make in this resource theory
consists in the fact that we could not provide more than k−1
copies of a k-activable passive state, otherwise work
might be extracted with unitary operations from this free state.
Moreover, our results show that, even in the case in which a
single passive state is provided, an ancillary system exists such
that work can be extracted from the individual passive state.
Then, in order to build a sensible resource theory, passive states
should be always provided at a work cost, equal to the optimal
amount of energy extractable from them when a machine is
present.

Data availability. Data sharing not applicable to this article
as no data sets were generated or analysed during the current
study.
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