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This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A
volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-
phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function
of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in
simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore
geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries.
A simple parametric model is then presented to estimate general mobility terms as a function of geomet-
ric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities com-
puted using direct numerical simulation.
� 2018 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Immiscible two-phase flow through porous media occurs rou-
tinely in a wide range of environmental and industrial processes,
including enhanced oil recovery [1], carbon dioxide storage in sub-
surface aquifers [2,3], remediation of contaminated soils [4] and
fuel cell technology [5,6].

The macro-scale modelling of these processes requires the spec-
ification of macroscopic momentum equations for each of the two
fluids. These equations can be conventionally approximated as the
extension of Darcy’s law to two-phase flow with relative perme-
abilities for each phase [7]. However, this traditional approach
often does not take into account the viscous coupling of the fluids
due to the momentum transfer across the fluid-fluid interface [8].
The assumption of uncoupled flows of the fluids can lead to inac-
curate results for those two-phase flow regimes in which coupling
drag between fluid phases can be significant [9,10].

Several experimental and theoretical studies have reported the
significance and effects of viscous coupling in two-phase flows.
Whitaker [11] employed a method of volume averaging to analyze
immiscible two-phase flow in a general porous medium. He
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developed a form of coupled Darcy-like equations containing addi-
tional terms that represent the influence of viscous drag exerted
between fluid phases. Kalaydjian [12] studied the spontaneous
counter-current flow of a non-wetting fluid ganglion by a wetting
fluid in a square capillary tube. He proposed a new form of the
two-phase Darcy equation in which a matrix of relative permeabil-
ities, with equal off-diagonal terms representing the contribution
of the viscous coupling, relates flow rates to pressure gradients.
Avraam and Payatakes [13] employed a parameter estimation
approach to obtain all four terms of the relative permeability
matrix based upon a statistical analysis of experimental data,
obtained from a set of steady-state co-current two-phase flows
in a micro-model. They disputed the validity of Onsager-Casimir
reciprocal relation and found that the off-diagonal coupling coeffi-
cients are not necessarily equal. Ehrlich [14] used semi-analytical
equations to study the effect of viscous coupling on relative perme-
abilities in two-phase flow through an idealized model of a porous
medium consisting of a bundle of regular polygonal capillary tubes,
suggesting that the rheology of the interface can affect the magni-
tude of viscous coupling.

In addition to empirical and theoretical studies, numerical sim-
ulations have been recently used to uncover mechanisms that con-
trol and describe viscous coupling effects in two-phase flow at the
pore level. Various pore-scale modelling approaches, such as pore-
network models [15,16], lattice Boltzman methods [17,18], mesh-
free Lagrangian particle methods [19] and Eulerian grid-based
methods [20,21], have been employed. Li et al. [22] used a two-
phase lattice Boltzmann model for two-phase flow through a
homogeneous sphere-pack and systematically studied viscous cou-
pling effects over a broad range of conditions, suggesting fluid-fluid
interfacial area as a key parameter which can affect relative perme-
abilities. Dehghanpour et al. [23] employed a high-resolution
finite-element numerical method to investigate viscous coupling
for sandwiched layers in angular capillaries in three-phase flow.
Xie et al. [24] proposed an improved pore-network model to
accommodate viscous coupling effects and examined its efficiency
through computing relative permeabilities for some mixed- and
water-wet rock samples and provided comparisons with experi-
mental results.

Among pore-scale modelling methods, pore-network models
have grown in popularity due to their computational efficiency,
which enables them to study large realistic rock samples [25–
29]. These models rely upon a simplified representation of the pore
space geometry and empirical models for hydraulic conductance
and capillary entry pressure in pore/throat elements. The hydraulic
conductance for each phase is a key parameter in pore-network
models to relate the flow rate of a phase to pressure gradient.

Several studies have been performed to quantify and establish
correlations for hydraulic conductances by relating them to pore
geometry, contact angle and interface rheology. Ransohoff and
Radke [30] employed a finite-element method to model the flow
of a wetting phase along corners of predominantly gas-occupied
noncircular capillaries. They quantified the relationship between
the average velocity of the wetting phase in a corner, u, and the
pressure gradient within the phase, rp, as a dimensionless flow
resistance, b,

b ¼ � R2
l

lu
rp; ð1Þ

where Rl is the radius of interface curvature. They reported the com-
puted dimensionless flow resistance for different pore geometries,
contact angles and interfacial shear viscosities. Zhou et al. [31]
established approximate analytical solutions to relate the dimen-
sionless flow resistance, b, to pore and interface geometry for oil
flow along sandwiched layers and water flow along corners of
predominantly gas-occupied noncircular capillaries. Futaisi and Pat-
zek [32] employed a high-resolution finite-element method in con-
junction with a projection-pursuit regression approach to
determine analytical correlations for three-phase hydraulic conduc-
tances in angular capillaries. However, none of theses models take
into account the existence of viscous coupling between the flowing
fluids and simply assume that conductances are independent of vis-
cosity ratio, i.e. uncoupled flow of the fluids.

This assumption may adversely affect the accuracy of pore-
network models when used to predict macroscopic flow properties
such as relative permeabilities. Therefore, it is important to estab-
lish reliable hydraulic conductance correlations that respect the
existence of viscous coupling between the two fluids and incorpo-
rate them into pore-network models. To do so, one can perform
direct numerical simulations on various two-phase fluid configura-
tions in single micro-scale capillaries to calculate generalized
mobilities of each fluid, stabilized by capillary forces. Then, this
information can be exploited to find mathematical expressions
which can be incorporated into two-phase pore-network models
in the form of hydraulic conductivities.

In this work, we first solve two-phase flow through square, tri-
angular and star-shaped pore geometries with uniform and
nonuniform wettability conditions using a volume-of-fluid finite-
volume based numerical method. Then, we employ an approach
similar to Dehghanpour et al. [23] to obtain simple parametric
scaling models for the hydraulic conductance of centre, layer and
corner flows as a function of the geometry and viscosity ratio.
Finally, we find appropriate parameters for each model by fitting
against general mobilities that are obtained from the numerical
simulations.

2. Pore-scale modelling and validation

In this section, we first give a brief description of the direct
numerical simulation approach used to model two-phase flow at
the pore level. Then, the accuracy of the model in capturing the vis-
cous coupling effects is validated for a square capillary tube for
which a semi-analytical solution is available [14].

2.1. Numerical model

The following single set of Navier-Stokes equations is solved to
describe an isothermal, incompressible, immiscible flow of two
Newtonian fluids:

r � u ¼ 0; ð2Þ

@ðquÞ
@t

þr � ðquuÞ � r � T ¼ �rpþ Fþ fc; ð3Þ

where u is the velocity vector, T ¼ lðruþ ðruÞTÞ is the viscous
stress tensor, q is the local density, l is the local dynamic viscosity,
p is pressure, F is any body force and fc is the capillary force com-
puted based on a contour-level surface force model; see Shams
et al. [21] for more details.

Since the two fluids are modelled as one single-fluid continuum
system, the fluid-fluid interface is treated as a discontinuity in fluid
properties using an indicator function, a. Therefore, the fluid prop-
erties of the system such as density and dynamic viscosity are cal-
culated proportional to the indicator function,

q ¼ aq1 þ ð1� aÞq2;

l ¼ al1 þ ð1� aÞl2;
ð4Þ

where the subscripts 1 and 2 denote the first and second phases,
respectively. The indicator function, a, represents the volume frac-
tion of one of the fluids in each computational cell. If the cell is
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completely occupied by the first fluid then a is equal to one, and if it
is completely occupied by the second fluid then a ¼ 0. For the cells
that contain the fluid-fluid interface, the value of a is between zero
and one.

The interface is algebraically advected through the domain as,

@a
@t

þr � ðauÞ ¼ 0: ð5Þ

The numerical method is implemented based upon a volume-
of-fluid finite-volume solver in the OpenFOAM library [33]. Eqs.
(2), (3) are coupled using the pressure implicit with splitting of
operator (PISO) method of Issa [34] and solved iteratively along-
side Eq. (5) to obtain cell-centred velocity and pressure fields.
The details of the numerical method, including the validation pro-
cess, can be found in Shams et al. [21].
2.2. Viscous coupling validation

Here, we validate the accuracy of the numerical model to com-
pute the momentum transfer across the interface due to viscous
coupling. Representing the interface as a discontinuity in fluid
properties makes it possible to capture the viscous coupling
implicitly rather than imposing kinematic and dynamic boundary
conditions at prescribed interfaces. We simulate immiscible co-
current two-phase flow through a three-dimensional square tube
where a non-wetting phase, fluid 2, flows in the centre of the tube
while the wetting-phase, fluid 1, moves along the corners of the
capillary (see Fig. 1). Simulations are performed for three viscosity
ratios with different mesh resolutions. Computed velocity fields
are then compared against the semi-analytical solution given by
Ehrlich [14].

The flow domain is a cubic square of side L ¼ 20 lm, predomi-
nantly filled with fluid 2 while fluid 1 resides in the corners. The
volumetric saturation of the wetting fluid is S1 ¼ 0:2146. The com-
putational mesh is uniform Cartesian, equal grid spacing
dx ¼ dy ¼ dz ¼ h; with mesh resolutions of L=h ¼ 12; 24; 48; and
72. We apply no-slip boundary conditions on the solid walls with
a constant contact angle of zero measured through the wetting
phase. Periodic boundary conditions are applied in the flow direc-
tion along the z-axis. The dynamic viscosity ratios, M ¼ l1=l2, are

chosen to be 0.1 (l1 ¼ 0:1l2 ¼ 10�3 Pa s), 1 (l1 ¼ l2 ¼ 10�3 Pa s),

and 10 (l1 ¼ 10l2 ¼ 10�2 Pa s); the density ratio is 1 with
q1 ¼ q2 ¼ 1000 kg/m3. The interfacial tension is r ¼ 0:03 N/m
and no interfacial shear viscosity at the fluid-fluid interface is con-
sidered. Constant body forces, jF1j ¼ jF2j ¼ 10 Pa/m, are imposed,
Fig. 1. Schematic illustration of steady-state co-current two-phase flow in a square capill
wetting phase, fluid 2.
along the z-axis, for both fluids to reach a steady-state flow
through the tube.

Fig. 2 compares the steady-state profiles of simulated axial
velocity against the semi-analytical solution, along the diagonal
of the square capillary tube, r, for various mesh resolutions and vis-
cosity ratios. For M ¼ 1, there is a good agreement between the
numerical and the theoretical solutions even for a mesh resolution
as low as L=h ¼ 12. However, for M ¼ 0:1 and M ¼ 10, to obtain a
velocity field in agreement with the semi-analytical solution, we
require higher mesh resolutions to resolve the discontinuity of
the fluid properties at the fluid-fluid interface accurately.

For a better comparison, we define the normalized error of the
velocity field in a cross-section perpendicular to the flow, x� y
cross-section, by

EðuzÞ ¼
P juz � u�

z jP
u�
z

; ð6Þ

where uz and u�
z are, respectively, the numerical and semi-analytical

values of velocity normal to the x� y cross-section, and the summa-
tion is performed over all the faces of the cross-section.

Fig. 3 plots the error versus mesh resolution for different viscos-
ity ratios. According to this plot, the numerical method exhibits a
second-order convergence rate when M ¼ 1. However, for the vis-
cosity ratios other than 1, M ¼ 0:1 and M ¼ 10, the convergence
rate decreases. Therefore, to perform accurate simulations for vary-
ing viscosity ratios, the mesh resolution is chosen to be L=h ¼ 72
for the rest of this study.
3. Geometry configurations and coupled flow modelling

In this section, we first describe pore geometries and related
fluid configurations for which viscous coupling effects are investi-
gated. Then, the impact of different interface boundary conditions
on the computed hydraulic conductance for these fluid configura-
tions is discussed. Finally, we present our approach to model the
coupled flow of two phases by defining a generalized matrix of
mobilities similar to the generalized Darcy equation.

Three pore geometries: square, equilateral triangular and star-
shaped capillary tubes, with the same inscribed radius of
b ¼ 10 lm, and different wall lengths, lw, are considered (see
Fig. 4). For each geometry, we set up two fluid configurations: (a)
corner flow through pores with uniform wettability as schemati-
cally depicted in Fig. 4(a–c), and (b) sandwiched layer flow through
pores with nonuniform wettability as shown in Fig. 4(d–f); with
the grey region representing fluid 1 (water), and the white region
ary tube and cross-sectional configuration of the wetting phase, fluid 1, and the non-



Fig. 2. Axial velocity profiles for co-current two-phase flow along the diagonal of a
square capillary tube as a function of mesh resolution in comparison to the semi-
analytical solution for viscosity ratios, M ¼ l1=l2 of (a) M ¼ 0:1, (b) M ¼ 1, and (c)
M ¼ 10.

Fig. 3. The normalized error of the computed velocity profile, EðuzÞ, Eq. (6), versus
mesh resolution for two-phase flow with different viscosity ratios, M, in a square
capillary tube.

Fig. 4. Schematic illustrations of fluid configurations for square, equilateral
triangular and star-shape pore geometries with (a)–(c) uniform wettability, and
(d)–(f) nonuniform wettability conditions. For uniform wettability conditions, fluid
flow occurs in the corner (grey) and centre (white) of the capillaries, while for
nonuniform wettability conditions, in addition to corner and centre flow (grey), we
can also have fluid flow in a stabilized intermediate layer (white) sandwiched
between the corner and centre of the capillaries. The geometries have different wall
lengths, lw , while the inscribed radius, b, is the same for all geometries and equal to
10 lm.

Fig. 5. Schematic illustrations of initial and stabilized form of fluid-fluid interfaces
and corresponding geometric parameters for capillaries with (a) uniform wettabil-
ity conditions, and (b) nonuniform wettability conditions. The curvatures on each
side of the sandwiched layer for nonuniform wettability conditions are equal,
r12 ¼ r23.
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representing fluid 2 (oil). In all cases, flow is perpendicular to the
cross-section and driven by a uniform body force.

Fig. 5 depicts the parameters that control the geometry of
corner and sandwiched layers in the crevices of the non-circular
capillary tubes. For the pores with uniform wetability, in each cor-
ner, there is one fluid-fluid interface, C12, separating the corner
flow of fluid 1 from the centre flow of fluid 2. The geometry of
the two fluids can be defined by the corner half-angle (c), the con-
tact angle (h12) and the meniscus-apex distance (b1). For the
mixed-wet corners, the shape of sandwiched layers, however,
depends on two fluid-fluid interfaces, C12 and C23, which separate
the creeping flow of fluid 2 in the intermediate layer from the flow
of fluid 1 in the corner and the centre, regions 1 and 3. Therefore, in
addition to c; h12, and b1, we also need the meniscus-apex distance
and contact angle associated to the C23 interface, b2 and h23,
respectively, to define the geometry of the layer [32]. The
meniscus-apex distances can be expressed as
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b1 ¼ r12
cos h12 þ cð Þ

sinðcÞ ; b2 ¼ r23
cos h23 þ cð Þ

sinðcÞ ; ð7Þ

where r12 and r23 are, respectively, the radii of curvature of C12 and
C23. The contact angle h23 is a free parameter in our simulations,
while the contact angle h12 is a hinging value to make the interfacial
curvature on both sides of the layer equal, r12 ¼ r23; see Fig. 5(b).

For each simulation, first, interfaces are initialized as straight
lines in each corner, while the parameters, the distance between
C12 centre and the vertex of the corner, is used to control the satura-
tion of fluids in the corner (see Fig. 5). The interfaces are thennumer-
ically stabilized for the imposed corner half-angle and contact angle.

We employ the inscribed radius, b, as the characteristic length
to scale spatial coordinates, and the viscosity and pressure gradient
of fluid 2 (l2 and /2) to scale the velocity of fluids in each flow
region [32,23]. The scaling leads to the following dimensionless
relations:

~b1 ¼ b1
b ;

~b2 ¼ b2
b ;

~lw ¼ lw
b ;

~Ai ¼ Ai
b2
; ~li ¼ li

l2
; ~/i ¼ /i

/2
;

~ui ¼ uil2

/2b
2 ;

ð8Þ

where the subscript i denotes the flow regions in the domain, see
Fig. 5, Ai is the area open to flow, and ui and /i are the velocity field
and pressure gradient in each region. The dimensionless volumetric
flow rate passing through region i; Xi, is obtained as

~qi ¼
Z

Xi

~uid~Ai: ð9Þ

The flow coupling can be influenced by the type of imposed
boundary conditions on fluid-fluid interfaces (C12; C23). Three dif-
ferent boundary conditions can be considered [32]:

1. No-flow boundary condition: the interface is treated as a solid
boundary and the velocity of each fluid at the interface is forced
to be zero.

2. Free-slip boundary condition: the interface is treated as a per-
fectly lubricated boundary where fluids can slip freely on top
of each other.

3. Continuity boundary condition: there is continuity of velocity
and shear stress along the interface and fluids exchange
momentum at the interface.

In this work, we employ a direct numerical simulation tech-
nique, described in Section 2, to simulate coupled two-phase flow
Fig. 6. Visualizations of (a) the initialized, and (b) equilibrium configuration of sandw
c ¼ h23 ¼ 30� , and S2 ¼ 0:2.
through the capillary tubes. In the numerical method, since the
interface is treated as a discontinuity in fluid properties, we do
not need to explicitly impose boundary conditions on the interface.
Velocity and stress continuity conditions are implicitly captured,
i.e. we have the continuity boundary condition along the interface.

We first obtain volumetric fluxes for different flow regions in
the capillary tube. Then, the following algebraic equation system
is formed based on the generalized Darcy’s equation [12,13,8]
and solved to compute the flow conductance matrix, ½~kij�:

½~q� ¼ �½~kij�½~/�; ð10Þ

where ½~q� and ½~/� are the column vectors of the dimensionless vol-
umetric flux and dimensionless pressure gradient for each phase,
respectively, and ½~kij� is the square matrix of generalized dimension-
less mobilities with the off-diagonal terms representing the viscous
coupling exerted between fluid phases [12]. The matrix of mobili-
ties is 2 by 2 for uniform wettability configurations,

½~kij� ¼
~k11 ~k12
~k21 ~k22

" #
; ð11Þ

and 3 by 3 for nonuniform wettability configurations,

½~kij� ¼
~k11 ~k12 ~k13
~k21 ~k22 ~k23
~k31 ~k32 ~k33

2
64

3
75: ð12Þ

The coefficients of the matrix depend on the contact angle, h,
the corner half-angle, c, the saturation, S, and the viscosity ratio,
~l, of the fluids flowing through the capillary. For each fluid config-
uration and viscosity ratio, to quantify the coefficients, we apply a
non-zero pressure gradient to one flow region (centre, layer or cor-
ner) and zero pressure gradient to other flow region(s) and solve
Eq. (10) based on the resultant volumetric flux vector. This is
repeated for all flow regions in the cross-section, two simulations
for uniform wettability configurations and three simulations for
nonuniform wettability configurations, to obtain all diagonal and
off-diagonal terms of the matrix. From our numerical simulations,
we observe that the matrix is symmetrical (~k12 ¼ ~k21; ~k23 ¼ ~k32 and
~k13 ¼ ~k31) which is consistent with Onsager’s reciprocity equations
[35].

To show the dependence of the velocity profile and conse-
quently flow conductivity on viscosity ratio and interface boundary
condition, we model two-phase flow through the equilateral trian-
gular capillary tube with sandwiched layers. Fig. 6 shows the
iched oil layers, a = 1, in the corners of an equilateral triangular capillary with



Fig. 7. Steady-state velocity distribution across flowing fluids with different viscosity ratios in an equilateral triangular capillary with c ¼ h23 ¼ 30� , and S2 ¼ 0:2.

Fig. 8. Dimensionless total hydraulic conductance of a sandwiched oil layer, ~k2, as a
function of viscosity ratio, for different interface boundary conditions. The capillary
tube is an equilateral triangle with c ¼ h23 ¼ 30� and S2 ¼ 0:2.
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initialized and equilibrium configuration of the oil layers for a sat-
uration of S2 ¼ 0:2. The viscosity of the sandwiched oil layers is
kept constant and equal to l2 ¼ 10�3 Pa s, while the viscosity of
water flowing in the corners and centre, l1, is changed to have vis-

cosity ratios, ~l1 ¼ l1=l2, ranging from 10�4 to 104. A uniform pres-
sure gradient (body force) of /1 ¼ /2 ¼ /3 ¼ 100 Pa/m is applied
perpendicular to the cross-section of the capillary tube. The con-
tact angle is chosen to be h23 ¼ 30�, the interfacial tension is
r ¼ 0:03 N/m and the continuity of velocity and shear stress is
assumed at the interface with zero interfacial shear viscosity.

Fig. 7 compares the steady-state velocity profiles for five sample
viscosity ratios. It can be observed that the influence of the viscos-
ity ratio on the value and profile of velocity can be quite significant.
When ~l1 ¼ 1, the resultant velocity profile is equivalent to the
single-phase flow solution for the domain. As the viscosity ratio
deviates from one (~l1 ¼ 0:1 and ~l1 ¼ 10), the flow coupling
between the centre and corner regions decreases. Our simulations
show that for very low or high viscosity ratios such as ~l1 ¼ 0:001
and ~l1 ¼ 1000, the flow regions become effectively decoupled
from each other. When ~l1 ¼ 1000 the fluid-fluid interface behaves
as a solid wall for the sandwiched oil layers, whereas it acts as per-
fectly lubricated for the water flowing in the centre and corners.
The reverse pattern can be observed when ~l1 ¼ 0:001.

Fig. 8 depicts the computed dimensionless total hydraulic
conductance,

~ki ¼ �~qi=~/i; ð13Þ

for one of the oil layers, i ¼ 2, as a function of viscosity ratio, and
compares the results for different interface boundary conditions
(free-slip, no-flow, and continuity). It is clear that no-flow and
free-slip boundary conditions result in an uncoupled flow of fluids,
independent of the viscosity ratio. On the other hand, the computed
hydraulic conductance with the continuity boundary condition
exhibits a strong dependency on the viscosity ratio. For very high
viscosity ratios (~l1 P 103) the continuity boundary condition
behaves similar to the no-flow one, due to the fact that the water
phase in the centre and corners of the capillary has relatively high
viscosity values and acts as a solid phase with respect to the oil lay-
ers. For very low viscosity ratios (~l1 6 10�2) the conductance
reaches a maximum at a value higher than the free-slip limit.
Exceeding the no-slip limit is a clear indication of the importance
of viscous coupling when the water phase drags the intermediate
layer along and contributes to its conductance. Therefore, it is
important to investigate the viscous coupling effect on the com-
puted transport properties by considering continuity of velocity
and shear stress along the interface.

To quantify the contribution of momentum transfer due to vis-
cous coupling, we evaluate the hydraulic conductance matrix, Eq.
(12), for different viscosity ratios. Fig. 9 compares the portion of
the total hydraulic conductance resulting from the pressure gradi-
ent within the sandwiched oil layer, ~k22, to the portions due to the
drag force from the adjacent water phase flowing in the centre, ~k23,
and corner, ~k21. It can be observed that for viscosity ratios less than



Fig. 9. Comparison of contributing components to the total conductance of a
sandwiched oil layer, ~k2, in a triangular capillary tube with c ¼ h23 ¼ 30� and
S2 ¼ 0:2: the conductance resulting from the pressure gradient within the oil phase
in layer, ~k22, and the conductance due to the drag force exerted from the
neighbouring water phase in the centre ~k23, and corner ~k21.

Fig. 10. Comparisons of the dimensionless resistance, b, Eq. (1), for wetting phase
flow along the sharp corners of a square capillary tube, as a function of contact
angle, h12. The wetting phase in corners, fluid 1, is driven by a constant nonzero
pressure gradient, while the pressure gradient within the non-wetting phase in the
centre, fluid 2, is zero: (a) ~l1 ¼ l1=l2 6 1, (b) ~l1 ¼ l1=l2 > 1.
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0:1, the values of ~k23 become higher than ~k22, which indicates the
importance of the momentum transfer across the interface
between the centre and the oil layer, and also justifies the exceed-
ing of the total conductance, ~k2 ¼ ~k21 þ ~k22 þ ~k23, from the free-slip
limit.

To further investigate this, we model two-phase flow through a
square capillary tube with uniform wettability, Fig. 4(a). The
dimensionless flow resistance, b, Eq. (1), for the wetting liquid
along one of the corners is computed for different contact angles
and viscosity ratios. The results are compared with the study of
Ransohoff and Radke [30] when the comparison is possible, i.e.
wetting phase flow in sharp corners while the interfacial shear vis-
cosity, ls, is either zero (equivalent to the free-slip boundary con-
dition) or infinite (equivalent to the no-flow boundary condition).

First, we consider a flow arrangement in which the wetting
phase, fluid 1, flow in corners is driven by a constant non-zero
pressure gradient while the pressure gradient within the central
non-wetting phase, fluid 2, is zero. This means that the stress
exerted by the non-wetting phase, due to its flow in the centre,
on the interface is zero, which is in accordance with the assump-
tion of having an inviscid central phase in Ransohoff and Radke
[30]. We keep the viscosity of the wetting phase constant,
l1 ¼ 10�3 Pa s, and decrease or increase the viscosity of the non-
wetting phase in the centre, l2, to set different viscosity ratios,
~l1 ¼ l1=l2. Fig. 10 shows the computed dimensionless flow resis-
tance as a function of contact angle for a large range of viscosity
ratios. For ~l1 ¼ 1 and ~l1 ¼ 0:1 the dimensionless resistances are
overestimated when assuming a no-flow boundary condition [30]
and this assumption can be a good approximation only when the
viscosity of the central phase is very high compared to the wetting
phase in the corners, ~l1 6 10�2. On the other hand, the free-slip
boundary condition can be a very good approximation for viscosity
ratios more than one, as shown in Fig. 10(b). This is expected due
to the fact that the non-wetting phase in the centre is relatively
less viscous and since the pressure gradient within this phase is
zero the drag force exerted on the interface is insignificant.

Finally, we perform a similar analysis for the case that both flu-
ids are driven using an identical non-zero pressure gradient in a
co-current flow. Fig. 11(a) demonstrates that the solution beha-
viour for ~l1 6 1 is quite similar to the previous case, Fig. 10(a).
However, as shown in Fig. 11(b), for ~l1 > 1, the numerical results
of Ransohoff and Radke [30], with a free-slip boundary at the inter-
face, significantly overestimates the dimensionless resistances.
This can be explained by the fact that the non-wetting phase with
a low viscosity can move at a relatively high velocity, which results
in a significant drag force on the interface that enhances the flow
conductance of the wetting phase in the corners.

These results highlight the importance of momentum transfer
across the interface, especially for mid-range viscosity ratios,
10�2 6 ~l1 6 102, where treating the coupled two-phase flow prob-
lem as independent flows of fluids separated by no-flow or free-
slip interfacial boundaries can introduce significant errors in the
computation of hydraulic conductance. In the next section, we pro-
pose and validate some simple relations to estimate hydraulic con-
ductances which take into account the viscous coupling effects due
to momentum exchange at the interface.

4. Scaling models and validation

In this section, we provide heuristic models to relate the gener-
alized mobilities (~kij) to the geometrical parameters (c; h12; h23)
and viscosity ratio (~l). These generalized mobilities are then com-
pared with the corresponding numerical solutions and the average
of relative absolute errors are reported. Dehghanpour et al. [23]
also developed an empirical model to estimate the generalized
mobilities for wetting layers (water) and intermediate layers (oil)
in three-phase flow through angular capillaries, assuming the cen-
tral fluid (gas) is decoupled and does not exchange momentum
with the oil and water. We follow a similar argument to develop
expressions to estimate the generalized mobilities in two-phase



Fig. 11. Comparisons of the dimensionless resistance, b, Eq. (1), for wetting phase
flow along the sharp corners of a square capillary tube, as a function of contact
angle, h12. The wetting phase in corners, fluid 1, and the non-wetting phase, fluid 2,
in the centre are driven by a constant nonzero pressure gradient, i.e. co-current
flow: (a) ~l1 ¼ l1=l2 6 1, (b) ~l1 ¼ l1=l2 > 1.

306 M. Shams et al. / Journal of Colloid and Interface Science 522 (2018) 299–310
flow for (a) uniform wettability where oil in the centre exchanges
momentum with water in the corners of a capillary, and (b)
nonuniform wettability conditions where there is flow coupling
between oil in the sandwiched layers and water in the centre
and corners of a capillary.

4.1. Conventional (diagonal) terms

For laminar fully-developed pressure-driven single-phase flow
through a straight duct with a constant cross-section, the volumet-
ric flow rate, ~q, can be related to the fluid pressure drop, ~/, as fol-
lows [23]:

~q ¼ ~k~/; ð14Þ
where

~k ¼ c
~l

~A
� �3
~pwð Þ2

: ð15Þ

Here c is a proportionality constant which depends only on the duct

shape, ~A is the open area to flow, and ~pw is the wetted perimeter
defined as the length along which the fluid is in contact with solid
Table 1
Fitted values for the parameters of Eq. (16), usud to estimate the diagonal terms in the ge

Uniform Wetability

~k11 ~k22
Corner Centre

ci 1/7 1/6
ai 0.45 0.2
walls where the velocity is zero. Since the diagonal terms of the
matrix of mobilities represent the uncoupled pressure-driven flow
of each fluid under its own pressure gradient through a duct-
shaped passage, in analogy with Eq. (15), the following parametric
equation is employed to estimate the diagonal mobilities:

~kii ¼ ci
~li

~Ai

� �aiþ2

~pw;i
� �2ai ; i ¼ 1;2;3 ð16Þ

where the subscript i denotes the flow region, and ci and ai are con-
stant parameters for the flow region i.

In two-phase flow, the wetted perimeter of the flow region, ~pw;i,
in addition to the fluid–solid boundary, can include the fluid-fluid
interface, depending on the viscosity ratio of the adjacent fluids
[23]. For the case that the adjacent phase viscosity becomes much
higher than the viscosity of the phase in region i, the interface acts
as a no-flow boundary for region i and ~pw;i should include the
length of the interface. On the other hand, when the viscosity of
the neighbouring phase is much lower than the viscosity of the
phase in region i, the adjacent phase is inviscid compared to the
phase in region i and ~pw;i does not include the length of the inter-
face. Therefore, we use the following expressions to relate the wet-
ted perimeter to viscosity ratio for (a) the uniform wettability
condition [23],

corner : ~pw;1 ¼ 2~b1 þ~l12f ~l1ð Þ;
centre : ~pw;2 ¼ 2 ~lw � ~b1

� �
þ~l12f 1

~l1

� �
;

ð17Þ

and (b) for the nonuniform wettability condition,

corner : ~pw;1 ¼ 2~b1 þ~l12f ~l1ð Þ;
layer : ~pw;2 ¼ 2 ~b2 � ~b1

� �
þ~l12f 1

~l1

� �
þ~l23f 1

~l1

� �
;

centre : ~pw;3 ¼ 2 ~lw � ~b2

� �
þ~l23f ~l1ð Þ:

ð18Þ

Here ~l12 and ~l23 are, respectively, the dimensionless length of inter-
face C12 and C23, scaled by the inscribed radius, b, and the function f
is defined using the following decay function:

f ðxÞ ¼ 1
1þ nxn

; ð19Þ

where the value of n ¼ 2 is chosen to fit the simulation data.
The values reported in Table 1 for parameters in Eq. (16) are

found to fit our simulations best for uniform and nonuniform wet-
tability conditions.

To validate the scaling model we have simulated two-phase
flow through square ðc ¼ 45�Þ, triangular ðc ¼ 30�Þ, and star-
shaped ðc ¼ 22:5�Þ pore geometries, see Fig. 4, for different contact
angles ðh12 ¼ 30�; 45� and 60�Þ and volume saturations ðS2Þ. For
each case, the coefficients of the matrix of dimensionless mobilities
are computed as described in Section 3. Fig. 12 compares the pre-

dicted values of the diagonal terms, k
�
11; k

�
22, and ~k33, using the pro-

posed scaling model, Eq. (16), with the numerically simulated
values for uniform and nonuniform wettability cases. The proposed
correlation agrees well with the simulated values over four orders
of magnitude in conductance.
neral mobility matrix for uniform and nonuniform wettability configurations.

Nonuniform wetability

~k11 ~k22 ~k33
Corner Layer Centre

1/7 1/3 1/5
0.45 0.75 0.4



Fig. 12. Comparison of the predicted values of the scaling model, Eq. (16), with the simulated values of the diagonal terms. (a)–(b) The diagonal mobilities for corner and
centre flow in capillaries with uniform wettability, ~k11 and ~k22, respectively. (c)–(e) The diagonal mobilities for corner, sandwiched layer, and centre flow in capillaries with
nonuniform wettability, ~k11; ~k22 and ~k33, respectively.
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To quantify the error, we define the mean absolute relative
error as follows:

�E ~kii
� �

¼
X
N

j~knumii � ~kscaleii j
~knumii

 !
=N; i ¼ 1;2;3 ð20Þ

where ~knumii and ~kscaleii are the values of the dimensionless mobility
computed using numerical simulation and the scaling model,
respectively, and N ¼ 144 is the total number of fluid configurations
which have been simulated. The error values are reported in
Table 2.
4.2. Coupling (off-diagonal) terms

The off-diagonal terms of the matrix of mobilities represent the
coupled drag-driven flow of each fluid in a flow region resulting
from the pressure gradient in the other adjacent flow regions.
The simplest type of flow in fluid mechanics similar to this



Table 2
The mean relative errors, Eq. (20), in the predicted diagonal terms using Eq. (16).

Uniform Wetability Nonuniform wetability

~k11 ~k22 ~k11 ~k22 ~k33

Eð~kiiÞ 13% 14% 12% 17% 13%

Table 3
Fitted values for the parameters of Eqs. (24) and (25), used to estimate diagonal terms in the general mobility matrix for uniform and nonuniform wettability configurations.

Uniform wetability Nonuniform wetability

~k12 ~k12 ~k23 ~k13
Centre-corner Corner-layer Layer-centre Centre-corner

cij 0.25 0.5 0.4 0.8
aij 0.5 0.5 0.3 1.1
dij c c 1 c
g 2

2þ5~l1

5
5þ4=~l1

1:2
5þ7=~l1

6 1=~l1ð Þ2
0:4~Arþ2=~l1ð Þ2:5
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drag-driven flow in a capillary tube, is Couette flow in which we
have a laminar flow in the space between two parallel plates due
to a shear stress, ss, exerted to one of the plates while the other
is fixed [23]. The volumetric flow rate in Couette flow can be
related to the shear stress, open area to flow and wetted perimeter
in the following dimensionless form [36]:

~q ¼ 1
~l

~A
� �2
~pw

~ss: ð21Þ
Fig. 13. Comparison of the predicted values of the scaling model, Eqs. (24) and (25), with
term, ~k12, in capillaries with uniform wettability, and (b)–(d) the layer-corner coupled m
coupled mobility term, ~k13, in capillaries with nonuniform wettability.
In the case of two-phase flow through a capillary, by analogy
with Eq. (21), the volumetric flow rate of the fluid in region i due
to the drag force resulting from the pressure gradient in the adja-
cent flow region j, can be estimated as

~qi ¼ cij
~li

~Ai

� �2
~pw;i

~sij; i– j; ð22Þ
the simulated values of the coupling terms: (a) the centre-corner coupled mobility
obility term, ~k12, the layer-centre coupled mobility term, ~k23, and the centre-corner



Table 4
The mean relative errors, Eq. (20), in predicted coupling terms using Eqs. (24) and (25).

Uniform wetability Nonuniform wetability

~k12 ~k12 ~k23 ~k13

Eð~kijÞ 19% 11% 16% 15%
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where cij is a constant parameter, and the shear stress exerted on
the fluid–fluid interface, ~sij, can be expressed as a function of flow
geometry, viscosity ratio and pressure gradient as follows [23]:

~sij ¼ g ~l1ð Þ
~Aj

~pw;j

~/j; i– j: ð23Þ

Here the function gð~ljÞ is used to relate ~sij to the viscosity ratio and
is estimated by finding the best fit for simulated values of the cou-
pling term as a function of the viscosity ratio.

By substituting Eq. (23) in Eq. (22) and comparing with
~qi ¼ ~kij~/j, the following parametric equation can be written for
the coupling terms:

~kij ¼ cij
g ~l1ð Þ
~li

~Ai

� �aijþ1:5
~Aj

� �dijþ0:5

~pw;i
� �2aij ~pw;j

� �2dij ; i ¼ 1;2; j ¼ iþ 1; ð24Þ

where aij and dij are constant parameters.

The scaling model for ~k13, however, is computed slightly differ-
ently from the one for ~k12 and ~k23, due to the fact that flow regions
1 and 3 are filled with the same fluid separated by an intermediate
layer in region 2. Since the shear stress gets transmitted via an

intermediate layer, the geometrical parameters of the layer (~A2

and ~pw;2) as well as the viscosity ratio can affect ~k13. Therefore,
the function g in Eq. (23) is expressed as a function of both viscos-
ity ratio and relative thickness of the intermediate layer. In addi-
tion, Eq. (24) is modified to include the momentum dissipation
through the wetted perimeter of the intermediate layer:

~k13 ¼ c13
g ~l1; ~Ar

� �
~l1

~A3

� �a13þ1:5

~pw;2 þ ~pw;3

� �2a13
~A1

� �d13þ0:5

~pw;1ð Þ2d13
; ð25Þ

where ~pw;1 ¼ 2~b1; ~pw;2 ¼ 2 ~b2 � ~b1

� �
; ~pw;3 ¼ 2 ~lw � ~b2

� �
, and the

function g ~l1; ~Ar

� �
is used to relate the shear stress, ~s13, to both vis-

cosity ratio and relative thickness of the intermediate layer, ~Ar ,
defined as

~Ar ¼
 

~A2

~A1 þ ~A3

!0:5

: ð26Þ

The relative thickness ~Ar controls the momentum dissipation in

the intermediate layer. Larger values of ~Ar means more momentum
dissipation through the intermediate layer and consequently, less
momentum exchange and viscous coupling between fluids in
regions 1 and 3. Therefore the function g should have an inverse

relation to ~Ar . Moreover, if ~l1 � 1 or ~l1 	 1, i.e. the intermediate
layer acts as a solid barrier or an inviscid phase, g approaches to
zero to decouple the flows in region 1 and 3, ~k13 ¼ 0.

Table 3 reports the constant parameters (aij; cij and dij) and func-
tion g, used in Eqs. (24) and (25), which are found based on the best
fit to the values of ~kij computed from our numerical simulations for
all geometries.

Fig. 13 compares the predicted values for the coupling terms,
~k12 ¼ ~k21; ~k23 ¼ ~k32, and ~k13 ¼ ~k31, based on the proposed scaling
model, Eqs. (24) and (25), with the numerical results, for both
uniform and nonuniform wettability cases. One can observe that
the scaling model can estimate the coupling mobilities with a good
accuracy. The mean relative errors, Eq. (20), for the coupling terms
are given in Table 4.
5. Conclusions

In this paper, we have studied viscous coupling effects in two-
phase flow through non-circular capillary tubes with uniform
and non-uniform wettability conditions. The results indicate that
momentum transfer across the interface due to viscous coupling
can significantly affect the hydraulic conductance of fluid layers
that form in corners of a capillary. We have demonstrated that
for clean interfaces where the interfacial shear viscosity is zero,
the amount of flow in corners and sandwiched layers using free-
slip and no-flow boundary conditions, for a specific range of viscos-
ity ratios, can deviate significantly from those computed using the
physically correct continuity boundary condition.

We use two-phase direct numerical simulation results in con-
junction with basic arguments from fluid mechanics to present
simple hydraulic conductance relations that take into account the
viscous coupling effects. These relations, which are validated
against numerical results for a wide range of geometric parameters
and viscosity ratios, can be incorporated into pore-to-Darcy-scale
flow models, for example two-phase pore-network models, to
study the effects of viscous coupling on macroscopic flow proper-
ties such as relative permeabilities.
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