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Abstract Methods for avoiding singularities of closed-loop robot mechanisms have

been traditionally based on the value of the determinant or the condition number of

the Jacobian. A major drawback of these standard techniques is that the closeness of

a robot configuration to a singularity lacks geometric, physical interpretation, thus

implying that it is uncertain how changes in the robot pose actually move further

away the mechanism from such a problematic configuration. This paper presents

a geometric approach of singularity avoidance for kinematically redundant planar

parallel robots that eliminates the disadvantages of Jacobian-based techniques. The

proposed method, which is based on the properties of instantaneous centres of rota-

tion, defines a mathematical distance to a singularity and provides a reliable way of

moving the robot further from a singular configuration without changing the pose

of the end-effector. The approach is demonstrated on an example robot mechanism

and the reciprocal of the condition number of the Jacobian is used to show its ad-

vantages.

1 Introduction

A parallel robot is a closed-loop kinematic chain mechanism where the end-effector

is connected to the base via two or more independent kinematic chains. A key fea-

ture of parallel robots is that once the actuated joints are locked, the mechanism

becomes, in general, rigid. However, it is well known that there are particular con-

figurations, known as singularities, in which the total number of degrees of freedom

changes instantaneously and consequently the robot loses its rigidity. Herein, the

term singularity will refer to the so-called forward kinematics singularity, which

Nicholas Baron, Andrew Philippides

University of Sussex, Brighton BN1 9RH, UK. e-mail: {n.baron, andrewop}@sussex.ac.uk

Nicolas Rojas

Imperial College London, London SW7 1NA, UK. e-mail: n.rojas@imperial.ac.uk

1



2 Nicholas Baron, Andrew Philippides and Nicolas Rojas

describes the instance where different branches of the direct position problem meet

and the determinant of the Jacobian equals zero [1], [2]. Singular configurations are

problematic because the task wrench cannot be resisted by active joint torques, or

equivalently the end-effector is able to move despite the input velocities of the active

joints being zero [3]. In fact, these problems are not just confined to the exact point

at which the robot is in a singularity; the robot can exhibit such behavior when close

enough to a singular configuration. This is a major issue in terms of the control of

the robot and also for robot safety.

The traditional method of singularity analysis is to calculate the Jacobian of the

robot, that is, the matrix that describes the relationship between the input velocities

of the actuated joints and the output velocity of the end-effector, and then to compute

an index, such as the reciprocal of the condition number or the determinant [4].

The point at which the robot is in a singularity is given by the instance when the

value of this index is zero. The problem with using Jacobian indexes as means for

performing the singularity analysis is that they have no straightforward geometric

interpretation; meaning that for any non-zero value, it is not clear how close the

robot is to a singular configuration. Resultantly, by just computing the value of such

indexes, there is no physical understanding of the robot’s proximity to a singularity

and how to move away from it. Many methods of singularity avoidance have been

proposed that are based on the calculation of Jacobian indexes [5], [6].

In this paper, a simple, geometric method of singularity avoidance for kinemati-

cally redundant planar parallel robots is proposed. Kinematically redundant parallel

robots are architectures with more actuators than required by the task workspace,

but which all contribute to make the robot rigid when locked without serially con-

nected subsets [7, 8]. The suggested method, which is based on the properties of

instantaneous centres of rotation, has a direct geometric interpretation, providing a

physical insight of the robot’s proximity to a singularity. These characteristics make

it possible to compute a new configuration of the robot for which the distance to a

singularity is greater, and yet the pose of the end-effector remains the same.

The paper is structured as follows. In section 2, the concept of instantaneous

centres of rotation and its use to determine singularities of planar parallel manipu-

lators is discussed. In section 3, the geometric method of singularity avoidance is

proposed which involves, firstly, computing the robot’s proximity to a singularity

using the properties of instantaneous centres of rotation and, secondly, manipulat-

ing its configuration for moving further away from it. The method is demonstrated

numerically on an example robot mechanism in section 4, in which the reciprocal

of the condition number of the Jacobian is also calculated for comparison. Finally,

we conclude in section 5.

2 Instantaneous Centres of Rotation and Singularities

The Instantaneous Centre of Rotation (ICR) between two rigid bodies that are mov-

ing relative to one another in the same plane is defined as the instantaneous location
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of a coincident pair of points of the two bodies of which the absolute velocities are

equal [9]. This concept can be applied to any kinematic chain with mobility one in

order to find the ICR between any two of the links in the system. Following this,

the singularity analysis can be carried out on a planar parallel robot, that in general

has a mobility zero when the actuators are locked, by considering the robot as a

composition of its mobility one sub-mechanisms; these are the kinematic chains of

mobility one within the robot that are obtained by removing one or more of the the

links that connect the base to the platform. The mobility one sub-mechanisms of

a parallel robot can be identified by using, for instance, the extended Chebychev-

Kutzbach-Grübler formula [10]

M = F −
λ

∑
i=1

ti, (1)

where λ = J−L+1 is the number of independent loops in the kinematic chain, ti is

the motion type of the ith independent loop (ti = 3 in the planar case), J is the total

number of joints, L is the number of links, and F is the total number of degrees of

freedom of the joints.

A singularity in a planar parallel robot is produced in the instance where the ICR

between the platform and the base of each mobility one sub-mechanism coincide,

since in these configurations the platform is able to, instantaneously, rotate about

such a point [8]. It therefore follows that a robot’s proximity to a singular configura-

tion can be determined by calculating the position of the ICRs between the platform

and the base for each of these sub-mechanisms and computing the content of the

simplex formed by them—i.e., length in the case of two points. It can be shown that

for planar parallel robots of up to three independent loops, the geometric conditions

that cause two of these ICRs to coincide are the same that cause any pairing of

these ICRs to coincide, hence it is only necessary to calculate the ICR between the

platform and the base for two of the mobility one sub-mechanisms. Additionally, if

the vector between these ICRs is found, the robot can be reconfigured such that the

ICRs are moved further apart from each other, thus moving the robot further away

from a singularity.

3 Geometric Method of Singularity Avoidance

The aim of the method is to calculate the vector between the ICRs between the base

and the platform of two of the mobility one sub-mechanisms of the kinematically

redundant planar parallel robot, and then subsequently reconfigure the robot such

that one of these ICRs moves further away from the other. The advantage of kine-

matically redundant mechanisms is that it is possible to reconfigure at least one of

the legs without manipulating the pose of the end-effector. This means that it is pos-

sible to change the positions of one of the ICRs between the platform and the base

of one of the mobility one sub-mechanisms without manipulating the pose of the
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Fig. 1 A kinematic diagram of the kinematically redundant planar parallel robot proposed in [8]

with RPR legs. R and S are the ICR(1,7) for the sub-mechanisms where links 4 and 5 are removed,

respectively.
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Fig. 2 Circle diagrams for the M = 1 sub-mechanisms with link 5 removed (left) and link 4 re-

moved (right).

end-effector. Therefore, if the vector between this ICR and another ICR (one that

is independent of the configuration of the redundant leg) is known, then the former

ICR can be repositioned such that it moves further away from the latter ICR, and

thus the robot moves further away from a singularity.

This is best understood by examining an example robot mechanism; herein, the

kinematically redundant planar parallel robot proposed in [8] is used, in this case

with revolute-prismatic-revolute (RPR) legs. A diagram of this robot is shown in

Fig. 1; it consists of a platform, a base, four RPR legs and an additional ternary link

that is referred to as the moving base; the underline in this convention means that the

corresponding joint is actuated. The moving base is joined to the base via a passive

revolute joint and to the platform via two of the legs, the other two legs connect the

platform to the base.

Firstly, the ICRs between the platform and the base for the mobility one sub-

mechanisms of the robot need to be calculated. Herein, the ICR between two links i

and j will be denoted by ICR(i,j); for example, according to the notation of Fig. 1,

the ICR between the base, link 1, and the platform, link 7, for each of the mobility

one sub-mechanisms of this robot is denoted by ICR(1,7). In order to determine
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the position of ICR(1,7) for each sub-mechanism, a book-keeping system through

the use of so-called Circle Diagrams is used [11]. The links of the mechanism are

denoted by number and a filled line between two links is drawn if the ICR between

the two links is known—i.e., the links share a joint. A dotted line is drawn between

two links to indicate a desired, unknown ICR; it is possible to find the position of

this ICR if the dotted line is a common side of two triangles of which the other sides

are filled lines.

In the analyzed robot, five sub-mechanisms which have mobility one can be iden-

tified. However, it is only necessary to calculate the ICRs between the platform and

the base of two of these sub-mechanisms as the resulting conditions are equivalent;

these mechanisms are that where Link 5 is removed, which will be referred to as

SM-A, and that where Link 4 is removed, which will be referred to as SM-B. The

circle diagrams for SM-A and SM-B are displayed in Fig. 2.

For SM-A, it can be seen by inspecting the circle diagram that the ICR between

the platform and the base, ICR(1,7), point S in Fig. 1, is positioned at the point

of intersection between the lines which pass along links 3 and 4. For SM-B, the

determination of ICR(1,7) is as follows. In the circle diagram, the dotted line drawn

between links 1 and 7 is not the common side of two otherwise known triangles

therefore an additional unknown ICR must be found first, this is ICR(2,7) and its

position is located at the point of intersection between the lines that pass along links

5 and 6, point Q in Fig. 1. ICR(1,7) can then be found by drawing two lines; one

which passes through Q and P3, and another which passes along link 3. The point at

which these lines intersect is the position of ICR(1,7) for SM-B, this is point R in

Fig. 1.

3.1 Moving away from a singular configuration

In what follows, the horizontal and vertical components of a point Pi in a given

reference frame are denoted by xi and yi, and the gradient of the line which passes

through points Pi and P j is denoted by mi, j. Then, from a robot configuration, the

coordinates of R, Q, and S can be computed as

S =

[

1
m1,6−m2,7

(y2 −m2,7x2 − y1 +m1,6x1)
m1,6

m1,6−m2,7
(y2 −m2,7x2 − y1 +m1,6x1)+ y1 −m1,6x1

]

, (2)

Q =

[

1
m4,6−m5,7

(y5 −m5,7x5 − y4 +m4,6x4)
m4,6

m4,6−m5,7
(y5 −m5,7x5 − y4 +m4,6x4)+ y4 −m4,6x4

]

, (3)

R =

[

1
m1,6−m3,Q

(y3 −m3,Qx3 − y1 +m1,6x1)
m1,6

m1,6−m3,Q
(y3 −m3,Qx3 − y1 +m1,6x1)+ y1 −m1,6x1

]

. (4)

It can be seen by inspecting the mechanism that the pose of the platform must

necessarily change if the length of either link 3 or link 4 is modified. However,
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changing the lengths of link 5 and link 6 does not necessarily alter the pose of link

7. This means that point R is the ICR whose position can be altered in order to avoid

singular configurations. Let d be the vector from S to R. Hence, the robot can be

moved further from a singular configuration by moving the position of R along the

direction of this vector; this can be achieved by multiplying d by a scalar λ > 1, that

is,

R∗ = S+λd, (5)

where R∗ is the new position of R.

Having computed R∗, the new position of Q, say Q∗, needs to be determined.

The only requirement of Q∗ is that it has to lie on the line which passes through R∗

and P3. Its position is determined by calculating the equation of this line and then

selecting a feasible gradient of link 5, m4,6. The aim of the method therefore is to

obtain a value for m4,6 that produces the desired value of R∗. The first step is to

calculate an expression of P4 in terms of m4,6. P4 is positioned at one of the points

of intersection between the line of gradient m4,6 that passes through the centre of P6

and the circle whose centre is that of P3 and whose radius is the distance between

P3 and P4, d3,4. Thus,

P4 =





−b±
√

b2−4ac

2a

m4,6
−b±

√
b2−4ac

2a
+ y6 −m4,6x6



 , (6)

where a = 1+m2
4,6, b = 2m4,6(y6 −m4,6x6 − y3)−2x3, and c = x2

3 +(y6 −m4,6x6 −
y3)

2 − d2
3,4. The ± signs in equation (6) denote the two possible positions of P4,

either are feasible however the length of link 5 must lie within the limits of the

actuated prismatic joint.

The positions of the centres of the remaining unknown joints are found by solv-

ing the inverse kinematics problem—a method to do this is discussed in [8]. Then,

with an expression for the position of P5 obtained, the gradient of link 6, m5,7, is

calculated in terms of m4,6. Now, a value of m4,6 is calculated such that the lines

which pass through links 5 and 6 intersect at a point which lies on the line which

passes through P3 and R∗. Then,

Q∗ =

[ c5,7−c4,6

m4,6−m5,7

m4,6
c5,7−c4,6

m4,6−m5,7
+ c4,6

]

(7)

where c4,6 = y6 −m4,6x6 and c5,7 = y7 −m5,7x7. Finally, the components of Q∗ in

terms of m4,6 can be expressed as

yQ∗ −m3,R∗xQ∗ − c3,R∗ = 0, (8)

where, c3,R∗ = y3 −m3,R∗x3,R∗ is the y-intercept of the line which passes through P3

and R∗.

Equation (8) is a radical equation in m4,6, the roots of which are the possible val-

ues of m4,6. Since only one solution is required, root-finding algorithms, such as the



A Geometric Method of Singularity Avoidance 7

Q

Q

R

R

SS

Fig. 3 Original and improved configurations of the robot (left and right, respectively).

Newton-Raphson method, can be used. The positions of P4 and Q∗ are then found

by substituting the obtained value back into equations (6) and (7), respectively.

4 Numerical Example

In this section the method is carried out on an example mechanism with the same

architecture that is examined in the previous section. Firstly, d is calculated for the

mechanism with the following joint coordinates: P1 = (0,2)T , P2 = (16,2)T , P3 =
(9,1)T , P4 = (3.05,5.36)T , P5 = (14.47,1.70)T , P6 = (6,6)T and P7 = (10,6)T .

Using these values, and by computing the necessary gradients, the positions of S, Q

and R are found using equations (2)-(4) and, resultantly, d is obtained by subtracting

S from R. Hence, S = (8,7.33)T , Q = (9.26,6.71)T , R = (9.33,8.22)T and d =
(1.33,0.89)T . This configuration is displayed on the left hand side of Fig. 3. R∗, the

new position of R, is then calculated with equation (5), for instance R = (12,10)T

when λ = 3, subsequently, using equations (6)-(8), a radical equation in terms of

m4,6 is obtained. A feasible solution of such an equation is m4,6 =−0.124.

Given the above value for m4,6, the new position of Q is then Q∗ = (10.48,5.44)T

and consequently d = (4,2.67)T . The positions of the centres of joints P1, P2, P3,

P6 and P7 are unchanged, and the remaining joints are recalculated. In this example,

the kinematic redundancy of the robot is utilised as the pose of the end-effector is

not modified. This configuration is displayed on the right hand side of Fig. 3.

The advantage of the proposed method of singularity avoidance is that it pro-

vides a straightforward interpretation of the robot’s proximity to a singularity. The

magnitude of d can be compared with the dimensions of the robot, or its resolution,

such that there is a clear context to the size of this value. On the other hand, if we

perform the above analysis using a traditional Jacobian-based index, such as the re-

ciprocal of the condition number, we obtain a value of 1.094×10−2 for the original

configuration and 2.118× 10−2 for the second, improved configuration. It can be
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seen that these values provide no real insight into how close physically the robot is

to a singularity.

5 Conclusion

A main problem with traditional methods of singularity analysis based on indexes

of the Jacobian matrix, such as the reciprocal of the condition number, is the ab-

sence of a straightforward geometric interpretation, implying that, in essence, they

are meaningless for all non-zero values. In this paper, a geometric method of sin-

gularity avoidance for kinematically redundant planar parallel robots, based on the

properties of instantaneous centres of rotation, is introduced; the technique provides

a physical understanding of the robot’s proximity to a singularity and allows the

definition of escaping trajectories that effectively deviate the robot from dangerous

configurations. These characteristics, which are simple to implement, open the door

to further research in geometric planners of singularity-free paths for closed-loop

manipulators.
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