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Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suf-
fers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT ana-
logs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to
improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene ana-
logs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTpta) gave
highest affinity (50 nM K;), selectivity (34-fold), and agonist potency (34 nM ECso, 87-fold selectivity)
towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V;, receptor sub-
type affinity (220 nM and 69 nM, respectively) and pharmacological activity (294 nM and 35 nM, respec-
tively). V1, binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a
neutral residue at position 8 with a basic amino acid, providing potent antagonists (14 nM ICsp) that dis-
played no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability
compared to OT at elevated temperature, demonstrating promising therapeutic potential for these ana-
logs which warrants further study.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Oxytocin (OT), a nonapeptide released from the pituitary gland,
is a promising therapeutic agent that is heavily involved with lac-
tation and uterine contraction in the peripheral system and is fur-
ther linked with complex neurological disorders in the central
nervous system. For example, OT is the World Health Organiza-
tion’s recommended drug to prevent postpartum hemorrhaging,
which is one of the most common causes of maternal morbidity.'*
However, OT suffers from limited stability in aqueous solution that
is especially problematic in subtropical climates where the major-
ity of maternal deaths occur.>~® Further, OT is highly susceptible to
metabolic degradation, having an in vivo half-life of 3 min, causing
substantial loss of activity.”

Common approaches to overcome peptide degradation, includ-
ing use of unnatural and D-amino acids, terminal capping and
chemical modification or mutation of the proteolytic recognition
sites, are often unsuitable for OT since its biological activity is
highly sensitive to structural change. This is because OT shares a
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molecular structure closely related to vasopressin (also known as
arginine vasopressin, AVP), making the development of a highly
specific and stable oxytocin receptor (OTR) ligand challenging.
Both OT and AVP contain a disulfide bridge between residues 1
and 6, resulting in a structure containing a cyclic core comprising
six amino acids with a flexible three-residue amidated tail (Fig. 1,
Table 1). The peptides differ by the amino acids at position 3,
and at position 8 whereby OT-related peptides contain a neutral
residue, while AVP peptides bear a basic amino acid. This subtle
difference in polarity at position 8 is thought to confer the mole-
cules’ interaction with its receptor that, in turn, is related to its dis-
tinctive function.®® However, due to their common structure, OT
and AVP peptides bind to and act on multiple members of the G-
protein coupled receptor family to exert their pharmacological
effects, including OTR, and AVP receptor subtypes Vi, Vi, and
V,.!° For OT, Tyr2 and Asn5 are fundamental for activity in the
uterus while residues Leu8, Pro7, GIn4 and Ile3 are key for receptor
binding.'!

Specifically, to improve the stability of OT two main strategies
have been used (i) N-terminal deamination,'*!* and (ii) disulfide
bond engineering, since the disulfide bond is generally not
implicated in OTR binding or activity. In the case of disulfide

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Structure of therapeutic peptide OT, AVP and related analogs, with variables
presented alongside in Table 1.

Table 1

Sequence residues for OT and related peptides.
Peptide Ry Ry X Y Z
oT Leu Ile H NH, S
doT Leu Ile H H S
AVP Arg Phe H NH, S
dOT(L8R) Arg Ile H H S
Carbetocin Leu Ile CH3 H CH,

engineering, a variety of modifications at this position have been
investigated, typically replacing the disulfide bridge with alterna-
tives including thioether,'* carbon,'>'® lactam,'” and diselenide
bridges.'® Structure activity relationships (SARs) have identified
that introduction of one alternative atom on the disulfide bond
(such as selenium) causes a subtle change in the ring region of
OT that is tolerated for OTR binding and efficacy,'>'® while reduc-
tions in the ring size of OT can abolish OTR activity. However, the
majority of studies omit determination of AVP receptor subtype
activity, leaving a question over alterations in receptor selectivity
induced by these chages.!® Alternatively, carbetocin, an OT
mimetic with an improved pharmacokinetic profile and prolonged
uterotonic activity,'* shows reduced selectivity and affinity
towards the OTR (10-fold lower than OT), and is only a OTR partial
agonist (Fig. 1).2°?! In addition, recent reports have emerged that
suggests carbetocin is also a Vq; and Vy, antagonist, complicating
its pharmacological profile.”

In a complementary and relatively less studied approach to
disulfide engineering, disulfide bridging represents an attractive
alternative that circumvents the lengthy and complex synthesis
of unnatural cyclized peptides through engineering strategies. For
example, Collins et al. recently demonstrated that a maleimide-
functionalized polymer could successfully bridge the disulfide
region of OT, resulting in a conjugate with increased thermal
stability.”?

In the present study, we investigated the biological activity and
stability of OT analogs bridged by dibromo-xylene molecules that
offer an irreversible covalent modification. Previously, dibromo-
xylenes have been used to assist peptide cyclisation,?* and increase
proteolytic stability or helicity of peptides,?>2° with further appli-
cations in the construction of protein mimics.?’ Furthermore, a
range of substituted analogs are available commercially, enabling
bridging distance structure-activity relationships (SAR) to be stud-
ied. We produced a library of cyclized OT analogs based on N-ter-
minally deaminated OT (dOT), which has been reported to have
increased stability compared to OT.” In addition, omission of a N-
terminal amine on dOT prevented any complications from compet-
ing side reactions during cyclization. The peptide library was
screened for binding affinity, biological activity and stability at ele-
vated temperature using in vitro assays, revealing promising

potency, selectivity and stability profiles driven by xylene-bridging
in OT analogs.

2. Results and discussion
2.1. Synthesis of OT and peptide analogs

Native OT, deaminated OT (dOT) and dOT(L8R) were success-
fully synthesized via automated fluorenylmethoxycarbonyl (Fmoc)
solid phase peptide synthesis (SPPS), and coupling with 2-(1H-ben-
zotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HBTU). In the case of dOT and dOT(L8R), a deaminated protected
cysteine was made by reacting triphenylmethylchloride in dicholo-
methane with 3-mercaptopropionic acid®®, then coupled in the
final position. Peptides were cleaved from the resin using trifluo-
roacetic acid (TFA) in the presence of 2.5% DTT to prevent oxidation
of cysteine or deaminated cysteine residues. Crude peptides were
purified by reverse phase (RP) liquid chromatography mass spec-
trometry (LC-MS) using either water/methanol or water/acetoni-
trile (MeCN). When required, cyclization of native disulfide
bonds was achieved by stirring the peptide in ammonium bicar-
bonate buffer in the presence of oxygen for up to three days. Both
purified peptides were lyophilized, and characterized by RP LC-MS
(Supplementary Fig. 1.1), which is presented in Table 2.

2.2. Disulfide bridging of dOT with xylene analogs

Cyclization of dOT analogs using various isomers of dibro-
moxylene was first attempted in a mixture of ammonium bicar-
bonate and acetonitrile, at room temperature and at a final
concentration of 1 mM peptide. While full conversion was seen
after 10 min, a small proportion of polymerized product for both
meta- (11%) and para- (21%) dibromoxylene-cyclized dOT was
detected. Pleasingly, this side product was removed when the reac-
tion was performed at higher dilution (0.5 mM) and lower dibro-
moxylene molar equivalents (1.1 equivalents vs. 3 equivalents),
affording all peptides efficiently and in good overall yield (Table 2,
Fig. 2). Xylene-bridged analogs showed reduced solubility in
water; addition of 15% v/v DMSO solved this issue.

2.3. Binding affinity of peptides against OTR and AVP receptor subtypes

The OTR has a substantial reliance on cholesterol for proper
functioning that has, in turn, presented severe challenges to
attempts to generate a crystal structure of the OT-OTR complex.?’
Further, common problems facing solubilized OTR include reduc-
tions in affinity and loss of characteristic binding properties
towards ligands. Therefore, SAR for OT analogs is best determined
using in vitro receptor binding studies, with conclusive studies also
testing against AVP receptor subtypes to address selectivity. Inhibi-
tory constant (K;) values for human receptors are presented in
Table 3. Displacement of either [*H]OT or [°H]AVP by dOT analogs
was measured over a concentration range of 0.95-30000 nM, while
non-specific binding of peptide analogs was defined using the
appropriate cold endogenous peptide.>® Receptor specificity was
calculated by comparing the affinity of ligands to members of the
OT and the AVP receptor family member that demonstrated the
highest binding capacity.

While all analogs screened suffered a decrease in binding affin-
ity toward the OTR compared to native OT, selectivity over the AVP
receptor subtypes was improved for dOT,,e, and maintained for
the dOT,,., derivative (Table 3, Fig. 3a). Further, meta-cyclization
demonstrated the highest affinity for OTR binding among the ana-
logs tested. Interestingly, dOT,tno Showed high affinity and prefer-
ential binding towards V1, receptor (Fig. 3b). The introduction of a
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Table 2

Characterization data and yields for OT peptide analogs.
Peptide MW (Da) Rt (min) ES peaks (m/z) Yield (%)°
OT,y 1006.4 9.64° 1007.90 (m+ 1) 18
dOT,c 993.4 11.82° 994.72 (m + 1) 21
doT,, 991.4 11.74° 992.61 (m+1) 17
dOT(L8R)oc 1037.2 9.71° 1038.67 (m+1) 24
dOTmeta 1095.5 14.19° 1096.67 (m + 1) 16
dOTpara 1095.5 14.24° 1096.67 (m + 1) 16
dOTortho 1095.5 14.05° 1096.67 (m +1) 18
dOT(L8R )ortho 1139.4 8.72° 1140.48 (m + 1) 20

Key: d = deaminated; cy = cyclized; oc = open chain; meta = meta-xylene bridged; para = para-xylene bridged; ortho = ortho-xylene bridged.
2 LCMS analytical Method 1 used to analyze peptide (please refer to Experimental Section 4.4 for details).
b LCMS analytical Method 2 used to analyze peptide.
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Fig. 2. Conjugation reaction with substituted dibromo-xylene reagents to form disulfide bridged analogs.

¢ Yields are calculated based on resin load.

—_—

OH
o
o
/I/\S/\)J\H
water/acetonitrile A HN ",

Table 3

Peptide inhibition constants (K; in nM) and selectivity profile.
K;i (nM) Receptor selectivity
Peptide OTR Via Vib Vs, OTR® A
oT 1.2+03 20+3 >6000 >6000 17 0.06
AVP 6+1 2+03 2+06 32+4 0.3 3.0
dOT eta 50+14 1681+ 13 >6000 >6000 34 0.03
dOTpara 142 £12 1954+ 8 >6000 >6000 14 0.07
dOTortho 220+ 10 69+12 >6000 >6000 03 32
dOT(L8R)ortho 166 £ 19 30+6 >6000 >6000 0.2 5.5

Binding of OT, AVP and xylene-bridged analogs to human OT/AVP receptor subtypes. Values are the mean value of three different experiments, each performed in duplicate.
@ Calculated by dividing strongest AVP receptor subtype binding value with OTR value.
b Calculated by dividing OTR binding value with V;, value.
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Fig. 3. Binding of xylene-bridged dOT analogs to human OTR or V, receptor subtypes measured in a competition binding assay.

basic residue at position 8 further enhanced the affinity and selec-
tivity profile for analog dOT(L8R)otho towards Vi, receptor com-

pared to both dOT,ho and AVP.

2.4. Biological activity of peptides by calcium flux assay

OT/AVP peptides exert their biological function through binding
to the relevant receptor, causing a measurable increase in intracel-
lular Ca®* in a fluorescence assay.”®>° Half-maximal effective con-

centration (ECsg) values or functional antagonism (half-maximal
inhibitory concentration, ICso) for the peptide series is reported
in Table 4. In addition to receptor binding, dOTmyera and dOTpg,
showed excellent agonist potency (ECsg) and selectivity towards
OTR. In agreement with affinity measurements, dOT,e;a Was the
most potent and selective OTR agonist, however maximal activa-
tion was 75+ 1%, suggesting that dOTe.. iS a partial agonist
(Fig. 4a), but nevertheless more effective than carbetocin (45 +
6%).2% Surprisingly, dOTono showed agonist activity towards OTR



3042

Table 4
Peptide agonist (ECso in nM), antagonist (ICso in nM) and selectivity profile.
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Agonist; ECsg

Receptor selectivity

Peptide OTR Via Vib Vs, OTR® "
oT 03+0.1 9+2 33+7 29+5 30 0.03
dOTmeta 34+6 >20000 2966 + 120 3900 + 350 87 -
dOTpara 109 + 24 >20000 2223 +533 3669 + 146 20 -
dOTotho 294 + 58 >20000 8302 + 1982 10764 + 101 28 -
dOT(L8R)ortho >10000 >20000 9263 +957 18919 + 146 - -
Antagonist; ICso Receptor selectivity
Peptide OTR Via Vip Vs, OTR Via
dOT eta Agonist 4400 Agonist Agonist - -
dOTpara Agonist 7862 Agonist Agonist - -
dOTortho Agonist 35+28 Agonist Agonist - 8.4°
dOT(L8R)ortho 1724 £177 148 Agonist Agonist 0.008 123
¢ Calculated by dividing strongest AVP receptor subtype binding value with OTR value.
b Calculated by dividing OTR subtype agonist value with V;, antagonist value.
¢ Calculated by dividing OTR subtype binding value with V, value.
hOTR functional agonism hV1, functional antagonism
100 F-08-o @ dOTrera 100 4 - dOT,eis
g & dOTpr 5 & dOT,..
§ - dOTyho ‘g’ = dOToreho
= ()
i -a- ot £ 5o ¥ dOT(L8R)ortno
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Fig. 4. Function agonism or antagonism of xylene-bridged dOT analogs to human OTR or V;, receptor subtypes measured in a competition assay.

and antagonist activity towards Vq, receptor. This phenomenon
has been shown recently for carbetocin, which displays agonistic
behavior towards OTR and antagonism towards the V;, and Vy;,
receptors.”? Alternatively, a complete switch in receptor selectivity
was demonstrated for analog dOT(L8R)oho that displayed potent
antagonist activity and selectivity towards the V;, receptor (Fig.
4b), showing no activation of OTR.

We demonstrate here that dOT et iS a selective human OTR
agonist with no antagonist activity towards the OTR detected,
while dOT(L8R),tho Was identified as a selective Vi, receptor
antagonist. Whilst these data demonstrate that high affinity and
selective binders can be achieved through disulfide bridging, mod-
ification to the OT backbone significantly influences affinity, selec-
tivity and potency. The sensitivity of OT to alterations in ring size
emphasizes the importance of screening multiple receptor sub-
types when exploring OT ring modifications due to the complex
pharmacological profile of this hormone. We hypothesize that
modification of the disulfide bond distorts the cyclic region of
these analogs, which influences their interaction with OT/AVP
receptor subtypes.

Pharmacology profile of OT, AVP and xylene-bridged analogs to
human OT/AVP receptor subtypes. Values are the mean value of
three different experiments, each performed in duplicate.

2.5. Thermal stability

The formation of a non-reversible covalent linkage in place of a
disulfide bond is expected to improve the stability of OT analogs

since previous research suggests that reactions involving this
region plays a central role for OT degradation, being prone to oxi-
dation, dimerization, and B-elimination.® Peptide stability was
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Fig. 5. Degradation of aqueous solutions of native OT and dOT,eta CONjugates at 50 °C.
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investigated through an accelerated stability test in which dOTpeta
was compared to OT, as a representative analog of the bridged pep-
tides. Peptides were dissolved in water to a concentration of 0.5
mg mL~! and heated to 50 °C in a heat block for 10 days. After this
time aliquots were removed and analysed by RP-LCMS. The
amount of remaining peptide was calculated as a percentage of
the relevant peak remaining before heat exposure. In this study,
degradation was prevented by conjugation of dibromo-xylene
(Fig. 5).

3. Conclusions

We report rapid and effective synthesis of xylene-bridged ana-
logs of dOT and determined the impact on biological activity and
stability following modification. This flexible approach facilitated
access to a variety of isomeric xylene bridges, which led to diverse
modulation of receptor selectivity, potency and affinity, presenting
an alternative pharmacological profile and therapeutic potential to
OT. A key finding from this work was that ring size and geometry
influenced OTR binding, with meta-bridged analogs demonstrating
the most favorable binding and pharmacology profile towards OTR.
dOThera demonstrated an improved selectivity profile for both
binding and activation towards the OTR and showed minimal V;,
antagonist activity, a more selective pharmacological than the
widely used drug carbetocin.?”*' It was surprising that dOTr¢no
displayed preferential binding affinity and selectivity towards
V12, Which can function as both a OTR agonist and V,, antagonist,
which could be further enhanced for dOT(L8R o1, incorporating
a basic residue at position 8, a mutation important for AVP receptor
engagement. Notably, dOT(L8R ), displayed improved binding
selectivity towards V, over AVP, with substantial antagonist activ-
ity only towards this receptor subtype.

OT binds and activates OTR, V;, and V;, receptor subtypes,
which has contributed to limited or debated efficacy in clinical
practice.>>*> The molecules reported here have a defined binding
and pharmacology profile, making them potentially useful tools
for probing the pharmacological potential of OTR. Furthermore,
xylene-bridging proved useful in enhancing thermal stability,
demonstrating minimal degradation compared to native OT at ele-
vated temperatures. Consequently, the xylene bridged analogs rep-
resent an interesting modification to OT with increased stability,
worthy of further investigation.

4. Experimental
4.1. Materials

General laboratory chemicals, were obtained from Sigma-
Aldrich Chemical Co. and used without further purification. Rink
amide Tentagel resin (0.71 mmol/g) was obtained from Rapp Poly-
mere while N,N-dimethylformamide (DMF), N-Methyl-2-pyrroli-
done (NMP), piperidine and trifluoroacetic acid (TFA) were
obtained from Merck Millipore. Fmoc (Fluorenylmethoxycar-
bonyl)-l-amino acids, HBTU, N,N-Diisopropylethylamine (DIPEA)
were purchased from AGTC bioproducts. Gases were from BOC.
Solutions and buffers were prepared with Ultra-pure water
obtained from a Millipore Elix Q-guard purification system.

4.2. Equipment

Peptides were purified and analysed on a Waters LC-MS system
consisting of i) Waters 2767 autosampler for samples injection and
collection; ii) Waters 515 HPLC pump to deliver the mobile phase
to the source; iii) Waters 3100 mass spectrometer with ESI; and, iv)
Waters 2998 Photodiode Array (detection at 200-600 nm)),

equipped with XBridge C;g reverse-phase columns with dimen-
sions 4.6 mm x 100 mm for analytical and 19 mm x 100 mm for
preparative runs. Solvents were degassed with helium and supple-
mented with 0.1% formic acid prior to use.

4.3. Solid phase peptide synthesis

Peptides were synthesised using automated solid-phase peptide
synthesis with Rink amide Tentagel resin on a ResPep SL apparatus
(Intavis) using the supplied Multipep software. Synthesis was car-
ried out in peptide synthesis grade DMF. Resin (20 pmol/well) was
swelled in DMF for 30 min before synthesis. Subsequent steps were
conducted automatically. N-a-amino Fmoc groups were depro-
tected using 20% (v/v) piperidine in DMF (400 pL, 2 x 5 min). The
Fmoc-protected amino acid (100 pumol, 5.0 eq.; 200 pL of 0.5 M
stock solution in NMP) for coupling was pre-activated with HBTU
(95 pmol, 4.75 eq.; 190 puL of 0.5 M stock solution in NMP) and
NMM (200 pmol, 10 eq.; 50 UL of 4 M stock solution in NMP). Cou-
pling was allowed to take place over 30-55 min and amino acids
were ‘double-coupled’ (i.e. the coupling step was repeated). To pre-
vent deletion sequences, any unreacted N-terminal amines were
acetylated with ‘capping mixture’ (400 UL of 5% (v/v) Ac0 in
DMF) for 10 min. The resin was washed with DMF (3 x 1 mL)
between the deprotection, coupling and acylation steps. The typi-
cal cycle was repeated until the final (N-terminal) amino acid cou-
pling, when N-a-Fmoc deprotection at the final residue undertaken
under usual conditions. Following synthesis, peptides were washed
several times (3 x 1 mL DMF, 3 x 1 mL DCM, 3 x 1 mL MeOH, 3 x
1 mL Et,0) and dried overnight in a desiccator. For the deprotec-
tion and cleavage of all peptides, a mixture of 1.5 mL TFA:H,O0:
DTT:TIS (94:2.5:2.5:1) was added to resin bound peptide for 3 h.
Crude peptides were precipitated using ice cold TBME, centrifuged
at 4000 rpm for 15 min at 4 °C, and the supernatant discarded. The
remaining peptides were washed with a fresh aliquot of TBME and
the process repeated. Precipitate was dried in a desiccator over sil-
ica gel to yield off white solids which were dissolved in a H,O:
MeOH mixture for purification by RP LC-MS. Following purifica-
tion, fractions containing pure peptide were combined and concen-
trated in the Genevac. Subsequently, pure peptides were re-
dissolved in water and freeze-dried overnight.

4.4. Purification and characterization

LC-MS Analytical gradient 1: 5-98% MeOH in H,O over 10 min,
98% MeOH was held for 2 min, MeOH was reduced from 98% to
5% over 1 min, and held at 5% until 18 min. LC-MS Analytical gradi-
ent 2: 5-98% MeCN in H,O over 10 min, 98% MeCN was held for 2
min, MeCN was reduced from 98% to 5% over 1 min, and held at 5%
until 18 min. LC-MS semi-preparative gradient: 5-25% MeOH in H,0
over 1 min, then increased to 75% MeOH over 10 min. MeOH was
further increased to 98% over 1 min, held at 98% MeOH for 1 min,
then reduced to 5% MeOH over 1 min where it was held for 4
min (18 min total).

4.5. Peptide modification

4.5.1. S-S disulfide bridging

Cyclization between internal cysteine residues was mediated in
ammonium bicarbonate buffer (0.1 M, pH 8) at a final peptide con-
centration of 0.1 mg/mL. The solution was stirred for up to 3 days
in the presence of oxygen at room temperature, after which time
the solution was concentrated then lyophilized to yield pure
peptide.
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4.5.2. Xylene bridging of cysteine residues

A solution of dibromo-xylene (1.1 eq.; 0.55 mL from a 10 mM
stock in MeCN) was added dropwise to a solution of dOT peptide
in a mixture of ammonium bicarbonate (0.02 M, pH 7.8) and MeCN
(3:1 respectively), affording an overall peptide concentration of
0.5 mg/ml. The resulting solution was agitated at room tempera-
ture for 30 min, and peptide products were purified and stored
as a solution of water with 15% v/v DMSO.

4.6. Stability studies

Peptides were dissolved in water to a concentration of 0.5 mg
mL~! and incubated at 50°C. Aliquots of the samples were
removed after 10 days and analysed after direct injection (2 x 20
uL injection) by LC-MS.

4.7. In vitro studies

4.7.1. Membrane preparation

Human receptors were cloned by RT-PCR from total human
liver RNA (V1,), kidney RNA (V;), or mammary gland RNA (OTR).
Cell membranes were prepared from HEK293 cells transiently
transfected with expression vector coding for human Vy,, human
V,, or mouse V;,. For human OTR membrane preparation, a stable
HEK clone expressing the receptor was selected. The transient or
stable cells were grown in 20 L fermenters. For each receptor, 50
g of cell pellet was resuspended in 30 mL of ice cold lysis buffer
(50 mM HEPES, 1mM EDTA, and 10 mM MgCl, adjusted to
pH 7.4, with the addition of complete cocktail of protease inhibitor
(Roche Diagnostics) and homogenised with Polytron for 1 min. The
preparation was centrifuged 20 min at 500 g at 4 °C, the pellet dis-
carded, and the supernatant centrifuged for 1 h at 43,000 g at 4 °C
(19,000 rpm). The pellet was resuspended in lysis buffer and
sucrose (10%). The protein concentration was determined by the
Bradford method and aliquots stored at —80 °C until use.

4.7.2. Binding affinity measurement

For vasopressin receptor binding studies, 60 mg of yttrium sili-
cate SPA beads (Amersham) were mixed with an aliquot of mem-
brane in binding buffer (50 mM Tris, 120 mM NaCl, 5 mM KCl, 2
mM CaCl,, and 10 mM MgCl,) for 15 min with mixing. 50 pL of
bead/membrane mixture was then added to each well of a 96 well
plate, followed by 50 pL of 4 nM 3H-AVP (American Radiolabeled
Chemicals). For total binding measurements, 100 pL of binding
buffer was added to the respective wells; for nonspecific binding,
100 pL of 8.4 mM cold vasopressin or cold oxytocin for hOTR was
added; and for compound testing, 100 uL of a serial dilution of
each compound in 2% DMSO was added. The plate was incubated
for 1 h at room temperature, centrifuged 1 min at 1000 g, and
counted on a Packard Top-Count.

Binding to human OTR was measured by filtration binding using
1 nM 3H-OT final concentration in 50 mM Tris, 5 mM MgCl,, and
0.1% BSA (pH 7.4) buffer containing membranes. After compound
addition as described above and 1 h of incubation at room temper-
ature, the binding was terminated by rapid filtration under vacuum
through GF/C filters, presoaked for 5 min with assay buffer, and
washed 5 times with ice-cold assay buffer before counting. Non-
specific binding counts were subtracted from each well and data
normalized to the maximum specific binding set at 100%. K; values
were calculated using the Cheng-Prussoff equation. Saturation
binding experiments performed for each assay indicated that a sin-
gle homogeneous population of binding sites was being labeled.
For receptor binding affinity (K;) determination, compounds were
tested at least 3 times in duplicate.

4.7.3. Stable cell culture and calcium flux assay using fluorescent
imaging

CHO cells were stably transfected with expression plasmids
encoding one of the human receptor of interest and grown in F-
12 K, containing 10% fetal bovine serum, 1% penicillin-strepto-
mycin, 1% L- glutamate, and 200 pg/mL geneticin at 37 °C in a
10% CO, incubator at 95% humidity. Cells were plated for 24 h at
50,000 cells/well in clear bottomed 96 well plates and were dye
loaded for 60 min with 2 pM Fluo-4-AM in assay buffer. After cell
washing, the plate was loaded on a fluorometric imaging plate
reader (FLIPR), compound dilution series added to the cells, and
the calcium signal recorded for 5 min in order to detect agonist
activity. After 20 min of incubation with compound, a concentra-
tion natural agonist (oxytocin or AVP depending on the receptor)
giving 80% of the maximum signal was added to the plate and
the calcium signal recorded for 5 min in order to detect antagonist
activity of the test compound.

The calcium signal reduction due to the antagonist activity of
the compounds was fitted to a single site competition equation
with variable slope and formula Y = Bottom + (Top-Bottom)/(1 +
10”((LogICso-X)«HillSlope)), where Y is the% normalized fluores-
cence, Bottom is the minimum Y, Top is the maximum Y, ICsq is
the concentration inhibiting 50% of the agonist induced fluores-
cence, X is the logarithm of the concentration of the competing
compound, and Hillslope the Hill coefficient. All compounds were
tested at least 3 times in duplicate
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