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Abstract—We present an automatic system to evaluate func-
tions in hardware via polynomial or rational approximations.
These approximations are evaluated using Ercegovac’s iterative
E-method adapted for FPGA implementation. The polynomial
and rational function coefficients are optimized such that they
satisfy the constraints of the E-method. We present several
examples of practical interest. In each case, the most resource-
efficient approximation is used.

I. INTRODUCTION

We aim at designing a system able to approximate (in
software) and then evaluate (in hardware) any regular-enough
function. More precisely, we try to minimize the sup norm of
the difference between the function and the approximation in
a given interval.

For particular functions, ad hoc solutions such as
CORDIC [1] or some specific tabulate-and-compute algo-
rithms [2] can be used. For low precision cases, table-based
methods [3]–[5] methods are of interest. However, in the
general case, piecewise approximations by polynomial or
rational functions are the only reasonable solution. From a
theoretical point of view, rational functions are very attractive,
mainly because they can reproduce function behaviors (such
as asymptotes, finite limits at ±∞) that polynomials do not
satisfy. However, for software implementation, polynomials are
frequently preferred to rational functions, because the latency of
division is larger than the latency of multiplication. We aim at
checking if rational approximations are of interest in hardware
implementations. To help in the comparison of polynomial
and rational approximations in hardware we use an algorithm,
due to Ercegovac [6], [7], called the E-method, that makes
it possible to evaluate a degree-𝑛 polynomial, or a rational
function of degree-𝑛 numerator and denominator at a similar
cost without requiring division.

The E-method solves diagonally-dominant linear systems
using a left-to-right digit-by-digit approach and has a simple
and regular hardware implementation. It maps the problem of
evaluating a polynomial or rational function into a linear system.
The linear system corresponding to a given function does not

necessarily satisfy the conditions of diagonal dominance. For
polynomials, changes of variables allow one to satisfy the
conditions. This is not the case for rational functions. There is
however a family of rational functions, called E-fractions, that
can be evaluated with the E-method in time proportional to the
desired precision. One of our aims is, given a function, to decide
whether it is better to approximate it by a polynomial or by an E-
fraction. Furthermore, we want to design approximations whose
coefficients satisfy some constraints (such as being exactly
representable in a given format). We introduce algorithmic
improvements with respect to [8] for computing E-fractions.
We present a circuit generator for the E-method and compare
its implementation on an FPGA with FloPoCo polynomial
designs [9] for several examples of practical interest. Since
FloPoCo designs are pipelined (unrolled), we focus on an
unrolled design of the E-method.

A. An Overview of the E-method
The E-method evaluates a polynomial 𝑃𝜇(𝑥) or a rational

function 𝑅𝜇,𝜈(𝑥) by mapping it into a linear system. The
system is solved using a left-to-right digit-by-digit approach,
in a radix 𝑟 representation system, on a regular hardware. For
a result of 𝑚 digits, in the range (−1, 1), the computation
takes 𝑚 iterations. The first component of the solution vector
corresponds to the value of 𝑃𝜇(𝑥) or 𝑅𝜇,𝜈(𝑥). Let

𝑅𝜇,𝜈(𝑥) =
𝑃𝜇(𝑥)

𝑄𝜈(𝑥)
=

𝑝𝜇𝑥
𝜇 + 𝑝𝜇−1𝑥

𝜇−1 + · · ·+ 𝑝0
𝑞𝜈𝑥𝜈 + 𝑞𝜈−1𝑥𝜈−1 + · · ·+ 𝑞1𝑥+ 1

where the 𝑝𝑖’s and 𝑞𝑖’s are real numbers. Let 𝑛 = max{𝜇, 𝜈},
𝑝𝑗 = 0 for 𝜇 + 1 6 𝑗 6 𝑛, and 𝑞𝑗 = 0 for 𝜈 + 1 6 𝑗 6 𝑛.
According to the E-method 𝑅𝜇,𝜈(𝑥) is mapped to a linear
system 𝐿 : A× y = b:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −𝑥 0 · · · 0
𝑞1 1 −𝑥 0 · · · 0
𝑞2 0 1 −𝑥 · · · 0

. . .
. . .

...
...

. . . 0
𝑞𝑛−1 1 −𝑥
𝑞𝑛 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦0

𝑦1

𝑦2

...

...
𝑦𝑛−1

𝑦𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝0

𝑝1

𝑝2

...

...
𝑝𝑛−1

𝑝𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

so that 𝑦0 = 𝑅𝜇,𝜈(𝑥). Likewise, 𝑦0 = 𝑃𝜇(𝑥) when all 𝑞𝑖 = 0.



The components of the solution vector y = [𝑦0, 𝑦1, . . . , 𝑦𝑛]
𝑡

are computed, digit-by-digit, the most-significant digit first, by
means of the following vector iteration:

w(𝑗) = 𝑟 ×
[︁
w(𝑗−1) −Ad(𝑗−1)

]︁
, (2)

for 𝑗 = 1, . . . ,𝑚, where 𝑚 is the desired precision of the
result. The term w(𝑗) is the vector residual in iteration 𝑗 with
w(0) = [𝑝0, 𝑝1, . . . , 𝑝𝑛]

𝑡. The solution y is produced as a
sequence of digit vectors: d(𝑗−1) = [𝑑

(𝑗−1)
1 , . . . , 𝑑

(𝑗−1)
𝑛 ]𝑡 – a

digit vector obtained in iteration 𝑗 − 1 and used in iteration
𝑗. After 𝑚 iterations, 𝑦𝑘 =

∑︀𝑚
𝑗=1 𝑑

(𝑗)
𝑘 𝑟−𝑗 . The digits of the

solution components 𝑦0, 𝑦1, . . . , 𝑦𝑛 are computed using very
simple scalar recurrences. Note that all multiplications in these
recurrences use 𝑚× 1 multipliers and that division required
by the rational function is not explicitly performed.

𝑤
(𝑗)
𝑖 = 𝑟 ×

[︁
𝑤

(𝑗−1)
𝑖 − 𝑞𝑖𝑑

(𝑗−1)
0 − 𝑑

(𝑗−1)
𝑖 + 𝑑

(𝑗−1)
𝑖+1 𝑥

]︁
, (3)

𝑤
(𝑗)
0 = 𝑟 ×

[︁
𝑤

(𝑗−1)
0 − 𝑑

(𝑗−1)
0 + 𝑑

(𝑗−1)
1 𝑥

]︁
(4)

and
𝑤(𝑗)

𝑛 = 𝑟 ×
[︁
𝑤(𝑗−1)

𝑛 − 𝑑(𝑗−1)
𝑛 − 𝑞𝑛𝑑

(𝑗−1)
0

]︁
. (5)

Initially, d(0) = 0. The radix-𝑟 digits 𝑑
(𝑗)
𝑖 are in the

redundant signed digit-set 𝐷𝜌 = {−𝜌, . . . , 0, 1, . . . 𝜌} with
𝑟/2 6 𝜌 6 𝑟−1. If 𝜌 = 𝑟/2, 𝒟𝜌 is called minimally redundant,
and if 𝜌 = 𝑟 − 1, it is maximally redundant. The choice
of redundancy is determined by design considerations. The
radix of computation is 𝑟 = 2𝑘 so that internally radix-2
arithmetic is used. The residuals, in general, are in a redundant
form to reduce the iteration time. Since the target is an
FPGA technology which provides fast carry chains, we have
non-redundant residuals. The digits 𝑑

(𝑗)
𝑖 are selected so that

the residuals |𝑤(𝑗)
𝑖 | remain bounded. The digit selection is

performed by rounding the residuals 𝑤
(𝑗)
𝑖 to a single signed

digit, following [7], [10]:

𝑑
(𝑗)
𝑖 = 𝑆(𝑤

(𝑗)
𝑖 ) =

⎧⎨⎩ sign (𝑤
(𝑗)
𝑖 )×

⌊︁⃒⃒⃒
𝑤

(𝑗)
𝑖

⃒⃒⃒
+ 1

2

⌋︁
, if

⃒⃒⃒
𝑤

(𝑗)
𝑖

⃒⃒⃒
6 𝜌,

sign (𝑤
(𝑗)
𝑖 )×

⌊︁⃒⃒⃒
𝑤

(𝑗)
𝑖

⃒⃒⃒⌋︁
, otherwise.

The selection is performed using a low-precision estimatê︀𝑤(𝑗)
𝑖 of 𝑤(𝑗)

𝑖 , obtained by truncating 𝑤
(𝑗)
𝑖 to one fractional bit.

Since the matrices considered here have 1s on the diagonal,
a necessary condition for convergence is

∑︀
𝑗 ̸=𝑖 |𝑎𝑖,𝑗 | < 1.

Specifically, ⎧⎪⎨⎪⎩
∀𝑖, |𝑝𝑖| 6 𝜉,

∀𝑖, |𝑥|+ |𝑞𝑖| 6 𝛼,

|𝑤(𝑗)
𝑖 − ̂︀𝑤(𝑗)

𝑖 | 6 Δ/2.

(6)

where the bounds 𝜉, 𝛼, and Δ satisfy [7]:

𝜉 =
1

2
(1 + Δ), 0 < Δ < 1, 𝛼 6 (1−Δ)/(2𝑟) (7)

for maximally redundant digit sets used here. While the
constraints (7) may seem restrictive, for polynomials, scaling
techniques make it possible to satisfy them. However, this is
not the case for all rational functions. To remove this limitation
the authors of [8] have suggested the derivation of rational
functions, called simple E-fractions, which are products of a

power of 2 by a fraction that satisfies (7). In this work we
make further improvements to the rational functions based on
E-fractions.

B. Outline of the paper

In Section II, we discuss the effective generation of simple
E-fractions, whose coefficients are exactly representable in a
given format. Section III presents a hardware implementation of
the E-method that targets FPGAs. In Section V we present and
discuss some examples in various situations. We also present
a comparison with FloPoCo implementations.

II. EFFECTIVE COMPUTATION OF SIMPLE E-FRACTIONS

We show how to compute a simple E-fraction with fixed-
point or floating-point coefficients. A first step (see Sec-
tion II-A), yields a simple E-fraction approximation with real
coefficients to a function 𝑓 . In [8], linear programming (LP) is
used. Here, we use faster tools from approximation theory. This
allows us to quickly check how far the approximation error
of this E-fraction is from the optimal error of the minimax
approximation (obtained using the Remez algorithm [11], [12]),
and how far it is from the error that an E-polynomial, with
the same implementation cost, can yield. If this comparison
suggests that it is more advantageous to work with an E-fraction,
we use the Euclidean lattice basis reduction approach from [8]
for computing E-fractions with machine-number coefficients.
We introduce in Section II-B2 a trick that improves its output.

A. Real approximation step

Let 𝑓 be a continuous function defined on [𝑎, 𝑏]. Let
𝜇, 𝜈 ∈ N be given and let R𝜇,𝜈(𝑥) = {𝑃/𝑄 : 𝑃 =∑︀𝜇

𝑘=0 𝑝𝑘𝑥
𝑘, 𝑄 =

∑︀𝜈
𝑘=0 𝑞𝑘𝑥

𝑘, 𝑝0, . . . , 𝑝𝜇, 𝑞0, . . . , 𝑞𝜈 ∈ R}.
The aim is to compute a good rational fraction approximant
𝑅 ∈ R𝜇,𝜈(𝑥), with respect to the supremum norm defined by
‖𝑔‖ = sup𝑥∈[𝑎, 𝑏] |𝑔(𝑥)|, to 𝑓 such that the real coefficients
of 𝑅 (or 𝑅 divided by some fixed power of 2) satisfy the
constraints imposed by the E-method.

As done in [8], we can first apply the rational version of
the Remez exchange algorithm [11, p. 173] to get 𝑅⋆, the
best possible rational approximant to 𝑓 among the elements
of R𝜇,𝜈(𝑥). This algorithm can fail if 𝑅⋆ is degenerate or the
choice of starting nodes is not good enough.

To bypass these issues, we develop the following process.
It can be viewed as a Remez-like method of the first type,
following ideas described in [11, p. 96–97] and [13]. It directly
computes best real coefficient E-fractions with magnitude
constraints on the denominator coefficients. If we remove these
constraints, it will compute the minimax rational approximation,
even when the Remez exchange algorithm fails.

We first show how to solve the problem over 𝑋 , a finite
discretization of [𝑎, 𝑏]. We apply a modified version (with de-
nominator coefficient magnitude constraints) of the differential
correction (DC) algorithm introduced in [14]. It is given by
Algorithm 1. System (8) is an LP problem and can be solved
in practice very efficiently using a simplex-based LP solver.
Convergence of this EDiffCorr procedure can be shown



Algorithm 1 E-fraction EDiffCorr algorithm

Input: 𝑓 ∈ 𝒞([𝑎, 𝑏]), 𝜇, 𝜈 ∈ N, finite set 𝑋 ⊆ [𝑎, 𝑏] with |𝑋| >
𝜇+ 𝜈, threshold 𝜀 > 0, coefficient magnitude bound 𝑑 > 0

Output: approximation 𝑅(𝑥) =

∑︀𝜇
𝑘=0 𝑝𝑘𝑥

𝑘

1 +
∑︀𝜈

𝑘=1 𝑞𝑘𝑥
𝑘

of 𝑓 over 𝑋 s.t.

max16𝑘6𝜈 |𝑞𝑘| 6 𝑑

// Initialize the iterative procedure (𝑅 = 𝑃/𝑄)
1: 𝑅← 1
2: repeat
3: 𝛿 ← max𝑥∈𝑋 |𝑓(𝑥)−𝑅(𝑥)|

4: find 𝑅new = 𝑃new/𝑄new =

∑︀𝜇
𝑘=0 𝑝

′
𝑘𝑥

𝑘

1 +
∑︀𝜈

𝑘=1 𝑞
′
𝑘𝑥

𝑘
such that the

expression

max
𝑥∈𝑋

{︂
|𝑓(𝑥)𝑄new(𝑥)− 𝑃new(𝑥)| − 𝛿𝑄new(𝑥)

𝑄(𝑥)

}︂
(8)

subject to max16𝑘6𝜈 |𝑞′𝑘| 6 𝑑, is minimized
5: 𝛿new ← max𝑥∈𝑋 |𝑓(𝑥)−𝑅new(𝑥)|
6: 𝑅← 𝑅new
7: until |𝛿 − 𝛿new| < 𝜀

Algorithm 2 E-fraction Remez algorithm

Input: 𝑓 ∈ 𝒞([𝑎, 𝑏]), 𝜇, 𝜈 ∈ N, finite set 𝑋 ⊆ [𝑎, 𝑏] with |𝑋| >
𝜇+ 𝜈, threshold 𝜀 > 0, coefficient magnitude bound 𝑑 > 0

Output: approximation 𝑅⋆(𝑥) =

∑︀𝜇
𝑘=0 𝑝

⋆
𝑘𝑥

𝑘

1 +
∑︀𝜈

𝑘=1 𝑞
⋆
𝑘𝑥

𝑘
of 𝑓 over [𝑎, 𝑏]

s.t. max16𝑘6𝜈 |𝑞⋆𝑘| 6 𝑑

// Compute best E-fraction approximation over 𝑋 using a
// modified version of the differential correction algorithm

1: 𝑅⋆ ← EDiffCorr(𝑓, 𝜇, 𝜈,𝑋, 𝜀, 𝑑)
2: 𝛿⋆ ← max𝑥∈𝑋 |𝑓(𝑥)−𝑅⋆(𝑥)|
3: Δ⋆ ← max𝑥∈[𝑎,𝑏] |𝑓(𝑥)−𝑅⋆(𝑥)|
4: while Δ⋆ − 𝛿⋆ > 𝜀 do
5: 𝑥new ← argmax𝑥∈[𝑎,𝑏] |𝑓(𝑥)−𝑅⋆(𝑥)|
6: 𝑋 ← 𝑋 ∪ {𝑥new}
7: 𝑅⋆ ← EDiffCorr(𝑓, 𝜇, 𝜈,𝑋, 𝜀, 𝑑)
8: 𝛿⋆ ← max𝑥∈𝑋 |𝑓(𝑥)−𝑅⋆(𝑥)|
9: Δ⋆ ← max𝑥∈[𝑎,𝑏] |𝑓(𝑥)−𝑅⋆(𝑥)|

10: end while

using an identical argument to the convergence proofs of the
original DC algorithm [15], [16].

To address the problem over [𝑎, 𝑏], Algorithm 2 solves a
series of best E-fraction approximation problems on a discrete
subset 𝑋 of [𝑎, 𝑏], where 𝑋 increases at each iteration by
adding a point where the current residual term achieves its
global maximum.

Our current experiments suggest that the speed of conver-
gence for Algorithm 2 is linear. We can potentially decrease the
number of iterations by adding to 𝑋 more local extrema of the
residual term at each iteration. Other than its speed compared to
the LP approach from [8], Algorithm 2 will generally converge
to the best E-fraction approximation with real coefficients over
[𝑎, 𝑏], and not on a discretization of [𝑎, 𝑏].

Once 𝑅⋆ is computed, we determine the least integer 𝑠 such
that the coefficients of the numerator of 𝑅⋆ divided by 2𝑠 fulfill
the first condition of (6). It gives us a decomposition 𝑅⋆(𝑥) =
2𝑠𝑅𝑠(𝑥). 𝑅𝑠 is thus a rescaled version of 𝑅. We take 𝑓𝑠 =
2−𝑠𝑓 to be the corresponding rescaling of 𝑓 . The magnitude

bound 𝑑 is usually equal to 𝛼 − max(|𝑎|, |𝑏|), allowing the
denominator coefficients to be valid with respect to the second
constraint of (6).

Both Algorithm 1 and 2 can be modified to compute weighted
error approximations, that is, work with a norm of the form
‖𝑔‖ = max𝑥∈[𝑎,𝑏] |𝑤(𝑥)𝑔(𝑥)|, where 𝑤 is a continuous and
positive weight function over [𝑎, 𝑏]. This is useful, for instance,
when targeting relative error approximations. The changes are
minimal and consist only of introducing the weight factor in
the error computations in lines 3, 5 of Algorithm 1, lines 2, 3,
5, 8, 9 of Algorithm 2 and changing (8) with

max
𝑥∈𝑋

{︂
𝑤(𝑥) |𝑓(𝑥)𝑄new(𝑥)− 𝑃new(𝑥)| − 𝛿𝑄new(𝑥)

𝑄(𝑥)

}︂
.

The weighted version of the DC algorithm is discussed, for
instance, in [17].

B. Lattice basis reduction step
Our goal is to compute a simple E-fraction

̂︀𝑅(𝑥) =

∑︀𝜇
𝑗=0 ̂︀𝑝𝑗𝑥𝑗

1 +
∑︀𝜈

𝑗=1 ̂︀𝑞𝑗𝑥𝑗
,

where ̂︀𝑝𝑗 and ̂︀𝑞𝑗 are fixed-point or floating-point numbers [10],
[18], that is as close as possible to 𝑓𝑠, the function we want
to evaluate. These unknown coefficients are of the form 𝑀2𝑒,
𝑀 ∈ Z:

∙ for fixed-point numbers, 𝑒 is implicit (decided at design
time);

∙ for floating-point numbers, 𝑒 is explicit (i.e., stored). A
floating-point number is of precision 𝑡 if 2𝑡−1 6 𝑀 <
2𝑡 − 1.

A different format can be used for each coefficient of the
desired fraction. If we assume a target format is given for each
coefficient, then a straightforward approach is to round each
coefficient of 𝑅𝑠 to the desired format. This yields what we call
in the sequel a naive rounding approximation. Unfortunately,
this can lead to a significant loss of accuracy. We first briefly
recall the approach from [8] that makes it possible to overcome
this issue. Then, we present a small trick that improves on
the quality of the output of the latter approach. Eventually, we
explain how to handle a coefficient saturation issue appearing
in some high radix cases.

1) Modeling with a closest vector problem in a lattice:
Every fixed-point number constraint leads to a corresponding
unknown 𝑀 , whereas each precision-𝑡 floating-point number
leads to two unknowns 𝑀 and 𝑒. A heuristic trick is given
in [19] to find an appropriate value for each 𝑒 in the floating-
point case: we assume that the coefficient in question from ̂︀𝑅
will have the same order of magnitude as the corresponding
one from 𝑅𝑠, hence they have the same exponent 𝑒. Once 𝑒 is
set, the problem is reduced to a fixed-point one.

Then, given 𝑢0, . . . , 𝑢𝜇, 𝑣1, . . . , 𝑣𝜈 ∈ Z, we have to de-
termine 𝜇 + 𝜈 + 1 unknown integers 𝑎𝑗(= ̂︀𝑝𝑗2−𝑢𝑗 ) and
𝑏𝑗(= ̂︀𝑞𝑗2−𝑣𝑗 ) such that the fraction

̂︀𝑅(𝑥) =

∑︀𝜇
𝑗=0 𝑎𝑗2

𝑢𝑗𝑥𝑗

1 +
∑︀𝜈

𝑗=1 𝑏𝑗2
𝑣𝑗𝑥𝑗



is a good approximation to 𝑅𝑠 (and 𝑓𝑠), i.e., ‖ ̂︀𝑅−𝑅𝑠‖ is small.
To this end, we discretize the latter condition in 𝜇 + 𝜈 + 1
points 𝑥0 < · · · < 𝑥𝜇+𝜈 in the interval [𝑎, 𝑏], which gives rise
to the following instance of a closest vector problem, one of
the fundamental questions in the algorithmics of Euclidean
lattices [20]: we want to compute 𝑎0, . . . , 𝑎𝜇, 𝑏1, . . . , 𝑏𝜈 ∈ Z
such that the vectors

𝜇∑︁
𝑗=0

𝑎𝑗𝛼𝑗 −
𝑛∑︁

𝑗=1

𝑏𝑗𝛽𝑗 and r (9)

are as close as possible, where 𝛼𝑗 = [2𝑢𝑗𝑥𝑗
0, . . . , 2

𝑢𝑗𝑥𝑗
𝜇+𝜈 ]

𝑡,
𝛽𝑗 = [2𝑣𝑗𝑥𝑗

0𝑅𝑠(𝑥0), . . . , 2
𝑣𝑗𝑥𝑗

𝜇+𝜈𝑅𝑠(𝑥𝜇+𝜈)]
𝑡 and r =

[𝑅𝑠(𝑥0), . . . , 𝑅𝑠(𝑥𝜇+𝜈)]
𝑡. It can be solved in an approximate

way very efficiently by applying techniques introduced in [21]
and [22]. We refer the reader to [8], [19] for more details on
this and how the discretization 𝑥0, . . . , 𝑥𝜇+𝜈 should be chosen.

2) A solution to a coefficient saturation issue: While we
generally obtain integer 𝑎𝑗 and 𝑏𝑗 which correspond to a good
approximation, the solution is not always guaranteed to give a
valid simple E-fraction. What happens is that, in many cases,
some of the denominator coefficients in 𝑅𝑠 are maximal with
respect to the magnitude constraint in (6) (recall that the second
line in (6) can be restated as |𝑞𝑗 | 6 𝛼−max(|𝑎|, |𝑏|)). In this
context, the corresponding values of |𝑏𝑗 | are usually too large.
We thus propose to fix the problematic values of 𝑏𝑗 to the
closest value to the allowable limit that does not break the
E-method magnitude constraints.

The change is minor in (9); we just move the corresponding
vectors in the second sum on the left hand side of (9) to the
right hand side with opposite sign. The resulting problem can
also be solved using the tools from [8], [19]. This usually gives
a valid simple E-fraction ̂︀𝑅 of very good quality.

3) Higher radix problems: Coefficient saturation issues get
more pronounced by increasing the radix 𝑟. In such cases, care
must also be taken with the approximation domain: the |𝑞𝑗 |
upper magnitude bound 𝛼−max(|𝑎|, |𝑏|) can become negative,
since 𝛼 = (1 − Δ)/(2𝑟) → 0 as 𝑟 → ∞. To counter this,
we use argument and domain scaling ideas presented in [23].
This basically consists in approximating 𝑓(𝑥) = 𝑓(2𝑡𝑦), for
𝑦 ∈ [2−𝑡𝑎, 2−𝑡𝑏] as a function in 𝑦. If 𝑡 > 0 is large enough,
then the new |𝑞𝑗 | bound 𝛼−max(|2−𝑡𝑎|, |2−𝑡𝑏|) will be > 0.

III. A HARDWARE IMPLEMENTATION TARGETING FPGAS

We now focus on the hardware implementation of the E-
method on FPGAs. This section introduces a generator capable
of producing circuits that can solve the system A · y = b,
through the recurrences of Equations (3)–(5).

The popularity of FPGAs is due to their ability to be
reconfigured, and their relevance in prototyping as well as in
scientific and high-performance computing. They are composed
of large numbers of small look-up tables (LUTs), with 4-6
inputs and 1-2 outputs. They can store the result of any logic
function of their inputs. Any two LUTs on the device can
communicate, as they are connected through a programmable
interconnect network. Results of computations can be stored

Circuit
generator

radix 𝑟

input format (𝑚𝑠𝑏𝑖𝑛, 𝑙𝑠𝑏𝑖𝑛)

output format (𝑚𝑠𝑏𝑜𝑢𝑡, 𝑙𝑠𝑏𝑜𝑢𝑡)

(𝑝𝑗)06𝑗<𝜇 and (𝑞𝑗)06𝑗<𝜈

0 < Δ < 1 FPGA frequency
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Fig. 1. Circuit generator overview.
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Fig. 2. The basic Computation Unit (CU).

in registers, usually two of them being connected to the output
of each LUT. These features make of FPGAs a good candidate
as a platform for implementing the E-method, as motivated
even further below.

A. A minimal interface

An overview of the generator is presented in Figure 1. Its
interface is split according to what a typical user’s concerns
might be: the functional and the performance specification. The
former consists of the input and output formats, specified as the
weights of their most significant (MSB) and least significant
(LSB) bits, the coefficients of the polynomials 𝑃𝜇(𝑥) and
𝑄𝜈(𝑥), as well as the parameter Δ and the radix 𝑟. Having
𝑚𝑠𝑏𝑖𝑛 as a parameter is justified by noticing that in the
examples of Section V, even though the input 𝑥 belongs to
[−1, 1], the maximum value it is allowed to have is smaller,
given by the constraints (6) and (7). It could be argued that
𝑚𝑠𝑏𝑜𝑢𝑡 can be deduced automatically by the generator. While
true, this would involve an unnecessarily complicated analysis,
at this stage in the tool flow, so we leave this to the user.

The circuit generator is developed inside the FloPoCo
framework [24], which facilitates the support of classical
parameters in the performance specification, such as the target
frequency of the resulting circuit, or the target device. It also
means that we can leverage on the automatic pipelining and test
infrastructure present in the framework, alongside the numerous
existing arithmetic operators.



B. Implementation details

An overview of the basic iteration, based on Equation (3),
is presented in Figure 2. As this implementation is targeted
towards FPGAs, several optimizations can be applied. First,
the multiplication 𝑑

(𝑗−1)
0 · 𝑞𝑖 can be computed using the KCM

technique for multiplying by a constant [25], [26], with the
optimizations of [27], that extend the method for real constants.
Therefore, instead of using dedicated multiplier blocks (or
of generating partial products using LUTs), we can directly
tabulate the result of the multiplication 𝑑

(𝑗−1)
0 ·𝑞𝑖, at the cost of

one LUT per output bit of the result. This remains true even for
higher radices, as LUTs on modern devices can accommodate
functions of 6 Boolean inputs.

A second optimization relates to the term 𝑑
(𝑗−1)
𝑖+1 · 𝑥, from

Equation (3). Since 𝑑
(𝑗−1)
𝑖+1 ∈ {−𝜌, . . . , 𝜌}, we can compute

the products 𝑥 · 𝜌, 𝑥 · (𝜌− 1), 𝑥 · (𝜌− 2), . . . , only once, and
then select the relevant one based on the value of 𝑑(𝑗−1)

𝑖+1 . The
multiplications by the negative values in the digit set come at
the cost of just one bitwise operation and an addition, which
are combined in the same LUT by the synthesis tools.

Finally, regarding the implementation of the CUs, the multi-
operand addition of the terms of Equation (3) is implemented
using a bitheap [28]. The alignments of the accumulated terms
and their varied sizes would make for a wasteful use of adders.
Using a bitheap we have a single, global optimization of the
accumulation. In addition, managing sign extensions comes
at the cost of a single additional term in the accumulation,
using a technique from [10]. The sign extension of a two’s
complement fixed point number sxx . . . xx is performed as:

00...0sxxxxxxx
+ 11...110000000

= ss...ssxxxxxxx

The sum of the constants is computed in advance and added
to the accumulation. The final shift comes at just the cost of
some routing, since the shift is by a constant amount.

Modern FPGAs contain fast carry chains. Therefore, we
represent the components of the residual vector 𝑤 using two’s
complement, as opposed to a redundant representation. The
selection function only requires ≈ 1 + log𝑟 𝛿 digits of 𝑤𝑖,
therefore it can simply be tabulated using LUTs.

Iteration 0, the initialization, comes at almost no cost, and
can be done through fixed routing in the FPGA. This is also true
for the second iteration, as simplifying the equations results
in 𝑤

(1)
𝑖 = 𝑟 × 𝑤

(0)
𝑖 . The corresponding digits 𝑑

(1)
𝑖 can be

pre-computed and stored directly. This not only saves one
iteration, but also improves the accuracy, as 𝑤

(1)
𝑖 and 𝑑

(1)
𝑖 can

be pre-computed using higher-precision calculations. Going
one iteration further, we can see that most of the computations
required for 𝑤

(2)
𝑖 can also be done in advance, except, of

course, those involving 𝑥.
Figure 3 shows an unrolled implementation of the E-method,

that uses the CUs of Figure 2 as basic building blocks. At the
top of the architecture, a scaling can be applied to the input.
This step is optional, and the scale factor (optional parameter
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Fig. 3. The E-method circuit generator.

in the design) can either be set by the user, or computed by
the generator so that, given the input format, the parameter Δ
and the coefficients of 𝑃 and 𝑄, the scaled input satisfies the
constraints (6) and (7). The multiplications between 𝑥 and the
possible values of the digits 𝑑

(𝑗)
𝑖 are done using the classical

shift-and-add technique, a choice justified by the small values
of the constants and the small number of bits equal to 1 in
their representations. At the bottom of Figure 3, the final result
𝑦0 is obtained in two’s complement representation. Again, this
step is also optional, as users might be content with having
the result in the redundant representation.

There is one more optimization that can be done here due
to an unrolled implementation. Because only the 𝑑

(𝑗)
0 digits

are required to compute 𝑦0, after iteration 𝑚 − 𝑛 we can
compute one less element of w(𝑗) and d(𝑗) at each iteration.
This optimization is the most effective when the number of
required iterations 𝑚 is comparable to 𝑛, in which case the
required hardware is reduced to almost half.

C. Error Analysis

To obtain a minimal implementation for the circuit described
in Figure 3, we need to size the datapaths in a manner that
guarantees that the output 𝑦0 remains unchanged, with respect
to an ideal implementation, free of potential rounding errors. To
that end, we give an error-analysis, which follows [6, Ch. 2.8].
For the sake of brevity, we focus on the radix 2 case.

In order for the circuit to produce correct results, we must
ensure that the rounding errors do not influence the selection



function: 𝑆( ̃︀𝑤(𝑗)
𝑖 ) = 𝑆(𝑤

(𝑗)
𝑖 ) = 𝑑

(𝑗)
𝑖 , where the tilded terms

represent approximate values. In [6], the idea is to model the
rounding errors due to the limited precision used to store the
coefficients 𝑝𝑗 and 𝑞𝑗 inside the matrix 𝐴 as a new error matrix
EA = (𝜀𝑖𝑗)𝑛×𝑛. With the method introduced in this paper, the
coefficients are machine representable numbers, and therefore
incur no additional error. What remains to deal with are errors
due to the limited precision of the involved operators. The only
one that could produce rounding errors is the multiplication
𝑑
(𝑗−1)
0 · 𝑞𝑖. We know that 𝑑(𝑗−1)

0 > 1 (the case 𝑑
(𝑗−1)
0 = 0 is

clearly not a problem), so the LSB of 𝑑(𝑗−1)
0 ·𝑞𝑖 is at least that of

𝑞𝑖, if not larger. If the output precision satisfies 𝑙𝑠𝑏𝑜𝑢𝑡 > 𝑙𝑠𝑏𝑞𝑖
(which is usually the case), we perform this operation on its full
precision, so we do not require any additional guard bits for the
internal computations. If this assumption does not hold, based
on [6], we obtain the following expression for the rounding
errors introduced when computing w(𝑗) inside Equation (2),
denoted with 𝜀

(𝑗)
w :

𝜀(𝑗)w = 2 · (𝜀(𝑗−1)
w + 𝜀𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙𝑡 +EA · d(𝑗−1)).

We can thus obtain an expression for 𝜀(𝑚)
w , the error vector at

step 𝑚, where 𝑚 is the bitwidth of 𝑦0 and 𝜀𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙𝑡 are the
errors due to the constant multipliers. Since 𝜀

(0)
w = 0,

𝜀(𝑚)
𝑤0

= 2𝑚 · (𝜀𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙𝑡 + ‖EA‖ ·
𝑚∑︁
𝑗=1

𝑑
(𝑗)
0 · 2−𝑗),

where ‖EA‖ is the matrix 2-norm. We use a larger intermediary
precision for the computations, with 𝑔 extra guard bits.
Therefore, we can design a constant multiplier for which
𝜀𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙𝑡 6 𝜀𝑐𝑜𝑛𝑠𝑡_𝑚𝑢𝑙𝑡 6 2−𝑚−𝑔 . Also,

‖EA‖ 6 max
𝑖

𝑛∑︁
𝑗=1

|𝜀𝑖𝑗 | and
𝑚∑︁
𝑗=𝑖

𝑑
(𝑗)
0 · 2−𝑗 < 1,

hence we can deduce that for each 𝑤
(𝑚)
𝑖 we have 𝜀

(𝑚)
𝑤𝑖 6

𝜀
(𝑚)
𝑤𝑖 6 2𝑚(2−𝑚−𝑔 + 𝑛 · 2−𝑚−𝑔). In order for the method to

produce correct results, we need to ensure that 𝜀(𝑚)
𝑤 6 Δ/2,

therefore we need to use 𝑔 > 2+ log2(2(𝑛+1)/Δ) additional
guard bits. This also takes into consideration the final rounding
to the output format.

IV. EXAMPLES, IMPLEMENTATION AND DISCUSSION

In this section, we consider fractions with fixed-point
coefficients of 24, 32, and 48 bits: these coefficients will be
of the form 𝑖/2𝑤, with −2𝑤 6 𝑖 6 2𝑤, where 𝑤 = 24, 32, 48.
The target approximation error in each case is 2−𝑤, i.e.,
∼ 5.96 · 10−8, 2.33 · 10−10, 3.55 · 10−15 respectively.

Examples. All the examples are defined in the first column
of Table I. When choosing them we considered:

∙ Functions useful in practical applications. The exponential
function (Example 2) is a ubiquitous one. Functions of the
form log2(1+2±𝑘𝑥) (as the one of Example 3) are useful
when implementing logarithmic number systems.The erf
functions (Example 4) is useful in probability and statistics,

while the Bessel function 𝐽0 (Example 5) has many
applications in physics.

∙ Functions that illustrate the various cases that can occur:
polynomials are a better choice (Example 3); rational
approximation is better (Examples 1, 2, Example 4 if
𝑟 6 8 and Example 5 if 𝑟 = 2). We also include instances
where the approximating E-fractions are very different
from the minimax, unconstrained, rational approximations
with similar degrees in the numerator and denominator
(Examples 1 and 2).

All the examples start with a radix 2 setting after which higher
values of 𝑟 are considered. Table I displays approximation errors
in the real coefficient and fixed-point coefficient E-fraction
cases. Notice in particular the lattice-based approximation
errors, which are generally much better than the naive rounding
ones. We also give some complementary comments.

Example 1. The type (4, 4) rational minimax unconstrained
approximation error is 4.59 · 10−16, around 5 orders of
magnitude smaller than the E-fraction error. A similar dif-
ference happens in case of Example 2, where the type (3, 3)
unconstrained minimax approximation has error 2.26 · 10−16.

Example 2. In this case, we are actually working with a
rescaled input and are equivalently approximating exp(2𝑥), 𝑥 ∈
[0, 7/128]. Also, for 𝑟 = 8, the real coefficient E-fraction is
the same as the E-polynomial one (the magnitude constraint
for the denominator coefficients is 0).

Example 3. Starting with 𝑟 = 8, we have to scale both the
argument 𝑥 and the approximation domain by suitable powers
of 2 for the E-method constraints to continue to hold (see end
of Section II-A).

Example 4. As with the previous example, for 𝑟 = 16, 32
we have to rescale the argument and interval to get a valid
E-polynomial.

Example 5. By a change of variable, we are actually working
with 𝐽0(2𝑥− 1/16), 𝑥 ∈ [0, 1/16]. If we consider 𝑟 > 16, the
48 bits used to represent the coefficients were not sufficient to
produce an approximation with error below 2−48.

Implementation. We have generated the corresponding
circuits for each of the examples, and synthesized them. The
target platform is a Xilinx Virtex6 device xc6vcx75t-2-ff484,
and the toolchain used is ISE 14.7. The resulting circuit
descriptions are in an easily readable and portable VHDL.
For each of the examples we have compared against a state of
the art implementation created using the FloPoCo generator,
as presented in [9]. FloPoCo [24] is an open-source arithmetic
core generator and library for FPGAs. It is, to the best of our
knowledge, one of the only alternatives capable of producing
the functions chose for comparison. Table II presents the results.

At the top of Table II, for Example 1, we show the flexibility
of the generator: it can easily accommodate for various latencies
and target frequencies. The examples show how the frequency
can be scaled from around 100MHz to 300MHz, at the expense
of a deeper pipeline and an increased number of registers.

Also, the number of registers approximately doubles each
time the circuit’s period is reduced by a factor 2. This very
predictable behavior should help the end user make an accept-



TABLE I
APPROXIMATION ERRORS IN THE REAL COEFFICIENT AND FIXED-POINT COEFFICIENT E-FRACTION CASES

Function
Type of error

Δ 𝑟 (𝜇, 𝜈) 𝑤
Real coefficient
E-fraction error

Naive rounding
error

Lattice-based
error

Ex. 1

√︀
1 + (9𝑥/2)4, 𝑥 ∈ [0, 1/32]

absolute
1

8

2
(4, 4) 32

5.22 · 10−11 1.11 · 10−9 5.71 · 10−11

4 6.32 · 10−11 4.93 · 10−10 7 · 10−11

8 8.25 · 10−11 1.78 · 10−9 1.11 · 10−10

Ex. 2
exp(𝑥), 𝑥 ∈ [0, 7/64]

relative
1

8

2 (3, 3)

32
1.64 · 10−10 3.24 · 10−10 1.94 · 10−10

4 (4, 4) 10−12 1.91 · 10−11 1.11 · 10−12

8 (5, 0) 1.16 · 10−12 1.74 · 10−11 1.39 · 10−12

Ex. 3
log2(1 + 2−16𝑥), 𝑥 ∈ [0, 1/16]

absolute
1

2

2 (5, 5)
24

1.98 · 10−8 4.37 · 10−7 2.33 · 10−8

4,8,16 (5, 0) 2.04 · 10−8 4.22 · 10−7 2.64 · 10−8

Ex. 4
erf(𝑥), 𝑥 ∈ [0, 1/32]

absolute
1

8

2 (4, 4)

48
2.92 · 10−17 1.67 · 10−16 3.43 · 10−17

4 (4, 4) 3.44 · 10−17 1.13 · 10−16 4.23 · 10−17

8,16,32 (5, 0) 1.34 · 10−15 2.7 · 10−15 1.64 · 10−15

Ex. 5
𝐽0(𝑥), 𝑥 ∈ [−1/16, 1/16]

relative
1

2

2 (4, 4)
48

2.15 · 10−17 2.49 · 10−15 2.37 · 10−15

4,8 (6, 0) 1.23 · 10−17 2.53 · 10−15 2.37 · 10−15

able trade-off in terms of performance to required resources.
The frequency cap of 300MHz is not something inherent to
the E-method algorithm, neither to the implementation; instead
it comes from current limitations of the bitheap framework
inside the FloPoCo generator. We expect that once this issue is
fixed, our implementations will be capable of reaching much
higher target frequencies.

Discussion. Examples 1 and 2 illustrate that for functions
where classical polynomial approximation techniques, like the
one used in FloPoCo, manage to find solutions of a reasonably
small degree, the ensuing architectures also manage to be
highly efficient. This shows, as implementations produced by
FloPoCo (with polynomials of degree 6 in both cases) are
twice (if not more) as efficient in terms of resources.

However, this is no longer the case when E-fractions can
provide a better approximation. This is reflected by Examples
3 to 5, where we obtain a more efficient solution, by quite a
large margin in some cases.

For Example 5, Table II does not present any data for the
FloPoCo implementation as they do not currently support this
type of function.

There are a few remarks to be made regarding the use of a
higher radix in the implementations of the E-method. Example 4
is an indication that the overall delay of the architecture reaches
a point where it can no longer benefit from increasing the radix.
The lines of Table II marked with an asterisk were generated
with an alternative implementation for the CUs, which uses
multipliers for computing the 𝑑

(𝑗−1)
𝑖+1 · 𝑥 products. This is due

to the exponential increase of the size of multiplexers with
the increase of the radix, while the equivalent multiplier only
increases linearly. Therefore, there is a crossover point from
which it is best to use this version of the architecture, usually
at radix 8 or 16. Finally, the effects of truncating the last
iterations become the most obvious when the maximum degree
𝑛 is close to the number of required iterations 𝑚 in radix 𝑟.
This effect can be observed for Example 3 and 4, where there
is a considerable drop in resource consumption between the

use of radix 8 and 16, and 16 and 32, respectively.

V. EXAMPLES, IMPLEMENTATION AND DISCUSSION

In this section, we consider fractions with fixed-point
coefficients of 24, 32, and 48 bits : these coefficients will be
of the form 𝑖/2𝑤, with −2𝑤 6 𝑖 6 2𝑤, where 𝑤 = 24, 32, 48.

The choice of the examples was influenced by the following:
∙ Functions useful in practical applications. The exponential

function (Example 2) is a ubiquitous one. Functions of the
form log2(1+2±𝑘𝑥) (as the one of Example 3) are useful
when implementing logarithmic number systems: in such
systems, numbers are represented by their logarithms, and
addition is implemented using the formula

log2(𝑎+ 𝑏) = log2(𝑎) + log2

(︁
1 + 2log2(𝑏)−log2(𝑎)

)︁
.

Function erf (Example 4) is useful in Probability and
Statistics, and Bessel function 𝐽0 (Example 5) has many
applications in Physics.

∙ Examples that illuminate the various cases that can occur:
polynomials are a better choice (Example 3); rational
approximation is better (Examples 1, 2, and Example 4
if 𝑟 6 8); including a case for which the approximating
E-fraction is very different from the minimax, uncon-
strained, rational approximation with similar degrees in
the numerator and denominator (Example 1).

All the examples start with a radix 2 setting after which higher
values of 𝑟 are considered.

Example 1. Consider function 𝑥 ∈ [0, 1/32] ↦→√︀
1 + (9𝑥/2)4, approximated by a (4, 4) rational function.

The E-method parameters are Δ = 1/8, 𝛼 = 7/32 and
𝜉 = 9/16. For a degree-4 E-polynomial approximation, the
error is 3.41 · 10−10. The real coefficient E-fraction has error
5.22 ·10−11. For 32-bit coefficients, our lattice-based approach
gives an E-fraction with error 5.71·10−11. Without denominator
coefficient constraint, the minimax rational approximation error
is 4.59 · 10−16.



TABLE II
SYNTHESIS RESULTS FOR A XILINX VIRTEX6 DEVICE

Design Approach radix
Resources Performance

LUT reg. cycles@period(ns)

Ex. 1

Ours

2

7,880 0 1@94.3
7,966 1,523 11@9.6
7,299 2,689 17@5.7
6,786 5,202 36@3.7

4

4,871 0 1@57.9
4,768 988 7@12.3
4,600 1,583 11@6.9
4,853 3,106 22@3.8

8

4,210 0 1@44.4
3,875* 0 1@62.2*
5,307* 309 5@18.4*
5,184* 499 8@10.4*
4,707* 1,027 15@5.8*

FloPoCo –
994 0 1@29.5

1,032 138 7@6.7
1,147 335 19@5.3

Ex. 2
Ours

2 6,820 0 1@88.5
4 6,356 0 1@68.0
8 5,042 0 1@39.0

FloPoCo – 3,024 0 1@41.1

Ex. 3
Ours

2 2,944 0 1@67.0
4 2,742 0 1@35.1
8 2,582 0 1@33.1

16
2,856 0 1@31.2

1,565* 0 1@29.0*
FloPoCo – 3,622 0 1@55.7

Ex. 4
Ours

2 19,564 0 1@139.6

4
23,052 0 1@92.5
21,179* 0 1@131.5*

8 15,388* 0 1@250.7*
16 12,878* 0 1@76.9*
32 3,909* 0 1@86.7*

FloPoCo – 20,494 0 1@139.9

Ex. 5
Ours

2 19,423 0 1@368.1
4 13,642 0 1@70.3
8 18,653 0 1@58.6

FloPoCo – – – –

If 𝑟 = 4, the real coefficient E-fraction approximation error
increases slightly to 6.32·10−11, whereas the lattice-based error
is 7·10−11 (rounding error is 4.93·10−10). For radix 𝑟 = 8, the
real coefficient E-fraction approximation error is 8.25 · 10−11,
whereas the lattice-based error is 1.11 · 10−10 (rounding error
is 1.78 · 10−9). For each 𝑟, we take 𝛼 = (1−Δ)/(2𝑟).

Example 2. Consider exp(𝑥) on [0, 7/64], implemented as
exp(2𝑥) on [0, 7/128], with the same parameters as Example
1, but with respect to the relative error. We get, for 𝜈 = 3, a
polynomial minimax error of 4.66 · 10−8, while the type (3, 3)
real coefficient E-fraction has error 1.64 · 10−10. Taking 32-bit
fixed-point coefficients with the method of Section II-B gives
an error 1.94 · 10−10 (the rounding error is 3.24 · 10−10). The

minimax rational approximation error is smaller, 2.26 · 10−16.
For radix 𝑟 = 4, the denominator coefficients in an optimized

type (3, 3) real coefficient E-fraction get saturated and the
corresponding approximation error becomes too large to satisfy
the 2−32 accuracy requirement. A type (4, 4) approximation
is more than enough: the real coefficient E-fraction error is
1·10−12, with the lattice-based error only 1.13·10−12 (rounding
error 1.91·10−11). The polynomial 𝜈 = 4 approximation barely
misses the target: we have minimax error 2.54 · 10−10 (slightly
larger than 2−32). With radix 𝑟 = 8 the real coefficient E-
fraction is the same as the E-polynomial one (the magnitude
constraint for the denominator coefficients is 0). This means
that a degree 𝜈 = 5 polynomial is needed. The real coefficient
E-polynomial error is 1.16 · 10−12, whereas the lattice-based
error is 1.39 · 10−12 (rounding gives the error 1.74 · 10−11).

Example 3. We deal with 𝑥 ∈ [0, 1/16] ↦→ log2
(︀
1 + 2−16𝑥

)︀
and consider the absolute error approximation. The E-method
parameters are Δ = 1/2, 𝛼 = 1/8 and 𝜉 = 3/4. The
polynomial Remez algorithm, for target degree 𝜈 = 5, gives an
error 2.04 · 10−8. The lattice-based error when targeting 24-bit
coefficients is 2.64 · 10−8 (rounding error is 4.22 · 10−7).

The type (5, 5) simple real coefficient E-fraction gives
the error 2.05 · 10−8 (and 2.44 · 10−8 for the lattice-based
discretization), so not a lot to gain by using it.

For 𝑟 = 4, 8, 16, E-polynomials are still more interesting.
Starting with 𝑟 = 8, we have to scale both the argument 𝑥
and the approximation domain by suitable powers of 2 for the
E-method constraints to continue to hold [23].

Example 4. Consider 𝑥 ∈ [0, 1/32] ↦→ erf(𝑥) with Δ = 1/8.
If we target 48-bit coefficients and absolute approximation
error < 2−48, we can take a type (4, 4) E-fraction. The real
coefficient approximation error is then 2.92 · 10−17, while the
lattice-based optimized one is 3.43 · 10−17 (the rounding error
increases here to 1.67 · 10−16). To obtain a similar error with
an E-polynomial we need at least degree 𝜈 = 6, which gives a
real coefficient error 9.53 · 10−17 (𝜈 = 5 suffices though for
the error to fall below 2−48).

For 𝑟 = 4, the real coefficient E-fraction error is 3.44·10−17,
while the lattice-based one is 4.23 · 10−17 (rounding error
1.13 · 10−16). Starting from 𝑟 = 8, degree 𝜈 = 5 polynomials
are more interesting than E-fractions. The real coefficient error
is 1.34 · 10−15, whereas the lattice-based one is 1.64 · 10−15

(rounding error is 2.7 · 10−15). For 𝑟 = 16, 32 we have to
rescale the argument and interval to get a valid E-polynomial.

Example 5. Consider 𝑥 ∈ [0, 1/16] ↦→ 𝐽0(2𝑥−1/16), where
𝐽0 is a Bessel function of the first kind and Δ = 1/2. Again,
take 48-bit coefficients. We are constructing a relative error
approximation. If we are using polynomials, we need a degree
𝜈 = 6 approximation to get a lattice-based error 2.37 · 10−15.
By contrast, a rational E-fraction of type (4, 4) is sufficient to
get the same lattice-based error 2.37 · 10−15 (the type 𝜈 = 4
polynomial error is only 8.08 · 10−13).

For 𝑟 > 4, rational approximations are not more interesting
than polynomial ones, so we consider the degree 𝜈 = 6
approximation. The real coefficient error is 1.23 · 10−17,
whereas the lattice-based error is 2.37 · 10−15 (rounding error



is 2.53 · 10−15). For 𝑟 > 16, the 48 bits used to represent the
coefficients were not sufficient to produce an approximation
with error below 2−48.

Implementation. We have generated the corresponding
circuits for each of the examples, and synthesized them. The
target platform is a Xilinx Virtex6 device xc6vcx75t-2-ff484,
and the toolchain used is ISE 14.7. The resulting circuit
descriptions are in an easily readable and portable VHDL.
For each of the examples we have compared against a state of
the art implementation created using the FloPoCo generator,
as presented in [9]. Table II presents the results.

At the top of Table II, for Example 1, we show the flexibility
of the generator: it can easily accommodate for various latencies
and target frequencies. The examples show how the frequency
can be scaled from around 100MHz to 300MHz, at the expense
of a deeper pipeline and an increased number of registers.

Also, the number of registers approximately doubles each
time the circuit’s period is reduced by a factor 2. This very
predictable behavior should help the end user make an accept-
able trade-off in terms of performance to required resources.
The frequency cap of 300MHz is not something inherent to
the E-method algorithm, neither to the implementation; instead
it comes from current limitations of the bitheap framework
inside the FloPoCo generator. We expect that once this issue is
fixed, our implementations will be capable of reaching much
higher target frequencies.

Examples 1 and 2 illustrate that for functions where classical
polynomial approximation techniques, like the one used in
FloPoCo, manage to find solutions of a reasonably small degree,
the ensuing architectures also manage to be highly efficient.
This shows, as implementations produced by FloPoCo (with
polynomials of degree 6 in both cases) are twice (if not more)
as efficient in terms of resources.

However, this is no longer the case where E-fractions can
provide a better approximation. This is reflected by Examples
3 to 5, where we obtain a more efficient solution, by quite a
large margin in some cases.

For Example 5, Table II does not present any data for the
FloPoCo implementation as they do not currently support this
type of function.

There are a few remarks to be made regarding the use of a
higher radix in the implementations of the E-method. Example 4
is an indication that the overall delay of the architecture reaches
a point where it can no longer benefit from increasing the radix.
The lines of Table II marked with an asterisk were generated
with an alternative implementation for the CUs, which uses
multipliers for computing the 𝑑

(𝑗−1)
𝑖+1 · 𝑥 products. This is due

to the exponential increase of the size of multiplexers with
the increase of the radix, while the equivalent multiplier only
increases linearly. Therefore, there is a crossover point from
which it is best to use this version of the architecture, usually
at radix 8 or 16. Finally, the effects of truncating the last
iterations become the most obvious when the maximum degree
𝑛 is close to the number of required iterations 𝑚 in radix 𝑟.
This effect can be observed for Example 3 and 4, where there

is a considerable drop in resource consumption between the
use of radix 8 and 16, and 16 and 32, respectively.

VI. SUMMARY AND CONCLUSIONS

A high throughput system for the evaluation of functions by
polynomials or rational functions using simple and uniform
hardware is presented. The evaluation is performed using the
unfolded version of the E-method, with a latency proportional
to the precision. An effective computation of the coefficients of
the approximations is given and the best strategies (choice of
polynomial vs rational approximation, radix of the iterations)
investigated. Designs using a circuit generator for the E-
method inside the FloPoCo framework are developed and
implemented using FPGAs for five different functions of
practical interest, using various radices. The results paint a
clear picture: the E-method is generally more efficient as soon
as the rational approximation is significantly more efficient
than the polynomial one. From a hardware standpoint, the
results show it is desirable to use the E-method with high
radices, usually at least 8. The method also becomes efficient
when we manage to find a balance between the maximum
degree 𝑛 of the polynomial or E-fraction and the number of
iterations required for converging to a correct result, which
we can control by varying the radix. A complete open-source
implementation of our approach will soon be available online.
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