
ODE-based general moment approximations for PEPA

Richard A. Hayden Jeremy T. Bradley

Dept. of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, UK

{rh,jb}@doc.ic.ac.uk

August 1, 2008

Abstract

In this paper we show how the powerful ODE-based fluid-analysis technique for the stochastic pro-
cess algebra PEPA is an approximation to the first moments of the counting processes in question. For
a large class of models this approximation has a particularly simple form and it is possible to make
qualitative statements regarding how the quality of the approximation varies for different parameters.

Furthermore, this particular point of view facilitates a natural generalisation to higher order moments.
This allows modellers to approximate, for instance, the variance of the component counts. In particular,
we show how systems of ODEs facilitating the approximation of arbitrary moments of the component
counting processes can be naturally defined. The effectiveness of this generalisation is illustrated by
comparing the results with those obtained through stochastic simulation for a particular case study.

1 Introduction

Fluid-analysis of performance models offers the exciting potential of analysing massive state-spaces at
small computational cost. In the case of stochastic processalgebra models, fluid-analysis involves ap-
proximating the underlying discrete state-space with continuous real-valued variables and describing the
time-evolution of those variables with ordinary differential equations (ODEs). This approach was first ap-
plied to a subset of the stochastic process algebra PEPA [1] in [2] and has subsequently been extended
in [3] and [4].

Despite the successful and widespread application of thesetechniques, see e.g. [5; 3; 6; 7], limited ef-
fort has been expended in formally relating the analysis to the underlying continuous time Markov chain
(CTMC). In [8], we showed how these techniques have an exact interpretation for a very basic subset of
PEPA1. In this paper, we build on this and exhibit the nature of the approximation for a much larger and
more useful class of PEPA models. Through the insight gainedas a result, we are also able to define for the
first time similar ODE-based analyses which provide computationally inexpensive access to higher order
stochastic features of models, such as the variance or skewness of the corresponding distributions.

In the following section, Section 1.1, we introduce the stochastic process algebra PEPA and in Section 1.2,
we introduce the existing fluid semantics by means of a simpleexample for the sake of brevity. In Section 2,
we discuss the nature of the existing fluid-analysis as an approximation to the first moments of certain
stochastic processes associated with the model and in Section 3, we show how this may be extended to
higher order moments.

1Models involving no synchronisation, i.e. only purely parallel concurrency.

1

1.1 PEPA

PEPA [9] as a performance modelling formalism has been used to study a wide variety of systems: multi-
media applications [10], mobile phone usage [11], GRID scheduling [12], production cell efficiency [13]
and web-server clusters [14] amongst others. The definitivereference for the language is [9].

As in all process algebras, systems are represented in PEPA as the composition ofcomponents which
undertakeactions. In PEPA the actions are assumed to have a duration, or delay.Thus the expression
(α, r).P denotes a component which can undertake anα action at rater to evolve into a componentP .
Hereα ∈ A whereA is the set of action types. The rater is interpreted as a random delay which samples
from an exponential random variable with parameter,r.

PEPA has a small set of combinators, allowing system descriptions to be built up as the concurrent execu-
tion and interaction of simple sequential components. The syntax of the type of PEPA model considered in
this paper may be formally specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

whereS denotes asequential component andP denotes amodel component which executes in parallel.
C stands for a constant which denotes either a sequential component or a model component as introduced
by a definition.CS stands for constants which denote sequential components. The effect of the syntactic
separation between these types of constants is to constrainlegal PEPA components to be cooperations of
sequential processes.

More information and structured operational semantics on PEPA can be found in [9]. A brief discussion of
the basic PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour of a systemwith a PEPA model is to give a
component a designated first action using the prefix combinator, denoted by a full stop, which was
introduced above. As explained,(α, r).P carries out anα action with rater, and it subsequently
behaves asP .

Choice The componentP + Q represents a system which may behave either asP or asQ. The activities
of both P andQ are enabled. The first activity to complete distinguishes one of them: the other
is discarded. The system will behave as the derivative resulting from the evolution of the chosen
component.

Constant It is convenient to be able to assign names to patterns of behaviour associated with components.
Constants are components whose meaning is given by a definingequation. The notation for this
is X

def
= E. The nameX is in scope in the expression on the right hand side meaning that, for

example,X
def
= (α, r).X performsα at rater forever.

Hiding The possibility to abstract away some aspects of a component’s behaviour is provided by the hiding
operator, denotedP/L. Here, the setL identifies those activities which are to be considered internal
or private to the component and which will appear as the unknown typeτ .

Cooperation We writeP ��
L

Q to denote cooperation betweenP andQ overL. The set which is used
as the subscript to the cooperation symbol, thecooperation set L, determines those activities on
which the components are forced to synchronise. For action types not inL, the components proceed
independently and concurrently with their enabled activities. We writeP ‖ Q as an abbreviation
for P ��

L
Q whenL is empty. Furthermore,P [n] is shorthand for the parallel cooperation ofn

P -components,P || · · · || P
︸ ︷︷ ︸

n

.

In process cooperation, if a component enables an activity whose action type is in the cooperation set it will
not be able to proceed with that activity until the other component also enables an activity of that type. The

2

two components then proceed together to complete theshared activity. Once enabled, the rate of a shared
activity has to be altered to reflect the slower component in acooperation.

In some cases, when a shared activity is known to be completely dependent only on one component in the
cooperation, then the other component will be madepassive with respect to that activity. This means that
the rate of the activity is left unspecified (denoted⊤) and is determined upon cooperation, by the rate of
the activity in the other component. All passive actions must be synchronised in the final model.

Within the cooperation framework, PEPA respects the definition of bounded capacity: that is, a component
cannot be made to perform an activity faster by cooperation,so the rate of a shared activity is the minimum
of the apparent rates of the activity in the cooperating components.

1.2 Fluid-analysis

For the sake of brevity, we will not formally present here thefluid semantics for PEPA. It can be found
in different degrees of generality in the literature [2; 3; 4]. Instead, we will introduce the techniques by
considering a simple case study.

In the PEPA modelSystem below, we have a population ofNC Clients and a population ofNS Servers.
The system uses a 2-stage fetch mechanism: a client requestsdata from the pool of servers; one of the
servers receives the request, another server may then fetchthe data for the client. At any stage, a server in
the pool may fail.

Client
def
= (request , rreq).Client waiting

Client waiting
def
= (data, rdata).Client think

Client think
def
= (think , rthink).Client

Server
def
= (request , rreq).Server get + (break , rbreak).Server broken

Server get
def
= (data, rdata).Server + (break , rbreak).Server broken

Server broken
def
= (reset , rreset).Server

System
def
= Client [NC] ��

L
Server [NS]

whereL = {request, data}.

Since each client and server can be in one of three derivativestates, it is clear that this model has3NC+NS

states in its underlying CTMC, and thus it is quickly intractable to traditional analysis methods. Consider
the three integer-valued stochastic processes which countthe number of theNC clients in each of the three
possible derivative states ofClient . Let these benC(t), nCw

(t) andnCt
(t) respectively. Similarly, define

for the servers,nS(t), nSg
(t) andnSb

(t). Usingstrong equivalence it is straightforward to show that the
partition of the state-space into mutually exclusive subsets, such that all of these stochastic processes take
on the same value in each subset, is alumpable partition, see [1][Chapter 8]. This allows these states to be
combined and the rates aggregated, resulting in a smaller CTMC, for which each state is specified uniquely
by the values of the six stochastic processes defined above. Unfortunately, this simplification does not, in
general, solve the state-space explosion problem. However, it is a necessary first step before constructing a
fluid-analysis.

The idea of the fluid-analysis is to define deterministic, real-valued fluid approximationsv·(t) (defined
by ODEs) to the integer stochastic processesn·(t), in some sense. In order to construct the ordinary
differential equation which governs the evolution ofvC(t), for example, we consider the aggregate CTMC
rate at whichClient components are lost in the model and the rate at which they aregained, balancing the
two quantities in terms of the fluid approximationsv·(t):

dvC(t)

dt
= −min(vC(t), vS(t))rreq + vCt

(t)rthink (1.1)

3

0

10

20

30

40

50

0 20 40 60 80 100

N
u
m

b
e
r

o
f

a
c
ti

v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Client (ODEs)
Client (SS)

Client waiting (ODEs)
Client waiting (SS)

Client thinking (ODEs)
Client thinking (SS)

0

5

10

15

20

0 20 40 60 80 100

N
u
m

b
e
r

o
f

a
c
ti

v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Server (ODEs)
Server (SS)

Server get (ODEs)
Server get (SS)

Server broken (ODEs)
Server broken (SS)

Fig. 1. Comparison of ODE approximation with expectations obtained via stochastic simulation. Rates used arerreq = 3.0, rthink =

0.4, rbreak = 0.2, rdata = 1.5 andrreset = 0.5. Initial conditions are50 Client and20 Server components.

That is,Client components are lost only through evolving intoClient waiting components. This happens
by virtue of completing arequest shared action with aServer component, at the aggregate CTMC rate
min(nC(t), nS(t))rreq . Client components are gained only throughClient think components complet-
ing their think action at aggregate CTMC ratenCt

(t)rthink . Similar considerations for the other client
and server components lead to a complete set of six ODEs. These can then be inexpensively integrated to
obtain thev·(t) as deterministic, real-valued functions. The most naturalinterpretation ofv·(t) is as an ap-
proximation to the (deterministic) expectationE[n·(t)], and indeed, as Figure 1 shows, the correspondence
is often very impressive.

2 First moment approximation

Despite the fact that the fluid-analysis introduced in the last section yields very impressive results in a lot
of cases, there are certainly instances where it is not as accurate. In this section, we exhibit the nature of
the approximation by deriving the system of ODEs directly from the CTMC via an approximation to the
underlying Chapman-Kolmogorov equations.

We consider again the model introduced in the previous section. Writep(C, Cw, Ct, S, Sg, Sb)(t) as the tran-
sient probability of being in the unique aggregated state wherenC(t) = C andnCw

(t) = Cw etc. at timet,
then the Chapman-Kolmogorov equations which govern the evolution of the underlying aggregated CTMC

4

are:

ṗ(C, Cw, Ct, S, Sg, Sb)(t) = min(C + 1, S + 1)rreq · p(C+1, Cw−1, Ct, S+1, Sg−1, Sb)(t) (2.1)

+ min(Cw + 1, Sg + 1)rdata · p(C, Cw+1, Ct−1, S−1, Sg+1, Sb)(t)

+ (Ct + 1)rthink · p(C−1, Cw, Ct+1, S, Sg, Sb)(t)

+ (S + 1)rbreak · p(C, Cw, Ct, S+1, Sg, Sb−1)(t)

+ (Sg + 1)rbreak · p(C, Cw, Ct, S, Sg+1, Sb−1)(t)

+ (Sb + 1)rreset · p(C, Cw, Ct, S−1, Sg, Sb+1)(t)

− min(C, S)rreq · p(C, Cw, Ct, S, Sg, Sb)(t)

− min(Cw, Sg)rdata · p(C, Cw, Ct, S, Sg, Sb)(t)

− Ct · rthink · p(C, Cw, Ct, S, Sg, Sb)(t)

− S · rbreak · p(C, Cw, Ct, S, Sg, Sb)(t)

− Sg · rbreak · p(C, Cw, Ct, S, Sg, Sb)(t)

− Sb · rreset · p(C, Cw, Ct, S, Sg, Sb)(t)

where each of the first six summands appears only when it is valid in the sense that the subscript ofp·(t) is
within the aggregated state-space, sayS. Now for all statess = (C, Cw, Ct, S, Sg, Sb) ∈ S, multiplying
p(C, Cw, Ct, S, Sg, Sb)(t) by C and summing, we obtain:

∑

s∈S

ṗs(t)C =
∑

s∈S

[

(C − 1)min(C, S)rreq · ps(t) + C min(Cw, Sg)rdata · ps(t) + (C + 1)Ctrthink · ps(t)

(2.2)

+ CSrbreak · ps(t) + CSgrbreak · ps(t) + CSbrreset · ps(t)

− C min(C, S)rreq · ps(t) − C min(Cw , Sg)rdata · ps(t) − CCt · rthink · ps(t)

− CS · rbreak · ps(t) − CSg · rbreak · ps(t) − CSb · rreset · ps(t)

]

Notice in particular that, for example:

∑

s∈S

C min(C + 1, S + 1)rreq · p(C+1, Cw−1, Ct, S+1, Sg−1, Sb)(t) =

∑

s∈S

(C − 1)min(C, S)rreq · p(C, Cw, Ct, S, Sg, Sb)(t)

since alls ∈ S can be expressed ass = (C + 1, Cw − 1, Ct, S + 1, Sg − 1, Sb), except for maybe
those whose contribution to the sum would be zero anyway (e.g. those for whichCw = NC , in which case
min(C, S) = min(0, S) = 0).

Expanding and cancelling Equation (2.2) then yields:

dE[nC(t)]

dt
= −E[min(nC(t), nS(t))]rreq + E[nCt

(t)]rthink (2.3)

We thus obtain Equation (1.1) if we writev·(t) as the approximation toE[n·(t)] that is obtained on appli-
cation of the following approximation to Equation (2.3):

E[min(·, ·)] ≈ min(E[·], E[·])

It is easily seen that in general, however:

E[min(·, ·)] ≤ min(E[·], E[·])

5

This programme can be completed similarly for each of the other five client and server derivative states.

More generally, we can show that for a very large class of PEPAmodels2, the fluid-analysis technique
when viewed as an approximation to the expected value of the component counts relies only on (potentially
repeated) application of the above approximation.

2.1 Nature of the approximation

Having identified the quantitative nature of the fluid-analysis, as relying on the approximationE[min(·, ·)] ≈
min(E[·], E[·]), we may identify two key properties of a given PEPA model which should significantly af-
fect its accuracy. The first of these has to do with the variability of the component counting stochastic
processesn·(t) and the second is a more structurally explicit aspect of the model itself.

2.1.1 Variability at ‘switch points’

A switch point is defined to be a point in the aggregated state-space at whichthe dominant side of amin(·, ·)
term in the system of ODEs for a given PEPA model changes.

It is easy to see that far away from switch points, we would expect the fluid approximation to remain
good (as long as it is not already poor) unless the variability (i.e. spread of the distribution) is very high.
Consider the termE[min(nC(t), nS(t))]. If we are very far away from a switch point, say all states with
non-negligible probability haveC > S, thenE[min(nC(t), nS(t))] will be very well approximated by
E[nS(t)]. Around switch points, a non-negligible proportion of the probability distribution may be in
states for whichC < S and also in states for whichS < C, so bothE[nC(t)] andE[nS(t)] would be likely
to be much less accurate approximations toE[min(nC(t), nS(t))].

The extent to which this phenomenon affects the quality of the approximation depends on how far the
distribution is spread either side of switch points, i.e. isdetermined by the variability of the stochastic
processesn·(t).

2.1.2 Heterogeneous cooperation rates

Consider modifying the original model so that instead of both theClient andServer components complet-
ing therequest action at raterreq , theClient component does it at rater1 and theServer at rater2. Then,
the termE[min(nC(t), nS(t))]rreq in Equation (2.3) becomesE[min(nC(t)r1, nS(t)r2)]. If instead of
r1 = r2, sayr1 ≪ r2, the same amount of variability in the component counts could clearly translate to a
much larger relative quantitative error under the:

E[min(nC(t)r1, nS(t)r2)] ≈ min(E[nC(t)]r1, E[nS(t)]r2)

approximation.

In [4], an improved fluid semantics for passive cooperation between component groups was presented.
This involved replacing the passive action by an active action with a rate that is fast enough to ensure that
the action is effectively passive within its encompassing model structure. The fluid semantics for active
cooperation can then be applied directly. Such cooperations will of course involve rates, one of which is
much greater than the other by their very nature. As a passiveresource runs out and the corresponding
switch point approaches, the error in the above approximation may be very large indeed since a large part
of the probability distribution corresponding to states with zero resources will not affect the approximation
as early as it should, resulting in an underestimation of thecorresponding blocking effect. This can be
seen in Figure 2, which shows a version of the earlier examplewith heterogeneous cooperation (created as
described above, by using different rates for therequest action for theClient andServer components; in
this case,r2 is picked so that theServer is effectively passive for therequest cooperation). The blocking

2Specifically, those whose aggregate CTMC rates do not involve rational functions of the component counts. Such aggregate
CTMC rates occur when more than one component derivative state in a component group enables the same shared action.

6

0

5

10

15

20

0 20 40 60 80 100

N
u
m

b
e
r

o
f

a
c
ti

v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Client (ODEs)
Client (SS)

Client waiting (ODEs)
Client waiting (SS)

Client thinking (ODEs)
Client thinking (SS)

0

1

2

3

4

5

0 20 40 60 80 100

N
u
m

b
e
r

o
f

a
c
ti

v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Server (ODEs)
Server (SS)

Server get (ODEs)
Server get (SS)

Server broken (ODEs)
Server broken (SS)

Fig. 2. Comparison of ODE approximations with expectations obtained via stochastic simulation for massively heterogeneous (ef-
fectively passive)request cooperation. Rates used arer1 = 3.0, r2 = 500, rthink = 0.4, rbreak = 0.8, rdata = 1.5 and
rreset = 0.5. Initial conditions are20 Client and5 Server components.

effect on theClient components due to a lack ofServer components to service theirrequest actions is
clearly seen to have been underestimated by the ODE approximation.

3 Higher order moment approximations

In this section we show how the insight gained in Section 2 canbe used to naturally define similar approx-
imations for higher order moments of the component countingstochastic processes for a PEPA model.

Consider again the model of the previous sections. Recall the Chapman-Kolmogorov equations of its
underlying aggregated CTMC (Equation (2.1)). Proceed as inSection 2, but instead of multiplying byC
and summing, multiply byC2 and sum:

∑

s∈S

ṗs(t)C
2 =

∑

s∈S

[

(C − 1)2 min(C, S)rreq · ps(t) + C2 min(Cw , Sg)rdata · ps(t)

+ (C + 1)2Ctrthink · ps(t)

+ C2Srbreak · ps(t) + C2Sgrbreak · ps(t) + C2Sbrreset · ps(t)

− C2 min(C, S)rreq · ps(t) − C2 min(Cw, Sg)rdata · ps(t) − C2Ct · rthink · ps(t)

− C2S · rbreak · ps(t) − C2Sg · rbreak · ps(t) − C2Sb · rreset · ps(t)

]

Expanding and cancelling now yields:

dE[n2
C(t)]

dt
= E[min(nC(t), nS(t))]rreq − 2E[min(n2

C(t), nC(t)nS(t))]rreq

+ E[nCt
(t)]rthink + 2E[nC(t)nCt

(t)]rthink

Write vC2(t) for the approximation to the second moment of theClient counting process andvC·S(t) for
the approximation to the joint moment of theClient andServer counting processes etc. Applying again,
E[min(·, ·)] ≈ min(E[·], E[·]), then gives:

dvC2(t)

dt
= min(vC(t), vS(t))rreq − 2 min(vC2(t), vC·S(t))rreq

+ vCt
(t)rthink + 2vC·Ct

(t)rthink

7

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

V
a
ri

a
n
c
e
 i
n
 n

u
m

b
e
r

o
f

a
c
ti

v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Client (ODEs)
Client (SS)

Client waiting (ODEs)
Client waiting (SS)

Client thinking (ODEs)
Client thinking (SS)

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

V
a
ri

a
n
c
e
 i
n
 n

u
m

b
e
r

o
f

a
c
ti

v
e
 c

o
m

p
o
n
e
n
ts

Time, t

Server (ODEs)
Server (SS)

Server get (ODEs)
Server get (SS)

Server broken (ODEs)
Server broken (SS)

Fig. 3. Comparison of ODE-derived variance approximation with that obtained via stochastic simulation. Rates used arerreq = 1.0,
rthink = 1.0, rbreak = 0.5, rdata = 1.0 andrreset = 1.0. Initial conditions are50 Client and50 Server components.

If we repeat this programme for all second order (joint) moments, we obtain 27 such ODEs, which uniquely
determine the approximation. Figure 3 shows a comparison between the variance of the component count-
ing processes obtained by computing the first and second order moments using the ODE-based approxima-
tion defined above, with that obtained through stochastic simulation.

For moments of any order, the same idea works (multiplication byCn for example) and the accuracy again
relies solely on the above approximation for the same large class of PEPA models as in the first order case.

4 Conclusion and future work

Through this work, we have a more precise understanding of what fluid-analysis of PEPA models means
in terms of the underlying CTMC, and a much better idea of whataffects the quality of the approximation
for given models and parameters.

We have also shown how this style of approximation may be naturally extended to allow access to previ-
ously inaccessible features of models with massive state spaces, including, for example, the variance and
skewness of the component counts. Before now, the only computationally feasible method of obtaining
such measures was through stochastic simulation using, forexample, the Gillespie algorithm [15]. Fur-
thermore, due to the small magnitude of, for example, the variance of a component count, it is much more
expensive to obtain via stochastic simulation for the same relative error than the expected values of com-
ponent counts. Indeed, to obtain the stochastic simulations in the graphs of Figure 3, 100,000 independent
replications were required, and even still, there are visible fluctuations.

One interesting direction for future work is the possibility of using the higher order approximations in-
troduced in this work to improve the first order approximation to the expected component counts. Ap-
proximate knowledge of the variability of the distributionof component counts around switch points may
provide a natural route to improve the underlyingE[min(·, ·)] ≈ min(E[·], E[·]) approximation. In partic-
ular, if min(·, ·) were smoother3, a Taylor expansion ofmin(·, ·) in terms of higher order moments of the
component counts in Equation (2.2) would be one possible route. Since it is not at all smooth, we might
consider using smoother functions in the ODE approximation, which take on the same discrete values as
min(· ·), i.e. do not change the underlying CTMC, only differing on the values in between the integer
component counts.

3That is, differentiable at least a few times.

8

References

[1] J. Hillston,A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[2] J. Hillston, “Fluid flow approximation of PEPA models,” in QEST’05, Proceedings of the 2nd In-
ternational Conference on Quantitative Evaluation of Systems, (Torino), pp. 33–42, IEEE Computer
Society Press, September 2005.

[3] J. T. Bradley, S. T. Gilmore, and J. Hillston, “Analysingdistributed internet worm attacks using con-
tinuous state-space approximation of process algebra models,” Journal of Computer and System Sci-
ences, July 2007. (in press).

[4] R. A. Hayden and J. T. Bradley, “Fluid semantics for passive stochastic process algebra cooperation,”
in VALUETOOLS’08, Third International Conference on Performance Evaluation Methodologies and
Tools, (Athens), 2008.

[5] A. Duguid, “Coping with the parallelism of BitTorrent: Conversion of PEPA to ODEs in dealing
with state space explosion,” inFormal Modeling and Analysis of Timed Systems, 4th International
Conference, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings (E. Asarin and
P. Bouyer, eds.), vol. 4202 ofLecture Notes in Computer Science, pp. 156–170, Springer, 2006.

[6] S. Gilmore and M. Tribastone, “Evaluating the scalability of a web service-based distributed e-
learning and course management system,” inThird International Workshop on Web Services and
Formal Methods (WS-FM’06) (M. T. N. n. Mario Bravetti and G. Zavattaro, eds.), vol. 4184of Lec-
ture Notes in Computer Science, (Vienna, Austria), pp. 156–170, Springer, 2006.

[7] M. Bravetti, S. Gilmore, C. Guidi, and M. Tribastone, “Replicating web services for scalability,”
in Proceedings of the Third International Conference on Trustworthy Global Computing (TGC’07)
(G. Barthe and C. Fournet, eds.), vol. 4912 ofLNCS, pp. 222204–221, Springer-Verlag, 2008.

[8] R. A. Hayden and J. T. Bradley, “Fluid-flow solutions in pepa to the state space explosion problem,” in
PASTA 2007, 6th Workshop on Process Algebra and Stochastically Timed Activities, (London), 2007.

[9] J. Hillston,A Compositional Approach to Performance Modelling, vol. 12 ofDistinguished Disserta-
tions in Computer Science. Cambridge University Press, 1996.

[10] H. Bowman, J. W. Bryans, and J. Derrick, “Analysis of a multimedia stream using stochastic process
algebras,”The Computer Journal, vol. 44, no. 4, pp. 230–245, 2001.

[11] J. M. Fourneau, L. Kloul, and F. Valois, “Performance modelling of hierarchical cellular networks
using PEPA,”Performance Evaluation, vol. 50, pp. 83–99, November 2002.

[12] N. Thomas, J. T. Bradley, and W. J. Knottenbelt, “Stochastic analysis of scheduling strategies in a
GRID-based resource model,”IEE Software Engineering, vol. 151, pp. 232–239, September 2004.

[13] D. R. W. Holton, “A PEPA specification of an industrial production cell,” inProcess Algebra and
Performance Modelling Workshop (S. Gilmore and J. Hillston, eds.), vol. 38(7) ofSpecial Issue: The
Computer Journal, pp. 542–551, CEPIS, Edinburgh, June 1995.

[14] J. T. Bradley, N. J. Dingle, S. T. Gilmore, and W. J. Knottenbelt, “Derivation of passage-time densi-
ties in PEPA models using ipc: the Imperial PEPA Compiler,” in MASCOTS’03, Proceedings of the
11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (G. Kotsis, ed.), (University of Central Florida), pp. 344–351, IEEE
Computer Society Press, October 2003.

[15] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,”Journal of Physical
Chemistry, vol. 81, no. 25, pp. 2340–2361, 1977.

9

