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The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the 
paraxial approximation, into two terms which seem to represent orbital and spin angular momentum re-
spectively. There are, however, two very different competing versions of the formula for the spin angular 
momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other re-
lated to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. 
I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these 
corresponds to the actual physical angular momentum carried by the beam.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Quantum Electrodynamics (QED) textbooks, for over half a cen-
tury, have stressed that the total angular momentum of a photon 
cannot be split into spin and orbital angular momentum (OAM) 
parts in a gauge invariant way. Hence the extraordinary reaction, 
(for discussion and reviews see [1–4]) a few years ago, when Chen 
et al. [5] produced what they claimed, was precisely such a gauge 
invariant split. They introduced fields which they called Apure and 
Aphys, but which are identical to the fields in the Helmholz decom-
position into longitudinal (A‖) and transverse (A⊥) components 
with

∇ × A‖ = 0, and ∇ · A⊥ = 0 (1)

and obtained

J =
∫

d3x E × A⊥︸ ︷︷ ︸
S

+
∫

d3x Ei(x × ∇)Ai⊥︸ ︷︷ ︸
L

(2)

and since A⊥ and E are unaffected by gauge transformations, they 
appeared to have achieved the impossible. But exactly the same 
expression, Eq. (2), had already been given in the textbook of 
Cohen-Tannoudji et al. [6] in 1987 (!), and some years after that 
van Enk and Nienhuis [7] had pointed out that, actually, the split 
was a failure because the spin and OAM operators did not satisfy 
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correct angular momentum (AM) commutation relations, i.e. they 
showed that

[ Si , S j ] = 0 and [ L , S ] �= 0. (3)

Thus the claim of Chen et al. is unquestionably incorrect.
Despite the fact that the operators S and L in Eq. (2) are not 

genuine AM operators, we shall see that they play an important 
role in laser optics. In the following, because of the complicated 
history involved, and because the expression Eq. (2) closely resem-
bles the usual canonical expression for photon angular momentum 
(which simply has A⊥ replaced by A) I shall refer to it as the 
gauge invariant canonical (gican) version of the AM.1 Thus

J gican =
∫

d3x jgican (4)

where the total angular momentum density is

jgican(x) = lgican(x) + sgican(x) (5)

and where the spin and orbital densities are

lgican(x) = Ei(x × ∇)Ai⊥ and sgican(x) = E × A⊥. (6)

There are several reasons why J gican, in spite of the above issues, 
is relevant and important in laser optics:

1 Often abbreviated to gic.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2018.02.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:e.leader@imperial.ac.uk
https://doi.org/10.1016/j.physletb.2018.02.029
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.02.029&domain=pdf


386 E. Leader / Physics Letters B 779 (2018) 385–387
a) In general Lgican does not commute with S gican, but

[Lgican, z , Sgican, z] = 0 (7)

so Lgican, z and Sgican, z can be measured simultaneously, even at a 
quantum level.

b) Laser optical beams are almost invariably treated in the 
paraxial approximation. Although the eigenvalues of Sgican, z and 
Lgican, z are continuous, in general, for paraxial fields they are ap-
proximately integer multiples of h̄.

c) For a paraxial photon absorbed by an atom the photon’s 
Sgican, z is transferred, approximately, to the internal AM of the 
atom and the Lgican, z approximately to the motion of the atom 
as a whole.

Hence, for paraxial fields, Jgican, z, Lgican, z and Sgican, z function 
approximately as perfectly good physical angular momenta.

In complete contrast to all of the above, textbooks on classical 
electrodynamics teach us that the momentum density in a electro-
magnetic field is given by the Poynting vector

ppoyn(x) = Poynting vector = E × B (8)

and that the angular momentum density, which I shall call the 
Poynting version (poyn),2 is given by

j poyn(x) = r × (E × B) (9)

with total AM

J poyn =
∫

d3x [r × (E × B)]. (10)

Although this has the structure of an orbital AM, i.e. r × ppoyn, it is 
the total photon angular momentum, and it is not split into orbital 
and spin parts.

Now the integrands of Eqs. (10) and (4) can be shown to differ 
by a divergence, so that

J poyn = J gican + surface term, (11)

and if the fields vanish at infinity the surface term vanishes3 so 
that

J poyn = J gican. (12)

That is fine for classical fields, but quantum fields are operators, 
and it is extremely non-trivial to try to attach meaning to the con-
cept of operators vanishing at infinity. Hence, one must conclude, 
that as operators,

J poyn �= J gican. (13)

Let us return now to the consideration of classical paraxial opti-
cal beams. The key point is that even if Eq. (12) holds, i.e. even 
if J poyn = J gican, their densities are different, and the intriguing 
question arises as to whether a laser optics measurement sensi-
tive to the AM density could decide which of the two densities, 
gauge invariant canonical or Poynting, correctly describes the phys-
ical AM carried by the optical beam.

Ever since the 1990s there have been beautiful laser optics ex-
periments which measure the transfer of AM from the field to a 
particle. The early experiments [10–12] used particles whose di-
mensions were comparable to the beam diameter and hence were 
sensitive only to total J , and so could not distinguish between 

2 This is called “Belinfante” by particle physicists. Poynting did not give this ex-
pression. I believe Belinfante was the first to do so.

3 For a very early discussion of the surface term, see [8]; see also [9].
J poyn and J gican. Later experiments [13,14] used very small par-
ticles and were able to record the motion of the particle as a 
function of distance ρ from the beam axis, but were not sensi-
tive enough to distinguish between the gauge invariant canonical 
and Poynting densities.

The general concept of these experiments is as follows:

(a) A tiny particle is trapped in a ring of radius ρ in, for example, 
a Bessel beam

(b) The particle spins about its CM driven by the spin AM ab-
sorbed

(c) The particle rotates in the ring driven by the azimuthal force, 
which is proportional to the orbital AM of the beam

(d) Because of viscous drag and torque there results limiting an-
gular velocities for the rotation and the spin.

Hence, in principle, the local orbital and spin densities can be 
measured as a function of ρ if the particle is small enough and its 
position can be sufficiently accurately controlled. The key question 
is how different do we expect the densities to be?

In what is regarded as the foundation paper on optical angu-
lar momentum, Allen et al. [15] utilized the Poynting version for 
the total AM and studied its structure in the paraxial approxima-
tion. The standard form for a monochromatic paraxial electric field 
propagating in the z-direction, is

E(r) =
(

u(r), v(r),
−i

k

(∂u

∂x
+ ∂v

∂ y

))
ei(kz−ωt) (14)

where, choosing,

v(r) = iσ u(r) with σ = ±1 (15)

corresponds, approximately, to right or left circular polarization. 
Allen et al. worked specifically with a Laguerre–Gaussian field, 
but one obtains the same result for any vortex field with an az-
imuthal mode index l, and with the form, in cylindrical coordi-
nates, (ρ, φ, z),

u(ρ,φ, z) = f (ρ, z)eilφ. (16)

In the following we shall indicate relations that are correct only 
in paraxial approximation by par= . For the cycle average of the z-
component of the Poynting density, 〈 jpoyn, z〉, per unit power, mod-
ulo ε0

ω , Allen et al. obtained

〈 jpoyn, z〉 par= l|u|2 − σ

2
ρ

∂|u|2
∂ρ

(17)

and interpreted the terms on the RHS as representing orbital and 
spin AM respectively. It should be stressed that this clean separa-
tion into “orbital” and “spin” parts is only true in paraxial approx-
imation. For a genuine Maxwell field there are terms in which l
and σ are mixed together (see Section 3 of [16]).

On the other hand, using the gauge invariant canonical version, 
one obtains

〈 jgican, z〉 par= l|u|2 + σ |u|2. (18)

Here, on the basis of Eq. (5), a clean separation into “orbital” and 
“spin” terms holds also for exact Maxwell fields, but the particular 
simple form Eq. (18) is valid only in paraxial approximation. More-
over, as discussed earlier, the terms in Eq. (5) function as physical 
AM only to the extent that the paraxial approximation is valid.
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Fig. 1. Comparison of the ρ dependence for the cycle average of the z-component 
of the Poynting and gauge invariant canonical spin AM, for a J2(k⊥ρ) Bessel beam. 
(Courtesy of Patrick Dunne.)

In summary, working always in paraxial approximation, we 
have two competing expressions for the spin AM, the Poynting and 
the gauge invariant canonical, and there is a clear difference be-
tween them:

〈spoyn, z〉 par= −σ

2
ρ

∂|u|2
∂ρ

〈sgican, z〉 par= σ |u|2 (19)

and the challenging question is: could an experiment decide which 
corresponds to the physical spin AM carried by an optical vortex 
beam? To study the feasibility of this, as an example, we compare 
in Fig. 1. 〈spoyn, z〉 and 〈sgican, z〉, as function of ρ , for a J2(ktρ)

Bessel beam.
Clearly there is a dramatic difference in the ρ-dependence of 

the two versions, and this should be measurable. Note, however, 
that integrated across a “bright ring”∫

ring

dρ ρ 〈spoyn, z〉 =
∫

ring

dρ ρ 〈sgican, z〉 (20)

so that a successful measurement would require extremely small 
particles, i.e. with dimensions considerably smaller than the ring 
width. The situation for a Laguerre–Gaussian beam with radial 
mode index p > 1 is similar.

The behaviour of the Poynting version in Fig. 1 looks, intuitively, 
unphysical, suggesting that the gican version is the physically rele-
vant one. And, indeed, there are reports in the literature of experi-
ments which favour the gican version, but they are less direct than 
the type of experiment discussed above. For example, in an unpub-
lished paper in 2012, Chen and Chen [17] argue that the Ghai et al.
experiment in 2009 [18] on the shift of diffraction fringes in the 
single slit diffraction of beams with a phase singularity favours the 
gican version. And other arguments in favour of the gican version 
can be found in the review of Bliokh and Nori [19] and in [20,21].

Ultimately, however, a convincing demonstration in favour of 
one or the other requires an experiment of the type discussed 
above, which measures directly the transfer of spin AM from the 
beam to the particle.
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