A PYNQ-based Framework for Rapid CNN Prototyping

Erwei Wang, James J. Davis and Peter Y. K. Cheung
Department of Electrical and Electronic Engineering
Imperial College London
Email: {erwei.wangl3, james.davis, p.cheung}@imperial.ac.uk

Abstract—This work presents a self-contained and modifiable
framework for fast and easy convolutional neural network
prototyping on the Xilinx PYNQ platform. With a Python-
based programming interface, the framework combines the
convenience of high-level abstraction with the speed of opti-
mised FPGA implementation. Our work is freely available on
GitHub' for the community to use and build upon.

Introduction

Convolutional neural networks (CNNs) have achieved
significant success in solving a wide range of classifica-
tion problems. The inherent parallelism of two-dimensional
convolutions matches well with FPGAs’ strong parallel-
processing capability, leading to higher data processing
throughput and/or lower power consumption than reliance
on more traditional embedded platforms.

Framework Highlights

Modularity: The framework constructs CNNs using the
synchronous dataflow paradigm [1]. A library of CNN layers
is provided, which can be used to construct various models.

Ease of use: RTL programming is not required.

Parametrisability: Users can apply the provided library
to different CNN specifications by modifying generic para-
meters before synthesis with Vivado HLS.

Python bindings: The framework follows a “software-
down” development flow, where a Python-based application
programming interface controls the execution of the har-
dware and communicates with the rest of the program. The
combination of Python software and FPGA performance
helps our framework appeal to a broader audience.

Pre-trained CNN models: The framework provides
tutorials on directly loading and executing pre-trained CNN
models in Caffe or Theano.

Weight reloading: To achieve higher throughput, para-
meters are quantised and stored in on-chip memory. Para-
meters can be reloaded at runtime for flexible deployment.

Open source: The framework is BSD licensed. Anyone
can freely obtain or contribute to the framework, making it
particularly suitable for educational purposes.

1. https://github.com/awai54st/PYNQ-Classification

TABLE 1. EMBEDDED PLATFORM LENET-5 INFERENCING RESULTS.

Platform Quant. Gop/s Gop/s/W
CPU (PYNQ) Cortex-A9 float32 0.133 0.0479
CPU (TK1) [2] Cortex-Al15 float32 2.73 0.546
GPU (TK1) [2] Kepler float32 7.31 0.731
fpgaConvNet [1] XC72020 fixed16 0.480 0.274
This work XC7Z020 fixed8 2.56 1.35

Performance Benchmark

We compared our work against other embedded plat-
forms using the publicly available and popular benchmark,
LeNet-5 (classifying MNIST handwriting dataset). Table 1
shows that our framework achieves around 20x throug-
hput and 28x power efficiency improvements compared to
PYNQ’s embedded ARM CPU. It also achieves a 1.8 effi-
ciency increase over a TK1 embedded GPU implementation.

Conclusion

Although our framework can achieve very good inferen-
cing performance with small CNNs, its scalability is limited
since all layers and their weights must be on chip simultane-
ously. We are currently working on a new framework with a
single processing unit which will exploit resource reuse and
memory tiling to compute on a layer-by-layer basis instead.
With this, we aim to implement large-scale CNN models on
embedded FPGA platforms.

Acknowledgements

This work was supported by EPSRC grants
EP/K034448/1, EP/P010040/1 and EP/N031768/1. The
authors would also like thank Xilinx’s PYNQ team for
their support and development board donation.

References

[11 S. L. Venieris et al., “fpgaConvNet: A Framework for Mapping Con-
volutional Neural Networks on FPGAs,” in FCCM, 2016.

[2] K. Guo et al., “Angel-eye: A Complete Design Flow for Mapping
CNN onto Customized Hardware,” in ISVLSI, 2016.

