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Abstract— A novel food volume measurement technique is
proposed in this paper for accurate quantification of the daily
dietary intake of the user. The technique is based on simul-
taneous localisation and mapping (SLAM), a modified version
of convex hull algorithm, and a 3D mesh object reconstruction
technique. This paper explores the feasibility of applying SLAM
techniques for continuous food volume measurement with a
monocular wearable camera. A sparse map will be generated
by SLAM after capturing the images of the food item with
the camera and the multiple convex hull algorithm is applied
to form a 3D mesh object. The volume of the target object
can then be computed based on the mesh object. Compared
to previous volume measurement techniques, the proposed
method can measure the food volume continuously with no prior
information such as pre-defined food shape model. Experiments
have been carried out to evaluate this new technique and
showed the feasibility and accuracy of the proposed algorithm
in measuring food volume.

I. INTRODUCTION

Previous health surveys in England reported that 65%
of men and 58% of women were overweight in 2014 [1].
Unhealthy dietary intake, including unbalanced dietary pat-
tern and excess calorie intake, is one of the major factors
which leads to obesity [2]. A daily dietary assessment
system can potentially help users and dieticians to understand
their dietary behaviour with information about calorie and
nutrient intake. The traditional method of dietary assessment
which has long been relied upon is user self-report, such
as 24 hour dietary recall. Users need to report their food
intake with detailed information about consumed weight or
volume. Such subjective measurement are highly inaccurate,
and user compliance is also a major issue. Moreover, the
consumed weight or volume reported highly depends on
users’ subjective judgement which may also lead to a biased
dietary analysis result. In recent years, wearable devices have
become popular for long-term health monitoring [3], [4].
Increasing numbers of people have become health conscious
and started using their smart-watches or fitness bands for
personal daily exercise recording and analysis. The low cost
and pervasiveness of the wearable technologies have made
them attractive for healthcare applications. Hence, a wearable
dietary monitoring device could be developed to address the
need for objective dietary analysis.

A complete procedure of quantifying dietary intake
consists of food detection and segmentation, consumed
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weight/volume estimation, nutrient intake calculations, and
dietary analysis. For food detection and segmentation part, it
can be performed using convolution neural network (CNN)
[5]. For example, Google applied its generic food detection
with the GoogLeNet model (a deep neural network) and
achieved the mean average precision of 80% [6]. For volume
estimation, previous research studies mostly rely on model-
based techniques or 3D model generation based on back
projection using camera calibration matrix [7]. To our best
knowledge, there is no published work on using a monocular
SLAM system for food volume measurement. This project
explores a novel way of using SLAM to estimate the con-
sumed food volume which could be embedded easily into a
wearable camera device. Once the food volume is measured
by the wearable device, the data can be merged with USDA
national nutrient database for further dietary analysis [5].

II. BASIC THEORY

A. The Visual SLAM Framework

The visual SLAM framework can be divided into four
parts including visual odometry, loop closure, back-end
optimisation and mapping [8]. Visual odometry aims to
estimate the camera’s pose by analyzing the feature points
on the captured image between different views, so that the
trajectory of the moving camera can be computed. Loop
closure is the process of recognizing the location which
has been previously captured in order to correct the drift
trajectory of the camera. Back-end optimisation processes
information from visual odometry and loop closure, and
performs both local and global optimisation for localisation
and mapping based on different algorithms. Once obtained
the optimised camera’s trajectory, mapping is used to build an
environment map (sparse map in this paper) from captured
image sequence. The sparse map consists of point clouds
which associate with the feature points extracted from the
images. Fig.1 shows the sparse map of a can of soft drink
generated by the SLAM system using the feature points.

B. 3D Mesh Object Reconstruction

3D mesh object reconstruction is used to construct a 3D
mesh from the point clouds which represent the shape of
the target object. There are several 3D mesh reconstruction
algorithms proposed including greedy triangulation, grid pro-
jection and Poisson [9]. Though some of them do have great
performance in volume measurement after reconstruction,
these techniques involve parameters which require manual
intervention to get a well-reconstructed mesh. For example,
Poisson surface reconstruction shows a high accuracy in



Fig. 1: The left image shows the generated sparse map;
The right one shows an image captured by the camera with
feature points.

further volume measurement, however, it is not adaptive to
an automatic SLAM system. In order to develop a technique
which can be integrated with the SLAM system, convex
hull algorithm, one of the 3D reconstruction methods, seems
to be the best option among those previously mentioned
techniques. Moreover, in order to improve the accuracy of
food volume measurement, a further optimisation on convex
hull algorithm is developed. The detailed information will be
presented in the following sections.

III. DETAILED INFORMATION AND METHODS

A. Statistical Outlier Removal Filter

After the sparse map is generated by the proposed SLAM
system, there are always inevitable outliers. In monocular
SLAM, the depth information is not known and this has to
be estimated from the images. An incorrect depth estimation
or environment noise will induce outliers to the sparse
map as shown in Fig.2a. Moreover, outliers will lead to
overestimation in volume measurement. The detailed method
of statistical outlier removal filter is shown in Algorithm 1.
With the use of the proposed method, most of the outliers
will be trimmed from the point cloud as shown in Fig. 2b.

Algorithm 1: Statistical Outlier Removal Filter

1 // point distance[i] is the average distance to k nearest
neighbours for each point ;

2 // Initialize result[i] to be T RUE ;
3 // n is a multiplication factor of the standard deviation;
4 meanStdDev(point distance,mean,standard variance);
5 for (i = 0; i < points.size(); i++) do
6 if result[i] then
7 result[i] = point distance[i]<

mean+n∗ standard variance;
8 end
9 end

10 return result

B. Point Cloud Completion

The point cloud generated by the SLAM system often
loses information due to a limited viewing angle during
image capturing, and this will lead to underestimation of the
food volume. Since there is no published materials which use

(a) (b)
Fig. 2: Sparse map generated by SLAM system: (a) Point
cloud of a can with outliers; (b) Point cloud of a can without
outliers

SLAM for volume estimation, our work will firstly be carried
out based on several assumptions. First, we assume that the
detected food is solid and central symmetric so that its shape
can be completed based on symmetry. Second, the top, front
and side surfaces (3 out of 6 if a cube is considered) should
be acquired during video capturing. With those assumptions,
3D object reconstruction can be carried out. Assume the
original point cloud is P, there are n points in the point cloud
P. The centroid pm of the point cloud can be calculated:
pm = 1

n ∑
n
i=1 pi for i = 1,2..n. The detailed procedure is

shown in Algorithm 2. After point cloud completion, the
filtered point cloud can be completed as shown in Fig.3.

Algorithm 2: Point Cloud Completion

1 // points contain the points in point cloud P;
2 // new points is the point cloud Pnew with new points

added;
3 pm = f ind centroid(points) ;
4 // Completion based on symmetry;
5 for (point IN points) do
6 new points.add(2∗ pm − point) ;
7 end
8 return new points

Fig. 3: The 3D structure of a soft drink can generated by the
SLAM system with point cloud completion

C. Convex Hull with Boundary Shrinking Property

Convex hull algorithm is a well known 3D mesh recon-
struction method and which has been applied in our tech-
nique. Fig. 4a and Fig.4b show the 3D mesh reconstruction
of 2 objects by 3D Quick Hull [10]. In order to generate



the 3D mesh accurately with convex hull, the target object
should be convex, otherwise, the algorithm will fill up all
the non-convex space which leads to overestimation of the
object volume. Hence, another assumption in our technique
is that the target object has to be convex. In mathematics,
the convex hull C of a point set P in the Euclidean space
is the smallest convex sets which is able to enclose all
the points in P [11]. However, convex hull algorithm often
overestimates the volume of the reconstructed mesh in 3D
reconstruction leads to a larger mesh compared to the original
target object. The reason is that convex hull is sensitive
to noise as well as outliers. This will cause inaccuracy
in reconstructing the shape of the object. Hence, a novel
boundary shrinking method has been introduced into the
proposed technique. The shrinking method is a exhaustive
search method where convex hull is applied multiple times
to find the optimal object shape with the larger numbers of
vertices (boundary points) encapsulated. The detailed method
is shown in Algorithm 3. After the boundary shrinking, the
volume of the point cloud Pmax can be computed by using
the volume measurement function in PCL library [10].

(a)
(b)

Fig. 4: 3D mesh reconstruction of 2 objects using 3D Quick
Hull: (a) An apple reconstructed from its point cloud (b) A
soft drink can reconstructed from its point cloud

Algorithm 3: Boundary Shrinking Method

1 // P0 contains all points in the original point cloud;
2 // V0 contains the vertices of the original point cloud;
3 // f ind vertices() is the function to find the vertices of

a set of points;
4 // max is to temporarily store the iteration with the

largest number of vertices;
5 for (i = 0; i < num; i++) do
6 Pi+1 = Pi −Vi;
7 if Vi.size()>Vmax.size() then
8 max = i;
9 end

10 Vi+1 = f ind vertices(Pi+1);
11 end
12 return Pmax;

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed technique,
several experiments have been carried out to assess if the

proposed SLAM system combined with convex hull algo-
rithm can accurately estimate food volume. To explore the
possibility of continuous food volume measurement with a
monocular camera, an Apple iPhone 6 plus and a 4k wearable
action camera have both been used for data collection. The
frame rate and the dimension of the video have been set
to 30fps and 640x480 pixels. In the process of capturing
video data, target object has been placed on a totally black
background. A Rubiks cube has been designed as a scale
reference for calibration.

A. The Performance of Boundary Shrinking Property

Several target objects have been used to evaluate the
performance of proposed boundary shrinking method. The
results of two (an apple and a soft drink can) have been
presented in the following. The exact volume for them are
230 cm3 and 350cm3 respectively. Fig.5 and Fig.6 present
the volume of the target objects estimated after boundary
shrinking. In the proposed method, the mesh with the largest
number of vertices will be selected for volume measurement.
The experiment results show that the meshes constructed
with 6 iterations have the largest number of vertices for
both objects. The percentage error for the apple and the can
is 10.03% and 10.89% respectively. It has a much higher
accuracy compared to the one using the traditional convex
hull algorithm (the percentage error is 31.53% and 28.49%
for the apple and the can respectively). After the experiment,
it is reasonable to conclude that the proposed method is
robust to outliers and demonstrated that it is feasible to use
SLAM for continuous volume measurement.

Fig. 5: Volume measurement with boundary shrinking in
different iterations (apple)

Fig. 6: Volume measurement with boundary shrinking in
different iterations (can)

B. Food Volume Measurement on Static Food

In this experiment, a mini-cake with the volume 60 cm3

has been recorded. First, the measurement reference, Rubiks
cube, has been recorded for initialising the SLAM system.
Afterwards, the camera is moved to the cake for scanning,
and a camera trajectory is shown in Figure 7. The volume of
the target object for each moment has been computed with



the use of captured images from the corresponding times-
tamps (23 timestamps in the experiment). The final volume
is measured by taking average of the volume recorded over
the timestamps. The experiments have been repeated several
times for reliability. The percentage errors of the volume
measurement over the experiments for static mini-cake are
7.78±1.7%, 19.67±1.9% and 18.20±3% respectively. The
average percentage error is shown as 15.21%.

Fig. 7: Food volume measurement on static food: A) Track-
ing the cake; B) Generated sparse map; The green line is the
estimated camera trajectory by the SLAM system

The first experiment shows the best performance in volume
measurement among three trials. The second and third ex-
periments show a relatively high percentage error compared
to the first one. From the 95% confidence interval among the
experiments, it is reasonable to say that the SLAM system is
stable in volume measurement. Since the scale for the point
cloud is relative in monocular SLAM, this is the reason why
a Rubik’s Cube is needed for initialisation at the beginning.
The reason for the percentage error could be due to the
uncertainty in the SLAM system initialisation.

C. Food Volume Estimation During Food Consumption
In order to explore the feasibility of the proposed tech-

nique in continuous measurement of food consumption, a
sausage is used in an experiment. The volume of the sausage
is 81 cm3. As shown in Fig. 8, the sausage has been cut
and small sections have been taken away one by one to
simulate the process of eating until there is only one left
behind. To ensure the reliability of the experimental results,
the experiment has been repeated several times. The result
is shown in Fig.9. It can be seen that the estimated volume
decrease when the sausage is taken away. The percentage
errors of the volume measurement over the experiments are
23.9± 1.8%, 25.40± 2.2% and 19.39± 2.3% respectively.
The average percentage error is shown as 22.8%. Further
details on the results are also shown in Table I.

Fig. 8: Frames captured for food volume monitoring during
food consumption

V. CONCLUSION

This paper has introduced a new concept of using a
monocular vision based SLAM system to estimate food

Fig. 9: Experimental result of food volume estimation during
the food consumption (i.e. the sausage)
TABLE I: Percentage Error (%) for Volume Measurement

Food 1st experiment 2nd experiment 3rd experiment Average
Mini-cake (iPhone) 7.78±1.7% 19.67±1.9% 18.20±3.0% 15.21%

Mini-cake (Action Cam) 13.46±2.1% 22.67±2.0% 17.30±1.9% 17.81%
Sandwich (iPhone) 14.45±2.0% 6.37±1.7% 14.25±2.2% 11.69%

Sandwich (Action Cam) 14.73±1.7% 23.47±2.1% 19.50±3.0% 19.20%
Food consumption 1st experiment 2nd experiment 3rd experiment Average
Sausage (iPhone) 23.9±1.8% 25.40±2.2% 19.39±2.3% 22.8%

Sausage (Action Cam) 25.7±2.0% 31.6±1.5% 26.4±1.7% 27.90%
Mini-cake (iPhone) 18.31±1.6% 20.70±2.5% 14.39±2.2% 17.80%

Mini-cake (Action Cam) 20.42±2.4% 19.42±2.3% 16.33±2.5% 18.70%
Sandwich (iPhone) 17.19±1.9% 18.45±2.4% 13.32±2.2% 16.32%

Sandwich (Action Cam) 20.33±1.4% 23.53±2.5% 15.49±1.9% 19.70%

volume dynamically. The proposed technique shows the
feasibility and accuracy in continuous food consumption
measurement. With the use of the statistical outlier filter,
the point completion technique and the multiple convex hull
algorithm, the proposed technique can get a performance
with an overall accuracy of 83%.
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