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Abstract

In this paper we show how the powerful ODE-based fluid-amgalgzhnique for the stochastic pro-
cess algebra PEPA is an approximation to the first momentseofdunting processes in question. For
a large class of models this approximation has a partigukirhple form and it is possible to make
qualitative statements regarding how the quality of the@ydmation varies for different parameters.

Furthermore, this particular point of view facilitates dural generalisation to higher order moments.
This allows modellers to approximate, for instance, théavene of the component counts. In particular,
we show how systems of ODEs facilitating the approximatibarbitrary moments of the component
counting processes can be naturally defined. The effeetdgenf this generalisation is illustrated by
comparing the results with those obtained through stoithsistulation for a particular case study.

1 Introduction

Fluid-analysis of performance models offers the excitingeptial of analysing massive state-spaces at
small computational cost. In the case of stochastic proakgbra models, fluid-analysis involves ap-
proximating the underlying discrete state-space with ioowoius real-valued variables and describing the
time-evolution of those variables with ordinary differihequations (ODES). This approach was first ap-
plied to a subset of the stochastic process algebra PEPA [f] iand has subsequently been extended
in [3] and [4].

Despite the successful and widespread application of tteetmiques, see e.g. [5; 3; 6; 7], limited ef-
fort has been expended in formally relating the analysisiéounderlying continuous time Markov chain
(CTMC). In [8], we showed how these techniques have an exéetgretation for a very basic subset of
PEPA. In this paper, we build on this and exhibit the nature of thpraximation for a much larger and
more useful class of PEPA models. Through the insight gaaseadresult, we are also able to define for the
first time similar ODE-based analyses which provide comiputally inexpensive access to higher order
stochastic features of models, such as the variance or glesvari the corresponding distributions.

In the following section, Section 1.1, we introduce the btmstic process algebra PEPA and in Section 1.2,
we introduce the existing fluid semantics by means of a siexdenple for the sake of brevity. In Section 2,
we discuss the nature of the existing fluid-analysis as amoappation to the first moments of certain
stochastic processes associated with the model and ino8e&tive show how this may be extended to
higher order moments.

IModels involving no synchronisation, i.e. only purely giriaconcurrency.



1.1 PEPA

PEPA [9] as a performance modelling formalism has been usstlitly a wide variety of systems: multi-
media applications [10], mobile phone usage [11], GRID ddfing [12], production cell efficiency [13]
and web-server clusters [14] amongst others. The definitfierence for the language is [9].

As in all process algebras, systems are represented in PERAeacomposition otomponents which
undertakeactions. In PEPA the actions are assumed to have a duration, or délays the expression
(o, 7). P denotes a component which can undertakevattion at rate- to evolve into a componerit.
Herea € A whereA is the set of action types. The ratés interpreted as a random delay which samples
from an exponential random variable with parameter,

PEPA has a small set of combinators, allowing system desmmgto be built up as the concurrent execu-
tion and interaction of simple sequential components. Théex of the type of PEPA model considered in
this paper may be formally specified using the following gmaam:

S = (a,r).S|S+S8|Cs
P uw= PDHP|P/L|C

where S denotes aequential component and P denotes anodel component which executes in parallel.
C stands for a constant which denotes either a sequential@oempor a model component as introduced
by a definition.Cs stands for constants which denote sequential componehéseffect of the syntactic
separation between these types of constants is to conktgghPEPA components to be cooperations of
sequential processes.

More information and structured operational semanticsRAcan be found in [9]. A brief discussion of
the basic PEPA operators is given below:

Prefix The basic mechanism for describing the behaviour of a systdéima PEPA model is to give a
component a designated first action using the prefix comtnipdénoted by a full stop, which was
introduced above. As explainefly, ). P carries out anv action with rater, and it subsequently
behaves a®.

Choice The componenP + @) represents a system which may behave eithd? asas(). The activities
of both P and(@ are enabled. The first activity to complete distinguishes ohthem: the other
is discarded. The system will behave as the derivative tiagufrom the evolution of the chosen
component.

Constant It is convenient to be able to assign names to patterns ohMmmivaassociated with components.
Constants are components whose meaning is given by a deégugtion. The notation for this
is X £ E. The nameX is in scope in the expression on the right hand side meaniay ftbr
example X £ (o, 7). X performsa at rater forever.

Hiding The possibility to abstract away some aspects of a compsHeattaviour is provided by the hiding
operator, denotef’/ L. Here, the sef identifies those activities which are to be considered faker
or private to the component and which will appear as the uwkngper.

Cooperation We write P DLQ @ to denote cooperation betweéhand @ over L. The set which is used
as the subscript to the cooperation symbol, ¢heperation set L, determines those activities on
which the components are forced to synchronise. For agffgestnot inL, the components proceed
independently and concurrently with their enabled adéigit We writeP || @ as an abbreviation
for P Dfl Q when L is empty. FurthermoreP[n| is shorthand for the parallel cooperationof
P-componentsP || --- || P.

———

n

In process cooperation, if a component enables an activityse action type is in the cooperation set it will
not be able to proceed with that activity until the other comgnt also enables an activity of that type. The



two components then proceed together to completatthied activity. Once enabled, the rate of a shared
activity has to be altered to reflect the slower componentdoaperation.

In some cases, when a shared activity is known to be compld¢glendent only on one component in the

cooperation, then the other component will be mpalssive with respect to that activity. This means that

the rate of the activity is left unspecified (denoféjfland is determined upon cooperation, by the rate of
the activity in the other component. All passive actions ninessynchronised in the final model.

Within the cooperation framework, PEPA respects the dedmif bounded capacity: that is, a component
cannot be made to perform an activity faster by cooperasiothe rate of a shared activity is the minimum
of the apparent rates of the activity in the cooperating comepts.

1.2 Fluid-analysis

For the sake of brevity, we will not formally present here tlugd semantics for PEPA. It can be found
in different degrees of generality in the literature [2; 3; thstead, we will introduce the techniques by
considering a simple case study.

In the PEPA modebystem below, we have a population @f¢ Clients and a population a¥s Servers.
The system uses a 2-stage fetch mechanism: a client regisgatérom the pool of servers; one of the
servers receives the request, another server may thentffietctata for the client. At any stage, a serverin
the pool may fail.

Client = (request,Treq). Client_waiting
Client_waiting = (data, r4ata)- Client_think
Client _think = (think, riping ). Client
Server = (request, rreq).Server_get + (break, Tyrear ). Server_broken
Server_get “ (data, r4ata).Server + (break, rprear ). Server_broken
erver_broken = (reset,Treset).Server
S broken = t S

System = Client[Nc| B Server[Ns]

whereL = {request, data}.

Since each client and server can be in one of three derivgtttes, it is clear that this model hasc Vs
states in its underlying CTMC, and thus it is quickly inti@uie to traditional analysis methods. Consider
the three integer-valued stochastic processes which tle@mumber of théV clients in each of the three
possible derivative states 6flient. Let these bewc(t), nc,, (t) andng, (t) respectively. Similarly, define
for the serversps(t), ns,(t) andng, (t). Usingstrong equivalenceit is straightforward to show that the
partition of the state-space into mutually exclusive st&ysich that all of these stochastic processes take
on the same value in each subset, isrgpable partition, see [1][Chapter 8]. This allows these stateseto b
combined and the rates aggregated, resulting in a smallet@ Tor which each state is specified uniquely
by the values of the six stochastic processes defined abavfertUnately, this simplification does not, in
general, solve the state-space explosion problem. Howieiga necessary first step before constructing a
fluid-analysis.

The idea of the fluid-analysis is to define deterministic]-vadued fluid approximations.(t) (defined

by ODEs) to the integer stochastic processg$), in some sense. In order to construct the ordinary
differential equation which governs the evolutionwef(t), for example, we consider the aggregate CTMC
rate at whichClient components are lost in the model and the rate at which theyaaned, balancing the
two quantities in terms of the fluid approximationét):

dvc(t)
dt

= —min(ve(t), vs(t))rreq + vo, ()T ihink 1.1)
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Fig. 1. Comparison of ODE approximation with expectations obtwvia stochastic simulation. Rates used@atg = 3.0, 7¢pink =
0.4, Tpreak = 0.2, 7gate = 1.5 @ndrreser = 0.5. Initial conditions ares0 Client and20 Server components.

That is, Client components are lost only through evolving iftbent_waiting components. This happens
by virtue of completing arequest shared action with @erver component, at the aggregate CTMC rate
min(nc(t), ns(t))rreq. Client components are gained only througlient_think components complet-

ing their think action at aggregate CTMC rate, (t)rmx- Similar considerations for the other client
and server components lead to a complete set of six ODEseH™agsthen be inexpensively integrated to
obtain thev.(t) as deterministic, real-valued functions. The most naiuatatpretation ob.(¢) is as an ap-
proximation to the (deterministic) expectatiBf. (¢)], and indeed, as Figure 1 shows, the correspondence
is often very impressive.

2 First moment approximation

Despite the fact that the fluid-analysis introduced in ttst $@ction yields very impressive results in a lot
of cases, there are certainly instances where it is not agatec In this section, we exhibit the nature of
the approximation by deriving the system of ODEs directtnirthe CTMC via an approximation to the

underlying Chapman-Kolmogorov equations.

We consider again the model introduced in the previous@ecWritep ¢, ¢, c,, s, s,, s,) (t) as the tran-
sient probability of being in the unique aggregated statereh(t) = C andnc,, (t) = C,, etc. attime,
then the Chapman-Kolmogorov equations which govern thiigea of the underlying aggregated CTMC



are:

P(C,Cw, Cr, S, Sy, Sy) (1) = MIN(C + 1, 8 + 1)rreq - P(C41, 01, C, 541, 5,1, 55) () (2.1)

+min(Cy + 1, Sg + D)Tdata * P(C, Cout1, Co—1, S—1, Sy+1, Sy) (t)
+ (Ct + 1) think - P(C—=1,Cw, Co+1, S, S, 5p) ()
+ (S + D)Tbreak - P(C, Cu, Cr, S+1, Sy, Sp—1) (F)
+ (Sg + Drreak - P(C, Cu, i, S, Sy+1, Sy—1) ()
+ (Sb + D)Tveset - P(C, Cu, Cr, 5-1, S, Sp+1) ()
—min(C, S)Treq " P(C, Cu, O, 5, 54, ) (E)
—min(Cuy, Sy)Tdata " P(C, Cu, Cr, 5, S, 5p) (1)
— Ct * Tthink * D(C, Cu, Cr, S, Sy, Sb) (1)
— 8 Threak * P(C, Cu, Cy, 5, Sy, Sp) (t)
— Sy Threak " P(C, Cu, Cr, S, S, Sp) ()
= Sb Treset " P(C, Cu, Cy, S, Sy, Sy) ()

where each of the first six summands appears only when itiid ivethe sense that the subscriptoft) is

within the aggregated state-space, SajNow for all statess = (C, C\,, Ci, S, Sy, Sp) € S, multiplying
P(C, Cu, Cy, S, S, 5p) (t) Dy C and summing, we obtain:

D pt)C =Y [(c — 1) min(C, 8)rreq - ps(t) + Cmin(Cu, Sy)Tdata - Ps(t) + (C + 1)Ci think - ps(t)
ses ses

2.2)
+ OSTbreak *DPs (t) + OSgTbTeak *Ps (t) + CSbTreset *Ps (t)
- len(ca S)Treq . ps(t) - Cmin(cwa Sg)rdata . ps(t) - CCt * Tthink ° ps(t)

-CS- Tbreak * Ps (t) - OSg *Tbreak * Ps (t) - CSb * Treset * Ps (t)
Notice in particular that, for example:

Z Cmin(C + 1, S+ )rreq * P(O+1,C0—1,01, 541, 5,1, 5,) (F) =
seS

Z(C = 1)min(C, S)rreq - P(c, Cu, Cu, 5, 5y, Sy) ()
seS

since alls € S can be expressed as= (C +1,C, —1,C,, S+ 1, S, — 1, Sp), except for maybe
those whose contribution to the sum would be zero anyway teoge for whichC,, = N¢, in which case
min(C, S) = min(0, S) = 0).

Expanding and cancelling Equation (2.2) then yields:

dE[nc ()]

p = —E[min(nc(t), ns(t))]rreq + Elnc, )7 hink (2.3)

We thus obtain Equation (1.1) if we write(t) as the approximation t&[n.(¢)] that is obtained on appli-
cation of the following approximation to Equation (2.3):

E[min(., -)] & min(E[-], E[])
Itis easily seen that in general, however:

E[min(-, -)] < min(E[-], E[])



This programme can be completed similarly for each of therdile client and server derivative states.

More generally, we can show that for a very large class of PERAelg, the fluid-analysis technique
when viewed as an approximation to the expected value ofttmponent counts relies only on (potentially
repeated) application of the above approximation.

2.1 Nature of the approximation

Having identified the quantitative nature of the fluid-asédyas relying on the approximati@iimin (-, -)] ~
min(E[-], E[-]), we may identify two key properties of a given PEPA model varsbould significantly af-
fect its accuracy. The first of these has to do with the vditghif the component counting stochastic
processes.(t) and the second is a more structurally explicit aspect of thdehitself.

2.1.1 Variability at ‘switch points’

A switch pointis defined to be a pointin the aggregated state-space at thiedominant side of min(-, -)
term in the system of ODEs for a given PEPA model changes.

It is easy to see that far away from switch points, we wouldeexphe fluid approximation to remain
good (as long as it is not already poor) unless the varigliilié. spread of the distribution) is very high.
Consider the ternE[min(nq(t), ng(t))]. If we are very far away from a switch point, say all stateshwit
non-negligible probability hav€’ > S, thenE[min(nc(t), ng(t))] will be very well approximated by
E[ns(t)]. Around switch points, a non-negligible proportion of thelpability distribution may be in
states for whictC' < S and also in states for whick < C, so bothE[n(t)] andE[ng(t)] would be likely
to be much less accurate approximationEtmin(ne(t), ng(t))].

The extent to which this phenomenon affects the quality efdapproximation depends on how far the
distribution is spread either side of switch points, i.edéermined by the variability of the stochastic
processes. ().

2.1.2 Heterogeneous cooperation rates

Consider modifying the original model so that instead ohldbe Client andServer components complet-
ing therequest action at rate-,.,, the Client component does it at ratg and theServer at ratery. Then,
the termE[min(nc(t), ns(t))]rrq in Equation (2.3) becomeS[min(nc(t)r1, ng(t)re)]. If instead of
r1 = ro, SAYr; <K ro, the same amount of variability in the component countsdoldarly translate to a
much larger relative quantitative error under the:

E[min(nc(¢)r1, ns(t)rz)] = min(E[ne (¢)]r1, Elns(t)]r2)

approximation.

In [4], an improved fluid semantics for passive cooperatietwleen component groups was presented.
This involved replacing the passive action by an activeoactiith a rate that is fast enough to ensure that
the action is effectively passive within its encompassiraglei structure. The fluid semantics for active
cooperation can then be applied directly. Such cooperstioth of course involve rates, one of which is
much greater than the other by their very nature. As a passs@urce runs out and the corresponding
switch point approaches, the error in the above approxamatiay be very large indeed since a large part
of the probability distribution corresponding to statethwiero resources will not affect the approximation
as early as it should, resulting in an underestimation ofcthreesponding blocking effect. This can be
seen in Figure 2, which shows a version of the earlier examipleheterogeneous cooperation (created as
described above, by using different rates for thguest action for theClient and Server components; in
this caser is picked so that thé&erver is effectively passive for theequest cooperation). The blocking

2Specifically, those whose aggregate CTMC rates do not isvaitional functions of the component counts. Such aggeegat
CTMC rates occur when more than one component derivatite sta component group enables the same shared action.
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Fig. 2. Comparison of ODE approximations with expectations olehiia stochastic simulation for massively heterogenesefis (
fectively passive)request cooperation. Rates used are = 3.0, r2 = 500, 7ipinte = 0.4, Tprear = 0.8, Tgate = 1.5 and
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effect on theClient components due to a lack Skrver components to service thetequest actions is
clearly seen to have been underestimated by the ODE appatigim

3 Higher order moment approximations

In this section we show how the insight gained in Section 2lmansed to naturally define similar approx-
imations for higher order moments of the component courgfaghastic processes for a PEPA model.

Consider again the model of the previous sections. Recallhapman-Kolmogorov equations of its
underlying aggregated CTMC (Equation (2.1)). Proceed &eirtion 2, but instead of multiplying by
and summing, multiply by’ and sum:

Z;')s(t)CQ = Z [(C’ — 1)2min(C, S)ryeq - ps(t) + C*min(Chy, Sy)Tdata - Ps(t)

s€S s€S
+(C + 1)*Cyrhink - ps(t)
+ C%Srprear - Ps(t) + C2 Sy prear - Ds(t) + C? Syrreser - Ds(t)
— C?*min(C, S)ryeq - ps(t) — C*min(Cy, Sy)rdata - Ps(t) — C*Cy - Tining: - s(t)

- OQS * Tbreak * Ps (t) - OQSg * Tbreak * ps(t) - CQSb * Treset * ps(t)

Expanding and cancelling now yields:

%i)(t)] = E[min(nc(t), ns(t))]rreq — ZIE[min(né(t), ne(t)ns(t))]rreq
+ E[”Ct (t)]rtlzink + 2E[nc (t)nCt (t)]rtlzink

Write ve2 (t) for the approximation to the second moment of @iént counting process anab.s(t) for
the approximation to the joint moment of tli&ient andServer counting processes etc. Applying again,
E[min(-, -)] = min(E[-], E[]), then gives:

dvflii(t) = min(ve(t), vs(t))rreq — 2min(vez(t), ve-s(t))rreq

+ ve, ()T think + 20c.0, (E)T think
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If we repeat this programme for all second order (joint) motagwe obtain 27 such ODESs, which uniquely
determine the approximation. Figure 3 shows a comparistwdas the variance of the component count-
ing processes obtained by computing the first and second m@®ents using the ODE-based approxima-
tion defined above, with that obtained through stochagstitikition.

For moments of any order, the same idea works (multiplicatypC™ for example) and the accuracy again
relies solely on the above approximation for the same ldagsof PEPA models as in the first order case.

4 Conclusion and future work

Through this work, we have a more precise understanding af ¥filid-analysis of PEPA models means
in terms of the underlying CTMC, and a much better idea of velfi@cts the quality of the approximation
for given models and parameters.

We have also shown how this style of approximation may beralyuextended to allow access to previ-
ously inaccessible features of models with massive stateesy including, for example, the variance and
skewness of the component counts. Before now, the only ctatipoally feasible method of obtaining
such measures was through stochastic simulation usingx&mple, the Gillespie algorithm [15]. Fur-
thermore, due to the small magnitude of, for example, themae of a component count, it is much more
expensive to obtain via stochastic simulation for the sagfeive error than the expected values of com-
ponent counts. Indeed, to obtain the stochastic simukafiothe graphs of Figure 3, 100,000 independent
replications were required, and even still, there are igdibctuations.

One interesting direction for future work is the possigilif using the higher order approximations in-
troduced in this work to improve the first order approximatto the expected component counts. Ap-
proximate knowledge of the variability of the distributiohcomponent counts around switch points may
provide a natural route to improve the underlyBjgnin(-, -)] ~ min(E[-], E[-]) approximation. In partic-
ular, if min(-, -) were smoothér a Taylor expansion ahin(-, -) in terms of higher order moments of the
component counts in Equation (2.2) would be one possibleerdsince it is not at all smooth, we might
consider using smoother functions in the ODE approximatidrich take on the same discrete values as
min(--), i.e. do not change the underlying CTMC, only differing or tralues in between the integer
component counts.

3That is, differentiable at least a few times.
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