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The cell division rate, size and gene expression programmes
change in response to external conditions. These global changes
impact on average concentrations of biomolecule and their
variability or noise. Gene expression is inherently stochastic,
and noise levels of individual proteins depend on synthesis
and degradation rates as well as on cell-cycle dynamics. We
have modelled stochastic gene expression inside growing and
dividing cells to study the effect of division rates on noise
in mRNA and protein expression. We use assumptions and
parameters relevant to Escherichia coli, for which abundant
quantitative data are available. We find that coupling of
transcription, but not translation rates to the rate of cell division
can result in protein concentration and noise homeostasis
across conditions. Interestingly, we find that the increased
cell size at fast division rates, observed in E. coli and other
unicellular organisms, buffers noise levels even for proteins
with decreased expression at faster growth. We then investigate
the functional importance of these regulations using gene
regulatory networks that exhibit bi-stability and oscillations.
We find that network topology affects robustness to changes
in division rate in complex and unexpected ways. In particular,
a simple model of persistence, based on global physiological
feedback, predicts increased proportion of persister cells at
slow division rates. Altogether, our study reveals how cell
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size regulation in response to cell division rate could help controlling gene expression noise. It also
highlights that understanding circuits’ robustness across growth conditions is key for the effective
design of synthetic biological systems.

1. Introduction
Microbial species can proliferate in a variety of environmental conditions. How genomes achieve
this phenotypic flexibility is a fundamental biological question. Regulated gene expression is a key
mechanism by which cells adapt physiologically to changing environments. For example, different types
of metabolic enzymes are expressed to support growth on different carbon sources [1]. Despite this
remarkable adaptability, the rate at which cells proliferate can vary strongly from one environment to
another. For example, Escherichia coli division rates range between 0.5 and 3.5 doublings per hour in
response to different carbon sources [2].

In addition to specific gene regulation, changes in division rate are accompanied by global
physiological changes (figure 1), such as changes in cell size at division and gene expression. Global
changes in gene expression with cellular growth rates are required to counteract the increase in
dilution rate inherent to faster proliferation and maintain average protein concentrations. This global
coordination of gene expression with the division rate could involve changes in transcription, translation
and mRNA turnover. Experimental evidence suggests that in yeast and bacteria this coordination occurs
primarily at the level of transcription [7–10]. Consistent with this, bacteria global translation rates are
less affected by the rate of division than transcription rates, except at very slow division rates [11,12].
In Bacillus subtilis, the translation rate per mRNA has even been found to decrease, while the total
mRNA concentration doubles as the division rate doubles [13]. Messenger RNA degradation rates also
remain largely unchanged between slow and fast growth in E. coli [14]. In yeast, however, mRNA
degradation rates have been proposed to be globally regulated by the division rate [10]. Together, these
observations suggest that coupling of either transcriptional or post-transcriptional layers of regulation
with the division rate can result in protein expression homeostasis. However, it remains unclear whether
coupling of transcription with growth rates, rather than mRNA degradation or translation for instance,
has a particular impact on protein expression dynamics, variability, or even the cell fitness.

The dependence of gene expression parameters on the division rate has been shown to vary between
genes. Specifically, the fraction of the proteome occupied by genes from different functional classes has
been shown to vary with the division rate following specific and simple trends [4,15,16]. For a given type
of division rate modulation, proteins can be categorized in three classes called R, P and Q depending
on whether their proteome fraction respectively increases, decreases or is maintained with the division
rate respectively. Simple models of proteome allocation and cell physiology have shown that the changes
in global protein fractions observed experimentally are consistent with a maximization of the division
rate [3,17,18]. For example, ribosomal proteins that constitute most of the R proteins are needed in
larger amounts to support fast growth in rich media [4]. As a consequence of a large R sector, at fast
growth another group of proteins, such as transporters and metabolic enzymes for instance, decrease
in concentration (class P), as proteome fractions add up to one. Finally, the class called Q contains
housekeeping proteins, whose proteome fraction is maintained across all conditions.

Because total protein concentration is approximately constant across conditions [5], the concentration
of P proteins decreases at fast growth. Lower concentrations mean lower number of molecules per unit
of volume. Intrinsic noise of P proteins, which results from the random timing of biochemical reactions
and depends on absolute molecule numbers rather than concentrations, could therefore be higher at fast
growth. Intrinsic noise contributes to cell-to-cell variability in gene expression and leads to non-genetic
phenotypic variability [19]. In addition, gene expression is affected by other stochastic and dynamic
cellular processes, resulting in so-called extrinsic noise [20,21]. An important source of extrinsic noise
in gene expression stems from the processes associated with the cell cycle, including cell growth and
cell division, as illustrated by the experimental and modelling studies discussed below. Mathematical
modelling has suggested that random partitioning of biomolecules at cell division is an important source
of noise in gene expression and hard to separate from intrinsic noise [22]. Other modelling studies have
highlighted the contribution of heterogeneity in cell cycle time on noise in gene expression [23–26].
Moreover, cell cycle-dependent expression and the timing of DNA replication also influences noise in
gene expression in unexpected ways [24,26–28]. Several experimental studies have identified the cell
cycle as a major source of noise in gene expression in bacteria and yeast [29–32]. These studies suggest
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Figure 1. Global cellular factors affecting gene expression noise that depend on growth conditions. Nutrient quality can increase the
population doubling rate by promoting growth and division of individual cells. This leads to increased dilution of molecules, and more
frequent random partitioning ofmolecules between daughter cells. Because faster growth requires a higher rate of cell mass production,
rates of mRNA and protein expression increase globally with the division rate. However, the relative changes in mRNA and protein
expression rates is gene-dependent because the proteome composition is reshaped when the division rate changes [3]. For example,
the fraction of ribosomal proteins (R proteins) will increase with the division rate while the fraction of metabolic enzymes (and other P
proteins)will decrease, the fraction of housekeepingproteins (andotherQproteins) remain constant [4]. Cell size also is known to increase
with the division rate in response to nutrient-based modulations [5,6]. All those factors affect both average expression and expression
noise in a non-trivial manner.

that gene expression noise is generally higher at lower division rates [31,32]. The impact of cell division
and random partitioning of molecules on the behaviour of simple circuits has also been studied by
modelling [33–35]. It has been shown that simple genetic oscillators can sustain oscillation in the presence
of cell division but the oscillations could be entrained by the cell cycle depending on the circuit topology
[33]. Random partitioning of biomolecules at division can also affect the dynamics of simple circuits such
as the stability of biological switches for instance [34].

Cell size is regulated both during the division cycles and between different growth conditions.
Although being a long-standing problem in cell biology, the mechanisms behind cell size homeostasis
remain largely elusive. Interest for this question has been recently renewed, particularly in bacteria.
Recent data suggest that many bacterial species follow a so-called adder principle of growth, adding
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a constant cytoplasm volume in each division cycle, independently of their size at birth. As DNA
replication is controlled by size in E. coli, understanding whether this phenomenon is participating to
cell size homeostasis and the adder principle across growth conditions is currently the focus of intense
investigation both at the theoretical and experimental level [36–38]. Interestingly, cell size at division
is positively correlated with division rates in both bacteria and yeast, cells becoming larger in richer
environments [6,39]. This phenomenon is universal across unicellular organisms but there is no satisfying
explanation of why regulation of cell size with growth conditions has evolved.

Global regulation of gene expression and cell size is likely to affect the dynamics and function of
genetic and biochemical networks inside cells [40]. A pioneering study quantified how division rate-
dependent global regulation of gene expression affects the average concentration of a constitutively
expressed gene product, and how this in turn can affect the behaviour of simple synthetic genetic
networks [41]. Another theoretical study showed that the division rate dependence of gene expression
could impact the qualitative behaviour of a synthetic oscillator circuit, the ‘repressilator’ [42]. Moreover,
the division rate regulation of a gene impacting fitness can result in non-trivial global feedback in gene
regulation [41,43,44]. However, a comprehensive view of how global changes in gene expression and cell
size in response to growth conditions impact on gene expression noise is lacking.

In this study, we shed light on the regulation of noise in gene expression across growth conditions in
the bacterium E. coli by integrating existing data on global regulation of gene expression and cell size
into detailed computational models of stochastic gene expression in growing and dividing cells. We then
use examples of some simple genetic networks to illustrate how the changes in gene expression noise
across growth conditions affect the dynamics of cellular systems.

2. Results
2.1. Stochastic gene expression in growing and dividing cells
To fully capture the effect of the cell cycle on noise in gene expression, we model the stochastic expression
of a single gene in growing and dividing cells (figure 2a,b; electronic supplementary material, figure
S1a). Transcription, mRNA degradation and translation are represented by single stochastic reactions.
Corresponding rates are noted km, γ m and kp respectively. Because the majority of E. coli proteins are
stable [45], we first neglect protein degradation. During the cell cycle, we assume cell size increases
exponentially at a fixed rate that results in a decrease in the concentration of the mRNA and the protein
when their numbers of molecules do not change. We model cell division as a discrete event that splits the
cell volume in two, and each molecule is randomly partitioned between daughter cells with a probability
matching their inherited volume fraction. In our simulations, we keep only one of the two daughter
cells, therefore reproducing the popular mother machine experimental setting [46]. Our general simulation
algorithm is described in detail in the Simulation algorithm subsection of the Methods section.

Cellular growth rate, cell size at division, and cell size at birth are known to vary between individual
cells even in identical, tightly controlled conditions. Variability in size at birth arises from variability
in the mother cell size at division but also from imperfect volume splitting between the two daughter
cells. To realistically account for this variability, we use the noisy linear map (NLM) model (see Methods
and electronic supplementary material, figure S1), a recent phenomenological model of cell size control
that captures the variability in cell size at birth and division observed experimentally as well as
their correlation within individual cell cycles [47–49]. The degree of this correlation is related to the
mechanisms underlying cell size homeostasis. For example, a noisy linear map with the parameter a
equal to 1 corresponds to an adder strategy, where a fixed cytoplasm volume is added to the cell between
each division. Alternatively, a parameter a equal to zero corresponds to a sizer strategy, where cell
division is triggered at a fixed size [48]. Noise in the NLM model is represented via two parameters,
σ 1 and σ 2, accounting respectively for the noise in division size of the mother cell and the noise in birth
size that results from imperfect splitting of the mother.

We have first analysed the effect of the NLM parameters on the gene expression noise for an
intermediate growth rate. In figure 2c, we show protein number and concentration noise (CV) at cell
birth immediately after cell division and at the beginning of the cell cycle when the noise in division size
(σ 1), noise in size splitting (σ 2) and a are varied. When noise in the NLM is large (σ 1 or σ 2), we observe
increased noise in protein number at the beginning of the cell cycle (figure 2c). This is due to partitioning
noise, as this increase is almost invisible at the middle of the cell cycle (electronic supplementary material,
figure S2). Moreover, we find that protein concentration noise is only marginally affected by NLM noise,
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Figure 2. Modelling stochastic gene expression in growing and dividing cells. (a) Sketch of the modelling approach. See Methods for
details. (b) Example of simulated single-cell trajectories. Division events are marked by vertical grey lines. Typical parameters for E. coli
have been used (see Methods). (c) Impact of noisy linear map (NLM, see Methods) parameters on protein noise. Heatmaps of protein
number noise (left) or concentration noise (right) (defined as the coefficient of variation, CV, across newly born cells) when a and σ 1

(top) or a and σ 2 (bottom) are varied. Other parameters are kept constant at reference values, except b that changes with a such that
the average size at birth is constant. Black crosses indicate empirical ranges estimated from mother machine data (see Methods and
electronic supplementary material, figure S1).

as we assume probability of random partitioning of biomolecules is proportional to the inherited volume
of the daughter cells after division. This result is consistent with previous work [24] and extends it by
explicitly modelling both mRNA and protein molecules. For values of a greater than 1, size control is
not very effective in filtering noise in cell size and there is an increased size variability for large a and
large NLM noise (σ 1 or σ 2), as also found by others [50]. As a result the protein concentration noise that
directly depends on cell volume shows an increase at large a and large NLM noise.

A priori, it is possible that the NLM parameters that best describe a given single-cell dataset could
change with growth conditions. Therefore, we have inferred the parameters of the NLM from a recent
mother machine dataset of cells grown in seven different carbon sources supporting a wide range of
division rates [2]. We find that NLM parameters can indeed change with the division rate (electronic
supplementary material, figure S1). Notably, the slope parameter a is significantly lower than 1 at slow
growth, consistent with another study reporting a deviation towards a sizer strategy (a < 1) in slow
regimes [37]. Modulation of a has also been reported for other bacteria [51]. In addition, individual
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Figure 3. Changes in cell size, transcription and translation rates with the division rate impact expression noise even when average
protein concentration ismaintained (Q expression). (a) Change of protein concentration noise (right) with division ratewhen the average
concentration is maintained (middle-top plot) by tuning the transcription rate (left-top plot). Noise is the CV of protein concentration
across newly born cells. ThemRNA average number (#) and CV are also shown (bottom-left plots). Differentmodel variants are simulated
to explore the contribution of random partitioning noise, size change with the division rate, and noise in size (NLM parameters) and
cellular growth rate (see Methods and electronic supplementary material, figure S1). (b) The same as (a) but when the translation rate
is tuned instead of the transcription rate. (a,b) The corresponding gene expression rates dependency with the division rate are shown in
electronic supplementary material, figure S4.

cell growth rates are well described by normal distributions in all conditions. Based on that analysis,
we derive linear functions describing NLM parameters as a function of the division rate (electronic
supplementary material, figure S1). This enables us to realistically model growth and division at the
single-cell level over a wide range of division rates and investigate their effects on gene expression noise.

2.2. Expression noise depends on division rate even when protein concentration is maintained
We consider first genes whose protein concentration stays constant when the division rate changes (Q
class proteins). Interestingly, this expression strategy requires that at least one of the gene expression
rates km (transcription rate), γ m (mRNA degradation rate) or kp (translation rate per mRNA) changes
with the division rate to compensate for increased dilution of mRNA and protein molecules.

Using our model and typical values for gene expression rates at 2 doublings per hour as a baseline, we
computed the change in protein concentration noise with the division rate when average concentration
is maintained either by adapting the transcription rate only (figure 3a) or the translation rate per mRNA
only (figure 3b). To investigate the contribution of distinct sources of noise and of variability in cell size
to protein concentration noise we consider multiple scenarios in which different sources of variability
are turned off (colour codes in figure 3a,b).

Our simulation results reveal that maintaining average protein concentration of Q proteins by
adjusting transcription or translation to the division rate leads to very different behaviours of the
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protein concentration noise. Moreover, we find that the increase of cell size with division rate observed
across unicellular organisms strongly contributes to these behaviours. In the case of transcription rate
adjustment, protein noise sharply decreases with the division rate. A milder decrease is also observed
when cell size is kept constant across division rates. In the case of translation rate adjustment, protein
noise increases with the division rate instead, whether cell size changes or not.

To better understand these results, we looked at how mRNA numbers change with the division rate
in the different situations (bottom-left plots in figure 3a,b). When transcription adjusts to the division
rate in order to maintain average protein expression, mRNA numbers increase with the division rate. As
mRNA noise (mRNA numbers are typically much lower than protein numbers) is a major contributor to
protein noise, an increase in mRNA numbers results in a decrease in protein noise. However, when
translation adjusts to the division rate instead, mRNA numbers remain mostly unchanged. This is
possible because mRNA degradation rates are large compared to the division rate, resulting in mRNA
numbers being less sensitive to dilution than protein numbers. Despite little change in mRNA numbers
and hence mRNA noise, the increase in protein noise can be explained by a higher propagation of
the mRNA noise to protein, because contribution of transcription to protein noise depends on the
ratio of mRNA lifetime, which is mostly constant, and protein lifetime, which is set by the dilution
rate [52].

While the relative contribution of stochastic gene expression, partitioning noise, variability in cell
growth rate, cell division size and cell birth size to total protein noise can change with the division
rate, we find that the contribution of stochastic gene expression is the major source of noise at all
division rates (electronic supplementary material, figure S3). Other sources of noise show only minor
contributions to overall noise levels. Namely, we observe a small contribution of partitioning noise to
total noise that remains constant or decreases with growth when transcription or translation are adjusted
to division rate respectively. NLM noise showed an opposite trend with a small contribution to total
noise increasing at fast division rates when transcription is adjusted and a constant contribution to noise
in the case of coupling to translation (electronic supplementary material, figure S3). In summary, our
simulations demonstrate that for genes with typical expression parameters at intermediate division rates,
maintaining a constant protein concentration across growth conditions by adjusting transcription to the
division rate leads to a decrease of protein noise. By contrast, adjusting translation to the division rate
increases protein noise levels. Moreover, we find that the main source of noise (with the parameters used)
is the intrinsic stochasticity in the gene expression reactions.

2.3. Increase of cell size with the division rate prevents noise increase for constitutively
expressed proteins despite a decrease in average concentration

The results described above concern proteins belonging to the Q category, whose average concentration
is maintained constant independently of the division rate. Klumpp and colleagues have shown that
constitutively expressed proteins instead belong to the P category: their concentration is decreased at
fast growth [41]. The transcription rate of constitutively expressed genes strongly increases with the
division rate, while mRNA degradation rate and translation rate per mRNA remain relatively constant
[41]. However, this is not sufficient to balance both increased dilution and increased cell size ([41], figure 4
top-left plot and electronic supplementary material, figure S4).

Remarkably, using parameters of gene expression from [41] (see Methods and electronic
supplementary material, figure S4), we find that protein noise decreases with division rate, despite a
strong decrease in average protein concentration (figure 4). Cell size increase with division rate is a key
contributor to this behaviour. Assuming that increased expression noise for P proteins at fast growth is
deleterious, this observation could explain why increased cell size at fast division rates is a universally
conserved feature of unicellular organisms.

As for the Q protein described above, we find that the relative contribution of intrinsic stochastic
gene expression is predominant at all division rates for P proteins (electronic supplementary material,
figure S3). However, contribution of both partitioning noise and size and growth rate variability does
also increase, but moderately, at fast division rates.

So far, we have focused on genes with low baseline expression and high intrinsic noise. In electronic
supplementary material, figure S5, we show that for P-like proteins with increasing baseline expression
levels (through changes in transcription and/or translation rates), the predicted decrease of protein
concentration noise with the growth rate gets weaker, eventually reaching a zero intrinsic noise limit,
which is approximately independent of the division rate.
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Figure 4. Larger cell size at fast division rates prevents expression noise increase despite a decrease in average concentration (P
expression). To reproduce P expression, we used gene expression parameter dependencies with division rate for constitutively expressed
proteins extracted from a previous study ([41], seeMethods and electronic supplementarymaterial, figure S4 for details). Average protein
concentration (top left), average mRNA number (#) (top right) and protein concentration noise (bottom) are shown. The same model
variants as in figure 3 were used. Two additional scenarios are also shown, in which cell size does not change with division rate but either
the transcription rate (dashed dark blue) or the translation rate (dashed light blue) is adjusted to obtain the same decrease of average
protein concentration with division rate (other parameters remaining constant and equal to the reference values of solid line simulations
at 2 doublings per hour).

2.4. Impact of division rate on the behaviour of an oscillator circuit
Changes in average expression and noise of individual proteins with the division rate in response
to environmental changes are likely to impact the behaviour of genetic circuits [41]. Even when the
protein average expression (in isolation, i.e. without the circuit-specific regulations) is maintained, the
expression noise can still change (figure 2) meaning that circuit behaviour could depend on the division
rate [40].

To investigate these effects, we first consider a canonical two proteins oscillator circuit recapitulating
essential features of natural clocks (figure 5a) [53]. An actively degraded activator protein (Act) promotes
its own transcription as well as the transcription of a stable repressor protein (Rep) by promoter binding.
Rep can also bind Act, preventing it from binding promoters. This circuit can lead to oscillations as
illustrated in figure 5b. A detailed analysis of why oscillations arise is beyond the scope of this study
and has been explored before [54,55]. Briefly, because Rep competes with promoters for the binding
of Act, when the amount of free Rep is large only basal transcriptional activity for both genes is
possible. Because Rep is stable, such a state can last until dilution and partitioning renders free Rep
levels too low to efficiently prevent promoter binding by Act. Promoter activation leads to a burst
of Act by auto-activation, but Rep levels eventually rise because Act also promotes Rep transcription.
When Rep levels are sufficient to efficiently compete with Act promoter binding, a novel cycle starts
(figure 5a).

We asked how the circuit behaviour was affected when the division rate was modified. We first
assume that basal transcription, translation and mRNA degradation follow the same dependency as
constitutively expressed proteins (i.e. P proteins, as in figure 4), and that the fold-change increase of
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Figure 5. Behaviour of an oscillator circuit at different division rates. (a) Schematic of the oscillator circuit described in [53]. SeeMethods
for model description and parameter values. (b) Example simulation showing oscillations in free Rep concentration. Detected peaks are
shown with red circles. Note that the timescale of oscillations is around 3 h, while the inter-division time is around 30 min. (c) Change of
the oscillatory behaviour (average period, noise in period, average amplitude, noise in amplitude) as a function of division rate. The black
curves correspond to P expression. The other curves correspond to situations in which either transcription rates (blue) or translation rates
(red) are increasing with division rate in order to maintain average expression (Q expression in absence of binding of Act with Rep).

transcription rate when the promoter is activated by Act is independent of the division rate. The resulting
changes in circuit behaviour with the division rate are shown in figure 5c (black lines). The average period
increases as the division rate decreases because dilution is an important driver of the oscillations. The
average amplitude of free Rep oscillations is also strongly dependent on the division rate, and decreases
as the division rate increases. This is consistent with P expression, although different behaviours are in
theory possible because of gene regulation. The noise in circuit behaviour changes also with the division
rate. Specifically, noise in period and amplitude of the oscillations display ‘U’ shape dependencies with
the division rate, with lower noise close to the reference division rate of 2 doublings per hour. In
summary, constitutive expression (typical of P proteins) leads to changes in average behaviour and a
strong increase in noise of an oscillatory circuit at very low or very high division rates.

We then investigated whether Q expression of the circuit components could increase the robustness
of oscillations in response to changes in division rate. As in figure 3 we consider two modes of Q
expression, either by transcriptional adjustment (blue) or translational adjustment (red). Both modes
could maintain the average amplitude of oscillations in a narrow range, but the average period remained
strongly dependent on the division rate (figure 5c). While both modes resulted in identical changes
in circuit average behaviour, they led to slightly different dependencies of noise in oscillations with
the division rate. The division rate with the minimal noise in amplitude is around 2.3 doublings per
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Figure 6. Behaviour of the toggle switch at different division rates. (a) Schematic of the toggle-switch circuit. Two proteins A and B
can transcriptionally repress each other by promoter binding. (b) Example simulation of the toggle-switch circuit functioning in growing
and dividing cells, showing stochastic switching between high (ON) and low (OFF) expression for one protein. The threshold separating
the two states (black dashed line) is computed using the overall protein distributions (see Methods). (c) Change of the toggle-switch
behaviour, quantified by the average time spent in the ON state and the switching rates between the two states, as a function of division
rate. The black curve corresponds to P expression as in figure 4, the blue and red curves corresponds to constant average expression
maintained either transcriptionally or translationally, as in figure 3c,d. Note that when the concentration of one protein type is low, the
other is not necessarily high. This is why the ON state occupancy is not always 50% despite the symmetry between the two proteins.

hour for transcriptional adjustment and around 1.5 doublings per hour for translational adjustment.
In summary, Q expression increased robustness of oscillations compared to constitutive (P) expression,
but it is not sufficient to make the oscillator’s period independent of the division rate. Q expression via
transcriptional or translational adjustment led to similar, but not identical changes of noise in oscillations
with the division rate.

2.5. Impact of division rate on the behaviour of the toggle switch
We investigate next a simple synthetic circuit known to exhibit bistability: the toggle switch [56], in
which two proteins repress each other’s transcription (figure 6a). We asked first whether different circuit
behaviours, namely the existence of bistability, the occupancy of the states, and the switching rates
between states, were affected by changes in division rate and adjustment of transcription or translation
to division rates. To this end, we consider simple model assumptions that are sufficient to generate
stochastic switching between different states (see Methods) with typical parameter values.

We found that the circuit could exhibit bistability (figure 6b,c) over the considered range of division
rates for constitutive (P) expression as well as for Q expression by transcriptional or translational
adjustment. However, in all cases the circuit behaviour strongly depends on the division rate (figure 6c),
as illustrated by the change in ON state occupancy (the circuit is ON when one of the two proteins,
the reporter, is in the high expression state). Interestingly, the change of behaviour is very different for
different modes of Q expression: for translational adjustment, the ON state occupancy decreases with the
division rate (in a fashion very similar to P expression). However, an opposite behaviour is observed for
Q expression via transcriptional adjustment as ON state occupancy becomes positively correlated with
division rate.

The ON state occupancy reflects the balance between stochastic switching in and out of this state.
These rates are both dependent on the division rate (figure 6c, middle and right plots). We find that the
switching rates increase with the division rate that could suggest random partitioning of mRNA and
protein molecules, which is more frequent at high division rates, favours switching as also reported in
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Figure 7. Growth bistability caused by expression of a toxic protein. (a) Model description. The instantaneous cell growth rate, which
here we assume to be a decreasing function of the expressed protein concentration. In turn, changes in cell growth rate impacts
gene expression via the transcription rate. (b) Single-cell trajectory over many generations. Growth bistability is possible with realistic
parameter values (seeMethods). In the simulation shown, kmslope = 0,meaning that the positive feedback: toxin→ slower growth→
more toxin is onlymediatedby changes indilution. (c) Influenceof growth conditions (μmax) andgrowth rate dependenceof transcription
(kmslope) on growth bistability. For each parameter set, km0 was also adjusted such that kmcell (2 doublings h−1)= 0.28 min−1. From
corresponding simulations, the existence of bistability was tested and corresponding switching rates were estimated (see Methods).

another study [34]. In addition, the observation that at fast growth the OFF → ON rate rises the most
sharply for Q expression via translational adjustment is consistent with the high level of protein noise
for this mode of regulation at fast division rates (figure 3b).

2.6. When gene expression feeds back on growth: the case of toxin-mediated growth inhibition
So far, the circuits we have considered respond to changes in division rate but they don’t impact cell
physiology and growth. However, many natural circuits and some synthetic circuits do influence cell
physiology, for example by regulating cell metabolism or cell cycle progression. Even when synthetic
circuits are not designed to impact cell physiology, they often do by competing with core cellular
processes for global cellular resources, and this has become a major concern for synthetic biologists [57].

In prokaryotes, well-known examples of gene expression feeding back on growth are toxin–antitoxin
systems. These systems are involved in bacterial persistence, where a very small subpopulation of slow
growing cells naturally arises among a normally growing population. While several existing models
represent both the toxin and the antitoxin [58,59,60], a minimal model where a single protein is toxic for
growth is in itself sufficient to generate growth bistability ([41,44,61], and figure 7a,b). Here we investigate
the behaviour of this kind of model (figure 7) when both the maximal growth rate reached by a toxin-free
cell and the dependency of the transcription rate with the cell growth rate are varied.

For each parameter set enabling growth bistability (coloured pixels in figure 7c), we computed the
occupancy of the fast state (figure 7c, left) and the switching rates between the slow and fast states
(figure 7c, middle and right). The occupancy of the fast growing state decreases when the maximal
growth rate decreases (figure 7c, moving from right to the left), and this behaviour is independent of the
dependency of the toxin transcription rate to the cell division rate (i.e. the value of kmslope). Therefore,
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the system will naturally respond to less favourable growth conditions by increasing the time spent in
the slow state.

3. Discussion
In this study, we have used detailed simulations of stochastic gene expression in growing and dividing
bacteria to investigate the role of division rate in protein noise and dynamics of genetic networks. Our
simulations are constrained by data available for E. coli related to division rate regulation of constitutive
gene expression [41] and single-cell data related to cell size control [2]. For a constitutively expressed
gene, we find that coupling transcription but not translation to division rate results in lower protein
noise levels. Interestingly, existing data seem to suggest that global regulation of gene expression with
division rate mostly acts at the level of transcription [7–10], consistent with the idea that lower noise
levels are beneficial at fast growth. However, regulation at the level of translation has also been observed
[13], which, coupled to transcriptional regulation, could result in non-trivial interplay in terms of gene
expression noise regulation. Importantly, those results are independent of the choice of cell cycle noise
model, as they remain valid in the absence of noise in cell division size and cell growth rate, at least for
gene expression levels where intrinsic noise has a dominant impact.

An important factor that helps to minimize noise in gene expression at fast division rate is increased
cell size. Large cell sizes in growth conditions with fast division rate results in higher overall number
of mRNA and protein molecules, and reduce noise in gene expression. This is particularly relevant
for the regulation of noise in gene expression for proteins belonging to P category (figure 1) as their
concentrations go down at high division rates. This prediction is supported by experimental data
[62]. In this study, single-cell expression data (via flow cytometry) were obtained for three promoter-
GFP fusion constructs at various growth conditions (electronic supplementary material, figure S6).
Among these, only the reporter for mglB (encoding for a glucose transporter) behaves like a P protein:
average expression decreases as the growth rate increases. Despite this decrease, expression noise is
also decreased, as predicted by our simulations (figure 4). To more directly validate our predictions on
the impact of cell size on expression noise, it would be interesting to leverage recently obtained mreB
mutants [63], which exhibit a strong change of cell volume without reduction of growth rate. Using
a constitutive weak promoter integrated in the genome, it would be possible to test whether noise is
decreased independently of average concentration and growth rate, simply because of the change in cell
size, as predicted by our study. In fact, increasing cell size has been used before to experimentally reduce
gene expression noise [64]. In conclusion, we propose that a possible evolutionary reason for microbial
cells to grow bigger at fast growth, together with optimization of the surface-to-volume ratio for instance,
is to reduce gene expression noise which could be detrimental to fitness at fast growth [40,65]. At the
mechanistic level, the division rate regulation of cell size could be implemented via the division rate
regulation of gene expression for proteins involved in cell size control [5,66].

We restricted our analysis to E. coli, because the dependence of gene expression and cell size with the
growth rate has been well studied in this species. Importantly, our modelling approach is generic and can
be applied to other microbial species. For example, recent data on the dependence of gene expression in
B. subtilis have been obtained [13], which together with size data [2] could support predictions about the
growth rate dependence of gene expression noise in another species. Interestingly, a recent study [67] has
measured an increase in gene expression noise with the growth rate in B. subtilis for P-like expression,
which is different from what has been predicted here for E. coli (figure 4). A potential explanation is
that for the growth rate range considered, cell size increase is not strong enough to compensate for the
decrease in protein concentration.

In our study, we have modelled extrinsic noise sources such as variability in cell size and cellular
growth rate, but we have ignored other sources of noise, such as DNA replication or variability in
the abundance of transcription and translation factors [20]. The recent study in B. subtilis suggests that
overall this form of extrinsic noise does not strongly depend on the division rate [67]. In addition, the
contribution of the DNA replication to protein concentration noise has been found experimentally to be
very small [32].

Our simulations included physiologically relevant levels of partitioning noise, size variability and
growth variability. Overall, we observe that the contribution of these factors to protein noise is small
(again, intrinsic noise is dominating for our reference gene expression parameters), but that it tends to
vary with the division rate for the different cases considered. We also observed the noise in molecular
numbers and concentrations do not always behave similarly, as the latter directly depends on cell
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volume. Interestingly, we find that if transcription rate scales with cell size as recently reported in
eukaryotes [68,69], the concentration noise becomes independent of noise in cell size control mechanism.
In bacteria, there has not been a careful investigation of transcription scaling with cell size and in the
absence of such reports we have assumed cell size independent reaction propensities throughout this
study.

We then tested how dynamics of simple biochemical networks respond to division rate. As shown by
the seminal work of Klumpp et al. [41], we find overall that division rate regulation of concentration of
P proteins can change the average behaviour of biochemical networks significantly. But, as discussed
below, we find that even when proteins in the network have a Q regulation, the changes in noise
properties of the individual gene expression can significantly alter the mean and noise properties of
the system.

In the case of a genetic oscillator, we find changes in gene expression and cell size with the division
rate can impact the behaviour of oscillatory circuits in a non-trivial manner. Namely, large changes
of average expression with the division rate for constitutive expression (P) of circuit components
render circuit behaviour sensitive to the division rate. However, maintaining constant expression of
circuit components (for example via transcriptional or translational adjustment) does not guarantee
full robustness of circuit behaviour against changes in division rate. Robustness might require more
complex, circuit-specific dependencies of gene expression with the division rate, or even specific circuit
architecture [70]. Interestingly, we observed a ‘U’ shape dependency of noise on division rate suggesting
that there could be an optimally robust growth condition for a specific network design and parameter
combination, which is relevant to appropriate function of natural biochemical systems or synthetic
systems.

The toggle-switch circuit behaviour is strongly dependent on the division rate and on the type of
gene expression dependency with the division rate. So, this suggests the simple toggle-switch circuit is
not going to perform robustly across growth conditions. As for the oscillator circuit, maintaining average
expression is not sufficient to generate a division rate independent behaviour. Moreover, this example
shows that even when average expression is maintained, whether it is maintained via adjustment
of transcription or translation matters, as the circuit behaves differently in either situation. Those
predictions can be tested experimentally, for example using a recent implementation of the circuit, for
which a detailed stochastic model (validated for a single growth condition) is available [71].

In the case of simple models of persistence induced by the expression of a toxic protein in single
growing and dividing cells, we could investigate the impact of growth conditions and gene expression
dependency with the cell growth rate on the emergence of growth bistability. The role of growth
conditions in prevalence of persister cells is a very relevant problem as the growth conditions of bacteria
during infection are likely to be altered by the immune system and therapeutic treatments for instance.
We found that the persister state is favoured in poor growth conditions. A similar observation has been
made in another theoretical study with a more detailed model of toxin and antitoxin interactions [58].
To further validate those modelling results, it would be interesting to experimentally assess if and how
growth conditions regulate the probability of the non-growing persistence phenotype.

In molecular systems biology, we use models of biochemical networks to validate our mechanistic
understanding of the system under study. We propose that such models should be tested also against
data collected across cellular division rates. If the behaviour of the system is observed to be robust to
growth conditions, then our models should be able to capture this robustness. Conversely, describing
the ways in which the system behaviour changes across growth conditions is key to refine our models
and therefore our mechanistic understanding of the system under study.

In synthetic biology, we often desire to build a system that either functions robustly at a particular
growth condition or across a range of growth conditions. Our study shows that stochastic models of
synthetic biochemical networks in growing and dividing cells coupled with data on the regulation of
gene expression and cell size across division rates are essential to optimal design of system topologies
that achieve robustness against changes in cellular division rates.

4. Methods
4.1. Basic model for gene expression in growing and dividing cells
We describe first our basic model for gene expression in growing and dividing cells. mRNA molecules
are randomly synthetized and degraded at rate km and γ m respectively. Stochastic synthesis of protein
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from each mRNA occurs at rate kp. Protein molecules are assumed to be stable (except for A in the
oscillator circuit). Cell volume is growing exponentially at a fixed rate between Vbirth and Vdiv = 2Vbirth,
then cell division is triggered (for the case including cell size control and variability see below). At cell
division, molecules are randomly split between daughter cells and the volume is halved. In simulations,
only one of the daughter cells is considered for further simulation (hence mimicking the ‘mother
machine’ microfluidic experiments for a symmetrically dividing cell [46]). We note that as expected,
in our simulations, partitioning noise at division reduces the correlation between mRNA and protein
levels (from 0.3 to 0.2 with the reference gene expression parameters), consistently with experimental
observations [72].

4.2. Reference gene expression parameters
Realistic [73] parameters for E. coli gene expression have been used (km = 0.28 min−1, γ m = 0.14 min−1,
kp = 0.94 min−1, μ= 2 doublings h−1). This corresponds to an mRNA half-life of 5 min, an average
mRNA number at birth of 1 molecule and an average protein number at birth of 50 molecules.

4.3. Quantification of protein noise
Throughout our study, noise is quantified by using coefficient of variability (CV), which is defined as
standard deviation divided by the mean. Except when stated otherwise, we call protein noise the noise
in protein concentration, which is physiologically more relevant than molecule numbers. Also, noise is
computed among newly born cells in order to eliminate cell cycle stage contributions. Similar trends are
observed in the middle of the cell cycle.

4.4. Realistic modelling of cellular growth rate and cell size variability across growth conditions
with noisy linear maps

We use noisy linear maps [47] with parameters inferred from mother machine data in different growth
conditions [2]. The data contain around 100 K cell cycles per condition. a is estimated by linear regression
of ldiv (division length) versus lbirth (birth length). σ 1 is by definition related to the residual of this
regression. σ 2 is estimated from the variance of ldiv/lnext birth where lnext birth is the birth length recorded
just after the division at ldiv. Once a has been estimated, b is chosen such that the model predicted average
birth size b/(2 − a) matches the average birth size observed in the data.

4.5. Impact of size-dependent transcription
In all our models, the reaction propensities for transcription, translation and mRNA decay are
independent of cell volume. However, transcription rates have been recently reported in eukaryotes to
depend on size [68,69]. Because the dependency of protein noise on NLM parameters could be affected
by size-dependent transcription, we have repeated the analysis presented in figure 2 using transcription
rates proportional to cell size (electronic supplementary material, figure S7). Interestingly, we find that in
this case the protein concentration noise is reduced and becomes independent of the NLM parameters.
We obtain very similar results if we assume translation rate is size-dependent (not shown).

4.6. Modelling Q expression by transcriptional or translational adjustment
For a stable protein, it is possible to derive an analytical expression for the average number of protein
molecules at birth:

〈P〉birth = kmkp

γmμ

(
1 − μ

γm

1 − e−γm/μ

2 − e−γm/μ

)
.

This expression was used to compute the transcription or translation rate achieving a given average
protein concentration (figure 3 and electronic supplementary material, figure S4). The fact that our
simulation algorithm produced the expected dependency of average protein concentration validates its
implementation. In the case of active protein degradation (as for A for the oscillator circuit studied in
figure 5), we used simulations and the Matlab scalar optimization function fminsearch to compute the
transcriptional or translational rate adjustment enabling to maintain a constant average concentration
at birth.
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4.7. Modelling P expression
For figure 4, we have used division rate dependencies of gene expression parameters from [41] (shown
in electronic supplementary material, figure S4). For modelling P expression in the oscillator circuit
(figure 5), for simplicity we only used the effective transcription rate (and cell size) division rate
dependency, as change in translation rate per mRNA or mRNA degradation rate are small.

4.8. Oscillator circuit
The model structure and parametrization is adapted from [53]. The Act protein can transcriptionally
activate its own expression as well as the expression of another protein Rep by promoter binding. Act is
short-lived while Rep is stable. Act and Rep can form a complex. The same model reactions were used, but
we also explicitly model growth and division (including random partitioning of free Act and free Rep, but
we do not model gene replication and consider a single copy of each promoter which is always inherited
by daughter cells). The volume dependency of bi-molecular reactions is also accounted for. As reference
parameters (i.e. corresponding to an intermediate E. coli division rate of 2 doublings per hour, at which
optimal circuit behaviour should be obtained), we used the same parameters as Vilar and colleagues,
except that the Rep degradation rate was set to 0 (the original value, corresponding to an approximately
200 min half-life, was accounting for dilution only), the active degradation rate of Act was scaled up to
maintain a constant ratio with the division rate, the Rep translation rate was scaled up by the same factor,
and all transcription rates were scaled by this factor (approx. 7).

The resulting values are:

name value unit

kAon 0.0167 min−1 µm−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kAoff 0.0833 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kA,0m 5.77 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kAm 10× kA,0m min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ A
m 0.167 min−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kAp 0.833 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ A
P 0.115 min−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kRon 0.0167 min−1 µm−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kRoff 1.67 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kR,0m 0.00115 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kRm 5000× kR,0m min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ R
m 0.0083 min−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kRp 0.577 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kc 0.033 min−1 µm−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To compute the period and amplitude of oscillations in free R concentration, we used the Matlab
function findpeaks on very long (200 K minutes) mother machine traces, requiring a minimum peak
amplitude of 25% of the maximum value in the trace. We verified visually the behaviour of the peak
detection algorithm for each simulation.

4.9. Toggle-switch circuit
The model structure and parameters are completely symmetric for the two proteins repressing each
other. There is no cooperativity in the repression, as it is not required to obtain stochastic switching,
consistently with [74]. As for the oscillator circuit, the volume dependency of bi-molecular reactions
(only promoter binding here) was accounted for. We assumed that transcription is completely blocked
when the promoters are bound, and that the promoter binding and unbinding rates are independent of
the division rate.
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The reference parameter values are:

name value unit

kb 1 min−1 µm−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ku 0.25 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

km 0.28 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ A
m 0.14 min−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kp 0.94 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Detection of bistability (always the case for simulations shown in figure 5), threshold identification and
computation of switching rates were performed as follows. A very long (500 000 hours of biological time)
single-lineage trace (one output every 15 min) of the free A concentration is obtained by simulation. This
trace is then discretized into 50 equal size bins from zero to the maximal value of the trace. The following
algorithm is then applied on this discretized distribution: (i) identify the highest mode (i.e. the most
populated bin); (ii) iteratively identify next highest mode and ask whether they are corresponding to a
neighbour bin of the highest mode (then it is not the second mode of a bimodal distribution) OR if there
exists populated, lower height bins in-between (indicative of bimodality); (iii) in the latter case, to avoid
incorrect detection of bimodality because of finite sampling of the distribution, the secondary mode is
required to be more than 5% of what a uniform distribution would give.

4.10. Growth bistability caused by expression of a toxic protein
As previously, stochastic gene expression of a protein is simulated in growing and dividing cells.
However, the protein is a toxin inhibiting cell growth: the instantaneous growth rate of the cell μcell
is a decreasing Hill function of the toxin concentration (hence it is no longer constant during the cell
cycle). Also, the impact of growth conditions is no longer modelled with condition-specific noisy linear
maps, as they are not adapted to situations with very heterogeneous growth rates between cells in a
given condition. We rather use a parameter μmax representing the toxin-free cellular growth rate. For
simplicity, to model cell division size and its variability we use a single noisy linear map across growth
conditions. Finally, to represent the dependency of gene expression with the cell growth rate, we assume
that the toxin transcription rate is a linear function of μcell. The reference parameter values are:

name value unit

μmax 2 doublings h−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

km0 0.28 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kmslope 0 min−1 doublings−1 h−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ m 0.14 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kp 0.94 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ p 0.001 min−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 2 dimensionless
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T� 140 #µm−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

alnm 1 dimensionless
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

blnm 1 µm3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ lnm
1 0.2 µm3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ lnm
2 0.05 dimensionless

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that because kmslope = 0, the positive feedback toxin → growth slow down → more toxin is
only mediated by a change of dilution (as in [61]). Also note that it is necessary to assume that protein
degradation is non-zero to allow bistability, as otherwise exit of the slow state is impossible.
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For figure 7c, for each parameter set, the existence of bistability, threshold identification and switching

rates computation for the instantaneous cell growth rate μcell were performed as for the toggle-switch
circuit analysis (except that simulation duration for each single-lineage trace was 60 000 hours of
biological time, with one output every 10 min, and the number of bins used was 20).

Grey indicates parameter sets for which the lineage simulation of 60 000 hours (approx. 120 000
generations) either did not lead to a bimodal distribution of μcell, or did lead to such bimodal
distribution, but with less than 10 switches fast → slow → fast, preventing an accurate estimate of
switching rates in reasonable computational time.

4.11. Simulation algorithm
We describe here the general simulation algorithm used for all models. Between fixed time steps (6 s),
cell volume is considered constant, and the Gillespie algorithm is used to simulate stochastic molecular
reactions (more sophisticated simulation methods exist [21,75], but this one is simple to implement and
accurate as long as the time step is small enough). Then, the cell volume is updated according to the
instantaneous exponential growth rate, it is checked whether cell division should occur, and if so, cell
division and molecules partitioning is realized.
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