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Abstract

Abstractions of programs are traditionally over-approximations and have proved to be useful for the ver-
ification of safety properties. They are presently perceived as being useless for the falsification of safety
properties, i.e. showing that program execution definitely reaches a “bad” state. Alternative techniques,
such as the computation of under-approximating must transitions, have addressed this shortcoming in the
past. We show that over-approximating models can indeed falsify safety properties by relying on and ex-
ploiting the seriality and partial determinism of programs: programs don’t just stop for no reason, and most
program statements have deterministic semantics. Our method is based on solving a two-person attractor
game derived from over-approximating models and makes no assumptions about the abstraction domain
used. An example demonstrates the successful use of our approach, and highlights the role played by seri-
ality and our handling of nondeterminism. Finally, we show that our method can encode must transitions,
if supplied, by a simple modification of the ownership of nodes in the attractor game derived from the
over-approximating model.

Keywords: software verification, games, falsification

1 Introduction

For over thirty years, over-approximating models have been used for verifying safety
properties of programs. Intuitively an over-approximating model has all the be-
haviours of the original program, and possibly many more; this is expressed by
conditions such as trace-inclusion and simulation. Verification of safety properties
is based on the following observation: because an over-approximating model has at
least all the behaviours of the original program, any “bad” behaviours (i.e. those
that violate the desired safety property) present in the program are also present in
the model. Therefore, if the model contains no bad behaviours, the program does
not either. Systems such as SLAM [1], BLAST [10] and our own system HECTOR
[5] have been developed which automatically extract over-approximating models
from programs using abstraction.
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However, the above scheme does not allow the falsification of safety properties,
because bad behaviours found in the model need not be present in the original
program — they may be “artifacts” introduced by the over-approximation process,
and therefore “not feasible” in the original program. Approaches to the falsification
of safety properties have focused on showing that abstract counterexamples are
indeed feasible, for example by:

(i) searching for a corresponding concrete counterexample (e.g. [14]),

(ii) proving the feasibility of the abstract counterexample path by satisfiability
checking (e.g. [1]), or

(iii) adding under-approximation or calculation of “must-transitions” to the model
(e.g. [8,9]).

Here we present a method of falsifying safety properties which uses only over-
approximating models. In particular, our method doesn’t perform any of the tasks
i, ii, iii above. Instead, our method is based on playing a two-player game over the
transition graph of the over-approximating model, and exploits two properties of
programs: seriality (execution of a program does not just “stop” for no reason) and
what we call partial determinism. By this we mean that most program statements
are deterministic, so any nondeterminism in the program or its instrumentation is
confined to a small number of identifiable locations.

The rest of the paper is structured as follows: Section 2 sets out the notions of
programs, models and safety properties we use. Section 3 shows how to use two-
player games to falsify safety properties without performing any of the usual tasks
listed above. Section 4 presents an illuminating example of falsification. Section
5 shows how our approach supports the easy incorporation of must information
when it is available. Section 6 concludes and discusses related work. An appendix
contains all omitted proofs, to be read at the discretion of referees.

2 Background

Programs and their semantics.

We begin by setting out the kinds of programs, models and safety properties we
deal with in this paper. It will be seen that our setup is very general.

In this paper, we work with programs expressed as control flow graphs (CFGs).
Figure 1 shows two simple such programs, drawn with unfilled nodes. Formally,
each control flow graph is encoded by giving a set of locations Locs, which includes
an element start, and a function E : Locs — Edges mapping each location [ to the
single (hyper)edge leaving it. The allowed forms of edges are:

* Conditional (hyper)edges: if(®):[; : [y . These transfer control to location I; if
the condition ® holds, and to Iy otherwise.

* Edges for ordinary statements: f:[. These execute the statement f and transfer
control to location [.

* Choice (hyper)edges: choice : I; : Iz . These represent nondeterminstic choice,
and (in a sense) transfer control to both [; and to la.

(Here @ is a guard condition, and [®] C State denotes the set of states in which
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® holds. In this paper we assume nothing about guard conditions ® or [—].)

To give semantics to our programs, we assume a set State of program states,
including an initial state s in which execution begins. We also assume that for
each ordinary statement f, an associated transfer function f : State — Stateis given.

Note that we work at a high level of abstraction, assuming nothing about the
nature of the state space State and the transfer functions f, so that for instance our
results apply equally to languages with heaps as to those without.

As is customary, we put a transition system semantics onto programs. A pro-
gram’s transition system has state space Locs X State, whose elements we call con-
figurations. The transition relation — C State x State is given by the following
(named) rules:

ord
El)y=f:1
(l,s) = (I, f(s))
choice-1
E(l) = choice : [ : I3
(l7 ‘9) - (llﬂ S)
choice-2
E(l) = choice : [] : I3
(l) ‘9) - (l2’ 5)
if-true
E(l) = lf((I)) D) s € [[(I)]]
(L,8) = (I, 5)
if-false

EQ) =if(®):L:ls  s¢[®]
(l7 S) - (l2a 5)

We say that a configuration (I, s) is reachable if there exists a sequence (1, s1) —
.-+ — (It, s,) such that (I1,s1) = (start, s"*) and (I, s;) = (I, ).

We stated in the introduction that our development will depend on seriality and
determinism, so we establish a lemma for these, which looks fairly innocuous but
will be crucial later.

Lemma 2.1 Seriality and partial determinism of —. The concrete transition
relation — s

(i) serial, i.e. for all configurations (1, s), there exists a configuration (I',s") such
that (1,s) — (I', ).

(ii) partially deterministic, i.e. for all configurations (l,s) with E(l) not of form
choice : 1y : 1y , if (I,s) — (I',s") and (I,s) — (I",5") then (I',s") = (I",s").

Abstraction domains.

Our abstract models of programs will be built from abstraction domains. An
abstraction domain in this paper will consist of a set A of abstract values, and a
concretisation functiony : A — P(State) which gives meaning to the abstract values.
This very general formulation is all that is needed in this paper, and so our results
apply to arbitrary abstraction domains, though in practise an abstraction domain
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Fig. 1. The unfilled nodes, and their associated transitions, show the control flow graphs of two simple pro-
grams. The attached filled nodes, and their associated (green) transitions, depict sound default augmented
models for the programs, built using sign analysis. Our method establishes that both programs reach their
terminated states, unlike a conventional treatment of must transitions e.g. [8].

comes with more components, such as abstract successor functions (see e.g. [13,6]).
Our development here also applies to the analysis modules presented in [4,3].

Model checking queries.

In this paper, we will consider a particular type of safety property: our queries
will be expressed by giving a set B C Loc x State of “bad” configurations, and
asking whether any of the bad configurations are reachable in the program. If no
b € B is reachable, then the safety property represented by B is true (which we will
abbreviate to “B is true”). On the other hand if some b € B is reachable, then the
safety property represented by B is false (which we will abbreviate to “B is false”).
We will not go into the issue of how one abstractly represents such a set B.

Definition 2.2 Abstract (over-approximating) models. An abstract model

M = (N, a—bs>) for a given program, and built using the abstraction domain (A4, ),

consists of a set N C Locs X A of abstract nodes, and an abstract transition relation
abs

C N x N, satisfying the following healthiness conditions:

abs

H1 If (I,a) — (I, d’) then E(l) must be some edge with I as a target.
H2 If (I,a) abs, (I';a’) and E(l) is a choice edge, then o’ = a.

H1 ensures that transitions in the model only occur between locations that are
connected by CFG edges, so that the transition structure of the model falls into line
with the structure of the CFG. H2 ensures that choice edges are treated simply as
junctions, by not allowing the abstract value to change across a choice edge. O

Figures 1 and 2 (page 9) are examples of such abstract models, drawn using the
filled nodes (ignoring the P/F annotations for now). These models are built using
a sign analysis, an abstraction domain which tracks only the sign of each variable,
i.e. whether it is negative, zero or positive, and discards all other information.
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Definition 2.3 Soundness of abstract models. An abstract model M as above
is said to be sound if the following, standard simulation-type, condition holds:
S1 Let (I,a) € N and (I,s) be such that s € y(a). Let (I,s) — (I',s’). Then there

exists (I’,a’) € N such that (I,a) abs, (I';a') and §" € y(d'). O

It can be seen that the models in Figure 1 are sound. Verification of safety

properties, in the standard way described in the introduction, can be performed on
the basis of S1; we will not dwell on this as we concentrate on falsification here.

Lemma 2.4 Seriality of b, The abstract may transition relation 955, s serial
in sound models, in the sense that for all nodes n = (l,a) € N, provided y(a) is

nonempty there exists a node n’' such that n abs,

Proof: Let s € y(a). By Lemma 2.1 (seriality) there exists (I, s") such that (I, s) —
(I',s"). Applying S1 completes the proof. O

3 Our games on over-approximating models

We now show how to use two-player games to falsify safety properties. The intuition
of what follows is that, given a safety property B, we are going to play a two-person
game, where the positions are the nodes n € N of an over-approximating model.

We call the players F and P: player F is trying to Falsify B, and player P is
trying to Prevent this from happening. A move at position n means choosing n’
such that n 2% n/ : node n’ becomes the new position.

An extra function p determines which player is to move at each position. Player
F wins by forcing the game into a position n = (I, a) where for all s € y(a), we have
(I,s) € B, i.e. all concrete configurations represented by n are “bad”.

abs

Definition 3.1 Augmented models An augmented model M+ = (N,—,p)
consists of an abstract model (I, a—bs>) along with a function p: N — {F,P}. O

Of course, we cannot just use any old partition of the nodes among the two
players. The following definition sets out what we require from such a partition.
(In A1 the quantifier pattern is V3, and in A2 it is 33, which is reminiscent of the
relations R" and R from [7].)

Definition 3.2 Soundness of augmented model. An augmented model M =
(N, —@5—5 p) is said to be sound if (IV, —@i) is sound and the following hold:

A1l Let p((l,a)) = F and s € vy(a). Then for all (I, a’) such that (I, a) abs, (',a),
there exists s’ € y(a’) such that (I,s) — (I, ).

A2 Let p((l,a)) = P and s € y(a). Then there exists (I’,a’) such that (,a) abs,
(I',a") and there exists s’ € y(a') such that (I,s) — (I, s'). 0

The models in Figure 1 and Figure 2 (page 9) are sound augmented models,
with the p function depicted with P/F annotations at each abstract node.

To perform falsification, we introduce a judgement Hn which means that the
abstract node (or game position) n € N is “Hopeless” with respect to the set
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B of bad configurations, i.e. that once execution reaches n there is no hope for
avoiding forever the set of bad configurations B. The named derivation rules for
this judgement are as follows.

h-all-bad
{(l,s)|s€v(a)} C B
H(l,a)
h-P-move
p(n)=P VYo' eN, ifn %%, 1 then Hn/
Hn
h-F-move

p(n)=F In’ € N such that n 22 n/ and Hn/
Hn

The following theorem shows that what we are calling “hopeless” nodes really do
inevitably lead to a bad configuration. Its subsequent corollary justifies falsification
using sound augmented models and the judgement H.

Theorem 3.3 Let M™ be a sound augmented model, and B a safety property. Let
n = (l,a) € N and s € v(a). If Hn then there exists (I1,s1) — -+ — (I, sk), with
(I1,s1) = (I, s) and (Ix, s) € B.

Proof: We proceed by structural induction on the derivation of Hn.

Base case: The base case is when Hn is derived by a single application of a
rule. This can only be the h-all-bad rule. (At first glance it appears there is a
possibility of using h-P-move if n has no successors, but since s € v(a), Lemma 2.4
shows this is impossible.) From the premises of h-all-bad and s € v(a), we have
(I,s) € B. Taking the one-element sequence ([, s) we are done.

Inductive case for h-P-move: From the premises of h-P-move we have p(n) =
abs

P. Applying A2, we see that there exists (I’,a’) such that (I,a) — (I’,d’), and
there exists s’ € y(a’) such that (I,s) — (I,s’). Now, also from the premises of
h-P-move, we see that H(!',a’). Applying the induction hypothesis and renum-
bering, we obtain (l2,s2),..., (I, sg) such that (lg,s2) — -+ — (lg,Sg), with
(2, 82) = (I',¢") and (Ig, si) € B. Set (l1,s1) := (I, s) and we are done.

Inductive case for h-F-move: By the premises of h-F-move there exists n’ =
(I';a’) such that n 455, ' and Hn/. Also from the premises of h-F-move we
have p(n) = F. This means we can apply Al to obtain an s’ € y(a’) such that
(I,8) — (I, ¢"). Applying the induction hypothesis ton’ = (I, s’) and renumbering,
there exists a sequence (l2, $2), ..., (Ig, Sx) such that (I1,s1) — -+ — (Ig, sk), with
(g, s2) = (I',¢") and (lg, si) € B. Set (l1,s1) := (I, s) and we are done. 0

Corollary 3.4 Falsification with sound augmented models. Let M™T be a
sound augmented model, and let B be a safety property. Let (start,a) € N such that
st ¢ y(a). If H(start,a) then B is false. O

The above is all well and good, but how do we obtain a sound augmented model
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for a program? Below we present a way to turn any sound over-approximating
model (supporting verification only) into a sound augmented model (supporting
falsification also). The construction is very easy, and simply assigns all abstract
nodes corresponding to choice edges to player F, and all other nodes to player P.

Augmented models constructed in this way capture precisely the “must informa-
tion” implicitly present in the original over-approximating model: at choice nodes
all choices are taken, and at other nodes some choice must be taken, as execution
cannot, simply stop. Such models allow, as we shall see, the falsification of some
safety properties, by means of solving an attractor game.

Definition 3.5 Let M be a sound model for a program. We define the default
augmented model for M to be M+ = (M, p) where

(.a) F if E(l) has the form choice : " : I”
,a) ==
g P otherwise O

The augmented models in Figures 1 and 2 are all default augmented models.

Theorem 3.6 Let M be a sound model. Then the default augmented model M™ is
a sound augmented model.

Proof of Al: Let p((l,a)) = F and s € 7(a). Let also (I';a’) be such that
(l,a) abs, (I',a"). Since p((l,a)) = F, edge E(l) has form choice : Iy : lz . By H1,
either Iy =1’ or lo = I’. If Iy = I’ then the choice-1 rule gives us (I,s) — (I, s); on
the other hand if Iy = I’ then the choice-2 rule provides the same conclusion. By
H2, we have @’ = a, whence s € vy(a’). Putting s’ := s we have found, as required,
s" € v(a’) such that (I,s) — (I, ).

Proof of A2: Let p((l,a)) = P and s € y(a). By Lemma 2.1 (seriality), there

exists a configuration (I’;s") such that (I,s) — (I',s’). By SI (soundness) there
abs

exists (I';a’) € N such that (I,a) — (I',a’) and s’ € vy(d’). 0

It is in the A2 part of the preceding proof that seriality played its key part.

To decide whether Hx for a particular node = (typically start), we simply apply
the three rules for H over and over again, discovering more and more nodes n for
which Hn, until either we have shown Hzx, or no more applications of the rules are
possible. This can be viewed as computing, in the underlying two-person game, as
much of the attractor as is needed to determine whether it includes x.

Example 3.7 Using the augmented model in Figure 1 (left) we can prove that
the program reaches the error state, i.e. we can falsify the safety property given
by bad states B := {EFRROR} x State. We begin by using the h-all-bad rule to
establish H(ERROR, [z : zero]) and H(ERROR, [z : pos|). This reflects the fact
that if execution reaches these nodes then clearly the safety property has been
broken. Now we consider the node (1, [z : pos]), which is a node of player P. We

have shown H for each of its ibi»—successors, so we can use the h-P-move rule to get
H(1, [z : pos]). This reflects the fact that although the abstraction used (here: sign
analysis) cannot tell which way execution goes from the H(1, [z : pos]), it must go
somewhere, and wherever it goes, the safety property will be broken. One further
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application of h-P-move gives us H(start, zero), whence, by Corollary 3.4, B is false,
that is, execution reaches the error state. O

The model in Figure 1 (right) allows a similar proof that FRROR is reached,
but shows that uncertainty over which path execution takes through the program
can be dealt with, as well as uncertainty over the values of the program’s variables.

4 In-depth example

Example 4.1 The program in Figure 2 generates an arbitrary natural number n
and then computes n — 1 in y and the integer square root of n in zx, that is, finds
x such that 22 < n < (x + 1)2. The program is instrumented with a conditional
which checks that the correct square root has been calculated, and transitions to
the FRROR state if not. However, we have introduced a “mistake”: the guard for
the square root computation part is the negation of what it should be.

Figure 2 includes a default augmented model constructed by a simple sign analy-
sis, and this is enough to prove the program faulty. Describing the proof in terms of
the game, Player F (the Falsifier) is in charge of the choice of which natural number
n is generated. If player F plays so as to force a positive n to be generated, this
wins the game; player P still has some choice of moves, because the sign analysis
could not determine whether y becomes zero or positive, but whichever of these is
taken, execution ends up at the ERROR node. O

The preceding example only works because we distinguish F and P nodes, and
use a different rule for them; if P controlled the choice of n, he could force n = 0
and then FRROR is not reached. The example also illustrates the style in which we
intend to deal with nondeterminism, which is needed to ensure that the program
is tested over all inputs. Instead of using atomic nondeterministic statements such
as havoc (e.g. [12]), we propose to encode them using small control flow graphs
consisting of choice edges and deterministic statements, and then analyse these
with over-approximation in the same way as the rest of the program. The game
structure will take care of making sure that all the possible choices are explored.

When we perform such verifications in HECTOR [5], to which we have added
an implementation of this approach, we put each piece of generating code into a
non-recursive procedure, which we call a generator procedure, which helps structure
the instrumentation process. However here we lack the space to discuss how our
approach extends to procedures.

We have also used generator procedures with linked data structures, for example
to generate all possible linked lists, which we use with models we build from a shape
analysis (see [5]). We intend also to experiment with modelling nondeterministic
memory allocation in this way.

5 Incorporation of must information

The PhD thesis [7] proposes the use of mized transition systems (MTSs) as models
which can both verify and falsify properties of programs. This is achieved by using
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n:pos n:zero { ) skip
X:zero X:zero C_:D @
y:zero y:zero
yi=n-1 if X*X <=n
&& n < (x+1)*(x+1)
n:pos alse n:pos n:pos
X:zero (4\—>\6> X:zero X:zero
)y y:pos M~ y: zero/ y:pos
Xi=x+1
if (x+1)*(x+1) >n else ‘
n:zero v | n:pos n:pos
x:zero @ ERROR x:zero X:zero
y:neg \ yizero A7\ y:pos
Y U

skip

Fig. 2. An example of a faulty program, and a default augmented model which proves that the error state
is reached, thanks to our differing treatment of F and P nodes. See Example 4.1 for details.

two transition relations: a “may” transition relation, which over-approximates and
is like our a—bs>, and a “must” transition relation “% which under-approximates.

In this section we show that our augmented models can neatly capture all the
must information that is present in a M'T'S, while: keeping the same node structure,
remaining sound for both verification and falsification, and still only needing one
transition relation. This is achieved essentially by changing the player in charge of
particular nodes, and works because of the way we have carefully isolated nonde-
terminism into the choice statement, which is used to build generator procedures.
We begin by defining MT'Ss.

Definition 5.1 Mixed Transition Systems (MTSs). A Mixed Transition Sys-
tem MT = (M, M) for a given program consists of an abstract model M along

with another transition relation C N x N satisfying the following healthiness
conditions:

M1 If (I,a) 225 (I, /) then E(l) must be some edge with I as a target.
M2 If (I,a) must, (I,ad") and E(l) is a choice edge, then ¢’ = a. O
As in [7], our definition relaxes the requirement in [11] that all must transitions

are also may transitions, but it also adds M1 and M2 as natural constraints for our
program abstractions.

Definition 5.2 Soundness of MTSs. An MTS M as above is said to be sound
if M is sound and the following condition holds:

S2 Let (I,a) € N and (I,s) be such that s € v(a). Let (I,a) 2% (I’,a’). Then
there exists s’ such that (I,s) — (I’,s') and s’ € v(d’). 0

The follow theorem shows how MTSs can be used to falsify safety properties.
9
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abs  must
_>)

Theorem 5.3 Falsification with MTSs. Let MT = (N, =5, be a sound
MTS for a program P. Consider a safety property expressed by a set B of bad
configurations. To falsify B it is sufficient to find a sequence ny,...,ni € N with

. must must must
(1) nl n2 “ o

(ii) n1 = (start,a1) with s™ € y(a1), and
(iii) ng = (lk,ak), with {lk} X ’y(ak) C B. (]

Next, as promised, we show how to simply construct an augmented model which
neatly captures all the must information from an MTS, while keeping the same node
structure as the underlying over-approximating model, remaining sound for both
verification and falsification, and still only needing one transition relation.

The construction is simple, differing from the default augmented model in that,
at any abstract node which has a must transition leaving it, we put player F in

charge, and replace the outgoing abs, edges with the provided outgoing must, edges.
This is sound due to the partial determinism of the concrete semantics —.

Definition 5.4 Given an MTS MT = (M, M) as above, we define the augmented
+
model incorporating 2% for M to be M*[M] = (N, abs, , p) where (listing cases

in order of priority):

Jr
(la) 2% (La) o  (Id)eT(,a)

{(I';d") | (1,a) abs, (I';a)}  if E(l) has the form choice : I3 : Iy

must

T(l,a):=¢{(l',ad) ]| (l,a) st (I',a")}  if there exists n’ € N such that n —— n
{((,a) | (I,a) 2% (')} otherwise

F if E(l) has the form choice : [y : I

must /

p(l,a) := ¢ F if there exists ' € N such that n —— n

P otherwise
O

The following theorem shows that, after incorporating must information, the
augmented model is still sound for both verification and falsification.

must

Theorem 5.5 Let M1 = (M, ™) be a sound MTS. Then MﬂM] is a sound
augmented model.

_l’_
Proof: Sketch only due to space constraints. First prove S1, i.e. that (N, abs, )
actually forms a sound model. This is where Lemma 2.1 (partial determinism)
comes into play: it is needed, along with S2 (soundness of the must relation) at the

nodes where we have replaced ﬂi—edges with Eu—sg—edges. Then prove Al and A2.
The argument is similar to that for Theorem 3.6 (soundness of the plain M ™, that
is, with nothing incorporated), except that S2 (soundness of the must relation)
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is needed to prove Al at nodes where we have replaced a—bs>—edges with M—edgeS.D

The following theorem confirms that, as promised, M +[m] really does capture

all the must information from the MTS (M, M)

Theorem 5.6 Let P be a program and M' = (M, M) a sound MTS for P.
Consider any safety property expressed by a set B of bad configurations. If B is

must

falsified by (M, ——) (using Corollary 5.3) then B is also falsified by the augmented

must

model M [—=] (using Theorem 3.3).

Proof: Sketch only due to space constraints. Consider the sequence ny,...,ng € N
demanded by the premises of Corollary 5.3. Proceed by induction on k. In the
inductive step, apply the induction hypothesis to the suffix ns,...,ng to obtain
Hns and from this derive Hn;. O

We end this section with an unresolved question. When incorporating must in-
formation, we have shown that we obtain all the falsification power of the MTS from
which the must edges come; we also know that the augmented model remains sound
for both verification and falsification. But it remains to be seen what happens to the
verification and falsification power of the default augmented model when additional
must edges are incorporated; we can contrive situations where this increases (as we
would hope), decreases or remains unchanged, but do not have a feeling for what
will happen in practice.

6 Conclusions and related work

In this paper, we used a two-player game to show that models which only over-
approximate can nevertheless be used to falsify safety properties, that is, with-
out using any under-approximation, feasibility checking or concrete counterexample
search. To make this work, we focused on two properties of programs that are not
accounted for in a conventional treatment of must transitions (e.g. [8]) namely seri-
ality and partial determinism. Through Example 4.1 we demonstrated how and why
our method works. Finally, we showed that if some must transitions are available,
they can be incorporated into our approach very easily. We proved that by doing
this, we obtain in a simple way all the falsification power of the must transition
approach, and yet our models remain sound for both verification and falsification,
retain the same node structure and still require only a single transition relation.

Related work

The present paper explores what generalised model checking [2], which effectively
“case splits” on unknown propositions, means in the particular context of checking
safety properties of programs. The existing works closest to ours, as far as we are
aware, are [9] and [15], which also build models which can both verify and falsify
properties.

In [9], which is specific to predicate abstraction domains, seriality is exploited
but only for conditional statements (as in Figure 1 (right)), and not for ordinary
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statements (needed for Figure 1 (left)). For ordinary statements, [9] uses must
transitions to weaker tri-vector states. The “must hyper-transitions” used in [15]
also capture seriality, though this is not the motivation given in [15] for introducing
them; rather, they are proposed as a way to make abstraction refinement monotonic.
Both [9] and [15] require the use of two separate transition relations, whereas we
need only one. Here we handle only safety properties expressed by giving a set
of bad configurations, whereas [9,15] handle the much more expressive temporal
logic CTL, and additionally address automatic abstraction refinement which we do
not. We emphasise the expected role of generator procedures, rather than atomic
statements such as havoc, in producing more falsifications. Our method subsumes
the “choose-free-paths” technique from [14].
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A Proofs omitted from main text for space reasons

Proof of Lemma 2.1: Consider an arbitrary configuration (/,s). Then E({) has

three possible forms:

(i) E(l) = f : l;. For seriality, put (I',s") := (I3, f(s)) and the ord rule gives
(I,s) — (I';s"). For partial determinism, simply note that no other rule is
applicable.

(ii) E() = if(®) : Iy : lo. Either s € [®] or s ¢ [®]. If s € [®] then for
seriality, put (I',s") := (l1,s) and the if-true rule gives (I,s) — (I',s’); for
partial determinism note that no other rule is applicable. If s ¢ [®] then
for seriality, put (I, s’) := (l2,s) and the if-false rule gives (I,s) — (I',s'); for
partial determinism note that no other rule is applicable.

(iii) E(l) = choice : Iy : ls. For seriality, put (I’,s’) := (I1,s) and the choice-1 rule
gives (I,s) — (I';¢’). For partial determinism there is nothing to check. O

We prove Theorem 5.3 with the aid of the following lemma:

Lemma A.1 Let M be a sound MTS. Let there exist a sequence ni,...,n; € N

(where each n; is (1;,a;)) such that nq must, g TSt L st . Let s € v(ay).
Then there exist s1, ..., sk € State such that s; = s, s € y(ag) and (l1,51) — ... —
(Ik» 5%)-
Proof: We proceed by induction on k. The base case when k = 1 is trivial. For
the inductive case, k > 1, let there exist a sequence ni,...,nx € N (where each n;
is (13, a;)) such that ny MUt g TS, L I Let s € ~v(ay).
Applying the induction hypothesis to the prefix ni,...,ng_1, there exist
S1y...,8g—1 such that s; = s, sp_1 € y(ag—1) and (I1,$1) — ... = (lg—1, Sk—1)-
Applying S2 to the transition np_; —=% ny, there exists (Ik,s’) such that
(lk—1,8k—-1) — (Ik, ') and &’ € y(a). Putting s := s’ we are done. O

abs  must
—

Proof of Theorem 5.3: Let MT = (N, ,—) be a sound MTS for a

program P. Let B be a set B of bad configurations. Suppose there exists a sequence
ni,...,ng € N with

. must must must
(i) mp n9 e n

(i) n1 = (start, a;) with s™* € y(a1), and
(iii) ng = (lg, ar), with {lx} x y(ax) C B.

Due to i and ii, we can apply the previous lemma (Lemma A.1) to get a sequence of

states s™ sy, ..., s, € State such that (start, s59") — (I3, s2) — ... — (I, sx) and
sk € y(ag). From iii we have (I, sx) € B, i.e. we've found an execution sequence
starting at (start, s™) and leading to the bad state (I, s). 0

Proof of Theorem 5.5:

+
Proof of S1: First we must check that (N, abs, ) is actually a sound model, i.e.
that it satisfies S1. (This part of the proof depends on the determinism of ordinary
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program statements.)
Let (I,a) € N and (I, s) be such that s € v(a). Let (I,s) — (I',¢').
If E(I) has the form choice : [; : I3 or has no must transitions leaving it, then

+

abs . abs .

(1, s) has the same successors under —  as it does under —, and the conclusion
abs

follows from the S1 property of (N, —).
So suppose E(l) doesn’t have the form choice : I; : l2 , and there exists n” =

+ +
(I"”,a") € N such that n TS, By definition of 55,7 We have n 225 . By
S2, there exists s” such that (I,s) — (I”,s") and s” € v(a").
By Lemma 2.1 (partial determinism), I’ = [” and s’ = s”. Hence, putting
(I',a') and

a' := a”, we have found as required (I',a’) € N such that (I,a) abs,
/
s

€ v(d').
Proof of Al: Let p((l,a)) = F and s € vy(a). Let (I, a’) be such that (I, a) abs,
(I';a’). There are two situations in which we can have p((l,a)) = F.
The first situation is when E(l) has the form choice : I; : [y . By H1, either
Iy =1 orly=10.1fly =1 then the choice-1 rule gives us (I, s) — (I’, s); on the other
hand if s = I’ then the choice-2 rule provides the same conclusion. By H2, we have
a’ = a, whence s € vy(a’). Putting s’ := s we have found, as required, s’ € v(a’)
such that (1,s) — (I, §').
The second situation is when E(l) doesn’t have the form choice : 1 : Iy , and
there exists n’ = (I,a’) € N such that n =% n/. By definition of 5%, we have

(I,a) abs, (I',a’") (because here we chose the must edges). By S2, there exists s’
such that (I,s) — (I',s’) and s’ € y(a’) and we are done.

Proof of A2: Let p((l,a)) = P and s € ~(a). By Lemma 2.1 (seriality),

there exists a configuration (I, s’) such that (I,s) — (I,s’). By S1, there exists
abs

(I';a’) € N such that (I,a) — (I';d’) and s’ € v(a’). To finish, note that by
+

definition of " and the fact that (1,a) abs, (I',a’), we have (l,a) abs, (',a)

(because here we have chosen the ordinary abstract edges). O

We prove Theorem 5.6 with the aid of the following lemma:

Lemma A.2 Let MT = (N,a—bs>,w>) be a sound MTS. Let B C Loc x State
and let there exist a sequence nq,...,ny € N (where each n; is (l;,a;)) such that
must must must

ny Ny ng and y(ay) is nonempty. Let {li} x v(ar) € B. Then

Hn, with respect to M*[M] (the augmented model incorporating M}

must abs

+
Proof: Write Mt[——] as (N,— ,p). We proceed by induction on k. For the
base case, when k = 1, the condition {l;} X v(ax) C B is exactly what is needed to
invoke the h-all-bad rule to obtain Hn;.

For the inductive case, k > 1, let ny,...,nxy € N (where each n; is (I;,a;))
be such that n; 2% py 224 .0 I and {lg} x v(ax) € B and 7(aq) is
nonempty.
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v(a1) is nonempty so there exists s; € y(a1). By S2, there exists some sy in
v(ag) such that (I1,s1) — (l2,s2). Therefore vy(ag) is also nonempty, and we can
apply the induction hypothesis to the suffix ns,...,ni € N, obtaining Hns. Because
there is a must transition leaving n (i.e. the one to ng) it follows from the definition

of M+[™4] that p(n) = F. We can use the h-F-move rule to complete the proof
. abs
if we can show ny — nao.

There are two cases to check.

In the first case, E(l;) has form choice : I’ : I” . Tt follows from M2 that
a; = az. From (l1,s1) — (l2,s2), using S1, there exists (l2,a’) € N such that

(I1,a1) abs, (I3,a"). By H2, a’ = a1, and we already know a; = ay. Thus we have
(l1,a1) abs, (I2,a2), i.e. ny 05, . Finally, in the definition of s, we choose the
ordinary abstract edges at ni, so we have n; a—bs>+ ng.

In the second case, E(l1) has some other form, and in the definition of abs,

+
we choose the must edges at n;. Thus the required n; abs, no follows from

must
ny —— no. O

Proof of Theorem 5.6: This follows easily from the previous lemma
(Lemma A.2); just note that the premises of Theorem 5.3 demand that s™ € ~(ay),
and this is what assures the nonemptiness of v(a1) needed to invoke the lemma. O
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