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Abstract The response of complex scatterers, such as rough
or branched cracks, to incident elastic waves is required
in many areas of industrial importance such as those in
non-destructive evaluation and related fields; we develop
an approach to generate accurate and rapid simulations. To
achieve this we develop, in the time domain, an implemen-
tation to efficiently couple the finite element (FE) method
within a small local region, and the boundary integral (BI)
globally. The FE explicit scheme is run in a local box to
compute the surface displacement of the scatterer, by giving
forcing signals to excitation nodes, which can lie on the scat-
terer itself. The required input forces on the excitation nodes
are obtained with a reformulated FE equation, according to
the incident displacement field. The surface displacements
computed by the local FE are then projected, through time-
domain BI formulae, to calculate the scattering signals with
differentmodes. This newmethod yields huge improvements
in the efficiency of FE simulations for scattering from com-
plex scatterers. We present results using different shapes and
boundary conditions, all simulated using this approach in
both 2D and 3D, and then compare with full FE models and
theoretical solutions to demonstrate the efficiency and accu-
racy of this numerical approach.
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1 Introduction

There is considerable scientific interest in both 2D and 3D
elastic wave interaction with complex scatterers involving
several disciplines. For instance, in seismology, measure-
ments and simulations are used to investigate the reflected
seismicwavefield from random rough surfaces for time-lapse
monitoring techniques [19,33] and for inversion purposes
[21]. In Non-destructive evaluation (NDE) and ultrasonics,
the scattering behavior from rough defects can increase the
measurement uncertainty and possibly alter the inspection
results [25,45] with consequent implications on safety cri-
teria. Motivated by these applications, amongst others, we
develop an efficient, and general, tool to model elastic wave
scattering from complex scatterers.

Naturally, there are pre-existing approaches and to com-
pute the elastic wave scattering in the above applications
many different modelling procedures have been developed.
Analytical formulae are, of course, attractive and capable of
handling a variety of scattering problems but only within
certain restricted ranges of geometry or frequency. Classi-
cal approaches such as separation of variables (SEP) [43]
provide exact mathematical formulae to calculate scattered
waves but only from scatterers with regular and simple
geometries, such as a spherical voids, and cannot handle
complex branched cracks or irregular shapes. In terms of
frequency one can employ methods such as the Kirchhoff
approximation (KA) which is based on the assumption of an
infinite tangential plane can predict scattering signals from
defects with irregular shapes, but these approaches can gen-
erate unacceptable errors when the roughness is large or with
grazing incidence/scattering angles [36,37].

Given the restrictions on analytical results there is natu-
ral interest in numerical approaches such as finite difference
(FD) [7], finite element (FE) [4,8,30] and boundary element
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(BE) methods [13,14,17,41] that can be implemented in sit-
uations where the analytical solutions or the approximation-
based methods are not reliable, but with a penalty in terms
of computational cost; highly irregular or rough surfaces
require accurate andhighly resolvedmeshing and consequent
increases in the numbers of unknowns. Comparison between
the various methods is not straightforward, Frehner et al. [8]
shows that FE is considered to be more accurate and robust
than FDwhenmodelling elastic wave scattering from defects
with complex shapes. Compared with meshing the whole
domain using FE, BE only needs to mesh the boundary of
the scatterer and hence gives a smaller matrix system. How-
ever, the nature of FE results in a sparse matrix to be solved
while the matrix from BE is not sparse. To further compli-
cate comparison, and the use of specific methods, there are
demands from industry for the use of standard FE packages
that satisfy agreed industy standards. As a result, commer-
cial FE software such as Abaqus (Dassault Systemes Simulia
Corp., Providence, RI) andAnsys (Ansys Inc., PA) have been
widely applied in industry and are standard numerical tools.
There are also other approaches that take advantage of soft-
ware advances, for instance, researchers at Imperial College
have developed a GPU based time domain FE solver Pogo
[11] to significantly accelerate FE simulations.

Despite these advances, and particularly in 3D and in
unbounded domains, computational costs can become pro-
hibitive for FE. A powerful approach is to use a so-called
hybrid method [9,12,24,26,31,38,42] to reduce the com-
putation effort. A hybrid method [26] in general involves
a fast calculation of the global wave fields for a simplified
material, and a more involved computation of a small local
volume enclosing the irregular defects, complex material, or
topography thereby concentrating the computational effort
where it is most required. Amongst all the various different
hybrid methods available [3,5,18,42,44], the FE-BI method
has become of recent interest for large unbounded domains
[15,16,24,35,38,42]; here one first numerically computes
the local scattering in a small FE domain with the aid of
an absorbing region [2,28,29] to prevent undesirable reflec-
tions due to the finite domain, and then calculate the scattered
waves via a boundary integral in a sequential order.

The FE-BI method can be implemented either in the fre-
quency domain or in the time domain depending upon the
application. In the frequency domain this has been exten-
sively studied and implemented for acoustic wave scattering
problems (see, for example, the book by Ihlenburg [12]),
with somewhat less work on elastic wave scattering in solids.
Solid media support both compressional (P) and shear (S)
modes, and also surface/interfacial waves such as Rayleigh
and Stoneley waves. An elastodynamic finite element local
scattering model has been developed to compute the scatter-
ingmatrix, particularly on the ultrasonic array applications in
the far field [38,42], and similar concepts have been applied
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Fig. 1 Illustration of the prototypical hybrid concept

to simulate the elastic wave scattering of defects confined in
waveguides [22,24,35]. However, much less work has been
done on the coupled FE-BI for elastic waves in the time
domain: A time-domain solution would provide simulated
waveforms convenient for data processing in many applica-
tions, such as ultrasonic imaging [45] and seismic full wave
form inversion [40]. In addition, the time domain FE scheme
does not need to invert any global matrix because the global
mass and damping matrices can both be diagonalized [11].

In terms of hybrid approaches [9] implemented it to com-
pute the transient scattering signal using Auld’s reciprocity
principle and required a bespoke code because the FE cal-
culation is based on a fictitious domain method with a new
family of mixed finite elements [2]. Shen and Giurgiutiu [35]
develop a hybrid FE method in the time domain with a spe-
cific application for guidedwave structural healthmonitoring
andmore generally a hybrid method [31] has been developed
with implementation for the time domain FE explicit scheme
to solvemore generic scattering problems; this approach pro-
vides an analytical hybrid solution to link transducer and
defect responses computed from a numerical method. The
hybrid method as described in, say, Rajagopal et al. [31] is
shown in Fig. 1. In the first step, the transducer response is
calculated using the time-domain FE solver inside the source
box, and the radiatingwaves from the transducer are collected
by a monitoring box. A hybrid scheme based on the wave
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Fig. 2 A flow chart of the proposed method

potential is applied to calculate the incidentwave propagating
to the defect box. In the second step, the interaction between
the incident wave and the scatterer is computed again by the
time-domain FE inside the defect box. The excitation of the
FE model is realized by applying forces to an excitation line
(2D) several elements away from the defect. In the third step,
the scattering field is collected by a monitoring box around
the scatterer, and the hybrid scheme is used to calculate the
receiving signals at the transducer.

Here we describe a robust and efficient time domain
approach based on the hybrid concept, but we make spe-
cific modifications that incorporate the boundary integral
approach showing that this provides considerable advantages
over the previous hybrid method such as the work in [31].
Specifically, we use a reformulated FE equation to calculate
the required forcing signals of the excitation nodes. The exci-
tation and themonitoring nodes for the local FE box can both
be on the surface of the scatterer that can have an arbitrary
shape; hence the size of the FE model is reduced, and simul-
taneously the computational effort for the boundary integral
is also minimized. In addition, the boundary integral is repre-
sented as a superposition of retarded time traces contributed
from boundary values; the algorithm is completely imple-
mented in the time domain and avoids any loop using Fourier
transforms frommoving between time domain and frequency
formulations as in [31]. Finally, the new approach is flexible
and capable of modellingmore complex scenarios, including
scattering from rough surfaces in a half space, and from scat-
terers with different boundary conditions. We show through
several numerical examples that the new method achieves
very good accuracy, and also high efficiency vis-a-vis the
full FE model or the analytical solution.

This paper is organized as follows: Sect. 2 introduces the
methodology, which includes the theoretical formulae and
numerical implementations. Section 3 presents numerical

examples in 2D and 3D, and concluding remarks are made
in Sect. 4.

2 Methodology

Following the basic steps of the hybrid concept, as shown in
Fig. 1, the modelling procedure we use is shown schemati-
cally in Fig. 2. Firstly, the transmitter is modelled to obtain
the incident wave displacement field, for example, by the
Rayleigh integral [10]. A time-domain FE reformulation is
then used to calculate the required forcing signals applied
on the excitation nodes, which can be on the scatterer sur-
face. Only the elements attached at the excitation nodes are
required in the second step; by using the forces obtained
from the previous step as an input, a standard 2nd-order FE
explicit scheme is implemented to compute the scattering
displacement inside a small box. An absorbing region with
a thickness of around one wavelength is added to eliminate
unwanted reflections from the boundary. In the last step, the
displacement signals on the scatterer surface are recorded,
and substituted into the time-domain boundary integral to
calculate the scattering signals at the receiver.

2.1 Finite element formulation

The 2nd-order elastodynamic FE equation for one element
is [23]:

Meüe + Ceu̇e + Keue = be + fe (1)

where ue is the displacement vector, Me is the mass matrix,
Ke is the stiffness matrix and Ce is the damping matrix. be

is the nodal force caused by the boundary traction and fe is
the nodal force caused by the applied body force.

123



Comput Mech

Mall

O
Kall

O
uin =uin+Ma� Ka� fex

O O
Fig. 3 Matrix partition used in Eq. (2) from (3)

In NDE, the scatterer is normally a crack with a stress-free
boundary condition, implying that the assembly of the nodal
forces from the boundary tractions is zero. By adapting Eq.
(1) and assembling the required matrices, the following two
equations can be obtained:

fex (t) = Matt üin(t) + Kattuin(t) (2)

Mall ü(t) + Call u̇(t) + Kallu(t) = fex (t) (3)

In Eqs. (2) and (3), Matt and Katt are the local mass and
stiffness matrices assembled only from elements attached at
the excitation nodes. Mall , Kall and Call are corresponding
matrices for thewholeFEbox including the absorbing region,
and fex (t) are forces at excitation/boundary nodes. Matt and
Katt are subsets ofMall andKall and the partitions are shown
in Fig. 3.

By substituting the displacement field of the incidentwave
uin(t) at the nodes of the attached elements into Eq. (2), one
can calculate the forces at the excitation nodes fex (t) using
the central difference in the time domain.

fex (t) = Matt
uin(t+δt)−2uin(t)+uin(t−δt)

δt2

+ Kattuin(t) (4)

where uin(t−δt), uin(t) and uin(t+δt) are the incident wave
displacement vectors at the previous, current and next time
steps, respectively. We choose to apply forces to excite the
FE box rather than simply imposing the incident displace-
ment. The reason is that we need to record the superposition
of the incident and the scattering field on the boundary of
the scatterer for the boundary integral. Applying the bound-
ary displacement would result in only recording the incident
field.

If the boundary condition is not stress-free, the boundary
traction is not zero and hence the force fex (t) needs to be
subtracted by an additional term bex (t):

bex (t) =
∫

Γ

pex (t)sdΓ =
∫

Γ

[EBuin(t)n]sdΓ (5)

in which B is the strain-displacement matrix, E is the matrix
containing the elastic constants [23], n is the normal vector
at the boundary, s is the shape function andΓ is the boundary
surface for integration. The shape function varies per element
type and it can be found in a standard textbook and references
[23,32]. For a linear triangular element the shape function is
[ε, η, 1 − ε − η]ᵀ, where ε and η are the local coordinates
for a master element.

In the second step, fex (t) obtained from Eq. (2) are taken
into Eq. (3) as an input to calculate the displacement field
u(t + δt) [11] in the local FE box:

u(t + δt) =
(

Mall

δt2
+ Call

2δt

)(−1)

×
[

fex (t) +
(

Call

2δt
− Mall

δt2

)
u(t − δt)

+
(
2Mall

δt2
− Kall

)
u(t)

]
(6)

This equation is a standard 2nd-order explicit scheme to solve
elastic wave problems as implemented in available software
packages, such as Pogo and Abaqus. The acceptable thick-
ness of the absorbing layers is approximately 1λmax using
the stiffness reduction matrix (SRM) technique [28]. Here
λmax denotes the maximum wavelength, and it normally
equals to the compressional wavelength λp. Assuming that
the maximum dimension of the scatterer is Ls , then in gen-
eral the dimension of the FE box is just Ls + 2λmax . Such
a small computational region makes the implementation of
FE in 3D feasible. In the frequency domain, it is possible to
impose a non-reflecting boundary technique [39] and hence
no absorbing region is required. However, currently there is
no such solution in the time domain for the 2nd-order FE
explicit scheme. In summary, the force fex (t) is first calcu-
lated according to the known incident wave field using Eq.
(2), and these forces are then used in Eq. (3) with the FE
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Fig. 4 Notations of the vectors for the boundary integral. The trian-
gular facet is part of the scatterer (defect); the observing point is the
location where the scattering field is calculated

explicit scheme to compute the displacement field u(t) at the
surface of the scatterer.

2.2 Boundary integral

Once the surface displacements are obtained from the local
FE simulation, a time-domain boundary integral can be
applied to compute the scatteredwaves according to theHuy-
gens’ principle. The general boundary integral formulae in
the time domain is [1]:

usck (R, t) =
∫ t

0

∫
S

[
σG
i j;k(|R−r|, t−τ)ui (r, τ )n j (r)

− σi j (r, τ )uGi;k(|R − r|, t−τ)n j (r)
]
dS(r)dτ

(7)

where ui (r, τ ) and σi j (r, τ ) represent the displacement and
stresses at a point r at a time τ on the surface of the defect.
R is the vector indicating the position of the observation
point, and n j is the unit normal vector pointing outside the
surface. uGi;k(|R − r|, t − τ) and σG

i j;k(|R − r|, t − τ) are
the time dependent elastodynamic Green’s function in the
unbounded domain. The vector notations related with the
boundary integral are depicted in Fig. 4.

It is desirable in engineering to use simplified expressions
for the numerical implementation of the time-domain bound-
ary integral. Here we start alternatively from the frequency
domain and then transform the expression back to the time
domain. In the frequency domain, the general boundary inte-
gral is:

usck (R, ω) =
∫
S

[
σG
i j;k(|R − r|, ω)ui (r, ω)n j (r)

− σi j (r, ω)uGi;k(|R − r|, ω)n j (r)
]
dS(r) (8)

where the expressions of the Green’s function σG
i j;k(|R −

r|, ω) and uGi;k(|R − r|, ω) can be found in [1].
To analytically manipulate the stress Green’s function

[25], the far field condition that kα|R − r| � 1 (α = p, s)
is assumed, and terms involving 1/|R − r|2 are neglected.
Hence Eq. (8) in a 3D isotropic medium can be expressed as:

usc(R, ω) =
∑

α=p,s

−1

ρc2α

∫
S

e(ikαD)

4πD
Tα(r, D̂, ω)dS(r)

− ikα

∫
S

e(ikαD)

4πD
Uα(r, D̂, ω)dS(r) (9)

where

T p(r, D̂, ω) = ( D̂ · t) D̂
T s(r, D̂, ω) = t − ( D̂ · t) D̂
U p(r, D̂, ω) = [(u · n)(1 − 2γ 2) + 2γ 2(u · D̂)(n · D̂)] D̂
U s(r, D̂, ω) = (n · D̂)u + (u · D̂)n − 2(u · D̂)(n · D̂) D̂

(10)

and D = R − r , representing the vector from one point on
the crack surface to the observation point. D̂ denotes the unit
vector of D, and γ is the shear-to-compressional wave speed
ratio (e.g. γ = cs/cp). t and u denote the boundary traction
anddisplacement respectively.T p(r, D̂, ω) andT s(r, D̂, ω)

are decoupled compressional and shear components of the
boundary traction. U p(r, D̂, ω) and U s(r, D̂, ω) are decou-
pled compressional and shear components of the boundary
displacement.

Taking the inverseFourier transformofEq. (9), a boundary
integral in the time domain can be expressed as:

usc(R, t) =
∑

α=p,s

−1

ρc2α

∫
S

Tα(t − D/cα)

4πD
dS(r)

+ 1

cα

∫
S

Vα(t − D/cα)

4πD
dS(r) (11)

Tα(t − D/cα) and Vα(t − D/cα) represent travelling
waves which are called surface retarded tractions and
velocities.

In reality, the displacementU is the master variable which
can be computed directly from the FE as shown in Eq. (6).
The velocity V (t − D/cα) is therefore calculated as the first
order derivative of U(t − D/cα). The traction T (t − D/cα)

on the other hand needs to be estimated by the following
steps:

(1) Locate the elements which share the same boundary
node.
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(2) Recover the stresses at the boundary elements usingΣ =
EBu(t).

(3) Take the average value of the recovered stresses of these
elements to estimate the stress at the boundary node, and
then calculate the corresponding traction.

Step (3) is critical when a linear triangular/tetrahedral ele-
ment is implemented to mesh irregular geometries. This is
because the stress value is constant across such an element,
and the averaging procedure can improve the accuracy of the
recovered stress at the node.

The boundary of the defect can be discretized into small
triangular facets in 3D as shown in Fig. 4 to perform the
integration numerically:

usc(R, t)

=
∑

α=p,s

[
−1

ρc2α

M∑
m=1

1

4πDm

∫
Sm

Tα(t − D/cα)dSm(r)

+ 1

cα

M∑
m=1

1

4πDm

∫
Sm

Vα(t − D/cα)dSm(r)

]
(12)

where Dm = R − rm , and rm is the centre of the mth facet.
The boundary values are delayed in the time domain for inte-
gration, and they are linearly interpolated from the output of
the FE computation.

Since |R| � |Δr|, the vector between the observing point
and the point at the crack surface can be approximated as:

D = |R − r| = |R − rm − Δr| ≈ |R − rm |
−Δr · (R − rm)

|R − rm | = Dm − Δr · D̂m (13)

Note that inEq. (13)we expand Dwith the first-order approx-
imation relative to the centre of each facet rather than the
usual way with respect to the origin of the vector r)(e.g.
D ≈ R− R̂·r). Hence the boundary integral ismore accurate
when the distance R is not large enough for the requirement
of the far field.

Next a general form F(t − D/cα) is used to represent
either T (t−D/cα) or V (t−D/cα). By replacing D with the
approximation from Eq. (13), F(t − D/cα) can be expanded
using a Taylor series:

F(t − D/cα) ≈ F(t − Dm/cα)

+Δr · D̂m

cα

F′(t − Dm/cα) + O(Δr2)

(14)

The integration of F(t−D/cα) across one facet is therefore:

∫
Sm

F(t − D/cα)dSm(r)

≈
∫
Sm

F(t − Dm/cα)dSm(r) +
∫
Sm

Δr · D̂m

cα

F′(t

−Dm/cα)dSm(r)

≈ ImF(t − Dm/cα)

+ F′(t − Dm/cα)

∫
Sm

Δr · D̂m

cα

dSm(r) (15)

where Im refers to the area of the mth facet.
In Eq. (15) the first term assumes that the boundary values

are constant across this facet, which can be approximated as
being at the centre point. In the numerical implementation
the scattered wave at the centre is calculated as an average
of those at the facet nodes, so this first term is equivalent to
applying a trapezoidal rule to the integration. Higher order
Taylor expansion terms which refer to the derivatives of the
retarded time traces account for the time variation across the
facet. However, it will be shown through several numerical
examples that integration based on simply keeping the first
term is sufficiently accurate with the mesh density that has
been tested.

In 2D the boundary integration formula has a slightly dif-
ferent form from that in 3D because of a different Green’s
function, and for 2D a scaling factor

√
2iπ
kα

needs to be
included in the frequency domain formulation:

usc(R, ω)

=
∑

α=p,s

√
2iπ

kα

[
−1

ρc2α

∫
S

e(ikαD)

4π
√
D
Tα(r, D̂, ω)dS(r)

− ikα

∫
S

e(ikαD)

4π
√
D
Uα(r, D̂, ω)dS(r)

]
(16)

Transforming the above equation to the time domain yields
a convolution between the scaling factor and the boundary
formula.

3 Numerical verification

Several numerical examples are now illustrated using the FE-
BI method as described in Fig. 2. We choose aluminium
(Young’s modulus, 70GPa; density, 2700kg/m3; and Pois-
son ratio, 0.33) as the material of the bulk medium for all
simulations since it is a typical metal occurring in the non-
destructive evaluation application. A five-cycle tone burst
with a centre frequency of 4MHz is used as the incident P
wave, which is assumed to be a plane wave or a Gaussian
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Fig. 5 Snapshots of the plane wave scattering from a SDH. a Full FE model. b FEBI box

tapered plane wave in the following simulations. Note that
the proposed method can also model the scattering with an
arbitrary incident wave field produced from a real transducer.

3.1 2D examples

The first example in 2D is the plane wave scattering from a
side-drilled hole (SDH) with a diameter of 4 mm (≈2.6λp)
as shown in Fig. 5a. The corresponding full FE region has
a dimension of 51 × 51 mm2 (≈33λp × 33λp). The SRM
technique [28] is adopted here to reduce the thickness of the
absorbing region to about 1.5 mm (≈1λp). Linear triangu-
lar elements (equivalent to CPE3 in Abaqus) are applied to
mesh the domain automatically. The element size is λp/60,
sufficiently small for the convergence requirement of both
scattered P and S waves [6]. An excitation line is placed
20 mm (≈13λp) above the SDH to produce a plane P wave
propagating along the negative y-direction, and the scatter-
ing signals are recorded by a monitoring circle 20 mm away
from the SDH. The full FE model is solved using the Abaqus
explicit solver.

In contrast, the size of theFEbox (8×8mm2 ≈ 5λp×5λp)
used in the FE-BI method is much smaller by comparing Fig.
5a, b, and the excitation nodes are located at the SDH surface
in the FE box denoted by red dots. The forcing applied at the
defect surface is calculated using Eq. (4). After running the
FE explicit scheme in the box, the boundary displacements
are used to calculate the scattering signals via the boundary
integral Eq. (11), at themonitoring circle. Thefirst term inEq.

(11) is neglected due to the stress-free boundary condition.
The quantity of the boundary velocity in Eq. (11) must be the
total field (i.e., incident field plus scattering field).

Figure 6a, c show good agreements between the full FE
model and the FE box for the scattered P and S waves at
a near grazing angle (θs = 80◦). The scattering amplitude,
which here is defined as the ratio between the peaks between
the scattering and the incident signals, with θs ranging from
0◦ to 360◦ is shown in Fig. 6b, d, respectively. The mean
absolute error (MAE) from all scattering angles is used to
measure the deviation and it can be expressed as:

MAE = 1

M

M∑
n=1

∣∣A (
θns

) − Aref
(
θns

)∣∣ / ∣∣Aref
(
θns

)∣∣ (17)

where M is the number of the scattering angles, A(θns ) and
Are f (θns ) are the scattering amplitude calculated using the
FE-BI method and the full FE method. For the SDH case,
the MAE of the scattering amplitude are calculated as 1.5
and 3.2% for P and S waves, respectively.

The element size used in the full FEmodel is λp/60, which
is sufficiently small as it easily satisfies established conver-
gence criteria [6]. On the contrary, in the FE-BI box the
element size isλp/30,much larger than that used in the full FE
simulation. It implies a somewhat more relaxed convergence
requirement using the FE-BI method than the full FE model.
The reason is that the local FE simulation mitigates the error
caused by the mesh dispersion, when modelling the wave
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(c) (d)
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Fig. 6 Comparison of the scattering signals (uy) from a SDH using the full FE model and the FE-BI method. a Scattered P–P signals when
θs = 80◦. b P–P Scattering amplitude (θs = 0◦–360◦). c Scattered P–S signals when θs = 80◦. d P–S Scattering amplitude (θs = 0◦–360◦)

propagating from the source to the defect and vice-versa.
Giving the full FE model the same element size of λp/30
would cause noticeable errors for the scattered S waves due
to the mesh dispersion. The number of nodes in the local FE
box is around 25,000, which is significantly smaller than that
for the full FE model (4.1 million), a reduction of approxi-
mately 170 times. In addition, the total time for running the
full FE model is around 32 min, while for the small FE box
it only takes 20 s. A huge improvement of the computational
efficiency is therefore achieved.

The second example is the scattering of a plane P wave
from a rough surface as shown in Fig. 7. To approximate
the plane wave scattering from an infinitely long surface a
Gaussian tapered plane wave in [34] is adopted here. A spa-
tial Gaussian window is added to the plane wave so that
the amplitude of the incident wave impinging on the rough
surface gradually reduces to zero at the ends, in order to
avoid the edge effects when performing the boundary inte-
gral along the surface with a finite length. The total length of
the surface is 24 mm (≈15λp), based on which the half beam
width is approximately 4 mm (≈2.6λp). One realization of
the Gaussian surface with RMS = λp/4 and correlation
length λ0 = λp/2 is generated using the spectral method
[37]. The dimension of the full FE model shown in Fig. 7a is
51×25.5 mm2 (≈33λp ×16λp). An excitation line with the

same length of the surface is placed 4 mm (≈2.6λp) above
the rough surface. The incident wavefront distorts when the
ideal Gaussian plane wave propagates towards the surface,
and hence in the full FE model we put the excitation line as
close as possible to the rough surface. The scattered waves
are recorded by a semi-circle of the nodes 20 mm away from
the centre of the surface. Some redundant waves are noticed
propagating to the positive y-direction. These waves are gen-
erated by the excitation line due to the vibration of the source
nodes in a free space.

For comparison, Fig. 7b shows the corresponding FE box
which is 29 × 4 mm2 (≈18.7λp × 2.6λp). Specifically, the
excitation is realized by the nodes on the rough surface with
applied forces calculated from Eq. (4). Computed surface
displacements from the local FE box are substituted into the
boundary integral Eq. (11) to obtain the scattering signals
at the same monitoring points in the full FE model. For the
rough surface, the scattered waveforms become much more
complicated especially for the mode converted S waves, due
to the increased diffuse field as shown in Fig. 8c. However,
good agreements of the scattered P and S waveforms calcu-
lated from the full FE model and the FE-BI model are still
found. In addition, the FE-BImethod also accurately predicts
the scattering amplitude across all the scattering angles, and
the values of the MAE are 3.8 and 5.1% for P and S waves,
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Fig. 7 Snapshots of the scattered waves from a rough surface (σ = λp/4, λ0 = λp/2). a Full FE model. b FE-BI box
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p - p p - p

p - s

p - s

Fig. 8 Comparison of the scattering signals (uy) from a rough surface using the full FE model and the FE-BI method. a Scattered P–P signals
when θs = 30◦. b P–P Scattering amplitude (θs = 0◦–360◦). c Scattered P–S signals when θs = 30◦. d P–S Scattering amplitude (θs = 0◦–360◦)

respectively. The number of elements for the full FE model
and the local FE box in Fig. 7a, b are 2.1 million and 47,000,
and the computational effort is greatly reduced by the new
method.

3.2 3D examples

In 3D the plane wave scattering from a spherical void and
an inclusion with the same shape are simulated. The com-

puted results from the proposed method are then compared
with those calculated from the theoretical formulae [43]. It
is currently very difficult to simulate a full 3D FE model due
to the limit of computational power.

The 3D FE box has dimensions of 6.2 × 6.2 × 7.2 mm3

(≈4λp ×4.7λp ×4λp)as shown in Fig. 9, with the absorbing
region being 1.5 mm (≈1λp) thick. The spherical void with
a diameter of 1.2 mm (≈0.77λp) is created by subtracting a
3D solid sphere from the FE box. Linear tetrahedral elements
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Fig. 9 3D simulation with a spherical void. a Meshing profile around
the void. b Snapshot of the scattering field around the void. c Scatter-
ing signals (uz) when θs = 30◦ using the theoretical solution and the

FE-BI method. d Scattering amplitude (uz) when θs = 0◦–360◦ using
the theoretical solution and the FE-BI method

(equivalent to C3D4 in Abaqus) with a size of around 0.075
mm (λp/20) is used to mesh the FE box with the free mesh-
ing algorithm. The total number of nodes is approximately
65,000.

Assuming a plane wave propagating in the negative z-
direction, the forcing signals excited on the defect surface can
be calculated using Eq. (4). After executing the FE explicit
scheme in the local box, the calculated surface displacements
are substituted into Eq. (11) to calculate the scattering signals
from 0◦ to 360◦. The distance between the observing point
and the centre of the defect is approximately 100λp. Figure
9a shows the mesh around the void, and the local scattering
wavefield is shown in Fig. 9b.

Figure 9c shows a good agreement for the scattered P
wave signals when θs = 30◦, using the FE-BI method and
the theoretical solution [43]. From Fig. 9d, the MAE of the
scattering amplitude between the two approaches is 2.1%. A
small deviation of 4.2% can be seen when θs is around 180◦,
corresponding to the transmission direction.

The same geometry and bulk material (Aluminium) are
used for the simulation of the scattering from a spherical
inclusion, filled with Alumina (Young’s modulus, 390 GPa;

density, 3950 kg/m3; andPoisson ratio, 0.22). The impedance
ratio for the compressional wave between the bulk medium
and the inclusion is hence 0.40. In practice, the spherical
inclusion and the cubic box without the sphere are meshed
separately, and then joined to form the whole mesh shown
in Fig. 10a. Note that the two separate volumetric meshes
should produce the same boundary mesh at the interface to
make the volumetric mesh compatible.

We do not apply forces on the surface of the inclusion
directly in the FE box here because it is found to produce
unwanted waves which will pollute the scattering field. For
example, exciting the lower half spherical surfacewould give
waves travelling in both positive and negative z-directions,
which is caused by the vibration of source nodes in the free
space. The waves travelling along the positive z-direction
is unwanted and will contaminate the recorded waves on
the inclusion surface. Hence here an excitation plane 1 mm
above the inclusion is applied instead. The forces are given to
the plane and generate the required incident field travelling
downward along the negative z-direction.

Figure 10b shows the scattering field from the inclusion,
and the surface nodes to record boundary displacements.
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Fig. 10 3D simulation with a spherical inclusion. a Meshing profile
around the inclusion. b Snapshot of the scattering field around the
inclusion. c Scattering signals (uz) when θs = 30◦ using the theoreti-

cal solution and the FE-BI method. d Scattering amplitude (uz) when
θs = 0◦–360◦ using the theoretical solution and the FE-BI method

Elements associated with these nodes are also selected to
post-process the tractions, and an average is performed to
estimate the tractions at the surface of the inclusion. After
taking the boundary velocity and traction into Eq. (11), the
scattering signals at the observing points can be calculated.
A good match between the theory and the simulation can
be found in Fig. 10c, d. A small error of the amplitude at
the transmission direction (θs = 0◦) might be caused by
the fact that the linear tetrahedral element is not sufficiently
accurate to estimate the boundary stress. A common way to
improve the accuracy is to increase the mesh density, espe-
cially around the surface of the inclusion. Several alternative
ways may be useful to recover the stresses more accurately
based on the current mesh density [20]. For example, the
nodal point forces (NPF) method as developed in [27] can be
potentially implemented here.

4 Conclusions

Wehave presented an accurate and high-performance numer-
ical method to solve transient elastic wave scattering prob-

lems, in particular for 2Dor 3D complex scatterers. It couples
the FE and the boundary integral and is completely imple-
mented in the time domain. The time-domain FE equation
is reformulated to calculate the required forcing signals
applied on the excitation nodes according to arbitrary inci-
dent waves. These excitation nodes can be the same as the
boundary nodes of the scatterer. Then a small local FE
box is executed using the standard explicit scheme with
the computed forces as an excitation. The boundary dis-
placement of the scatterer is obtained and integrated in the
time domain to calculate the scattering signals for different
modes.

Themethod proposed in this article significantly improves
the efficiency of time-domain FE simulations, enabling a
direct comparison of the waveforms at different scattering
angles obtained numerically and experimentally. The inci-
dent wave can be in principle a wide band signal without
loss of efficiency. In addition, it can potentially be applied
to many research areas involving the use of the scattering
signals in solids, such as full waveform inversion, ultrasonic
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tomography, TOFD for sizing an internal defect, and a variety
of elastic wave imaging algorithms.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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