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a b s t r a c t

Heterogeneous manycore performance-portable programming models and libraries, such as Kokkos,
have been developed to facilitate portability and maintainability of high-performance computing codes
and enhance their resilience to architectural changes. Here we investigate the suitability of the Kokkos
programming model for optimising the performance of the high-order mesh generator NekMesh, which
has been developed to efficiently generate meshes containingmillions of elements for industrial problem
involving complex geometries. We describe the variational approach for a posteriori high-order mesh
optimisation employed within NekMesh and its parallel implementation. We discuss its implementation
for modern manycore massively parallel shared-memory CPU and GPU platforms using Kokkos and
demonstrate thatwe achieve increased performance onmulticore CPUs and accelerators comparedwith a
native Pthreads implementation. Further, we show that we achieve additional speedup and cost reduction
by running on GPUs without any hardware-specific code optimisation.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

High-order spectral element methods are gaining support within the computational fluid dynamics (CFD) community. They offer
improved solution accuracy for a given computational cost due to their exponential convergence and show very low dispersion and
diffusion errors, giving thesemethods an edge over traditional low-ordermethods [1]. Although the use of high-ordermethods is becoming
increasingly common in academic studies, a significant bottleneck in their more widespread adoption in industrial applications is the
availability of robust high-ordermeshing capabilities for complex three-dimensional geometries, and their efficiency on current and future
high-performance computing (HPC) systems [2].

The standard approach to generate a high-order mesh is to deform an initial coarse linear mesh, which can be obtained using one of the
many available linear meshing tools, to conform with the curved boundary specified by the CAD geometry. This a posteriori process will
likely yield very distorted or inverted elements close to the boundary, as the introduction of curvature into the element frequently leads
to self-intersection. We therefore require a second step, that corrects invalid elements through a boundary-induced mesh deformation,
so that curvature is introduced into elements connected and in close proximity to the curved surface. Several different techniques for this
step have been proposed in the literature, which can be broadly classified into two categories: elastic analogieswhere the mesh is treated
as a solid body and the curvature acts a force on the body, e.g. [3–5], and energy minimisation techniques in which a functional representing
mesh distortion is minimised to optimise mesh quality and correct invalid elements, e.g. [6,7]. Alternatively, high order meshes can be
adapted by combining mesh curving and mesh topology changes, as presented for example in Ref. [8].

These techniques in general are computationally expensive, since they require either the solution of a partial differential equation
or a non-linear optimisation to obtain the corrected mesh. In an industrial setting, where geometries are typically extremely complex
and meshes can consist of millions or billions of elements, this process can be computationally prohibitive. Modern design lifecycles
also demand the generation and optimisation of meshes in the order of minutes or hours, typically on only a single high-performance
workstation.

Although modern high-performance computing systems are providing more computational power than ever seen before in terms of
the number of floating-point operations per second (FLOPS) that can be performed, this increased performance comes in the form of
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heterogeneous multi- and manycore architectures. There are several challenges involved in being able to effectively use the FLOPS such
platforms provide. Developers must find appropriately scalable algorithms and data structures that align to these architectures. Different
architectures also typically require the use of different programming techniques to achieve maximum performance. This means that
maintaining sustainable and useable software, as well as being able to support possible future architectures, poses a formidable problem.
These difficulties mean that, to date, this power has yet to be realised in the area of high-order mesh optimisation. We do however note
that in the area of linear mesh generation, first implementations for increased efficiency that run on general purpose GPUs have been
started to be presented, as seen for example in Ref. [9].

The purpose of this work is to investigate how the variational framework introduced by Turner, Peiró and Moxey in Refs. [10] and [11],
which encompassesmany of the a posteriori techniques introduced above, can effectivelymake use ofmodern heterogeneous architectures.
To achieve this in a sustainable manner that does not require the maintenance of a codebase for each architecture, we make use of the
performance portable programming model Kokkos [12], which is one of the models that have been introduced to overcome the inherent
difficulties of architecting programs for several architectures. The use of this model allows us to use a single, shared codebase to support a
range of vastly different modern hardware, including ‘traditional’ multicore CPUs (e.g. Intel Xeon CPUs), manycore coprocessors (e.g. Intel
Xeon Phi processors) and general purpose GPUs (e.g. Nvidia GPUs). Some scientific applications have already been implemented in Kokkos,
e.g. [9,13,14], all developed within Sandia National Laboratories. The authors ported serial orMPI legacy code to Kokkos and conclude that
it is a suitable and performance portable paradigm.

The paper aims to answer two important questions:

• Howwell are themeshing algorithms laid out in the variational framework suited formanycore architectures, when comparedwith
multicore architectures?
• Howwell does theKokkos programmingmodel perform in the context of this algorithm in terms of attainingmaximumperformance

of the hardware?

In the context of the first question, to achieve optimal performance on manycore hardware, algorithms need to possess a high degree
of task and data parallelism to take advantage of the ever rising processor core counts. We will show in the following sections that the
variational mesh optimiser offers a high level of parallelism and can exploit these hardware trends. Together with its robustness and
flexibility, it combines both critical factors for the success of high-order meshing capabilities on modern hardware. We then address
the second question through a series of performance tests on a variety of modern hardware, which examines factors such as strong and
weak scalability, relative speedups between architectures, assessing hardware utilisation, and modelling the operating costs of different
hardware as a function of degree of freedom.

This papermakes a number of contributions. Themost significant in terms of our application area is the demonstration of amethodology
that is capable of effectively using manycore CPU and GPU hardware to substantially reduce high-order mesh optimisation runtimes.
To the best of the authors’ knowledge, this is the first time that this has been presented in the literature, particularly in the context of
GPU-accelerated high-order mesh optimisation. Additionally, through the discussion of the techniques used to accelerate our code, we
also provide valuable insight into the steps required to port existing code onto new architectures. Although in this case we are using the
Kokkos model, the experiences described here are relatively broad and extend past the specific choice of model being used. This work
is therefore valuable in the context of existing HPC users who intend to port their code to new architectures and who aim to promote
sustainability of their software.

The rest of this paper is organised as follows. Section 2 briefly outlines the formulation of the variational framework introduced in
Ref. [11] and describes how the method can be effectively parallelised. Section 3 introduces Kokkos and the practical steps taken to
accelerate the optimisationmethod. In Section 4, we then perform a thorough performance analysis of the optimised code to demonstrate
the effectiveness of the strategy on a variety of architectures, including a standard multicore CPU system, a manycore CPU and various
GPU platforms. We conclude the paper in Section 5 with an overview and discussion of the results and the wider impact of the work.

2. Variational framework for high-order mesh optimisation

We start with a brief overview of the variational framework outlined in Ref. [11]. The motivation for the framework is to reform PDEs
arising from a posteriori techniques based on solid body analogies into an energyminimisation problem through the calculus of variations.
In this manner, we are able to utilise a range of optimisation approaches from the literature under a single framework by minimising
a functional E . The techniques outlined below are implemented within the meshing tool NekMesh [15], which is part of the spectral/hp
element framework Nektar++ [16].

A general overview of the process is as follows. As a first step of themesh optimisation, we obtain a linearmesh of a given CAD geometry
using either the internal NekMesh mesh generation tools, or employ external programs such as Gmsh [17]. We then apply the variational
framework inside NekMesh in order to transform the linear mesh into a high-order mesh, correct invalid elements, and generally improve
the mesh quality. The sections below outline the mathematical background of the framework and describe the parallelisation strategy,
which has been used in Ref. [11] to demonstrate good performance and robustness in the processing of meshes of the order of 10 million
degrees of freedom.

The definition of the energy functional to be minimised relies on a mesh deformation tensor ∇φ, where φ is a mapping between an
‘ideal’ straight-sided mesh ΩI and the boundary-conforming curvilinear mesh Ω , as shown in Fig. 1. We then write φ : ΩI → Ω , so that
the Cartesian coordinates x ∈ Ω are related to the ideal coordinates y through the relationship x = φ(y). The energy functional can then
be defined as the integral

E(∇φ(y)) =
∫

ΩI

W (∇φ(y)) dy, (1)

where the strain energy function W will depend on the chosen material constitutive model. Currently supported choices include models
of linear elasticity [3], isotropic hyper-elasticity [5], the Winslow equations [4], and a distortion-measure energy [7]. Here we will use the
hyper-elastic strain energy function for a compressible neo-Hookean material [18], whereW is given by

W =
µ

2
(IC1 − 3)− µ ln J +

λ

2
(ln J)2, (2)
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Fig. 1. The mapping relation between the reference, straight-sided, and curvilinear elements.

and J = det∇φ is the volumetric deformation or Jacobian. For physically admissible deformations without penetration of matter, J has to
be positive. λ andµ are the Lamé constants, whichwewrite in terms of the Young’s modulus E and Poisson’s ratio ν, so that λ = Eν

(1+ν)(1−2ν)
andµ = E

2(1+ν) . Using this formulation it becomes clear that Young’smodulus is just a scaling factor and the energy functional only depends
on Poisson’s ratio, which we set to ν = 0.45. IC1 is the first invariant of the right Cauchy Green tensor, which in our context is given by
IC1 = tr(C ) = tr(∇φT

∇φ).

2.1. Dealing with mesh untangling

The strain energy functionsW have a singularity at J = 0, so thatW asymptotically tends towards infinity. This is a desirable property
if the mesh is valid, i.e. all elements fulfil J > 0, as it prevents the mesh from tangling, however this is undesirable if the mesh is
initially invalid, as it prevents untangling. As is common in these approaches for both linear and high-order meshes, e.g. [19], we apply
a regularisation to the volumetric deformation J , that ensures the regularised version JR remains positive and very small. It follows that
the deformation function W no longer exhibits a singularity, and becomes very large for invalid and near-invalid elements driving the
optimisation away from such configurations. The proposed regularisation is given as

JR =
1
2

(
J +

√
4δ2 + J2

)
, (3)

with δ being a small number, set to

δ =

{√
10−8 + 0.04(Jmin)2, if Jmin < 0

10−4, otherwise
(4)

where Jmin is the minimum Jacobian of all mesh elements.
However, all known regularisations destroy the convex property of the energy functional, so that the existence of a minimum of the

energy is not theoretically guaranteed.

2.2. Numerical evaluation of the energy functional

Up to this point, the outline of the method refers only to a single element. We now focus on the implementation of optimising the
energy functional on amesh consisting of multiple elements. The energy functional of the wholemesh E is accordingly calculated as a sum
of the elemental contributions

E(∇φ(y)) =
Nel∑
e=1

∫
Ωe

I

W (∇φ(y)) dy, (5)

with Ωe
I being an initial undeformed straight-sided element. Finite element shape functions within NekMesh are evaluated on a reference

element Ωst with coordinates ξ ∈ Ωst . Hence, another mapping between the reference element Ωst and the straight-sided element Ωe
I

can be defined as φI : Ωst → Ωe
I , as shown in Fig. 1. Applying the coordinate transformation, the energy functional becomes

E(∇φ) =
Nel∑
e=1

∫
Ωst

W
[
∇φM (ξ)∇φ−1I (φI (ξ))

]
det(∇φI ) dξ. (6)

The ideal mapping φI is affine and can be written analytically by combining linear finite element shape functions. It is independent of ξ
for tetrahedral elements, so it is computed only once per element and stored. The curvilinear mapping φM is an isoparametric mapping
for nodal high-order element discretisations, given by

φM (ξ) =
N∑

n=1

xnℓn(ξ), (7)

where N is the number of nodes of the element and ℓn are the Lagrange polynomial interpolants, which conform with ℓm(ξn) = δnm.
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Fig. 2. Node colouring scheme for a domain of four quadrilateral elements. Nodes of the same colour can be processed concurrently. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

The above equality relies on the definition of a set of points ξn ∈ Ωst that define the isoparametric mapping, for which we use
a 3D nodal basis on each tetrahedral element, also known as Hesthaven or α-optimised points [20]. We note that the evaluation of
the functional itself, as in Eq. (6), is performed using a different set of points conforming to a quadrature rule proposed by Witherden
and Vincent [21]. This quadrature rule has positive weights at all evaluation points thus increasing the robustness of the optimisation
procedure. This is advantageous because the use of quadrature rules with negative weights close to the vertices of the element leads to
unrealistic displacements of these nodes during the optimisation. This is discussed further in Ref. [10].

2.3. Parallelisation and node-colouring

Instead of optimising the node positions in a global approach, we apply a relaxation method that solves a set of local optimisation
problems. This is possible, since individual nodes only affect the energy functional of elements they are connected with. A node that is
interior to one elementwill only affect the energy contribution of that one element; inter-elemental boundary nodeswill affect all elements
they are connected with, which in the case of tetrahedra is two for face-nodes, typically around 4–10 for edge-nodes and around 14–50
for vertex nodes, depending on the connectivity of the mesh. Fig. 2 illustrates this concept: nodes of the same colour can be processed
concurrently as the respective operations involved in the evaluation of the energy functional are independent.

The optimisation of a free-to-move node i towards lower energy functionals becomes:

Ei(∇φ) =
∑
e∋i

∫
Ωe

W (∇φ) dy (8)

where e ∋ i denotes the set of all elements that own node i. This set of elements hence spans all parts of themesh that influence the energy
functional of node i.

This local approach has the disadvantage that the optimisation might get stuck in local extrema. It is hence the challenge to employ an
optimisation strategy that has a high degree of success in finding the global minimum. The main advantage of this strategy, however, is
the potential for parallelisation, as each node typically only affects a small fraction of elements of the total mesh. Using node colouring the
mesh is split into independent sets that can be processed in parallel. The splitting is subsequently repeated until all free-to-move nodes
have been processed once. This makes the strategy very well suited for massively parallel hardware like GPUs.

2.4. Optimisation strategy

The minimisation of the energy functional is performed with a Newton method with truncated steps. This method requires the
evaluation of the gradient vector G and the Hessian matrix H of the energy functional E , where the derivatives are calculated with respect
to the position of the node undergoing optimisation. These are calculated analytically using the formulae in Appendix B of Ref. [11]. The
coordinates of the free-to-move nodes are then updated in the optimisation step k according to

xk+1 = xk − αH−1G, (9)

with α being a step size parameter with 0 < α ≤ 1. A reverse line search using the Wolfe condition is applied to find a value of α that
guarantees the node moves towards a smaller energy level. Each free-to-move node is moved every time step (unless no smaller energy
level can be found) and the time steps are repeated until a convergence criteria is fulfilled. In addition to the Jacobian regularisation
discussed previously, a regularisation is applied to badly conditioned Hessians, to restore the symmetric positive-definite property in the
presence of invalid or highly distorted elements, and hence increase the robustness of the method.

2.5. The overall algorithm

Algorithm 1 illustrates how the various evaluations are combined to yield the overall algorithm. The procedure EvaluateFunctional
is further broken down in Section 3, where the crucial modifications that have been introduced in order to enable hardware portability
are explained.
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Algorithm 1 Variational mesh optimisation
1: procedure GlobalOptimise(N ) ▷ N is the set of all nodes to be optimised
2: C ← ColourNodes(N ) ▷ divide nodes into coloursets C
3: call CopyData(N ) ▷ deep copy from host to device memory when using GPUs
4: while ∥N k+1

− N k
∥∞ > ϵconv do ▷ using convergence criterion

5: for all colour-sets c ∈ C do
6: for all nodes n ∈ c do in parallel
7: E,G(E),H(E)← EvaluateFunctional(xkn)

▷ evaluate functional, derivatives and Hessian, based on node coordinates x

8: while α > αϵ do ▷ reverse line search, start with α = 1
9: xtemp

← xkn + αH(E)−1G(E) ▷move node in the descent direction
10: F ← EvaluateFunctional(xtemp) ▷ evaluate functional only
11: if F ≤ E + fWolfe then ▷ using Wolfe condition
12: xk+1n ← xtemp

▷ new minimum found
13: break
14: end if
15: α← 1

2α

16: end while
17: xk+1n ← xkn ▷ unable to optimise, reset node
18: end for
19: end for
20: end while
21: end procedure

3. Accelerating the variational mesh optimisation method

This section discusses the acceleration of the variational framework outlined in the previous section using the architecture independent
programming model Kokkos. We begin with a brief overview of the characteristics of performance portability that we wish to exploit in
this work, and discuss some of the potential choices of programming models, as well as our motivation for using the Kokkos framework.
We then outline the computational work required to port the initial version of the variational framework within NekMesh to an efficient
Kokkos implementation.

3.1. Performance portability

The current coexistence and future uncertainty of different HPC hardware architectures demand an easily maintainable code. This
is ideally achieved by supporting a single codebase that allows portability across architectures instead of maintaining specific and
separate implementations for each architecture. It is also very desirable to have a codebase that is performance portable, meaning it can
achieve nearly optimal performance on all architectures. Different options for programmingmodels are the low-level language extensions
CUDA [22] (specifically for NVIDIA GPUs) and OpenCL [23] (which supports a range of compute architectures), or high-level libraries and
directives such as OpenMP [24], OpenACC [25], SYCL [26], RAJA [27] or Kokkos [12]. Low-level paradigms offer optimal performance, but
require maintaining multiple codebases or tuning for specific hardware, and have hence not be considered further. Considering high-level
libraries, there has been little experience with SYCL in the community, however a significant performance overhead compared to its only
backend OpenCL has been reported. OpenACC and OpenMP are very widespread heterogeneous programming models, but its compiler
directives are somewhat ambiguous and do not guarantee a performance portable memory access pattern. Even though from OpenMP
version 4.0 onwards directives to offload to GPU architectures are introduced, no open-source compiler support for these capabilities have
been available at the time of conducting our research. Similarly, no compiler support for OpenACC codebases to be executed on manycore
CPU architectures has been available. These two programming models are hence not portable in practise, yet.

A promisingmodel we identified is the Kokkos library [12], developed by Sandia National Laboratories as a part of the Trilinos suite, that
supports a range of backends: OpenMP [24] and Pthreads [28] for multi-threading on CPUs and accelerators, and CUDA to support parallel
execution on Nvidia GPUs. Kokkos addresses data and vector parallelism with task scheduling algorithms similar to MPI [29], Pthreads or
Qthreads [30]. The syntax of Kokkos is general and architecture independent, but the backend still leverages architecture specific features,
like the utilisation of GPU texture and shared memory. A unique property of Kokkos is its support for polymorphic data layouts which
allows for optimalmemory access and true performance portability. The authors ofKokkos present a performance evaluation against native
OpenMP and CUDA implementations in Ref. [12] using a continuous Galerkin finite element algorithm, indicating only a small overhead
over lower-level implementations. The Kokkos variant with CUDA backend runs about 13% faster than the native CUDA implementation
on a Nvidia Kepler architecture. The Kokkos-OpenMP variant is about 10% slower than a native OpenMP implementation on the Xeon Phi
architecture. This indicates only a small overhead of the library, which we will further assess in the following section.

RAJA is supposed to follow the same spirit as Kokkos, however, has been found in a far less mature state than Kokkos.
We adopt Kokkos as our programming model because the high level of performance it is able to attain and its compatibility with the

existing NekMesh C++ codebase. We only consider shared memory systems in this work, since the use of a single workstation is the most
likely scenario for the optimisation ofmesheswith a fewmillion elements. However, for problems requiring the optimisation of extremely
large numbers of elements in the mesh, the work here could be extended to a distributed memory model usingMPI.
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Algorithm 2 Calculating the energy functional of a node with the initial implementation
1: procedure EvaluateFunctionalInitial(xn)
2: E,G(E),H(E)← 0, 0, 0
3: X ← x ∈ {e ∋ n} ▷ coordinates x of all elements e that own node n
4: for all coordinate directions d do
5: ∇φMd

← DdXd ▷ compute deformation tensor in direction d using dgemm
6: end for
7: for all elements e ∋ n do in serial ▷ all elements e that own node n
8: for all quadrature points i ∈ e do in serial
9: w← wi detφI (ξ̃

i
) ▷mapping determinant weighted by quadrature

10: E ← E +W (∇φMi
) · w

11: if calculating gradient and Hessian then
12: for all coordinate directions j do
13: G(E)[j] ← G(E)[j] + ∂njW (∇φMi

) · w ▷ analytic gradient
14: for all coordinate directions k do
15: H(E)[j, k] ← H(E)[j, k] + ∂njnkW (∇φMi

) · w ▷ analytic Hessian
16: end for
17: end for
18: end if
19: end for
20: end for
21: end procedure

3.2. The initial Pthreads implementation

With a view to later discussions of the development of the portable Kokkos implementation, we start by describing the initial
implementation of the variationalmesh optimisation algorithm. A short snippet of the code given in Appendix illustrates its characteristics
that are discussed in this subsection.

3.2.1. Initial data structures
The initial CPU implementation of the variationalmeshing optimisation organises the data using sharedpointers ofC++objects. Thisway

the complex associations between the set of nodes and elements can be organised clearly and descriptively, ensuring codemaintainability.
Each free-to-move node is an instance of the node class and each mesh element is an instance of the element class. The objects need to
be shared because nodes on the surface of elements are part of all its neighbouring elements. Hence, a given node object has one or more
element objects connected to it. At the same time, a given element object owns multiple free-to-move node objects and other fixed nodes
to fill up the ranks. The mapping gradients, ∇φM , for each node are further stored as member variables of each node instance.

3.2.2. Initial algorithm
All nodes within one colour set are processed in parallel, on the outer level of parallelism. Algorithm 1 illustrates how this process

fits into the overall mesh optimisation algorithm. The parallelism is enabled by a lightweight dynamic thread-scheduler that is based on
Pthreads.

Within the optimisation of each node, the energy functional at its initial position is evaluated first, alongwith its spatial derivatives and
its Hessian. These values in turn depend on the contribution of all elements this node is connected with, as given in Eq. (6) and illustrated
in Algorithm 2.

Since the whole function EnergyFunctionalInitial is performed using a single thread only, the expensive calculation of the mapping
∇φM is amalgamated using the level-3 BLAS call dgemm. The remaining steps of the function are calculated in a serial loop over all
quadrature points of all elements that own the to be optimised node.

3.3. Developing the Kokkos implementation

To make our application portable, the initial implementation is adapted to use the Kokkos programming model. Even though the
codebase should be changed as little as possible having maintainability in mind, some changes have been required, primarily in order
to comply with the new programming model, but also to harvest the low-hanging performance benefits. Most design changes become
necessary in order to comply with the CUDA backend of Kokkos. This is due to the high complexity of achieving maximal performance on
GPU architectures, compared with more established CPU architectures. In fact, it is possible to use Kokkos for CPUs by only replacing the
thread-scheduling. However, more fundamental design changes are required to achieve portability to GPUs. These will also be beneficial
for later CPU executions, as they can, for example, instruct parallelism on the vector lanes. This section discusses the design changes in
terms of re-factoring data structures and introducing hierarchical parallelism. A short example given in Appendix illustrates the changes
introduced in the codebase to accommodate the new programming model.
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3.3.1. Developing the Kokkos data structures
The Kokkos programming model using the CUDA backend requires all data and data dependencies to be expressed in plain arrays. It

follows that the associative object-oriented data structures need to be re-factored. The resulting data structures and the rationale for its
system is described hereafter.

All nodes of a given element need to be included for many evaluation and processing steps. It has therefore been decided to store all
nodal coordinates of one element contiguously. The data is hence stored in three (X, Y , Z) two-dimensional arrays sorted by element ID
in the first dimension and local-node ID in the second dimension. This leads to a duplication of stored data, due to the element boundary
nodes, but results in a contiguous and hence more efficient memory access. The duplicated storage of node data requires increasing the
memory by a factors of 4.2, 3.1 and 2.6 for tetrahedral meshes of orders 3, 4 and 5, respectively. However, even with this duplication of
node data, the mapping φI : Ωst ↦→ Ωe

I of each quadrature node occupies most of the memory space, typically by more than 90%.
Even though the coordinates of each free-to-move node are updated only once per optimisation step, the coordinate arrays of all

elements that own the node need to be updated. The information for this update is provided by a first array containing the number of
elements a node is connected with. Each node instance then requires the element ID, as well as the local-node ID determining the position
of the node within its element. These data are provided in two additional 3D arrays using the following indexing: the first dimension
specifies a colour set, the second specifies a node within the colour set, and the third dimension specifies an element connected with this
node. Listing 2 in the Appendix can be consulted for an illustration.

Apart from the node coordinates, utility data for elemental calculations are required and shall be discussed in light of using GPUs. One
main group of utility data are the quadrature points and weights for the type and order of elements in the mesh. These are potentially
accessed by multiple elemental operations at a time and hence stored in the fast read-only texture memory later. The second main group
consists of the array describing the mapping of each node φI : Ωst ↦→ Ωe

I from the reference element to the straight-sided element. A
3× 3 matrix and its determinant will be stored for each quadrature node on the global memory. The values are constant throughout the
optimisation, as only the mapping φM between the straight-sided element and the curved element is altered. If the mesh is too big to be
stored on the global memory of the GPU, this mapping function could be recalculated each time. This would free the majority of double
precision floating-point values stored with each element, at the rather small cost of re-evaluating the mapping each timestep.

Using theKokkosprogrammingmodel all these arrays are implemented asKokkos-Views. These aremultidimensional arrays, that exhibit
a polymorphic layout that is specified at compile time. The layout of a 2D array can be either column or row major, depending which
memory access pattern ismore performant on the underlying hardware. This key featuremakes the Kokkos programmingmodel a superior
candidate in terms of performance portability. Kokkos-Views are implemented with a C++ template class, allowing for a simple syntax. An
unconventional feature is the combination of static and dynamic dimensioning of the array. This feature is for example employed to store
the mapping-functions, which have a dynamic dimension dependent on the number of nodes, but a fixed dimension with respect to the
tensor entries. To manage data in memory on both the CPU and the GPU, a pair of arrays need to be specified, one on the GPUmemory and
a so called host-mirror on the memory of the CPU. The main function GlobalOptimise first creates all necessary data on the CPUmemory,
where applicable using theNektar++ libraries of the initial implementation. Only after the creation of all Kokkos-Views on the hostmemory,
the data arrays are deep-copied onto the memory of the device or GPU using an explicit instruction.

3.3.2. Hierarchical parallelism in the optimisation procedure
Algorithm 3 presents the implementation developed for performance portability using the Kokkos programming model. A few changes

compared to the initial Algorithm 2 have become necessary to achieve good performance, that are discussed hereafter. Just as in the initial
algorithm, all nodes within one colour set are processed in parallel. Additionally though, we introduce a second level of parallelism over
the processing of all quadrature points of an element. This is crucial to achieve good performance on GPUs. As will be explained later, due
to algorithmic divergences of the optimisationmethod it is not possible to have a very fine-grained parallelism at the node level. It is hence
essential, that a nested level of parallelism is specified to utilise parallelism on the CUDA-thread level, that is dictated by the CUDA-warp
concept.

Kokkos supports three levels of such hierarchical parallelism, denoted as Team, Thread, and Vector parallelism. The parallel computa-
tional kernel is conveniently implemented using the so called lambda functions: a feature of C++11. The outer level of parallelismprocessing
individual nodes utilise the Kokkos::Team parallelism. Translated to the CUDA backend, this will assign one CUDA block to each node of the
colourset.

Within this algorithm, all elements connected with a particular node are still processed sequentially, even though they could be
processed in parallel. It was found to be the faster option, unless different block sizes per node were to be defined depending on the
number of connected elements, which is not possible with the current version of Kokkos.

The inner level of parallelism processes the individual quadrature points of one element using the Kokkos::Thread parallelism. The
contribution of each quadrature point will have to be added up, using the Kokkos options of either a parallel reduction or individual
atomic operations. Since the number of quadrature points for typical elements is rather small, Kokkos::atomic_add operations are utilised.
These operations serialise competing accesses of the same data elements, but do not guarantee their order of execution between threads.
This serialisation can introduce a performance bottleneck, if there are not sufficient operations that can be processed concurrently. The
alternative of storing all contributions and subsequently doing a Kokkos::parallel_reduce operation, however, was found to be slower due to
the function overhead. The atomic operations can only be performed on Kokkos::View arrays, which in turn can only be initialised outside
of parallel regions. Hence, we specify a two-dimensional Kokkos-View to store the functional, its derivatives and the Hessian of each node
of the colourset. The inner level of parallelism translates to CUDA-threads when compiling for the CUDA backend. On multicore platforms
using the OpenMP backend it would translate to an explicit instruction to employ vector lanes such as AVX or FMA to achieve parallel
executions.

Another difference compared to the initial algorithm is theway∇φM is calculated. Asmultiple threads operate on the inner parallelism,
the thread of each quadrature point calculates its corresponding part of themapping. The calculation repeatedly involves the processing of
all nodal coordinates of this element, which are hence loaded into sharedmemory for faster access using the relevant Kokkos functionality.
Employing a BLAS or CuBLAS call within this inner level of parallelism for the small matrix–vector multiplications involved here, was not
deemed to be beneficial.
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Algorithm 3 Calculating the energy functional of a node with the full Kokkos implementation
1: procedure EvaluateFunctional_Kokkos(xn)
2: E,G(E),H(E)← 0, 0, 0
3: for all elements e ∋ n do in serial ▷ all elements e that own node n
4: X ← x ∈ e ▷ coordinates x of element e only, load to shared memory
5: for all quadrature points i ∈ e do in parallel
6: ∇φMi

← DiX i

▷ compute deformation tensor for this element and this quadrature point only

7: w← wi detφI (ξ̃
i
) ▷mapping determinant weighted by quadrature

8: E ← E +W (∇φMi
) · w ▷ use atomic operation to update E

9: if calculating gradient and Hessian then
10: for all coordinate directions j do
11: G(E)[j] ← G(E)[j] + ∂njW (∇φMi

) · w

▷ analytic gradient, use atomic operation to update G(E)

12: for all coordinate directions k do
13: H(E)[j, k] ← H(E)[j, k] + ∂njnkW (∇φMi

) · w

▷ analytic Hessian, use atomic operation to update H(E)

14: end for
15: end for
16: end if
17: end for
18: end for
19: end procedure

3.3.3. Algorithmic issues when using the CUDA backend
A major challenge for our overall algorithm is that every node might undergo a different path within the optimisation algorithm.

As seen in Algorithm 1, the number of iterations required within the reverse line search can vary from node to node thus each node
requires independent processing in the current algorithm. This does not result in a noticeable performance penalty using threadparallelism
on CPUs. However it has bigger performance implications for GPU executions due to the rather sparse individual node operations.
Alternatively, an amalgamation of operations formultiple nodes could result in denser operations on a larger CUDA block, which in general
is more performant. Such an amalgamation, though, would require a significant rearranging of our algorithms, which is outside the scope
of this work.

We thus allocate one CUDA block per node, as only they can be executed independently by different streaming multiprocessors of
the GPU. A more fine-grained parallelism of allocating one CUDA-thread per node would result in excessive code divergence. Since all 32
threads of one CUDA-warp (which is also the smallest reasonable CUDA-block size) have to execute the same instruction, a vast proportion
of threads would be idle at each cycle.

Our algorithm only deals with small matrices and vectors, corresponding to the rather low polynomial orders of the elements, so we
specify the smallest reasonable CUDA block size of 32 threads. However, if the maximum allowed number of blocks cannot be scheduled,
not all theoretically available threads of the GPU can be utilised. The desiredmaximumnumber of blocks to be scheduled can be limited by
the register size required per thread. As a compromise, we have set the register limit on the compilation for all three GPUs employed for
the performance tests to 128 double floats per CUDA thread. Our algorithm –with an unrestricted register size – would have assigned 188
double floats per thread (using 4th-order tetrahedra), hence restricting the number of CUDA blocks that can be processed concurrently on
each streaming multi-processor even stronger. To process the maximum number of blocks, the register limit would need to be 32 double
floats, however, this would lead to extensive memory copying from the registers to the cache and vice versa. We have tested different
settings of register limits and found that 128 would give the best run times on all three considered GPUs.

3.4. Improved node colouring algorithm

A few aspects concerning the node balancing need to be discussed. Firstly, it is favourable to have a sufficient number of nodes within
each colour set to achieve full occupancy of the utilised hardware. In a naive node colouring implementation with a random treatment of
the free-to-move nodes, however, the tail of the colour sets consisted only of a fewnodes, thus slightly slowing down the overall algorithm.

A second aspect is to construct sets in which each node requires the same amount of processing steps. This can be realised by
constructing colour sets of interior nodes only and others for element boundary nodes which are connected with the same or at least
similar numbers of elements.

We now implement a new node colouring scheme taking into account the two mentioned aspects, as given in Algorithm 4. All free-
to-move vertex and edge nodes are treated in descending order of their number of connected elements. This way nodes connected to
similar numbers of elements are grouped together. Further, nodes connected to few elements are treated later, allowing to fill in the gaps
of untreated elements in the mesh that have been induced by the nodes connected to many elements. This scheme results in a very small
tail of colour sets that do not have a sufficient size. The face and the interior nodes are treated separately each, this way creating colour
sets that are equal in size and in the number of connected elements.
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Algorithm 4 New node colouring scheme
1: procedure ColourNodes(N )
2: NVertexEdge ← all vertex and edge nodes in N
3: NVertexEdge ← Sort(NVertexEdge) ▷ Sort in descending order of connected elements
4: N Face ← all face nodes in N
5: NVolume ← all volume nodes in N
6: CVertexEdge ←CreateColourSets(NVertexEdge)
7: C Face ←CreateColourSets(N Face)
8: CVolume ←CreateColourSets(NVolume)
9: return C = CVertexEdge ∪ C Face ∪ CVolume

10: end procedure
11: procedure CreateColourSets(N )
12: while N is not empty do
13: M ← all uncoloured nodes in N
14: Create a new colour set c
15: whileM is not empty do
16: Select the next node n ∈ M , include n in c
17: Let A← the set of elements connected to node n
18: Remove n and all nodes in A fromM
19: end while
20: end while
21: return all colour sets c
22: end procedure

Comparedwith the naïve node colouring, our sorted node colouring improves runtimes on all considered architectures for typical cases
by around 1%–2%. While each sorted colour group is processed more efficiently, the number of colour groups is slightly increased, adding
an overhead that compromises the overall efficiency gain.

4. Performance evaluation of the Kokkos implementation

To evaluate the performance of the Kokkos implementation of the variational framework, we first outline themethodology for the tests,
and compare the initial CPU-only implementation of [11] against different variants of the Kokkos implementations. Then we expand the
tests to consider a wider range of multicore and manycore CPU and GPU architectures, and assess the performance of the implementation
at a range of polynomial orders in terms of hardware occupancy and the relative cost per degree of freedom.

4.1. Methodology

Since the number of choices of parameters in this study is potentially very wide, we first consider sensible limitations in order to
examine key aspects of the implementation.

The first point to consider is the choice of functional E in the variational framework, which represents the solid body model to be
adopted.Wenote that there areminor performance differences between the four differentmethods usedwithin the variational framework,
since each functional has its own unique characteristic under theminimisation process, meaning that the number of iterations required to
converge to an optimised mesh may vary considerably. In this work, we consider only the hyper-elastic functional, since this was shown
in [10] and [11] to consistently yield higher quality meshes. We do however note that for an entirely complete evaluation, the quality of
the resulting meshes need to be taken into account. This is however outside the scope of this paper.

Secondly, in thisworkweonly considermeshes consisting of tetrahedral elements andnot, for example, hybridmeshes of e.g. tetrahedra
and prismatic elements. This choice enables us to remove an aspect of load balancing from our implementation, since different element
types require different computational requirements in the calculation of the energy functional. This restriction therefore allows us to
consider a well-balanced problem which is more capable of attaining higher peak performance of the hardware. We note that, as shown
in [11], in order for the optimisation algorithm to work reliably, the field values on each elemental node need to be evaluated using
quadratures of at least four orders higher than the polynomial order of the element, using distributions of points that have positive
quadrature weights. As nodal bases and associated quadrature rules satisfying this property for tetrahedral elements are only known
up to 9th order, our tests are confined to tetrahedra of up to 5th order.

Finally, we consider onlymesheswhich are initially valid, so that all nodes undergo the same path in the optimisation routine, therefore
allowing for a more accurate performance evaluation. We found that nodes of invalid elements typically require up to ten times more
operations within the reverse line search than nodes of valid elements. It should be noted that most real cases, however, comprise at least
some initially invalid elements. We only evaluate the parallel part of the optimisation algorithm, neglecting the preprocessing and the
initial data copying to the device. All timings are taken for 10 optimisation steps and are an average of five runs.

4.2. The different implementations

In this performance evaluation, we compare four different implementations based on the initial and the adapted algorithm. These are
three versions to be executed on CPUs and one to be executed on GPUs, where the first two are based on Algorithm 2 and the latter two
on Algorithm 3:
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Table 1
Selected GPU performance specifications.

Nvidia Tesla K40 Nvidia GTX 1070 Nvidia Tesla P100

Architecture Kepler 3.7 Pascal 6.1 Pascal 6.0
Streaming Multiprocessors 15 15 56
FP64 (DP) Cores/SM 64 4 32
FP32 (SP) Cores/SM 192 128 64
GPU Boost Clock 875 MHz 1987 MHz 1480 MHz
Peak FP64 GFLOPs 1680 238.44 5304.32
DRAMMemory 12 GB 8 GB 12 GB
Price (April 2017) $3489 $455 $4912
Thermal Design Point 235 W 150 W 250 W

1. Initial native Pthreads. The first implementation is the baseline that achieves multi-threading on a CPU with a native Pthreads
implementation using a light-weight thread-manager and utilises associative object-oriented data layouts.

2. Intermediate Kokkos-OpenMP. For the second implementation the direct thread scheduling of Pthreads has been replaced with
a Kokkos parallel for loop using the OpenMP backend. Alternatively, a Pthreads backend could have been specified, however, was
found to perform slightly worse.

3. Full Kokkos-OpenMP. The third implementation is a full Kokkos versions utilising plain data structures and is compiled with the
OpenMP backend. Again, the OpenMP backend gave a superior performance over the Pthreads backend and has hence been chosen.
Using the same backend for version 2 and 3 further allows a better comparison of the influence of changing the data structures.

4. Full Kokkos-CUDA. The fourth versions’ code-base is identical to version 3, but is compiled for the CUDA backend and to be run on
the GPU, using the performance portability of Kokkos.

4.3. Utilised hardware

For themulticore CPU system an Intel(R) Xeon(R) E5-2670v3@2.30GHz processors is employed, consisting of 2 sockets of 12 cores each
and allowing up to 48 threads using hyper-threading. The two sockets can achieve amaximum theoretical performance of 883 DP-GFLOPs
(double precision gigaflop per second), assuming AVX2 (Advanced Vector Instruction 2.0) and FMA (fused multiply–add) operations are
used. The operating system of the CPU machine is Debian 8.7, and as the compiler gcc 4.9.2 with the -O3 optimisation flag has been used.

As amanycore accelerator systemwe employ an Intel Xeon Phi 7210 of theKnights Landing architecture, consisting of 64 cores operating
at 1.3 GHz with a boost clock of 1.5 GHz, and using up to 4 hyper-threads per core. We operate the device in the flat setting, making use
of the 16 GB of fast MCDRAM. The Xeon Phi 7210 has a theoretical peak performance of 3072 DP-GFLOPs and a thermal design point of
215 W.

As GPUs we employ a Nvidia Tesla K40, a Nvidia GTX 1070, and a Nvidia Pascal P100. Some performance specifications are given in
Table 1. The executables for the Tesla K40 and the Tesla P100 have been compiled on a CentOS Linux 7.3.1611 server, using gcc 4.8.5 with
the -O3 flag. The GTX 1070 machine operates on an OpenSUSE Tumbleweed system and the utilised compiler has been gcc 5.4.1 with the
-O3 flag. The numbers of FP64 or double precision (DP) cores per streaming multiprocessor (SM) show that the Tesla cards are intended
for DP-intense HPC applications, whereas the GTX card offers mostly single precision cores and is hence intended as a gaming card. The
low price tag however can still make it a good option for some applications. On all cards we utilise the DP cores only, as our tests show
that the algorithm requires higher accuracy to obtain reasonable results. On all three GPUs we further limit the register size per thread, as
discussed in Section 3.3.3, using -maxregcount 128.

4.4. General scaling and CPU performance evaluation

The first of the two main points to assess is the performance of the full Kokkos CPU implementation (version 3) compared to the
initial CPU implementation (version 1). To this end we conduct two standard scaling exercises, a weak and a strong scaling of the three
CPU versions. Evaluating the intermediate implementation (version 2) allows to separate the performance influence of the Kokkos thread
scheduling and the Kokkos data structures.

4.4.1. Weak scaling on CPUs
For theweak scaling exercisewe construct a set ofmesheswith a number of elements proportional to the number of concurrent threads

they will be processed with. Since the processing effort of our optimisation algorithm depends on the initial mesh deformation, all meshes
should ideally be equally deformed for a fair performance evaluation. For the initial mesh deformation we use the simple case of a sphere
within a cube: the volume to be meshed is interior to the cube and exterior to the sphere(s). The mesh deformation is then determined
by the ratio of the sizes of the sphere and a characteristic element. Different mesh sizes are then created by using stacks of equally sized
spheres in a cuboidal domain and equal reference element sizes. All elements are third-order tetrahedra and an over-integration of fourth
order is applied. The created mesh sizes are all within a minimum range that ensures the hardware is fully occupied. We use stack lengths
of 1–48 spheres for 1–48 threads for the CPU exercise. As an example, Fig. 3 shows the mesh consisting of four spheres to be scheduled
with four threads.

The timings obtained for the three CPU versions have been scaled with the exact numbers of elements of each mesh and are given in
Fig. 4. The main observation is the superior performance of the new Kokkos-OpenMP implementation, which reduces execution time by a
factor of two on a single core. The scaling, however, is worse than the initial Pthreads implementation, so that 24 threads result in about
equal run times. The intermediate Kokkos version shows a similar scaling to the full Kokkos version, but the run times are in general at least
two times slower. Comparing the intermediate to the initial implementation, the run time is slightly faster with one thread, but due to the
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Fig. 3. Stack of four spheres in a cuboid, where the volume is meshed with tetrahedral elements.

Fig. 4. Weak scaling of the parallel part of different CPU implementations of the variational high-order mesh optimisation method.

inefficiency of the scaling, the performance gap increases asmore threads are used. It shows that the thread-scheduling of Kokkos performs
worse than our native Pthreads thread-scheduler. This could be caused by the difference between the dynamic thread scheduling of the
native Pthreads version and the fork-join thread scheduling of the Kokkos versions. The execution times using one thread, however, show
that theKokkos thread scheduling overhead is at least on parwith Pthreads. Hence theKokkos infrastructure allows for similar performance,
but the thread-scheduling could be improved. The performance deficitmight bemuch smaller in caseswithwell balanced loads per thread,
but in our case of varying work sizes per node-colour group the effect is significant.

A second important observation is that the new data layout results in faster run times, due to an improved memory efficiency. The
improved efficiency can be assigned both to the effects of the polymorphic Kokkos view layout, but also to the general re-factoring of the
data structures, that has been a precondition for using Kokkos views. The change from the associative data layout of shared pointers to flat
data arrays will in itself result in faster memory access. Moreover, using 32 or 48 threads and thus in the domain of hyper-threading, the
new Kokkos-OpenMP version performs far better than the two other versions. Utilising the full number of threads on our CPU machine,
the full Kokkos version is 1.62 times faster than our initial implementation and 4.18 times faster than the intermediate version.

4.4.2. Strong scaling on CPUs
For the strong scaling exercise we use an initially valid, but non-optimised mesh of 33 K elements and 400 K degrees of freedom, using

again 1–48 threads. The elements are third-order tetrahedra and an over-integration of fourth order is applied. The timings for all three
CPU versions can be found in Fig. 5.

The overall results of the relative performance between the three versions are similar to the characteristics seen in the weak scaling
tests. We clearly observe that the scaling of all versions is roughly linear, but with different slopes. The negative effect of using hyper-
threading on the native Pthreads version is more pronounced than with the weak scaling. Up to 24 threads (1 thread per core), this version
achieves a very good scaling of 64%, but no further speed-up using hyper-threading can be realised. The full Kokkos implementation
achieves a scaling of 20%. Throughout the range the intermediate Kokkos version shows a similar scaling, but 2–2.5 times slower run
times than the full Kokkos version. Using the full number of threads, the full Kokkos version is 1.42 times faster than the initial Pthreads
implementation and 2.48 times faster than the intermediate version.

For the strong scaling test using the full Kokkos version and one thread, 18.32% of the theoretical FLOPs (considering AVX2 and FMA)
have been achieved, and still 3.54% using 48 threads. These numbers have been calculated as

%(peak FLOPs) =
achieved FLOPs
peak FLOPs

maximum threads
utilised threads

. (10)

Again, it becomes clear that the new Kokkos data structures are far more efficient than the initial associative ones using arrays of shared
pointers. This is an even better result, considering that we used a portable programmingmodel and did not optimise the algorithm or data
structures for a specific architecture.
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Fig. 5. Strong scaling of the parallel part of different CPU implementations of the variational high-order mesh optimisation method.

Fig. 6. Strong scaling of the parallel part of different manycore implementations of the variational high-order mesh optimisation method executed on a Knights Landing
(KNL) accelerator.

4.5. Strong scaling on a manycore accelerator

As a final test, we repeat the strong scaling exercise using the samemesh on themanycore accelerator. The averaged timings of our three
CPU implementations are shown in Fig. 6. In this manycore environment, which is additionally hindered by stronger memory bandwidth
restrictions, the effect of using simpler data structures can clearly be seen, with the full Kokkos implementation being by far the best
performing. With the Kokkos thread scheduling and data structures a difference of one order of magnitude with a 9.5 times lower runtime
than with the native Pthreads version is achieved. This indicates the suitability of the Kokkos data arrays for highly parallel sharedmemory
systems. Up to 64 threads (1 thread per core) we obtain a very good scaling of 44% for the full Kokkos version, compared with 16% for
the native version. Further, only the full Kokkos version can benefit from hyper-threading using up to 256 threads, whereas it is found
counter-productive for the other two versions.

4.6. Performance comparison between architectures

Using the portable Kokkos programming model, we already achieved better performance on the CPU, compared to our initial
implementation. The second main point to assess is if further performance benefits can be realised running the same algorithm on
GPUs. We emphasise that, asides from specifying some arrays to be loaded to texture memory and others to shared memory (which
can be specified using the Kokkos-syntax), no specific GPU optimisation has been undertaken. This section therefore aims to compare the
suitability of CPU vs GPU systems, using the Kokkos-CUDA version on three different GPUs and the best performing CPU implementation,
the full Kokkos-OpenMP version, on the CPU system and an Intel Xeon Phi of the Knights Landing architecture.

In this section we consider a set of four different meshes, all using the same geometry and the same number of elements, but using
different polynomials orders and therefore different degrees of freedom (DOF), as shown in Table 2. This table also shows the average
number of DP-GFLOP (double precision gigaflop) required by our algorithm for 10 optimisation steps, so it contains exactly the number of
operations performed within our timing interval. The GFLOP measurements were obtained using the Nvidia Visual Profiler [31].

The averaged run times obtained on our CPU system, the three GPU systems and the KNL accelerator are scaled by the DOF and given
in Fig. 7. Fig. 8 additionally shows how much faster the GPU and accelerator run times are compared with the CPU run times. The main
observation is that a faster runtime on the GPUs with the latest Pascal architecture is realised. The GTX 1070 is 150%–200% faster, whereas
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Table 2
Statistics of the architecture comparison set of meshes; including degrees of freedom (DOF) and double precision FLOP
for 10 steps of the mesh optimisation algorithm.

Element order Elements DOF DP-GFLOP FLOP/DOF

2nd 95982 338469 163.6 483.5
3rd 95982 1197165 628.3 524.8
4th 95982 2899428 1824.8 629.4
5th 95982 5733204 4943.9 862.3

Fig. 7. Run times normalised by DOFs for meshes with varying element order on different systems.

Fig. 8. Speed-ups of different GPU/accelerator systems compared to CPUs for meshes with varying element order.

the Tesla P100 is even 275%–350% faster than the Xeon E5-2970v3 CPU. The performance on the Tesla K40, however, is worse than on the
CPU system. The Intel Xeon Phi 7120 accelerator is up to 150% faster than the CPU.

The run times vary for different element polynomial order, which is due to two opposing effects. Firstly, the average number of
operations or FLOP required by our algorithm per degree of freedom increases with element polynomial order, as seen in Table 2, which
is a common observation for high-order methods. Secondly, the algorithm maps with varying efficiency to the different hardware. As a
straightforwardmeasurewe consult the percentages of theoretical peak FLOPs that are achieved, given in Fig. 9. The higher the polynomial
order, the more efficient the hardware is utilised, across all systems. This is due to more compact data structures of high-order elements,
that allow amore efficient memory access. Both effects combined, 4th order elements achieve the optimum run time per DOF for all GPU-
and the CPU systems. The Xeon Phi accelerator benefits from even higher polynomial orders.

An important observation is, though, that our architecture-independent algorithm cannot fully utilise the large number of DP cores
on the Tesla GPUs, whereas the 4 DP cores per SM on the GTX card can be well utilised. The evaluation of the memory bandwidth below
explains this effect, which is most probably caused by the different ratio of DP-compute cores to load-store-units (LSUs).

4.7. Further performance evaluation of GPU version

Opposed to CPUs, it is not possible to execute a code only on a specific number of streaming multiprocessors of a GPU. Hence no
meaningful scaling exercise for single GPUs can be devised. Yet, there are other meaningful performance metrics that can be evaluated
for GPU executions. These are readily available using the nvprof profiler, that is part of the CUDA package [22]. The equivalent profiling
metrics for modern CPUs are very difficult to examine reliably, so we choose to omit those here.



J. Eichstädt et al. / Computer Physics Communications 229 (2018) 36–53 49

Fig. 9. Achieved percentages of theoretical peak FLOPs (DP) of different systems for meshes with varying element order.

Fig. 10. Warp efficiency of different GPU systems for meshes with varying element order.

Apart from the achieved percentage of theoretical peak FLOPs, we consider the warp efficiency. It is defined as the average percentage
of threads in a warp (a CUDA-warp always consists of 32 threads) that are performing useful work. This metric is very important as any
improvement will directly corresponds to an equally large improvement in percentage of peak FLOPs. The results are shown in Fig. 10. The
higher the polynomial order of the mesh elements, the higher is the observed warp efficiency. A considerable amount of the code is spend
evaluating the quadrature points of an element, which are assigned a thread each. Higher-order elements have more quadrature points
and can hence be distributed better to fill up multiples of 32 threads or one warp. The slightly lower efficiency of the Tesla K40 might be
explained by the different CUDA compute capability. This trend partly explains why a higher element order results in a higher percentage
of theoretical peak FLOPs. The other crucial limiting factor is the memory access.

To this end we evaluate the memory bandwidth of the DRAM on the device. It is a metric to evaluate how well the data structures are
mapped to the physical memory in order to allow efficient coalesced memory-access. The percentage of the theoretical peak bandwidth
is given in Fig. 11. The important observation is that – independently of the GPU and the polynomial order – the utilisation of the memory
bandwidth is rather low. We can infer theoretically from our algorithm that the calculations performed for each node deal with many
small individual arrays. We have already discussed that at the same time our algorithm is very memory intense, requiring large register
sizes. This will lead to a low degree of coalesced memory accesses and hence result in the low observed memory bandwidth. Further, we
also did not undertake any attempts to optimise the memory operations.

We might conclude that our algorithm requires a high ratio of memory load-store-units (LSUs) to compute cores in order to load the
required data into the registers. This ratio is high if DP operations on a GTX card are performed, but is far worse with the higher number
of DP cores on a Tesla card. This might explain why the percentages of theoretical peak FLOPs on the two Tesla cards are so low.

4.8. Cost comparison

There is no established procedure to compare the overall efficiency between very different architectures, like CPUs and GPUs. The two
fundamental constraints for HPC users are time to solution and cost budgets. Time to solution can be compared straightforwardly between
all kind of systems. Butwithout taking costs into account itwould be too simplistic to compare the hypothetical case of a 1000$ CPU system
with a 5000$ GPU system and claim the GPU system performs better on the grounds of achieving half the run time for a given simulation.
Provided the applications achieve a good scaling, better run times can most often be gained by spending a higher budget. It follows that
the costs to operate a certain hardware system need to be taken into account.

The biggest annualised operating costs contributor for a HPC server is the computing hardware acquisition cost, which has also been
considered in [32]. This reference proposes a novel cost metric termed resource utilisation, which is the product of run time and the
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Fig. 11. Achieved percentage of theoretical peak bandwidth of the device memory for different GPU systems and meshes with varying element order.

Table 3
Averaged monthly prices for equivalent systems on bare-metal cloud services, as of April 2017.

System Monthly price in $

Xeon E5-2670v3 913.53
Xeon Phi 7120 + RAM 774.56
Tesla K40 + host 1001.64
GTX 1070 + host 499.56
Tesla P100 + host 1412.81

hardware acquisition cost, with the units $ ×s. However, this is only a combined time–cost metric when hardware acquisition costs are
dominant and not annualised, as in the case of a local workstation. In a HPC server case, where the user pays for a certain length of
user-time, however, the product of costs per time and run time has the unit $, and it becomes a pure cost metric. The resource utilisation
metric also does not include electricity consumption, maintenance and peripheral costs, which are significant and also need to be carefully
considered.

Cloud computing providers take all these costs into account when determining their consumer price. Academic HPC facilities, too, will
consider the same cost contributors to meet their annual cost budget, but prices for user-time are not charged as such. We therefore
propose a cost metric based on prices of bare-metal cloud-computing providers. Only renting bare-metal and not elastic cloud services
would guarantee the algorithms to be executed on a specific hardware and thus allow for an accurate performance and cost evaluation.
We gathered the monthly operating prices from three major providers (Amazon Web Services, Google Cloud Platform, IBM Cloud) for
equivalent systems that we used for our performance runs, as of April 2017. For the GPU systems we considered the monthly prices of the
GPU itself and added the monthly price of a simple host system consisting of an 8-core Xeon E5-2650v3 processor and 64 GB RAM. For
the Xeon Phi accelerator system we considered the device plus 64 GB of RAM. The averaged prices for the equivalent systems are given in
Table 3. Based on theoretical performance to price, we would consider a fair charge for a Tesla K40 compared to a Tesla P100 to be lower,
however.

The costs of our runs are calculated as the product of run time and monthly price for the system and normalised by the DOFs. The
absolute numbers are given in Fig. 12 and the cost improvements compared to the CPU system are given in Fig. 13. The main observation
is that both Pascal GPUs achieve a cost advantage over the CPU system of 170%–225% for the Tesla P100 and an even higher 250%–365% for
the GTX 1070. The Tesla K40 is not cost efficient, due to both the low hardware utilisation and the currently high price tag. The Xeon Phi
accelerator achieves a cost advantage of 115%–180%. Comparing the different polynomial orders of the elements, unsurprisingly, the exact
same trends as for the run times can be observed. For all GPU architectures and the CPU the 4th order element is the most efficient, while
this effect is only pronounced on the CPU. The cost variation of the Intel Xeon Phi accelerator is the strongest, being hardly competitive
using 2nd order elements, but being in the same range as the Pascal GPUs for 5th order elements.

We can compare the two considered constraints costs and run times in a single scatter-plot, as shown in Fig. 14. This conveys the
results very effectively; compared with the CPU, the Tesla P100 and the GTX 1070 perform better on both metrics. The choice of which
hardware to employ can then be made depending on which constraint is more important for the individual user. The Xeon Phi accelerator
performs better than the CPU, too, but is never better than the two Pascal GPUs. The high performance variation of the CPU and the Xeon
Phi accelerator depending on the element order is further clearly shown.

5. Conclusion

We have implemented a high-order mesh optimisation algorithm with an architecture independent programming model using the
Kokkos library. The general mesh optimisation algorithm allows for the correction and optimisation of high-order meshes using a
variational energy functional. The implementation has been presentedwith tetrahedra of second to fifth order and the hyper-elastic energy
functional. The new Kokkos implementation is based on polymorphic data structures that allow efficient memory access on both CPU and
GPU architectures. The implementation further makes use of thread-scheduling with an OpenMP backend on CPUs and a CUDA backend
on GPUs. For the CUDA backend we use Kokkos functionalities to specify the memory locality of certain data. We emphasise that although
we did not attempt to optimise our algorithm for any specific parallel architecture, our results have shown that it is possible to port our
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Fig. 12. Bare-metal cloud-computing costs normalised by DOFs for meshes with varying element order on different systems.

Fig. 13. Bare-metal cloud-computing cost improvements of different GPU/accelerator systems compared to CPUs for meshes with varying element order.

Fig. 14. Comparison of costs and runtime per DOF for different systems and varying element order.

high-order mesh optimisation algorithm to GPUs and Xeon Phi accelerators, and obtain both a time and cost advantage compared to CPU
runs.

Our results generally show that Kokkos data structures are processed more efficiently on modern hardware than the associative ones
used in our initial implementation, which used arrays of shared pointers. This effect was especially pronounced on Xeon Phi Knights
Landing accelerators with a runtime difference of almost one order of magnitude compared to our optimised Kokkos implementation. This
highlights the importance of efficient data structures on manycore devices and future hardware systems following this trend. Once a full
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Kokkos implementation that works with the CUDA backend has been completed, it is deemed to offer good codemaintainability. However,
we have shown that legacy code relying on heavy object oriented programming features requires substantial refactoring of data structures
and associated data management. A programming model that would avoid such a refactoring step would be highly beneficial.

Additionally, we have developed a cost metric that is based on monthly prices for equivalent systems on bare-metal cloud-computing
servers. Onlywith both run-times and a costmetric a fair comparisons between different architectures is possible. Comparedwith our CPU
system, the Tesla P100 is 170%–220% and the GTX1070 250%–360%more cost efficient. The Xeon Phi accelerator’s cost efficiency increases
from 115% up to 180% with increasing element order.

Kokkos itself has proven to be a useful tool in obtaining high-performance portability of our code. However we do note a few
shortcomings of the library in our results. The most notable is the scheduling of threads, which was found to lack some efficiency in
our weak- and strong-scaling tests. It is also important to note that some knowledge of the underlying hardware is required in order
to tune performance, such as selecting optimal block sizes and register limits, which would ideally be automated in a fully architecture
independent programming model. Additionally, the library can only perform as well as the choice of algorithm, as shown by the low
efficiency on Tesla GPUs, which is most probably due to the rather sparse operations and an inefficient memory access. To improve this
considerably, either detailed code optimisation or a rewriting of the underlying algorithmwould be necessary. Both aspects, though, defeat
our attempt in porting an initial CPU version to other architectures with minimal effort using an architecture independent programming
model. We also found that the investigation of the cause of these problems is hindered by the high-level nature of the library, which
means that parts of the parallel codebase are hidden when using profiling tools such as the Nvidia Visual Profiler, making it more complex
to realise code optimisation.
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Appendix. Code snippets

Listing 1: Managing of node coordinates and parallelism in the initial implementation
1 // Shared pointer of node objects.
2 vector<vector<boost::shared_ptr <NodeOpti>>> opti_nodes;
3 // Loop over all coloursets in serial.
4 for (int cs = 0; cs < opti_nodes.size(); cs++)
5 {
6 // Get the size of the colourset.
7 const int nodes = opti_nodes[cs].size();
8 // Create pthread jobs to optimise each node
9 vector<Thread::ThreadJob *> jobs(nodes);

10 for (int node = 0; node < nodes; node++)
11 {
12 jobs[node] = opti_nodes[cs][node]->Optimise();
13 }
14 // Queue up parallel jobs and wait for their completion.
15 QueueJobs(jobs);
16 Wait();
17 }
18
19 // The initial node optimisation routine.
20 void NodeOpti::Optimise()
21 {
22 // Get the number of connected elements from a member
23 // variable of the node, m_elmts.
24 const int elmt = m_elmts.size();
25
26 // Loop over all connected elements in serial
27 for (int el = 0; el < elmts; ++el)
28 {
29 // Obtain node coordinates from the node member variables.
30 x = m_node->m_x;
31 y = m_node->m_y;
32 z = m_node->m_z;
33 // Loop over all quadrature points in serial.
34 for (int qp = 0; qp < m_utilities ->n_qp; ++qp)
35 {
36 // Calculations per quadrature point are performed
37 // inside this for-loop.
38 }
39 }
40 }
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Listing 2: Managing of node coordinates and parallelism in the full Kokkos implementation
1 // Loop over all coloursets in serial.
2 for (int cs = 0; cs < css; cs++)
3 {
4 // Get the size of each colourset.
5 const int nodes = nodes_array(cs);
6
7 // Use Kokkos syntax to create parallel teams for each node.
8 Kokkos::parallel_for (team_policy (nodes, Kokkos::AUTO),
9 KOKKOS_LAMBDA (const member_type& teamMember)

10 {
11 // Get the node to process from rank of thread.
12 const int node = teamMember.league_rank();
13 // Get the number of connected elements.
14 const int elmts = elmts_array(cs, node);
15
16 // Loop over all connected elements in serial
17 for (int el = 0; el < elmts; ++el)
18 {
19 // Get the node indices and location from Kokkos views.
20 const int elid = elid_array(cs, node, el);
21 const int localnodeid = localnodeid_array(cs, node, el);
22 // Get the node coordinates based on the indices.
23 x = X(elid, localnodeid);
24 y = Y(elid, localnodeid);
25 z = Z(elid, localnodeid);
26 // Create another layer of parallelism for each quadrature
27 // point using Kokkos syntax.
28 Kokkos::parallel_for (Kokkos::TeamThreadRange (teamMember , qps),
29 [&] (const int qp)
30 {
31 // Calculations per quadrature point are performed inside
32 // this lambda function.
33 });
34 }
35 });
36 }
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