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ABSTRACT This paper addresses the problem of selecting the regularization parameter for linear least-
squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the
proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix
to improve the singular-value structure. Following this, the problem is formulated as a min–max optimization
problem. Next, the min–max problem is converted to an equivalent minimization problem to estimate
the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the
`2-regularized least squares problem, with the unknown regularizer related to the norm bound of the
introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint
equationwith themean squared error criterion to develop an approximately optimal regularization parameter
selection algorithm. Both direct and indirect applications of the proposed method are considered. Compar-
isons with different Tikhonov regularization parameter selection methods, as well as with other relevant
methods, are carried out. Numerical results demonstrate that the proposed method provides significant
improvement over state-of-the-art methods.

INDEX TERMS Linear estimation, least squares, Tikhonov regularization, mean squared error.

I. INTRODUCTION
This paper addresses the problem of estimating a vector
quantity x ∈ Cn from an observation vector

y = Ax+ z, (1)

where y ∈ Cm is an observed data vector, A ∈ Cm×n is a
known full-rank linear transformation matrix and z is white
noise with zero mean and unknown variance σ 2

z . We focus
on the case where x is zero-mean stochastic vector with inde-
pendent but not (necessarily) identically distributed (i.n.d.)
elements. The covariance matrix of x is denoted asCxx and is
positive semi-definite. Problems based on the model (1) arise
in many areas of science and engineering such as commu-
nications, signal processing, machine learning, geophysics,
econometrics and control [1], [2].

Owing to the lack of prior information on x, usually, a least
squares (LS) approach is pursued. Ordinary LS estimation
attempts to find an estimate of x that minimizes the squared
norm of the residual error, i.e.,

min
x̂
||Ax̂− y||22, (2)

where ||.||2 is the `2 norm. Solving thisminimization problem
results in the LS estimator [1], [3]:

x̂LS = (AHA)−1AHy, (3)

where (.)H is the Hermitian transpose of the matrix. The
agnostic nature of the LS estimator (3) to the probabilistic
structure of the data and its ease of implementation havemade
it very popular in many practical situations [3]. Adds to that
is the fact that this simple LS estimator is unbiased.

However, the main issue with (3) is that, depending on
the singular-value structure of A, the solution can be very
sensitive to noise. This makes (3) useless in many practical
situations, e.g., when the condition number of A (the ratio of
the largest singular value to the smallest) is very large [4]–[6].
To overcome this difficulty, usually regularization methods
are applied. Existing regularization techniques include ridge
regression [4], the shrunken estimator [7], the covariance
shaping LS estimator [8], and Tikhonov regularization with
its different forms [6], [9], [10]. In Tikhonov regularized LS
(RLS) methods, a penalty term is added to (2) to shrink the
elements of x̂ towards zero. Different penalties have been
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proposed for different kinds of problems. A popular form of
the RLS problem is the `2 penalized form given by

min
x̂
||Ax̂− y||22 + λ||x̂||

2
2, (4)

where λ ∈ R+ is a regularization parameter. The solution
of (4) can be obtained as [4], [6], [11]

x̂RLS = (AHA+ γ In)−1AHy, (5)

where γ = λ (always positive), and In is an identity matrix of
dimension n. This widely used form of RLS is a special case
of what is referred to as Tikhonov regularization [6], [9], [10].
For γ = 0, (5) reduces to the ordinary LS estimator (3). It is
proved in [4] that there always exists a positive value γ such
that the estimator (5) offers lowermean squared error (MSE)
than the ordinary LS estimator (3).

The key question in (5) is how to find a suitable value
of the regularization parameter γ . Several methods exist for
choosing the regularization parameter required in (5). These
methods include the l-curve [12], the generalized cross val-
idation (GCV) [13] and the quasi-optimal [14] methods, to
mention a few. These methods use different criteria to select
the regularization parameter. The performance of different
regularization parameter selection methods varies signifi-
cantly depending on the problem and the scenario under
consideration. A comparison of regularization parameter
selection methods is given in [15].

In this paper, we approach the regularization problem
in a different way. Instead of starting from (4), the pro-
posed method works by allowing for an artificial perturba-
tion to improve the singular-value structure of the matrix A.
We formulate the problem as a min-max problem, which is
converted to a minimization problem. The solution of the
minimization problem is obtained assuming knowledge of
the artificial perturbation second norm bound. A combination
of the MSE criterion, ideas from stochastic programming
and some approximations are utilized to set the perturbation
bound in an optimal or near-optimal way, depending on the
nature of x. The proposed method is shown to converge to
the Bayesian linear minimum mean squared error (LMMSE)
estimator [3] when the elements of the vector x are i.i.d.
The solution obtained based on proposed method coincides
with the RLS form (5) where the parameter γ is obtained by
solving a nonlinear equation in the parameter γ .

A. NOTATIONS
We use lower-case bold-face letters to denote (column)
vectors (e.g., x) and upper-case bold-face letters to denote
matrices (e.g., V). Notations such as ui denotes the i’th
column of a matrix V. Lower-case letters denote scalars
(e.g., γ ). The i-th column of a matrix V is denoted by vi.
The i-th element of a vector x is denoted by xi. The notations
(·)H and tr(·) are used to denote the vector/matrix Hermitian
transpose operation and the trace of amatrix, respectively. For
a vector argument, the operation denoted by diag(·) returns
the diagonal matrix whose diagonal entries are the vector’s

elements. For a matrix argument, diag(·) returns the vector
with the diagonal elements of the matrix as its entries. The
statistical expectation operation is denoted by E(·), while the
estimated value is denoted by ˆ(·). The notation || · ||2 denotes
the `2 norm in the case of a vector, or the 2-induced norm
in the case of a matrix. The symbol In is the identity matrix
of dimension n. The short form i.i.d. stands for ‘‘indepen-
dent and identically distributed’’, while ‘‘independent but not
identically distributed’’ is abbreviated as i.n.d.

II. ANALYSIS OF THE MSE OF THE RLS ESTIMATOR
By applying the singular-value decomposition (SVD) [16]

A = U6VH , (6)

(where U ∈ Cm×n, V ∈ Cn×n, and 6 =

diag([σ1, σ2, · · · , σn]T ), σ1 > σ2 > · · · > σn), (5) can be
written a

x̂RLS = V
(
62
+ γ In

)−1
6UHy. (7)

We define the overall MSE of the estimator (7) as

MSE = tr
{
E
[
(x̂− x)(x̂− x)H

]}
. (8)

Based on (6), (1) can be written as y = U6VHx + z.
By substituting this expression of y in (7), substituting the
result in (8) and manipulating, we obtain

MSE = σ 2
z tr
[
62

(
62
+ γ In

)−2]
+ γ 2tr

[(
62
+ γ In

)−2
VHCxxV

]
. (9)

where Cxx , E
(
xxH

)
is the covariance matrix of x, which

is diagonal with positive or zero elements. A similar MSE
expression has been obtained in [4] for the deterministic case.
As discussed in [4], the MSE function is the sum of a vari-
ance term (the first term) and a bias term (the second term).
By examining the first derivative of each term, it is easy to
see that the variance and the bias are, respectively, monotoni-
cally decreasing andmonotonically increasing functions in γ .
For γ = 0, i.e., for the ordinary LS, the bias term is zero.
In other words, the effect of including a positive parameter
γ in (7) is to reduce the variance of the estimator at the cost
of introducing bias. As elaborated in [4], there always exist
positive values of γ for which the MSE (variance + bias) is
smaller than that of the ordinary LS estimator.

Now, we write (9) as the sum

MSE =
n∑
i=1

MSEi =
n∑
i=1

σ 2
z σ

2
i + γ

2vHi Cxxvi(
σ 2
i + γ

)2 . (10)

By considering each individual element of the sum and taking
the gradient, we obtain

MSE′i =
2σ 2

i

(
γ vHi Cxxvi − σ 2

z
)(

σ 2
i + γ

)3 . (11)
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Form (11), it is obvious that each MSEi has a unique critical
point at

γi =
σ 2
z

vHi Cxxvi
. (12)

Noting thatCxx is positive semi-definite implies that vHi Cxxvi
are positive (we do not consider the trivial case where all the
diagonal elements ofCxx are zero). Based on this, it is easy to
show that the second derivatives of MSEi are always positive
at γi, which indicates that all γi are minima.
The global minimum of the MSE in (9) as a function of γ

is given by

γ̃ ∈

(
min

i∈{1,··· ,n}

(
σ 2
z

vHi Cxxvi

)
, max
i∈{1,··· ,n}

(
σ 2
z

vHi Cxxvi

))
, (13)

which is a direct result of (12).
Since the MSE function in (9) is differentiable, we can

obtain the optimal value of γ by differentiating with respect
to γ and equating to zero. After manipulating, this results in
the following equation:

MSE′ = −2σ 2
z tr
[
62

(
62
+ γ In

)−3]
+ 2γ tr

[
62

(
62
+ γ In

)−3
VHCxxV

]
= 0. (14)

From the above discussion, (14) has a root in the interval
given in (13). The value of the root depends on the signal
and noise second order statistics. Unfortunately, (14) does
not admit a closed-form solution for γ in these statistics
in the general case. To reach a closed form, we resort to
approximation. Namely, we write (14) as

MSE′ ≈ −2σ 2
z tr
[
62

(
62
+ γ In

)−3]
+ 2γ

tr (Cxx)

n
tr
[
62

(
62
+ γ In

)−3]
= 0, (15)

which yields an approximately optimal value of γ given by

γ̃ ≈
nσ 2

z

tr (Cxx)
. (16)

It is noted that for a vector x with zero mean and i.i.d.
elements, (15) is exactly equivalent to (14); hence, (16) is the
exact optimal value of γ in the i.i.d. case. When the elements
of x are i.n.d., γ̃ is guaranteed to fall in the optimal interval
defined in (13). It is clear that the smaller the optimal interval
the more precise (13) is. The size of the optimal interval
depends on the covariance matrix of x and the eigenvector
matrix V. The optimal interval is bounded unless a column
(or more) of V is orthogonal to the vector of the diagonal
elements of Cxx , a peculiar setup that we do not consider in
this paper. In the i.i.d. case, the optimal interval shrinks to
a single point given by (16). In Appendix (A), we analyze
the error of the approximation in (15) that leads to the result
in (16).

In Section (III), we propose a method to obtain a regu-
larization parameter value close to (16). In Section V, we
demonstrate that (16) is sufficient to obtain near-optimal
performance in different scenarios.

III. THE PROPOSED BOUNDED PERTURBATION
REGULARIZATION APPROACH
In the proposed bounded perturbation regularization (BPR)
method, we perturb the data model (1) to

y ≈ (A+1) x+ z, (17)

where 1 ∈ Cm×n is an unknown perturbation matrix. The
aim of adding such perturbation is to alter the singular values
of A such that the resultant model (17) has a better structure
compared to (1). By adding this perturbation, we choose to
tradeoff model accuracy for model stability. We envision that,
for certain choices of 1, the gain in robustness against noise
outweighs the loss in model accuracy. It is obvious that the
perturbation should somehow be bounded since extremely
perturbing the model can destroy the model fidelity. There-
fore, we bound the 2-induced norm of the matrix 1 by a
positive amount ζ , i.e.,

||1||2 ≤ ζ. (18)

This bound is generally not known and is a key subject of
the proposed BPR method. For now, let us assume that ζ is a
constant whose value is known. Later, we will make up for the
lack of knowledge of the perturbation bound ζ and eliminate
this parameter from the final solution.

To find an estimate of x, we pursue the following min-max
optimization:

min
x̂

max
1
||y− (A+1)x̂||2

subject to: ||1||2 ≤ ζ. (19)

The rationale behind (19) is that we seek an estimate of x
whichminimizes themaximum residual error over all possible
bounded perturbations 1.

Now, using Minkowski’s inequality [17] and the fact that
||1x̂||2 ≤ ||1||2||x̂||2 ≤ ζ ||1||2, we have

||y− (A+1)x̂||2 ≤ ||y− Ax̂||2 + ||1x̂||2
≤ ||y− Ax̂||2 + ||1||2||x̂||2
≤ ||y− Ax̂||2 + ζ ||x̂||2. (20)

We can see that ||y−Ax̂||2+ ζ ||x̂||2 is a bound on ||y− (A+
1)x̂||2. By simple substitution and manipulation, it can easily
be shown that this bound is attainable for

1 = 1bound =
−ζ (y− Ax̂)x̂H

||y− Ax̂||2||x̂||2
. (21)

Hence, solving the min-max problem (19) is equivalent to
solving the minimization problem

min
x̂
||y− Ax̂||2 + ζ ||x̂||2. (22)

Comparing (22) and (4), we can see similarity between
the two cost functions. However, the difference lies in that
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in (22) the norms are not squared, which makes the two func-
tions mathematically inequivalent. Interestingly, the solution
of (22) can be shown to take the RLS form (5) (or equiva-
lently, (7)), with the additional constraint

γ =
ζ ||y− Ax̂||2
||x̂||2

, (23)

where x̂ = x̂RLS as in (5). Compared to γ = λ that
corresponds to the cost function in (4), (23) provides a richer
expression for γ . We can see that γ is directly proportional
to the perturbation bound ζ , while it is also dependent on
the residual error produced by the estimate x̂ and the `2
norm of that estimate. Note that both ζ and x̂ are not known.
Subsequently, we will show how the formula (23), combined
with the MSE criterion highlighted in Section II, can be
utilized to find a value of the parameter γ that coincides with
a near-optimal choice of the bound ζ .
Now, we have the RLS problem solution (5), with γ given

by (23). It is obvious that with (5) and (23) in hand, we need
only the value of the bound ζ in order to find the value of the
regularization parameter γ . By substituting (5) in (23) and
manipulating, we obtain the equation

γ 2yHA
(
AHA+ γ In

)−2
AHy

− ζ 2
[
yHy− yHA

(
AHA+ γ In

)−1
AHy

−γ yHA
(
AHA+ γ In

)−2
AHy

]
= 0. (24)

Now, we apply the matrix decomposition in (6) and manipu-
late (24) to the form

yHU
(
62
− ζ 2In

) (
62
+ γ In

)−2
UHy = 0. (25)

Equation (25) can be solved to obtain the value of the regular-
ization parameter required by (5). However, we need a value
for the parameter ζ . This parameter dictates the amount of
regularization introduced, and hence, it determines the quality
of the final solution. Therefore, care has to be taken when the
value of this parameter is chosen. In the following subsection,
we will apply the results from Section II to set the bound ζ
such that (25) yields an optimal or near-optimal value of the
regularization parameter.

A. SETTING THE BOUND ζ

As presented earlier in this section, BPR seeks a bound on
the norm of an artificial perturbation matrix 1 that improves

the LS problem solution. In this subsection, we propose a
strategy for choosing ζ such that we approximately optimize
performance in the MSE sense.

To start with, let us consider the optimal regulariza-
tion parameter γ̃ in (16). This parameter is deterministic.
However, ζ̃ as in (25) is stochastic since it is dependent on y,
which is linearly dependent on two stochastic variables, x and
the noise z, as per Equation (1). Thus, it can be concluded that
there exists no single deterministic value ζ̃ that can produce
γ̃ from Equation (25). To resolve this issue, we will draw on
ideas from the field of stochastic programming [18]. First, we
seek to obtain a deterministic relationship between γ̃ and ζ̃ .
Instead of seeking a ζ̃ that satisfies (25) for each individual
realization of y; we try to find a ζ̃ that satisfies (25) on
average, i.e., we consider

E
[
yHU

(
62
− ζ̃ 2In

) (
62
+ γ̃ In

)−2
UHy

]
= 0. (26)

We can solve (26) for ζ̃ and manipulate to obtain

ζ̃ 2 =
tr
[
62 (62

+ γ̃ In
)−2

UHCyyU
]

tr
[(
62
+ γ̃ In

)−2
UHCyyU

] , (27)

where Cyy = E
(
yyH

)
. Equation (27) is a deterministic

relationship between γ̃ and ζ̃ . If we know γ̃ and Cyy, then
we can calculate ζ̃ , which is optimal on average. Now, let us
try to simplify (27). Based on (1) and (6), we can write

Cyy = E
(
yyH

)
= ACxxAH

+ σ 2
z In

= U6VHCxxV6UH
+ σ 2

z In
(28)

By substituting (28) in (27), we obtain (29), as shown at the
bottom of this page.

Now, we can use ζ̃ as a feasible bound on the perturbation
added to achieve regularization. We can plug this bound
into (25) and solve to obtain the value of the regularization
parameter γ for the current observation vector y. Unfortu-
nately, the parameter ζ̃ is dependent on the noise variance
and the covariance matrix Cxx , which are unknown. In the
next step, we attempt to remove this dependence by exploiting
the fact that γ̃ is also a function of the noise variance and the
covariancematrixCxx , as per (16). To this end, we resort to an
approximation similar to that in (15). Namely, wemodify (29)
into (30) as shown at the bottom of this page. An analysis of

ζ̃ 2 =
σ 2
z tr
[
62 (62

+ γ̃ In
)−2]
+ tr

[
64 (62

+ γ̃ In
)−2

VHCxxV
]

σ 2
z tr
[(
62
+ γ̃ In

)−2]
+ tr

[
62 (62

+ γ̃ In
)−2

VHCxxV
] (29)

ζ̃ 2 ≈
σ 2
z tr
[
62 (62

+ γ̃ In
)−2]
+

tr(Cxx )
n tr

[
64 (62

+ γ̃ In
)−2]

σ 2
z tr
[(
62
+ γ̃ In

)−2]
+

tr(Cxx )
n tr

[
62 (62

+ γ̃ In
)−2] (30)
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this approximation is presented in Appendix A. Equation (30)
can easily be written in the form

ζ̃ 2 ≈
tr
[
62 (62

+ γ̃ In
)−2 (

62
+

nσ 2z
tr(Cxx )

In
)]

tr
[(
62
+ γ̃ In

)−2 (
62
+

nσ 2z
tr(Cxx )

In
)] . (31)

Based on (16), we can insert γ̃ to replace nσ 2z
tr(Cxx )

and manipu-
late to obtain

ζ̃ 2 =
tr
[
62 (62

+ γ̃ In
)−1]

tr
[(
62
+ γ̃ In

)−1] . (32)

Equation (32) dictates the relationship between the best
choice (on average and approximately) of the bound on the
perturbation matrix norm (ζ̃ ), on the one hand, and the cor-
responding γ̃ that minimizes the MSE, on the other hand.
All the quantities involved are deterministic and the unknown
perturbation bound is dependent on only one unknown quan-
tity, which is the optimal regularization parameter γ̃ . Substi-
tuting (32) in (25), and for simplicity of notations, replacing
γ̃ with γ , we obtain

f (γ ) = tr
[(
62
+ γ In

)−1]
tr
[
62

(
62
+ γ In

)−2
bbH

]
︸ ︷︷ ︸

f1(γ )

− tr
[
62

(
62
+ γ In

)−1]
tr
[(
62
+ γ In

)−2
bbH

]
︸ ︷︷ ︸

f2(γ )

= 0, (33)

where b , UHy. We can manipulate (33) further to reach the
form

f (γ ) = tr
[(
62
+ γ In

)−1]
tr
[(
62
+ γ In

)−1
bbH

]
︸ ︷︷ ︸

Q1(γ )

− n tr
[(
62
+ γ In

)−2
bbH

]
︸ ︷︷ ︸

Q2(γ )

= 0, (34)

which will be referred to as BPR equation. Equation (33) is
an equivalent BPR equation that will be utilized to establish
some of the proofs in the following subsection.
Remark 1: The MSE criterion has been incorporated into

the derivation of (34); hence we expect the solution of (34) to
yield regularization parameter values that minimize the MSE
of the RLS estimator when the elements of x are i.i.d., and
that approximately minimize the MSE when the elements of x
are i.n.d. An example of a related work that incorporates the
MSE in the design of a regularized estimator is [19], where
the Stein’s unbiased risk estimate (SURE) [20] of the MSE
is employed. A major difference between the regularized esti-
mator in [19] and the proposed method is that the expression
of the estimator in [19] involves the noise variance, whereas
the proposed estimator does not require prior knowledge of
the latter noise statistic.

B. PROPERTIES OF f (γ )
We are interested in finding a positive root of the function
f (γ ). Before trying to do so, let us examine some of the
properties of this function.
Property 1: f (γ ) has n discontinuities at γ = −σ 2

i ,∀i =
1, · · · n. These discontinuities are of no interest as far as BPR
is concerned.
Property 2: f (γ ) is continuous in the interval (−σ 2

n ,+∞).
Property 3: limγ→+∞ f (γ ) = 0.
Property 4: limγ→−an f (γ ) = −∞.
The proofs of property 1–3 are straightforward. The proof

of property 4 is given in Appendix B.
Property 5: The functions f1(γ ), f2(γ ), Q1(γ ) and Q2(γ ),

as in (33) and (34), are completely monotonic in the interval
(−σ 2

n ,+∞).
Proof: Since these functions are continuous in the

interval of interest, this property can be proved simply by
continuously differentiating each of these functions and, by
induction, we will find that each function, say g(γ ), satisfies
the complete monotonicity condition [21], [22]:

(−1)kg(k)(γ ) ≥ 0, ∀k ∈ N, (35)

where (.)(k) is the k-th derivative. �
Theorem 1: The function f (γ ), defined in (33) and (34),

has at most two roots in the interval (−σ 2
n ,+∞).

Proof: The proof of Theorem 1 stems from two pieces
of already-published results. First, it has been shown that a
completely monotonic function can be represented as a sum
of exponentials. Namely, a completely monotonic function
g(γ ) can be uniformly approximated as [21], [22]

g(γ ) ≈
z∑
i=1

βie−αiγ , (36)

where αi, βi ∈ R and z is the number of exponentials required
to achieve certain level of approximation accuracy. It is shown
in [22] that a best uniform approximation of g(γ ) always
exists. It is also shown that the error in this approximation
gets smaller and smaller as z increases. For a large z value,
finding the approximation parameters αi and βi becomes
very challenging. However, herein, the interest in the general
form (36) rather than the specific values involved. To sum up,
any of the functions f1(γ ), f2(γ ), Q1(γ ) and Q2(γ ) (defined
in (33) and (34)), can be written in the form (36) for a value
of z which is sufficiently large for the approximation (36) to
hold with a negligible amount of error.

Now, based on the results published in [23], two sum-
of-exponential functions can intersect at most at two points.
Consequently, f1(γ ) and f2(γ ) have a maximum of two pos-
sible intersections. The same applies to Q1(γ ) and Q2(γ ).
Thus, the function f (γ ) can have at most two intersections in
the interval (−σ 2

n ,+∞). �
Theorem 2: A sufficient condition for the function f (γ ),

as in (33) and (34), to have at least one root in the interval
(−σ 2

n ,+∞) is give by

n tr
(
62bbH

)
> tr

(
62
)
tr
(
bbH

)
. (37)
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The proof of Theorem 2 is relegated to Appendix C.
Theorem 3: If (37) is satisfied, then the function f (γ ) has

a unique root in the interval (−σ 2
n ,+∞).

Proof: We prove this theorem by contradiction. Based
on Theorem 1 and Theorem 2, the function f (γ ) has either
one or two roots when (37) is satisfied. Let us assume that
two roots, γ1 and γ2, with γ1 < γ2, exist. Based on Rolle’s
Theorem [24], f (γ ) must have an extremum between γ1 and
γ2 which occurs, say, at γm.1 From Property 4, and since γ1 is
the first zero crossing in the interval (−σ 2

n ,+∞), the function
f (γ ) is increasing at γ1. Hence, the extremum at γm is a
maximum and the function is thus decreasing at γ2. Consid-
ering Property 3, we expect the function to have a minimum
with a negative value at some point in the interval (γ2,+∞).
However, from the proof of Theorem 2 (see Appendix C), the
condition in (37) guarantees that the function f (γ ) approaches
zero from the positive direction when γ approaches +∞.
Thus, using the intermediate value theorem [24], the function
f (γ ) must have a zero crossing in the interval (γ2,+∞).
This means that the function must have a third root, which
contradicts Theorem 1. The only way to avoid a third root is
for the second root not to exist. Therefore, we conclude that,
when (37) holds, the function f (γ ) will have one and only one
root in the interval (−σ 2

n ,+∞). �
Corollary 1: If f (γ ) has a positive root, γ+, and (37)

holds, then f (γ ) is always negative in the interval [0, γ+).
Corollary 2: If f (γ ) has a positive root, γ+, and (37)

holds, then f (γ ) is an increasing function in the interval
[0, γ+].
Corollary 3: If f (γ ) has a negative root, γ−, and (37)

holds, then f (γ ) is always positive in the interval (γ−, 0].
Corollaries 1–3 are direct results of Theorem 3, Property 4

and the intermediate value theorem. These corollaries will be
used later to devise a method to find the root of f (γ ), and to
establish the convergence of that method.
Remark 2: From Theorem 2, the function f (γ ) may not

have a positive root (when (37) does not hold). In such a case,
the proposed BPR method will not be applicable. However,
it will be shown that (37) is satisfied in many application
scenarios.

C. FINDING THE ROOT OF f (γ )
Since the function f (γ ) is differentiable and the expression
of the first derivative f ′ (γ ) is easily obtainable, Newton’s
method [25] can be applied to find the root in a straightfor-
ward manner. Starting from an initial value γ t=0, we carry
out the iterations

γ t+1 = γ t −
f
(
γ t
)

f ′ (γ t)
. (38)

The process is stopped when |f (γ t+1)| < ε, where ε is a
sufficiently small positive quantity.

1The case where f (γ ) = 0 all over the interval [γ1, γ2] is out of the
question.

D. CONVERGENCE
In the case where a positive root γ+ exists, the convergence
of (38) can be proved using Corollary 1 and Corollary 2.
As Corollary 1 states, f (γ t ) ≤ 0 for [0, γ+]. On the other
hand, Corollary 2 emphasizes that f ′(γ t ) ≥ 0 for [0, γ+].
Thus, starting from γ 0

= 0, (38) will produce a progressively
increasing estimate of γ . Convergence occurs when γ t →
γ+, in which case f (γ t )→ 0 and γ t+1 → γ t . It can also be
shown that starting from γ 0

= 0, (38) can also converge to the
negative root. However, one can use Corollary 3, to abandon
the whole process in (38) when the root is negative. Namely,
we pursue (38) only after we confirm that f (γ 0) < 0 holds
true.

E. BPR ALGORITHM SUMMARY
Based on the previous subsections, the proposed BPR algo-
rithm is summarized as follows:

1) Set γ = 0.
2) Calculate f (0) based on the definition of f (γ ) in (34).
3) If f (0) < 0;

3.1 apply Newton’s method (38) till it converges to the
root γ+,

3.2 set γ = γ+;
4) Calculate x̂ using (7).

The computational complexity of the BPR algorithm is
dominated by the computational complexity of calculating
the SVD, which is roughlyO

(
mn2

)
, and that of solving (34),

which is O (mn+ Tn), where T is the total number of itera-
tions required for (38) to converge. AMatlab implementation
of the BPR algorithm is available online.2

IV. APPLICATIONS
In this section, we discuss two main applications of the
proposed regularization method. These two applications rep-
resent one direct application where the signal model complies
with (1); and an indirect application where (1) is reached
through a modification of an existing formula. These appli-
cations are signal estimation and robust beamforming.

A. SIGNAL ESTIMATION
In signal estimation for multiple-input multiple-output
(MIMO) systems, the central problem is to estimate a trans-
mitted symbol vector x from an observation vector y related
to x through the linear transformation (1). In this case, A is
the channel matrix [26], [27]. In communication literature,
when the LS estimator (without regularization) is applied to
solve this problem, it is usually termed the ‘‘zero-forcing’’
estimator. Different structures of the channel matrix are dis-
cussed in the literature. These include A being a Gaussian
i.i.d. matrix, and A being a Gaussian i.i.d. matrix with left
or/and right correlation [28].

2Check: https://www.researchgate.net/publication/319042479_bpr.
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B. ROBUST BEAMFORMING
As opposed to signal estimation, we apply the proposed
method to the beamforming problem in a rather indirect
manner. The beamforming problem is stated and discussed
in many references, e.g., [29]–[35]. Solutions are proposed in
the form of different beamforming algorithms. Here we focus
on the minimum variance distortionless (MVDR) beam-
former, which is also known as Capon beamformer [36].
In particular, we consider the casewhere uncertainty occurs in
the steering vector of a uniform linear array and hence robust
beamforming is required. The output of any beamformer for a
linear array with ne array elements, at a discrete time instant t ,
is given by

yBF[t] = wHy[t], (39)

where w ∈ Cne is a vector of beamformer weighting coef-
ficients and y[t] ∈ Cne is a vector that contains a spatial
sample of the received signal at each element of the array.
For the MVDR beamformer, the weighting coefficients are
given by [36]

wMVDR =
Ĉ−1yy a

aH Ĉ−1yy a
, (40)

where a is the array steering vector and Ĉyy is a sample
covariance matrix estimated from ns snapshots using

Ĉyy =
1
ns

ns∑
t=1

y[t]y[t]H . (41)

There are two problems associated with MVDR
beamforming. The first problem is the invertibility of the
matrix Ĉyy–the matrix obtained from a limited number of
snapshots is usually ill-conditioned. A simple solution to
this problem is diagonal loading of the sample covariance
matrix [36]. The second problem is the uncertainty that
occurs with the steering vector a such that it is not known
precisely [33]. Several methods have been proposed to jointly
solve the two problems associated with beamforming. These
are typically referred to as robust beamforming methods.
Here we propose the following method for robust beam-
forming using RLS. Based on (39) and (40), let us write the
beamformer output for the snapshot at time t as

yBF[t] =
âH Ĉ

−
1
2

yy Ĉ
−

1
2

yy y[t]

aH Ĉ
−

1
2

yy Ĉ
−

1
2

yy a
=

âH Ĉ
−

1
2

yy Ĉ
−

1
2

yy y[t]

aH Ĉ
−

1
2

yy Ĉ
−

1
2

yy a

=
rHq[t]
rHr

, (42)

where r , Ĉ
−

1
2

yy a and q[t] , Ĉ
−

1
2

yy y[t]. Based on these
definitions we can think of the newly introduced variables,
r and q, as being respectively obtained from the inverse of
the linear models

a = Ĉ
1
2
yyr, (43)

and

y[t] = Ĉ
1
2
yyq[t]. (44)

Since the matrix Ĉ
1
2
yy is ill-conditioned, direct inversion does

not provide viable solutions. Therefore, we can apply a regu-
larization method to obtain estimates of r and q based on the
linear models (43) and (44). Given that a and y are noisy, each
of the latter two models is equivalent to the linear model (1).
In the proposed robust beamforming method, we apply the
proposed regularization algorithm to estimate r and q given
the models (43) and (44). The results are then substituted
in (42). Note that in this case, since Ĉyy is symmetric positive
semi-definite, the eigenvalue decomposition Ĉyy = U62UH

can be used instead of the SVD. Using (5) for A = Ĉ
1
2
yy =

U6UH , the beamformer output using RLS will take the form

yBF-RLS =
aHU

(
62
+ γrIn

)−1 (
62
+ γqIn

)−1
62UHy

aHU
(
62
+ γrIn

)−2
62UHa

,

(45)

where γr and γq are the regularization parameters per-
taining to the linear systems (43) and (44), respectively.
Equation (45) suggests that the weighting coefficients for the
RLS approach to robust beamforming are given by

wBF-RLS =
aHU

(
62
+ γrIn

)−1 (
62
+ γqIn

)−1
62UH

aHU
(
62
+ γrIn

)−2
62UHa

.

(46)

To evaluate performance, the signal-to-interference-and-
noise ratio (SINR), defined as [36]

SINR =
σ 2
s |w

Ha|2

wHCi+nw
, (47)

is usually used. In (47), σ 2
s is the power of the signal of

interest, and Ci+n is the covariance matrix of the signal made
up of the interference and noise.

V. NUMERICAL RESULTS
The performance of the proposed BPR approach is evaluated
via numerical simulations based on the two applications dis-
cussed in Section IV. In this section, we present the results
obtained for each of these applications.

A. SIGNAL ESTIMATION RESULTS
Signal estimation performance was evaluated in terms of the
normalized mean squared error (NMSE), that is the MSE
divided by ||x||2. The NMSE was estimated from 104 simula-
tion trials. Performance is presented as the NMSE versus the
SNR (in dB) defined as SNR = 10 log10(||Ax||

2
2/||z||

2
2). The

noise was assumed to be white Gaussian. The performance
of the proposed BPR method is compared with other reg-
ularization parameter estimation methods. Namely, l-curve
method [12], the GCV method [13] and the quasi-optimal
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FIGURE 1. Signal estimation performance comparison for three different scenarios. In all cases, both the vector ν and the matrix 8

are Gaussian with i.i.d. elements. The matrices Rx and Ra are correlation matrices. (a) x = ν,A = 8. (b) x = ν,A = R
1
2
a 8.

(c) x = R
1
2
x ν,A = R

1
2
a 8.

FIGURE 2. Robust beamforming performance: a) SINR versus input SNR; b) SINR versus number of
signal snapshots.

method [14]. For reference purpose, we also present the (opti-
mal) performance of the RLS estimator (7) for the optimal
regularizer given in (16), which is equivalent to the LMMSE
estimator when the elements of x are i.i.d. The LS estimator
was excluded from the result plots on the grounds that it offers
extremely poor performance that hinders good visualization
of the other results.

Three different scenarios were identified from the
literature [26]–[28]: (a) the elements of x and A are i.i.d.
according to the standard complex Gaussian distribution;
(b) x is i.i.d. Gaussian, while A is obtained by multiplying

an i.i.d. Gaussian matrix with a left correlation matrix R
1
2
a ,

where Ra[i, j] = ρ
|i−j|
a , with ρa = 0.5; (c) A is the same

as in (b), while x is obtained by (left) multiplication of an

i.i.d. Gaussian vector with a correlation matrix R
1
2
x , where

Rx[i, j] = ρ
|i−j|
x , with ρx = 0.3. Fig. 1 (a)–(c) shows

performance comparison for these three different scenarios.
From Fig. 1, it can be seen that the proposed BPR method
significantly outperforms the three benchmark methods. The
variation of the performance of various methods over the
three test scenarios is quite small. In most cases, the proposed

BPR method stays closest to the performance of the RLS
estimator for the optimal value of γ , which is the LMMSE
for scenario (a) and (b).

B. ROBUST BEAMFORMING RESULTS
To test the proposed regularization methods when applied to
robust beamforming, we simulated a scenario with a linear
array with 10 elements placed at half of the wavelength of
the signal of interest and two interference signals. The direc-
tion of arrival (DOA) of each signal was generated from a
uniform distribution in the interval [−90o, 90o]. The steering
vector a was calculated from the true direction of arrival
of the signal of interest plus an error which was uniformly
distributed in the interval [−5o, 5o]. Randomizing both the
angles and the error aimed to avoid scenarios that favour
one algorithm or other. The SINR output of each algorithm
was computed from 103 simulation trials. The proposed BPR
algorithm is compared to the LCMV beamformer [37], [38],
the response vector optimization LCMV (RVO LCMV)
beamformer [35], the MVDR based robust adaptive
beamformer (RAB MVDR) [30], and the robust adaptive
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beamformer based on semi-definite programming (RAB
SDP) [39]. In addition, we plot the optimal performance
obtained using the true covariance matrix, and the perfor-
mance of standard MVDR beamformer. We have also con-
sidered applying existing regularization methods to solve
the two linear least-squares problems involved in the robust
beamforming problem as formulated in this paper (see
Equation (43) and (44)). We present the results from the
best performing regularization method, which is the quasi-
optimal [14].

Fig. 2 (a) plots the output SINR versus the input SNR
for a number of snapshots ns = 30. It can be seen that
the proposed method outperforms all the other methods and
provides SINRs that are close to the optimal values. Exist-
ing regularization methods provide very poor performance,
especially in the high SNR regime. The best among the tested
method is the quasi optimal method, which offers relatively
low output SINRs.

Fig. 2 (b) plots the output SINR versus the number of
snapshots ns for a fixed SNR of 20 dB. It is shown clearly
that the proposed BPRmethod outperforms all the benchmark
methods and, again, stays nearest to the optimal performance,
with the closest rival being the RAB SDP method. Again,
the best RLS methods, the quasi-optimal method, exhibits
unsatisfactory performance.

VI. CONCLUSIONS
Bounded perturbation regularization (BPR)was introduced in
this paper. In BPR, the linear model matrix is perturbed using
a matrix with a bounded norm. Based on the perturbed model,
a min-max formulation was shown to produce a closed-
form solution identical to that of the standard `2 Tikhonov
regularized least squares problem. Finding a suitable value
of the regularization parameter was shown to be equivalent
to setting the value of the norm bound of the perturbation
matrix in a non-linear equation. A procedure that employs
the mean squared error criterion was proposed that resulted
in eliminating the perturbation norm bound from the equa-
tion. Newton’s method was proposed as a suitable method
to solve the resultant equation to obtain a near-optimal value
of the regularization parameter. Conditions for convergence
of Newton’s method to the desired solution were established.
The proposed BPR method was compared with existing reg-
ularization parameter selection methods, and other relevant
methods, over two selected applications. Numerical results
show that the proposed BPR method stays closest to the
optimal performance in all the tested scenarios.

APPENDIX A
ERROR ANALYSIS OF (15)and (30)
The three approximations in (15) and (30) take the form

tr
[
62k

(
62
+ γ In

)−p
VHCxxV

]
≈

1
n
tr
[
62k

(
62
+ γ In

)−p]
tr [Cxx]. (A.1)

Let us define D , 62k (62
+ γ In

)−p
, which is a diagonal

matrix with elements

di =
σ 2k
i(

σ 2
i + γ

)p . (A.2)

Using the pair of inequalities in [40] (Equation (5)), we can
see that

λmin(Cxx)tr (D) ≤ tr
(
DVTCxxV

)
≤ λmax(Cxx)tr (D),

(A.3)

where λmin and λmax denote the minimum and maximum
eigenvalues. Since Cxx is diagonal, λmin and λmax also repre-
sent the minimum and maximum diagonal elements, respec-
tively. Similar to (A.3), we can write

λmin (D) tr (Cxx) ≤ tr
(
DVTCxxV

)
≤ λmax (D) tr (Cxx).

(A.4)

Now, let us define the normalized error in the approximation
(A.1) as

ε =
tr
(
DVTCxxV

)
−

1
n tr (D) tr (Cxx)

1
n tr (D) tr (Cxx)

. (A.5)

Note that this represents the normalized error in using the
quantity on the right-hand side of (A.1) to replace the quantity
on the left-hand side. This way of defining the error is found
more useful in carrying out the error analysis. We are inter-
ested in deriving a bound on |ε|. To this end, we will derive
a bound based on (A.3) and another bound using (A.4). Then
we will combine the two bounds to form a single bound.

A. BOUND BASED ON THE INEQUALITY PAIR (A.3)
Subtracting 1

n tr (D) tr (Cxx) from (A.3) and dividing by the
same quantity, we obtain

λmin(Cxx)
λavg(Cxx)

− 1 ≤ ε ≤
λmax(Cxx)
λavg(Cxx)

− 1, (A.6)

where λavg(Cxx) , 1
n tr (Cxx). Hence |ε| can be bounded by a

positive quantity according to

|ε| ≤ µx = max
[
1−

λmin(Cxx)
λavg(Cxx)

,
λmax(Cxx)
λavg(Cxx)

− 1
]
. (A.7)

B. BOUND BASED ON THE INEQUALITY PAIR (A.4)
Starting from (A.4) and applying a similar procedure to that
used to derive (A.7), we obtain another bound

|ε| ≤ µa = max
[
1−

λmin(D)
λavg(D)

,
λmax(D)
λavg(D)

− 1
]
. (A.8)

Using (A.2), (A.8) can be written as (A.9), as shown at the
bottom of the next page.

C. COMBINED BOUND
Combining (A.7) and (A.9), we obtain the final bound

|ε| ≤ µ = min (µx , µa). (A.10)
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FIGURE 3. Error Bound for two different matrices. Both the vector ν and
the matrix 8 are Gaussian with i.i.d. elements. The matrix Ra is the same

correlation matrix used in Fig. 1. (a) A = 8. (b) A = R
1
2
a 8.

D. EVALUATION
The value of µx depends only on the unknown covariance
matrix of x. For the i.i.d. case, we have µx = 0. It is obvious
that the closer the elements of x to being i.i.d., the smallerµx ,
and hence µ might also get smaller. On the other hand, the
value of µa depends on the known matrix A and γ , which
is unknown. To provide quantitative evaluation of µa, we
exploit the fact that the optimal value of γ as in (16) is related
to the SNR, and henceµa can be calculated for any SNR value
of interest.

We evaluate µa for two different matrices over a range
of SNR , 10 log10(||Ax||

2/||z||2). For each SNR point, the
value of γ needed to generate the matrix D defined in (A.2)
is set equal to the optimal value as in (16). To simplify the
analysis, and without loss of generality, the columns of A are

normalized to have unit norm. In this case, the value of the
optimal γ is exactly equal the SNR.

Fig. 3 plots µa, for the error in (15) and the numerator
and denominator of (30), for the two different matrices used
to generate the results in Fig. 1. We can see that µa, which
is a somewhat pessimistic bound, stays within a range of
reasonably small values for the SNR range of interest.

APPENDIX B
PROOF OF PROPERTY 4 OF f (γ )
First, let us write Equation (33) in the form

f (γ ) =

(
n∑
i=1

1

σ 2
i + γ

)(
n∑
i=1

σ 2
i b

2
i

(σ 2
i + γ )

2

)

−

(
n∑
i=1

σ 2
i

σ 2
i + γ

)(
n∑
i=1

b2i
(σ 2
i + γ )

2

)
. (B.1)

Equation (B.1) can be manipulated to the form

f (γ ) =
∑n−1

i=1

∑n

j=i+1

σ 2
i − σ

2
j

(σ 2
i + γ )(σ

2
j + γ )

×

(
b2i

σ 2
i + γ

−
b2j

σ 2
j + γ

)
, (B.2)

which can be written as

f (γ ) =
∑n−2

i=1

∑n−1

j=i+1

σ 2
i − σ

2
j

(σ 2
i + γ )(σ

2
j + γ )

×

(
b2i

σ 2
i + γ

−
b2j

σ 2
j + γ

)

+

∑n−1

i=1

σ 2
i − σ

2
n

(σ 2
i + γ )(σ

2
n + γ )

×

(
b2i

σ 2
i + γ

−
b2n

σ 2
n + γ

)
. (B.3)

Taking the limit as γ →−σ 2
n , we have

lim
γ→−σ 2n

f (γ ) = lim
γ→−σ 2n

∑n−2

i=1

∑n−1

j=i+1

σ 2
i − σ

2
j

(σ 2
i + γ )(σ

2
j + γ )

×

(
b2i

σ 2
i + γ

−
b2j

σ 2
j + γ

)

+ lim
γ→−σ 2n

∑n−1

i=1

σ 2
i − σ

2
n

(σ 2
i + γ )(σ

2
n + γ )

×

(
b2i

σ 2
i + γ

−
b2n

σ 2
n + γ

)
. (B.4)

ε ≤ µa = max

1− min
i∈{1,··· ,n}

[
σ 2ki

(σ 2i +γ )
p

]
1
n

∑n
i=1

σ 2ki
(σ 2i +γ )

p

,

max
i∈{1,··· ,n}

[
σ 2ki

(σ 2i +γ )
p

]
1
n

∑n
i=1

σ 2ki
(σ 2i +γ )

p

− 1

 (A.9)
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The first limit in the right-hand side of (B.4) is finite, say,
equal to a value c1. Accordingly, we can write:

lim
γ→−σ 2n

f (γ ) = c1 + lim
γ→−σ 2n

∑n−1

i=1

σ 2
i − σ

2
n

(σ 2
i + γ )(σ

2
n + γ )︸ ︷︷ ︸

gin(γ )

×

 b2i
σ 2
i + γ︸ ︷︷ ︸
qi(γ )

−
b2n

σ 2
n + γ︸ ︷︷ ︸
qn(γ )

. (B.5)

Using the fact that σ 2
1 > σ 2

1 > · · · > σ 2
n , we can see that

gin(γ = −σ 2
n ) and qi(γ = −σ

2
n ) are finite, ∀i = 1, · · · , n−1.

On the other hand, qn(γ = −σ 2
n ) goes to infinity as we take

the limit. Consequently, the limit can be simplified to

lim
γ→−σ 2n

f (γ ) = c2

− lim
γ→−σ 2n

∑n−1

i=1

σ 2
i − σ

2
n

(σ 2
i + γ )(σ

2
n + γ )

×

(
b2n

σ 2
n + γ

)
. (B.6)

From (B.6), it is easy to see that

lim
γ→−σ 2n

f (γ ) = −∞. (B.7)

APPENDIX C
PROOF OF THEOREM 3

Proof: From Property 2–4, the function f (γ ) will take
negative values somewhere in the interval (−σ 2

n ,+∞). To
guarantee that the function will have a root, based on the
intermediate value theorem [24], the function must also take a
positive value anywhere in the interval (−σ 2

n ,+∞). Starting
from Eq. (B.1), we have

f (γ ) =
1
γ 3

 n∑
i=1

1
σ 2i
γ
+ 1




n∑
i=1

σ 2
i b

2
i(

σ 2i
γ
+ 1

)2



−
1
γ 3

 n∑
i=1

σ 2
i

σ 2i
γ
+ 1




n∑
i=1

b2i(
σ 2i
γ
+ 1

)2

. (C.1)

Taking the limit of (C.1) as γ approaches +∞, we obtain

lim
γ→+∞

f (γ ) =
(

lim
γ→+∞

1
γ 3

)
×

{
n

(
n∑
i=1

σ 2
i b

2
i

)
−

(
n∑
i=1

σ 2
i

)(
n∑
i=1

b2i

)}
.

(C.2)

It is obvious that the limit in (C.2) is equal to zero. Whether
the function will approach zero from the positive or negative
direction depends on the sign of the expression between the

curly brackets. For the function to approach zero from the
positive direction, the following condition must hold:

n

(
n∑
i=1

σ 2
i b

2
i

)
>

(
n∑
i=1

σ 2
i

)(
n∑
i=1

b2i

)
, (C.3)

which is equivalent to (37). When (37) is satisfied, the func-
tion f (γ ) is guaranteed to take positive values in the interval
of interest. Since the function also takes negative values (as
per Property 4), the function will cross the abscissa at least
once. �
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