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Abstract 28	

In the last decade, the study of fluid flow in porous media has developed considerably due to 29	

the combination of X-ray Micro Computed Tomography (micro-CT) and advances in 30	

computational methods for solving complex fluid flow equations directly or indirectly on 31	

reconstructed three-dimensional pore space images. In this study, we calculate porosity and 32	

single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations 33	

for 8 different porous media: beadpacks (with bead sizes 50µm and 350 µm), sandpacks 34	

(LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). 35	

Combining the observed porosity and calculated single phase permeability, we shed new light 36	

on the existence and size of the Representative Element of Volume (REV) capturing the 37	

different scales of heterogeneity from the pore-scale imaging. Our study applies the concept 38	

of the ‘Convex Hull’ to calculate the REV by considering the two main macroscopic 39	

petrophysical parameters, porosity and single phase permeability, simultaneously. The shape 40	

of the hull can be used to identify strong correlation between the parameters or greatly 41	

differing convergence rates. To further enhance computational efficiency we note that the 42	

area of the convex hull (for well-chosen parameters such as the log of the permeability and 43	

the porosity) decays exponentially with sub-sample size so that only a few small simulations 44	

are needed to determine the system size needed to calculate the parameters to high accuracy 45	

(small convex hull area).  Finally we propose using a characteristic length such as the pore 46	

size to choose an efficient absolute voxel size for the numerical rock.  47	
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1. Introduction 57	

The physics of fluid flow through complex porous media has important applications in 58	

petroleum and reservoir engineering, including the displacement of oil, gas and water in 59	

hydrocarbon reservoirs and is of particular interest to understand the trapping of CO2 for 60	

carbon storage applications (Fredrich, 1999; Andrew, Bijeljic, & Blunt, 2013; Shah, Yang, 61	

Crawshaw, Gharbi, & Boek, 2013).  In the past, many researchers have attempted to relate 62	

fluid transport properties such as permeability to the bulk porosity and specific surface area, 63	

but complexity arises in predicting permeability accurately (Bear, 1972; Walsh & Brace, 64	

1984; Mostaghimi, Blunt, & Branko, 2013). Fluid transport properties depend critically on 65	

the size, shape and connectivity of the pore space and geometry of the porous medium. 66	

However, there is no accurate formula which can correlate permeability with bulk porosity 67	

without ambiguity. This motivated research in pore-scale imaging and modelling to obtain 68	

detailed information about the geometry of complex porous media and modelling the fluid 69	

flow at the pore-scale using different numerical simulation methods to predict the 70	

permeability accurately (Blunt, Jackson, Piri, & Valvatne, 2002; Valvatne & Blunt, 2004; 71	

Dong & Blunt, 2009; Boek & Venturoli, 2010; Yang, Crawshaw, & Boek, 2013; Shah, 72	

Crawshaw, & Boek, 2016). Pore-scale imaging and modelling is developing quickly and has 73	

now become a routine service in the petroleum industry, principally to understand 74	

displacement processes and to predict single phase and relative permeability (Blunt, et al., 75	

2013). The fundamental problem in pore-scale imaging and modelling is how to represent 76	

and model the different range of scales encountered in porous media, starting from the 77	

unresolved sub-resolution micro-porosity. Bear [1972] has explained the concept of 78	

Representative Element of Volume (REV), qualitatively taking into consideration a 79	

macroscopic property, such as porosity. The REV is the minimum volume that can represent 80	

a particular macroscopic property of the sample.  Figure (1) shows a graph to define the REV, 81	

where ∆Ui is defined as a volume in a porous medium, and is considered to be much larger 82	

than a single pore or grain. ∆Uv is the volume of void space, and the fractional porosity is 83	

defined by ni, as the ratio of void space to volume. As shown in Figure (1), there are minimal 84	

fluctuations of porosity as a function of volume at large values of ∆Ui. As the volume 85	

decreases, fluctuations in the porosity increase, specifically as ∆Ui approaches the size of a 86	

single pore, which has a fractional porosity of 1. Therefore the REV is defined by the term 87	

∆U0, above which fluctuations of porosity are minimal, and below which fluctuations of 88	
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porosity are significant. The determination of the volume ∆Ui is related to the different length 89	

scales varying from pore-scale to core scale to continuum scale (Crawshaw & Boek, 2013). 90	

 91	

 92	

Figure 1 Schematic diagram showing the measured property varies with the sample volume and the domain of 93	

the Representative Element Volume (REV) (Crawshaw & Boek, 2013). 94	

Pore-scale techniques have to answer questions such as: “What is the actual size of an REV? 95	

Does the size of the REV vary for different rock types? Are the REVs similar or significantly 96	

different for different quantities at a given location? How do the transport and structural 97	

properties such as permeability and porosity vary with scale?” (Zhang, Zhang, Chen, & Soll, 98	

2000). The above listed questions were partly answered by Bear [1972], Bosl et al. [1998], 99	

Pan et al. [2001], Zhang et al. [2000], Keehm [2003], Peng et al. [2012], Peng et al. [2014] 100	

and Mostaghimi et al. [2013]. 101	

Two types of numerical method for assessing the size of an REV are commonly used. The 102	

first is the “deterministic REV”, in this scheme, a sub-sample centred within a larger domain 103	

is gradually expanded. When the variation of petrophysical properties with sample size 104	

becomes small enough, REV size is considered to have been reached. Zhang et al. (2000) 105	

used this approach to compare results obtained from crushed glass beads and sandstone, and 106	

found that the size of an REV varies spatially and depends on the quantity being represented. 107	

Keehm [2003] found that to predict the absolute and relative permeability of porous media, a 108	

minimum REV of size L = 20a is needed, where a is the mean pore size of the porous 109	
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medium using analysis of 2D thin sections. Mostaghimi et al. [2013] demonstrated that the 110	

REV for permeability is larger than for static properties, such as porosity and specific surface 111	

area. They also found that the REV for carbonate rocks appears to be larger than the image 112	

size considered. The alternative approach is the “statistical REV” in which a number of sub-113	

volumes at a given size are sampled over a larger domain. The width of the distribution of a 114	

given property decreases with increasing sub-sample sizes and can be used to define an REV 115	

below a certain threshold (Al-Raoush & Papadopoulos, 2010). However these previous 116	

studies only partly address issues regarding the concept of REV for pore-scale imaging and 117	

modelling and show its limitations.  In this study we will address the correlation of REV with 118	

pore size and introduce a method by which the REV can be established for multiple 119	

parameters, considering porosity and permeability as an example. 120	

We will now discuss the concepts of homogeneity and heterogeneity related to porous media 121	

studies. Homogeneity is defined qualitatively as the characteristic that a physical property has 122	

the same value in different elemental volumes regardless of their location (Olea, 1991). 123	

Therefore, the terms heterogeneity and homogeneity are dependent on the model or sample 124	

volume of the measured physical property (Nordahl & Ringrose, 2008).  In this study, we 125	

systematically investigate the relation between two important macroscopic properties, 126	

porosity and absolute permeability, using pore-scale imaging and modelling techniques, to 127	

predict the representative element volume (REV). We use the mathematical concept of the 128	

Convex Hull, CH to investigate the relation between porosity and permeability and examine 129	

the effects of rock sample heterogeneity and increasing sample size. The main aim is to 130	

explore this relation for 8 different types of porous materials, ranging from beadpacks to 131	

sandpacks to sandstones to carbonate rocks in terms of increasing heterogeneity and 132	

quantitatively determine the size of the REV for each. The approach could be extended to 133	

more complex flow calculations in porous media such as two-phase relative permeability and 134	

capillary pressure prediction.  135	

2. Pore-scale Imaging and Modelling 136	

The problem of REV determination in porous media can be quantitatively addressed using X-137	

ray micro computed tomography (micro-CT), which is a widely used 3D imaging technique 138	

to obtain 3D images of porous media (Zhang, Zhang, Chen, & Soll, 2000).  In addition, we 139	

use recent advances in computational methods for solving flow equations in complex 140	

geometries (Blunt, Jackson, Piri, & Valvatne, 2002; Blunt, et al., 2013; Boek & Venturoli, 141	
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2010; Yang & Boek, 2013).  Pore-scale images of the rocks can be obtained using micro-CT 142	

equipment using laboratory and synchrotron sources. Spanne et al. [1994] and Auzerais et al. 143	

[1996] used micro-CT to obtain 3D voxel data of sandstone at a voxel resolution of around 144	

7.5µm. Blunt et al. (2013) have obtained data for carbonate samples at different voxel 145	

resolutions ranging from 2.68µm to 13.7µm. The reconstructed pore geometries from micro-146	

CT have been used for the prediction of petrophysical properties including permeability, 147	

porosity and formation factor (Arns, Knackstedt, Pinczewski, & Martys, 2004; Knackstedt, et 148	

al., 2006; Shah, Crawshaw, & Boek, Micro-Computed Tomography Pore-scale Study of Flow 149	

in Porous Media:Effect of Voxel Resolution, 2016).  150	

 151	

In this study, we compute absolute permeability using the Lattice Boltzmann (LB) method. 152	

This model is particularly suited to direct numerical simulation on pore-space images because 153	

of its ability to handle complex boundaries accurately. Moreover, the LB method does not 154	

require extracting a simplified network of flow paths, as in network modelling (Zhang, 155	

Zhang, Chen, & Soll, 2000), and so is able to give accurate permeability results in highly 156	

heterogeneous media. The LB model describes the fluid as a velocity distribution of particle 157	

distribution function at each node. These undergo streaming and collision steps according to a 158	

discrete form of the Boltzmann equation, and can be shown to recover the incompressible 159	

Navier-Stokes equations (Chen, Wang, Shan, & Doolen, 1992). The single-phase D3Q19 160	

lattice Boltzmann (LB) model with a multiple-relaxation-time (MRT) operator is used in our 161	

code  (Yang, Crawshaw, & Boek, 2013).  162	

 163	

3. Methods and Techniques 164	

 165	

The detailed 3D micro-CT image acquisition procedure is presented by Shah et al. [2015]. 166	

Figure 2 shows 2D cross sections of 3D voxel data for 8 different porous materials, including 167	

beadpacks of two different bead sizes, two sandpacks, three sandstones and one carbonate. 168	

The 3D images for all the samples were subsequently segmented into binary images based on 169	

a 2D histogram segmentation analysis by using marker seeded watershed algorithm within 170	

the program Avizo Fire 8.0 (Visual Sciences Group, Burlington, MA, USA) (Shah, 171	

Crawshaw, & Boek, Micro-Computed Tomography Pore-scale Study of Flow in Porous 172	

Media:Effect of Voxel Resolution, 2016). 3D images of beadpacks, sandpacks, sandstones 173	
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and carbonate samples were first cropped into 3D cubic images. The exact image dimensions, 174	

properties and details are summarized in Table 1.  175	

 176	

177	

 178	

 179	

Figure 2 Two-dimensional cross sections of three dimensional micro-CT images of different samples. (a) 180	
Beadpack with grain size 50 µm. (b) Beadpack with grain size 350 µm. (c) LV60 sandpack (d) HST95 sandpack 181	
(e) Berea sandstone (f) Clashach sandstone (g) Doddington sandstone (h) Ketton carbonate. In all figures, the 182	
pore space is shown in dark.  183	

 184	

 185	

 186	
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 187	

Table 1: Summary of the rocks and images studied in this paper. Porosity and single phase permeability 188	
obtained from computation.  189	

Sample Source/ 
Scanner 

Image 
Size, 

Voxels 

Voxel 
Size 
(µm) 

Porosity† 
(%) 

Single Phase 
Permeability† 

(mD) 
Beadpack -50 µm Micro-CT 7003 4.21 28.5 1474 

Beadpack- 350 µma Synchrotron 7003 5.35 36.40 95400 

LV60 sandpackb Micro-CT 4003 7.24 30.55 11860 
HST95 sandpackb Micro-CT 4003 7.89 30.27 5235 

Berea sandstone Micro-CT 7003 4.52 9.52 58 

Clashach sandstone Micro-CT 7003 4.52 10.78 448 

Doddington sandstone Micro-CT 7003 4.52 16.35 2442 
Ketton carbonate Micro-CT 7003 4.52 13.04 5648 

 190	
† Computed from the destined voxels using Lattice Boltzmann code 191	
a Data obtained from Kamaljit Singh through personal communication 192	
b (Dong & Blunt, 2009) 193	
 194	

The properties predicted from the images depend on the segmented pore space adequately 195	

representing the voids in the rock sample. This becomes problematic when a significant 196	

fraction of the porosity contributing to flow is below the resolution of the micro-CT image, as 197	

can be the case for many carbonate rocks (Grey, Cen, Shah, Crawshaw and Boek 2016). In 198	

the Ketton carbonate used here, the segmented pore space image was well connected and 199	

micro-porous regions were assigned to the solid phase without compromising the subsequent 200	

flow simulations. 201	

 202	

The experimental (total) porosity and single-phase permeability were measured on each of 203	

the cylindrical core samples except beadpacks and sandpacks. The total porosity was 204	

measured using bulk volume measurements and single phase permeability was measured 205	

using the Darcy flow equation. Brine was injected at constant flow rate and the pressure drop 206	

across the length of the sample was monitored using a high precision pressure transducer. A 207	

flow cell was designed to accurately measure the single phase permeability of the core 208	

samples at three different flow rates (Gharbi & Blunt, 2012). Note that these measurements 209	

are for the whole sample volume and not only the scanned region.  The experimental porosity 210	

and single phase permeability of each sample are presented in Table 2.  211	
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 212	

 213	

 214	

Table 2: Experimental petrophysical properties of the rocks considered in the present study 215	
**Experimental porosity was measured on a packed column using bulk volume measurement and experimental 216	

brine permeability was measured on a packed column by injecting brine at a constant flowrate (Pentland, 2010). 217	

 218	

 219	

The pore geometries of the porous samples are partitioned into several sub-domains which 220	

are of the same size (Figure 3). For example, we consider 3D micro-CT data of a Doddington 221	

sandstone sample consisting of 7003 voxels with 4.5µm voxel resolution representing a 222	

physical area of 3.15 mm. We then perform this subsampling procedure with each of the 6 223	

sub-domain sizes given in Table 3. The division of the geometry into different voxels or 224	

image sizes is done in x-, y- and z- directions. The statistical distribution of parameters 225	

obtained from individual subsamples allows for the characterisation of the sample REV. 226	

 227	

 228	
Figure 3 An example of domain partition. The scanned sample was divided into n3 sub-domains which have the 229	

same size. 230	

Samples 
Length 

 
[mm] 

Diameter 
 

[mm] 

Experimental 
Porosity 

[%] 

Experimental 
Permeability 

[mD] 
LV60 sandpack** - - 37.00 ±0.2 32000 ±300 

HST95 sandpack** - - 33.4 7900 
Berea sandstone 15.2 5 11.17 ±0.4 17.5 ±0.7 

Clashach sandstone 11.6 5 11.02 ±0.2 365 ±116 

Doddington sandstone 17.8 6 18.41 ±0.5 2362 ±221 

Ketton carbonate 15.1 5 19.02 ±0.1 4271 ±300 
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 231	

For the LB flow simulation, we impose a body-force throughout the domain or sub-domain 232	

and periodic boundary conditions at the inlet and outlet faces, iterating the flow-field until it 233	

reaches steady-state. Then, the single phase permeability is obtained from Darcy’s law. For 234	

smaller sub-domains, there is no guarantee of convergence of the velocity field to steady-235	

state. This is either because there is no flow path percolating between flow faces, or because 236	

there is too little solid phase. In these cases, the simulation continues for up to 50,000 LB 237	

time-steps. The sub-volume is discounted if the velocity field does not converge by this limit. 238	

The calculation was run on a Tesla K20 GPU with a 5GB memory but in cases where the 239	

sub-volume calculation required more memory than this, the calculation was deferred to 240	

CPUs. The calculated LB single phase permeability varies significantly for sub-domains 241	

therefore we normalise the permeability independently for each porous sample by k! =242	

!!"#!!"#$%&
!!"!#$

 where ksub-domain is the calculated LB permeability of the particular single sub-243	

domain size [mD], ktotal is the calculated LB permeability of the whole domain (7003 voxel) 244	

[mD] and k' is the normalised dimensionless permeability.  245	

Table 3 Division of sub-domain voxel size from the whole domain of 7003 with calculated linear dimensions 246	

from the voxel resolution for Doddington sandstone sample. 247	

 248	

Doddington 

sandstone 

Resolution – 4.5µm 

Sub-domain 

7003 voxels 

Linear dimension 

[µm] 

1 50 x 50 x 50 225 

2 100 x 100 x 100 450 

3 150 x 150 x 150 650 

4 200 x 200 x 200 900 

5 250 x 250 x 250 1125 

6 300 x 300 x 300 1350 

7 350 x 350 x 350 1575 

 249	

 250	

 251	

 252	

 253	
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 254	

4. Results and Discussion 255	

 256	

The porosity and single phase permeability for each sub-domain is calculated and used to 257	

obtain the ‘Convex Hull’ for that domain size. The concept of the convex hull was explained 258	

by Andrew (1979). Let us imagine the points S as being pegs; the convex hull of S is the 259	

shape of a rubber band stretched around the pegs. The formal way to define the convex hull 260	

of S is the smallest convex polygon that contains all the points of S as shown in figure 4. 261	

 262	

 263	
Figure 4.  Example explaining the definition of convex hull of set of points S. 264	

 265	

The process of obtaining a convex hull for each sub-domain was repeated for each of the 7 266	

samples. Figure (5) shows the calculated porosity and single-phase permeability together with 267	

the corresponding convex hulls for Doddington sandstone, for different sub-domains varying 268	

from 503 to 3503 voxels.  Next we calculate the area of the resulting convex hulls and plot 269	

these against the domain size in voxels, shown in Figure 6 for all the samples. 270	
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 271	
 272	
Figure 5. The concept of convex hull applied to the plotted values of porosity and single-phase permeability 273	
calculated using LB method for different divided sub-domains varying from 503 to 3503 voxels. The data is 274	
shown for a Doddington sandstone sample. 275	

 276	

 277	
 278	
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 279	
 280	

Figure 6. The calculated area of convex hull for domain sizes ranging from 503 to 3503 voxels is shown for 281	

beadpack, sandpacks and carbonate in figure (a), for sandstones in figure (b). The REV size for each sample can 282	
be determined by choosing an acceptable area for the convex hull, for example 0.5 will be used here, and 283	

reading the corresponding system size. 284	

From Figures 5 and 6, we observe that the area of the convex hull systematically decreases as 285	

the size of the sub-domain increases from 503 to 3503 voxels for each of the rock types. The 286	

REV is then estimated by choosing a value of the area of the convex hull area below which 287	

the variations of both parameters are acceptable, for example 0.5. We note that one limitation 288	

of this approach is that the hull area cannot be simply related to statistical measures such as 289	

the variance of the individual parameters, so the choice of threshold is somewhat arbitrary. 290	

From figures 6 (a) and (b) we can then determine the REV size for beadpacks, sandpacks, 291	

sandstones and carbonate rock types.  The beadpacks and the two sandpacks samples, LV60 292	

and HST95, converge faster than sandstones and carbonate needs only a sub-domain greater 293	

than 503 voxels (or 250 µm in linear dimensions). Using the same hull area threshold of 0.5, 294	

the REV size for Berea and Clashach sandstone comes to 1503 voxels (750µm), while for 295	

Doddington it is somewhat larger, around 2003 voxels (904µm). The REV size for Ketton is 296	

greater than 1503 voxels (750µm). 297	

 298	
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 299	

 300	

Figure 7. Standard deviation values for the calculated convex hull area for each rock sample as a function of 301	

measure of heterogeneity. Black indicates beadpacks, green indicates sandpacks, blue indicates sandstones and 302	

red indicate carbonate samples. 303	

 304	

Another quantitative measure of heterogeneity is defined here as the standard deviation of the 305	

calculated area of the convex polygon for the entire sub-divided domain varying from 503 to 306	

3503 voxels. Figure 7 shows this measure of heterogeneity for the entire library of rocks used 307	

in this study. Comparing the standard deviations, to understand the heterogeneity of the rock 308	

across the whole domain of 7003 voxels, we observe that the calculated values of the standard 309	

deviation are very small and constant for beadpacks and two sandpacks, LV60 and HST 95. 310	

For beadpacks and sandpacks, the calculated standard deviations vary within a small range, 311	

whereas sandstone and carbonate rocks show a significant variation in the calculated standard 312	

deviation for different rock samples indicating the heterogeneity across the whole domain of 313	

7003 voxels.  314	

The REV sizes determined above suggest that we can capture a typical length scale of 315	

heterogeneity. However, this estimated REV size, although useful to estimate the size of 316	

simulation required for parameter estimation, does not allow a satisfactory ranking of sample 317	

heterogeneity. To illustrate this issue, consider two bead packs, of different grain size that are 318	
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otherwise identical, as shown in Figure 8. The permeability/porosity convex hull areas of the 319	

two bead packs, shown in Figure 9, are very different, but intuitively both are equally 320	

homogeneous. Hence, there is a need to introduce a new scaling factor for sub-domain or 321	

voxel size to optimize the convex hull process to obtain a more satisfying description of the 322	

heterogeneity. 323	

 324	
Figure 8. Binarized two-dimensional cross-sections of the three dimensional data set of Bead packs with (a) 325	

Grain size = 350µm and (b) Grain size = 50µm respectively. White colour represents the grain space and black 326	

colour indicates the pore space 327	

 328	

Figure 9.  Calculated area of convex hull for voxel sizes ranging from 503 to 3503 is shown for two bead packs 329	

with grain sizes 350µm and 50µm.  330	
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The origin of the characteristic length is open to choice and the grain size is commonly used 331	

in the literature (Kameda & Dvorkin, 2004). However, while this may be appropriate for 332	

estimation of mechanical properties, the average pore diameter is a more natural choice for 333	

fluid flow parameters. The average pore diameter for all the samples was estimated using the 334	

maximum ball algorithm approach where spheres are grown in the pore space of segmented 335	

3D micro-CT data, centred on each pore voxel (Dong & Blunt, 2009). Table 4 shows the 336	

calculated mean pore size for the library of rock images used in this study.  337	

 Table 4 Mean pore size for all samples estimated by the maximum ball algorithm. 338	

Sample Mean Pore Size (µm) 

Beadpack – 50 µm 20.02 

Beadpack – 350 µm 56.44 

LV60 sandpack 47.5 

HST95 sandpack 34.76 

Berea sandstone 20.98 

Clashach sandstone 34.92 

Doddington sandstone 37.18 

Ketton carbonate 57.18 

 339	

We have scaled the sub-domain sizes for all the samples by the corresponding mean pore size 340	

and Figure 10 shows the convex hull areas plotted against the resulting dimensionless length. 341	

The scaling resolves several issues in the comparison of relative heterogeneity.  In the earlier 342	

analysis Ketton, a well-sorted oolitic limestone with almost spherical grains, appeared more 343	

heterogeneous than the sandstones, whereas Figure 10 shows that this was mostly due to the 344	

large pore size of Ketton which now falls close to the group of sandpacks.  345	

 346	

Figure 10 also shows that simply relating the REV to pore size is insufficient as the data do 347	

not collapse onto a master curve now system size is scaled by pore size.  Keeping our choice 348	

of acceptable hull area at 0.5, only Clashach and Doddington fall close to the L = 20a 349	

relationship proposed by Keehm (Keehm, 2003). The beadpacks and sandpacks, on the other 350	

hand, reach the threshold around 10a and Ketton carbonate around 12a. The more complex 351	

Berea sandstone requires around 35a. 352	

 353	
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 354	

  355	

Figure 10. Porosity/permeability convex area against dimensionless for the entire rock library. 356	

In the examples above, the permeability ranges over several orders of magnitude.  357	

Consequently the variance to small permeability has little impact on the area of the convex 358	

hull, as can be seen in Figure 5 where the shape of the hull becomes rather linear as the 359	

system size is increased. A more evenly weighted convex hull can be made when the log of 360	

the permeability is taken first for each of the sub-sampled system sizes and then normalised 361	

with respect to the log of the permeability calculated from the largest system size.  This is 362	

shown, again for the Doddington sandstone, in Figure 11 where the hull retains its two- 363	

dimensional shape at intermediate system sizes.  364	

 365	

Note that there is evidence for a correlation between permeability and porosity in figure 11, 366	

as the hull for the 50µm bead pack in particular tends towards a line with a finite slope at 367	

large system size. The use of such correlations, for example the Carman-Kozeny equation, for 368	

estimating the permeability of complex rocks from the correlation between permeability and 369	

porosity has been discussed in the literature, see for example Mostaghimi et al. (2013). The 370	

main issue being that the Kozeny constant can take a wide range of values depending on the 371	
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rock structure. Here the main emphasis is on estimating the REV rather than comparing 372	

methods for estimating the permeability. In this case the porosity and permeability converge 373	

at a similar rate, as the hull would tend towards either a vertical or horizontal line if one 374	

variable reached a stationary value before the other as the system size was increased. This 375	

implies that the REV for permeability and porosity are similar in the Beadpack-50µm sample 376	

and there is strong correlation between porosity and permeability. However this behaviour 377	

was not universal and a non-linear hull is persistent, particularly for the sandpacks 378	

The convex hull approach would not be appropriate for rocks in which the parameters 379	

converged to their REV values at very different rates.  In this case one parameter would come 380	

to dominate the variation and the hull would appear as a horizontal or vertical line, however 381	

this was not the case for any of the examples shown here. 382	



19	
	

383	

 384	

 385	

Figure 11. Convex hull of Log10 (K) against porosity. (a) Beadpack 50 µm. (b) Beadpack 350 µm. (c) HST95 386	

sandpack (d) LV60 sandpack (e) Berea sandstone (f) Clashach sandstone (g) Doddington sandstone (h) Ketton 387	

carbonate. 388	

 389	

Interestingly, plotting the convex hull area of the log(k), porosity space against the 390	

dimensionless length, improves the exponential decay fit as is shown in Figure 12 (a) for 391	
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beadpacks, sandpacks, carbonate and Figure 12 (b) for sandstones rocks respectively. They 392	

are all linear on a log (area of convex hull) – linear (length) graph. This suggest a further gain 393	

in computational efficiency to be made by only computing the parameters for small system 394	

sizes and using the resulting exponential to extrapolate REV. Table 5 shows the predicted 395	

exponential decay constant and the pre-factor predicted from the exponential decay fit to 396	

obtain quantitative data for all the rocks studied using 397	

 398	

                                                          𝐴 = 𝑎𝑒!", (k < 0)                                                    (1) 399	

where,  400	

A = Convex hull area 401	

a = Exponential pre-factor constant 402	

k = Exponential decay constant 403	

l = dimensionless length 404	

 405	

 406	
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 407	
Figure 12. Logarithmic area of convex hull showing exponential decay (dash line, black colour) when plotted 408	

against dimensionless length. (a) Beadpacks, sandpacks and carbonate samples. (b) Sandstone samples.  409	

 410	

Table 5 Predicted exponential pre-factor and decay constant for the different rocks studied. 411	

Sample 
Exponential 

pre-factor constant 

Exponential 

decay constant 
R2 

Beadpack-50µm 0.0752 -0.07 0.8966 

Beadpack-350µm 5.164 -0.329 0.9512 

LV60 sandpack 0.3725 -0.207 0.9575 

HST95 sandpack 0.128 -0.098 0.9656 

Berea sandstone 1.95 -0.081 0.968 

Clashach sandstone 4.6473 -0.151 0.9721 

Doddington sandstone 8.5826 -0.174 0.984 

Ketton carbonate 5.8244 -0.314 0.9754 

 412	

The values of the exponential pre-factor and decay constant in Table 4 show a systematic 413	

trend for the different rocks studied. The decay constant for Berea is -0.08 and about -0.17 for 414	

Doddington sandstone. This means that the decay is slower for a heterogenous rock (Berea) 415	
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than for a relatively homogenous rock (Doddington and Clashach). This in turn suggests that 416	

a critical value of the REV is reached more quickly (at smaller dimensionless length) for 417	

homogenous than for more heterogenous sandstones. This is what we expect qualitatively 418	

(see Figure 10), but now we can quantify this for different rocks by providing the value of the 419	

decay exponent and the pre-factor from the exponential fit. 420	

5. Conclusions 421	

We quantified the degree of heterogeneity for different rock images by sampling the porosity 422	

and permeability at different sub-volume sizes and using the convex hull concept. In the past, 423	

the REV size was determined from individual macroscopic properties such as porosity, 424	

permeability and specific surface area, but here we are computing an REV size based on two 425	

parameters combined. By scaling the volume dimension with an average pore-diameter, a 426	

quantitative measure of REV size was obtained from the convergence behaviour of the 427	

convex hull area as the volume considered increased. It was found that this convergence 428	

behaviour can be extrapolated from a few data points from small sub-volume sizes on a 429	

logarithmic scale, potentially reducing the computational workload required in REV 430	

determination with this method. The convex hull technique can in principle be extended to 431	

include further macroscopic properties, and this will be investigated in future studies. 432	
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