
ar
X

iv
:1

70
4.

05
86

7v
2

 [
cs

.P
F]

 6
 M

ay
 2

01
7

A note on integrating products of linear forms over the unit

simplex

Giuliano Casale

Department of Computing

Imperial College London, UK

g.casale@imperial.ac.uk

May 9, 2017

Abstract

Integrating a product of linear forms over the unit simplex can be done in polynomial time if

the number of variables n is fixed [1]. In this note, we highlight that this problem is equivalent to

obtaining the normalizing constant of state probabilities for a popular class of Markov processes

used in queueing network theory. In light of this equivalence, we survey existing computational

algorithms developed in queueing theory that can be used for exact integration. For example,

under some regularity conditions, queueing theory algorithms can exactly integrate a product of

linear forms of total degree N by solving N systems of linear equations.

1 Introduction

Let ∆ = {x ∈ R
n|xi ≥ 0,

∑n
i=1 xi = 1} be the unit simplex and denote by dm the integral Lebesgue

measure on ∆. Denote by θ1, θ2, . . . , θd a collection of linear forms on R
n, where θij is the ith element

of θj and define the coefficient matrix θ = (θij) ∈ R
nd. Also let N1,. . .,Nd be a set of nonnegative

integers, with N =
∑d

i=1 Ni and N = (N1, . . . , Nd).
Recently, [1] considers the problem of integrating a homogeneous polynomial function f of degree

N over ∆, observing that this can be reduced to computing a finite collection of integrals of the type

J(θ,N) =

∫

∆

d
∏

j=1

(

n
∑

i=1

θijxi

)Nj

dm (1)

A polynomial-time algorithm to compute (1) is then proposed in [1], which obtains this integral by

determining the coefficient of zN1

1 · · · zNd

d
in the Taylor expansion of

T (z1, . . . , zd) =
1

∏n
i=1(1−

∑d
j=1 zjθij)

(2)

in O(Nd) time. Our goal is to examine alternative methods to compute (1) that arise from queueing

network theory [4].

We first observe that (2) corresponds to the generating function of the normalizing constant

G(θ,N) of state probabilities for a class of finite Markov processes known as product-form closed

queueing networks, which have been extensively used in performance evaluation of computer and

1

http://arxiv.org/abs/1704.05867v2

communication systems [2,21]. We provide in Appendix A a brief introduction to this class of Markov

models; additional background may be found in [4, 28].

The connection between normalizing constants and (1) is explicitly noted in [11], which shows

that

J(θ,N) =
N1!N2! · · ·Nd!

(N + n− 1)!
G(θ,N) (3)

Therefore, algorithms developed in queueing theory to compute G(θ,N) may be readily used to

integrate products of linear forms over the unit simplex.

The rest of this note reviews exact computational methods for G(θ,N). Note that queueing theory

implicitly assumes θij ≥ 0, since the coefficients θij represent processing times of jobs, however this

condition is not used in the algorithms reviewed later.

In the following sections, we denote by N − 1j the vector obtained from N by decreasing its jth

element Nj by one unit. We also indicate with θ − θj the matrix obtained from θ by removing a row

with elements θj1, . . . , θjD, and similarly denote by θ + θj the matrix obtained by appending to θ a

new row with elements θj1, . . . , θjD.

2 Exact computational algorithms

2.1 Recurrence relations

Recurrence relations are the standard method used in queueing theory to compute G(θ,N). Existing

methods differ for computational requirements and ease of implementation. We here review two

classic methods, convolution and RECAL, and the method of moments, a class of algorithms that

scales efficiently under large degree N . We point to [12,20,21,26,27] for other recursive algorithms.

2.1.1 Convolution algorithm

The convolution algorithm is a recurrence relation for normalizing constants presented in its most

general form in [29], extending the case d = 1 first developed in [5]. The method relies on the

recurrence relation

G(θ,N) = G(θ − θn,N) +

d
∑

j=1

θnjG(θ,N − 1j) (4)

with termination conditions G(∅, ·) = 0, G(·,0) = 1, where 0 = (0, . . . , 0), and G(·,N − 1j) = 0
if Nj = 0. It can be verified that the algorithm requires O(Nd) time and space for fixed n and

d. Variants of this algorithm exist [12, 27], for example a specialized version has been proposed for

problems with sparse θ [26].

2.1.2 Recurrence by chain algorithm (RECAL)

Compared to convolution, the RECAL algorithm is more efficient on models with large d [14]. The

method is based on the recurrence relation

G(θ,N) = N−1

d

n
∑

i=1

θidG(θ + θi,N − 1d) (5)

with similar termination conditions as the convolution algorithm. The computational complexity is

O(Nn) time and space for fixed n and d. The method is well-suited for parallel implementation and

can be optimized for sparse θij coefficients [17].

2

2.1.3 Method of moments

The method of moments simultaneously applies (4) and (5) to a set of normalizing constants that differ

for the elements and composition of θ and N . Different rules exist to define this set of normalizing

constants, called the basis, leading to multiple variants of the method [8–10]. Assume that the nor-

malizing constants in the basis are grouped in a vector g(N), then the method of moments defines a

matrix recurrence relation

A(θ,N)g(N) = B(θ,N)g(N − 1j) (6)

for any 1 ≤ j ≤ D and where g(0) can be computed explicitly from the termination conditions

of (4)-(5). Here A(θ,N) and B(θ,N) are square matrices, with constant or decreasing sizes as

the recurrence progresses, depending on the implementation. The coefficients within these matrices

depend on j. Thus, to avoid to recompute these matrices at each step, the method of moments first

performs a recursion along dimension j = d, then along j = d− 1, and so forth up to reaching

N = 0. An explicit example of the basic method may be found in [7]. Provided that A(θ,N) is

invertible at all steps of the recursion, it is possible to solve (6) and obtain G(θ,N) from the elements

of g(N). A necessary condition for invertibility is that θir 6= θjr, ∀i, j, r.

Compared to existing algorithms, (6) finds G(θ,N) after solving N systems of linear equations.

Since the order of A(θ,N) does not depend on N , the theoretical complexity of the method is O(N)
time and O(1) space for fixed n and d. However, implementation complexity is larger due to the cost

of exact algebra, which is normally required to solve (6) without error propagation [6].

2.2 Explicit solutions

2.2.1 Case d = 1

In this section we consider the case d = 1, where we can simplify notation by indicating N with N
and θi1 with θi. It has been known since long time that in the case d = 1, and provided that all θi
coefficients are distinct, the normalizing constant can be written as [23]

G(θ, N) =

n
∑

i=1

θN+n−1
i

∏

k 6=i(θk − θi)
(7)

that is simply the divided difference [θ1, . . . , θn]x
N+n−1. It is useful to note that in the case where

some coefficients θij coincide, (7) generalizes to [3]

G(θ, N) = [θi, . . . , θn]x
N+n−1

=
n′
∑

j=1

(−1)mj−1θ
N+n−mj

j

∑

r≥0
r=mj−1

(−1)rj
(

N + rj
rj

) n′
∏

k=1

k 6=j

(

mk + rk − 1

rk

)

θrk
k

(θj − θk)mk+rk

(8)

where n′ ≤ n is the number of distinct coefficients θi, and mj denotes the number of coefficients

identical to θj .

3

2.2.2 Case d > 1

For arbitrary values of d, [11] derives some generalizations of (7). The first one is

G(θ,N) =
∑

0≤t≤N

(−1)N−t

N1! · · ·Nd!

d
∏

j=1

(

Nj

tj

) n
∑

i=1

(
∑d

j=1 tjθij)
N+n−1

∏

k 6=i(
∑d

j=1 tj(θkj − θij))
(9)

where t = (t1, . . . , td), t =
∑d

j=1 tj , which has the same O(Nd) time complexity of the convolution

algorithm, but O(1) space requirements. This expression holds assuming that θij values for given j
are all distinct, otherwise the following generalized expression based on (8) should be used [11]

G(θ,N) =
∑

0≤t≤N

(−1)N−t

N1! · · ·NR!

R
∏

r=1

(

Nr

tr

) n′
∑

j=1

(−1)mj−1(
∑R

s=1 tsθjs)
N+n−mj

×
∑

r≥0
r=mj−1

(−1)rj
(

N + rj
rj

) n′
∏

k=1

k 6=j

(

mk + rk − 1

rk

)

(
∑R

s=1 tsθks)
rk

(
∑R

s=1 ts(θjs − θks))mk+rk
(10)

Another explicit expression is given by

G(θ,N) =
∑

h≥0:

h≤N

(−1)N−h

N1! · · ·Nd!

(

N + n− 1

N − h

) d
∏

j=1

(

n
∑

i=1

hiθij

)Nj

(11)

where h = (h1, . . . , hn), h =
∑n

i=1 hi. This expression has O(Nn+1) time and O(1) space require-

ments.

It is also worth noting that since the integrand of J(θ,N) is a polynomial, the cubature rules

proposed in [18] provide alternative explicit expressions for G(θ,N), which become exact for a

sufficiently high interpolation degree, corresponding to a O((N/2)d) time complexity. We point

to [3, 15, 16] for other works on explicit expressions for the normalizing constant.

3 Conclusion

In this note, we have highlighted a connection between queueing network theory and the integration

of products of linear forms over the unit simplex as in (1). In order to solve queueing network models,

a normalizing constant is required, which can be computed with the recurrence relations and the

explicit expressions that we have reviewed. This normalizing constant readily provides the value of

the integral (1).

While the scope of the present note is restricted to exact methods, numerical approximations and

asymptotic expansions are also available for G(θ,N), such as [13, 22, 24, 25, 30].

References

[1] V. Baldoni, N. Berline, J. A. d. Loera, M. Köppe, and M. Vergne. How to integrate a polynomial

over a simplex. Mathematics of Computation, 80:297–325, 2011.

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed networks

of queues with different classes of customers. JACM, 22:248–260, 1975.

4

[3] A. Bertozzi and J. McKenna. Multidimensional residues, generating functions, and their appli-

cation to queueing networks. SIAM Review, 35(2):239–268, 1993.

[4] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov Chains.

Wiley, 2006.

[5] J. P. Buzen. Computational algorithms for closed queueing networks with exponential servers.

Comm. of the ACM, 16(9):527–531, 1973.

[6] G. Casale. An efficient algorithm for the exact analysis of multiclass queueing networks with

large population sizes. Proc. of ACM SIGMETRICS, 169–180, 2006.

[7] G. Casale. An application of exact linear algebra to capacity planning models. ACM Communi-

cations in Computer Algebra, 42(4):202–205, 2008.

[8] G. Casale. CoMoM: Efficient class-oriented evaluation of multiclass performance models. IEEE

Trans. on Software Engineering, 35(2):162–177, 2009.

[9] G. Casale. A generalized method of moments for closed queueing networks. Performance

Evaluation, 68(2):180–200, 2011.

[10] G. Casale. Exact analysis of performance models by the method of moments. Performance

Evaluation, 68(6):487–506, 2011.

[11] G. Casale. Accelerating performance inference over closed systems by asymptotic methods.

Proc. ACM Meas. Anal. Comput. Syst (POMACS), 1(1), 2017. To be presented at ACM SIG-

METRICS 2017, preprint available at https://spiral.imperial.ac.uk/handle/10044/1/43431.

[12] K. M. Chandy and C. H. Sauer. Computational algorithms for product-form queueing networks

models of computing systems. Comm. of the ACM, 23(10):573–583, 1980.

[13] G L. Choudhury, K. K. Leung, and W. Whitt. Calculating normalization constants of closed

queuing networks by numerically inverting their generating functions. JACM, 42(5):935–970,

1995.

[14] A. E. Conway and N. d. Georganas. RECAL - A new efficient algorithm for the exact analysis

of multiple-chain closed queueing networks. Journal of the ACM, 33(4):768–791, 1986.

[15] A. I. Gerasimov. On normalizing constants in multiclass queueing networks. Oper. Res.,

43(4):704–711, 1995.

[16] J. J. Gordon. The evaluation of normalizing constants in closed queueing networks. Oper. Res.,

38(5):863–869, 1990.

[17] A. G. Greenberg and J. McKenna. Solution of closed, product form, queueing networks via the

RECAL and TREE-RECAL methods on a shared memory multiprocessor. ACM SIGMETRICS

Performance Evaluation Review (PER), 17(1):127–135, 1989.

[18] A. Grundmann, H.M. Möller. Invariant integration formulas for the n-simplex by combinatorial

methods. SIAM J. on Numerical Analysis, 15(2):282–290, 1978.

[19] P. G. Harrison. On normalizing constants in queueing networks. Operations Research,

33(2):464–468, 1985.

5

https://spiral.imperial.ac.uk/handle/10044/1/43431

[20] P. G. Harrison and Ting Ting Lee A New Recursive Algorithm for Computing Generating

Functions in Closed Multi-Class Queueing Networks. Proc. of IEEE MASCOTS, 231–238, 2004.

[21] P. G. Harrison and S. Coury. On the asymptotic behaviour of closed multiclass queueing net-

works. Performance Evaluation, 47(2):131–138, 2002.

[22] C. Knessl, C. Tier. Asymptotic expansions for large closed queueing networks with multiple job

classes. IEEE Trans. Computers, 41(4):480–488, 1992.

[23] E. Koenigsberg. Cyclic queues. Operational Research Quarterly, 9, 1:22–35, 1958.

[24] Y. Kogan. Asymptotic expansions for probability distributions in large loss and closed queueing

networks. Perform. Eval. Rev., 29(3):25–27, Dec. 2001.

[25] Y. Kogan, A. Yakovlev. Asymptotic analysis for closed multichain queueing networks with

bottlenecks. QUESTA, 23:235–258, 1996.

[26] S. Lam. Dynamic scaling and growth behavior of queueing network normalization constants.

Journal of the ACM, 29(2):492–513, 1982.

[27] S. Lam. A simple derivation of the MVA and LBANC algorithms from the convolution algorithm.

IEEE Trans. on Computers, 32:1062–1064, 1983.

[28] S. S. Lavenberg. A perspective on queueing models of computer performance. Performance

Evaluation, 10(1):53–76, 1989.

[29] M. Reiser and H. Kobayashi. Queueing networks with multiple closed chains: Theory and

computational algorithms. IBM J. Res. Dev., 19(3):283–294, 1975.

[30] W. Wang, G. Casale, C. Sutton. A Bayesian Approach to Parameter Inference in Queueing

Networks. ACM TOMACS, 27(1), 2016.

A Product-form closed queueing networks

In closed queueing networks, a finite set of N jobs circulate among a network of n nodes, called

queueing stations, according to a set of transition probabilities. Jobs are partitioned into d types,

called classes, and the network topology is closed, meaning that the number of jobs inside the network

remains constant over time and equal to Nj in class j. Upon visiting a station i, a job of class j is

processed at rate µij = θ−1
ij k−1

i when a total of ki jobs are simultaneously present at the station.

Therefore, the larger the number of jobs at a station, the smaller the rate.

A common question that arises in these models is to determine the joint stationary distribution of

the number kij of class-j jobs residing at station i when the Markov process reaches equilibrium. The

analytic form of this distribution is known to be [2]

P(k) =
1

Gθ(N)

n
∏

i=1

ki!
∏d

j=1 kij !

d
∏

l=1

θkil
il

(12)

where k ∈ S is a state vector, S is a state space given by

S =

{

k ∈ R
nd
∣

∣

∣
kij ≥ 0,

n
∑

i=1

kij = Nj

}

6

and the normalizing constant is obtained by requiring that
∑

k∈S P(k) = 1, i.e.,

G(θ,N) =
∑

k∈S

n
∏

i=1

ki!
∏d

j=1 kij !

d
∏

l=1

θkilil (13)

7

	1 Introduction
	2 Exact computational algorithms
	2.1 Recurrence relations
	2.1.1 Convolution algorithm
	2.1.2 Recurrence by chain algorithm (RECAL)
	2.1.3 Method of moments

	2.2 Explicit solutions
	2.2.1 Case d=1
	2.2.2 Case d>1

	3 Conclusion
	A Product-form closed queueing networks

