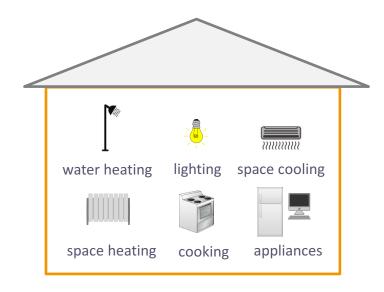

Agent-Based Model for Energy-Related Investment Decisions in the Residential Building Sector

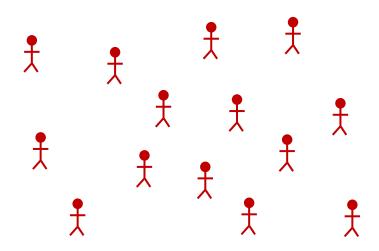
MUSE - ModUlar energy systems Simulation Environment

<u>Julia Sachs</u>, Sara Giarola, Adam Hawkes

Sustainable Gas Institute, Imperial College London

12.7.2017





Building Module overview

Residential and Commercial Building Sector Module (RCBSM)

- Demand sector
- Focus on six different end-uses
 - Water heating, lighting, space cooling, space heating, cooking, appliances (computer, fridge, freezer, washing machine,...)
- Investigation of people's behaviour in making investment decisions -> Agent-based modelling (ABM)
- 48 technologies are considered
- 30 Timeslices
 - Winter/summer/autum+spring
 - Weekend/weekday
 - Morning/afternoon/early peak/late peak/evening/night

Building Module overview

Exogenous Inputs:

- Macroeconomic drivers
- Assumptions on policies
- Operational constraints
 /cost/efficiency/existing
 stock/retirement profile
 by asset type
- Emissions
- Resources

RCBSM

Investment decisions

Determination of fuel consumption

Demand projections for end-uses

Specific Outputs:

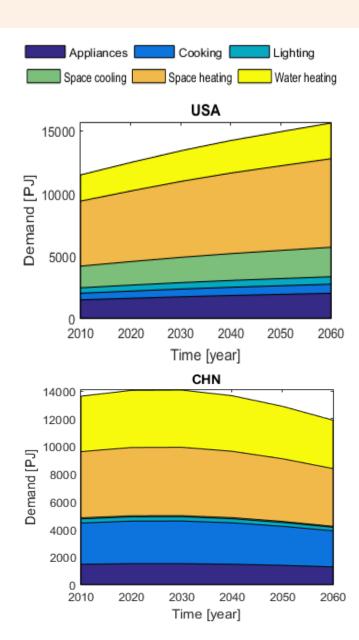
- Aggregate Costs (CAPEX, OPEX, NPV,..)
- Production by asset type
- Emissions by asset type
- Capacity by asset type
- Consumption by asset type

MCA

To RCBSM:

- Supply curve primary fuels
- Carbon price

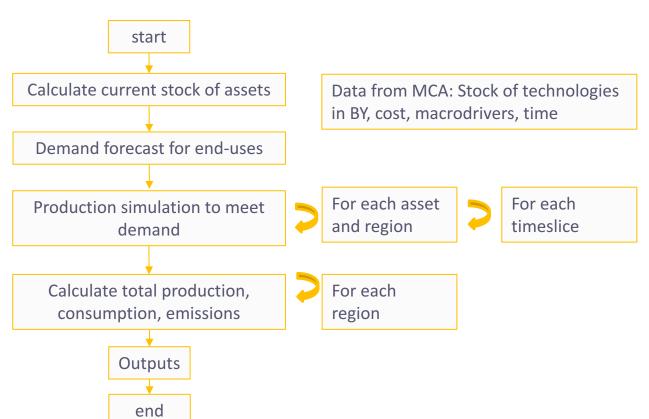
From RCBSM:


- Demand for fuels
- Emissions

Regression of end-use demand

Demand projections

- IEA balances for residential and commercial sector
- Definition of energy share of different end uses by fuel type
- Calculation of correlation between past demand and macrodrivers (GDP_cap, GDP_hh)
- Determine parameters a, b, and c for logistic function $Demand = \frac{a}{1 + be^{c * GDP}}$
- Demand projections over time horizon for different end-uses
- Not dependent on efficiency of technologies
- Different trends for regions can be observed


Determination of fuel consumption

Imperial College London

Demand projections

Fuel Consumption

Stock of Technologies in base year (BY)

- IEA balances (CHP, auto/main heat producer, commercial, residential)
- Platts for CHP, EurObservER heat pumps, Euroheat
 & Power district heating

Aggregation of data to feed back to MCA

Building Model overview

Imperial College London

Demand projections

Fuel Consumption

Investement decision

48 Technologies with different characteristics

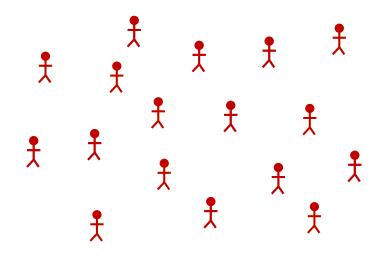
- Cooking facility
- Boiler
- District Heating + source of heat
- Combined heat power (CHP)
- Micro CHP
- Water heater/Stand-alone heaters
- Heat Pumps (Air source, Ground source)
- Air conditioner
- Appliances
- Light bulbs

- Coal
- Gas
- Biomass
- Kerosene
- Electricity
- Solar

- Conventional
- Advanced
- Energy saving

Different objectives and decision processes for investments in energy technologies

- Economic criteria
 - Capital cost
 - Equivalent annual cost (EAC)
 - Net present value (NPV)
 - Operation cost
 - Payback time
- Environmental criteria
 - Energy consumption
 - Emissions
- Emotional criteria
 - Comfort


Agent-based approach

Demand projections

Fuel Consumption

Investement decision

- Definition of multiple agents to represent population
- Characterization of individual agents
- Macro system characteristics results from simulation of all agents and individual behaviour
- Each agent has different attributes (budget, search strategy, decision method, location, retrofit, new...)
- Change of agents to endogenous factors (cost change, policies,..)
- Determination of investment decision based on characteristics

$$A = \{Obj, SP, DS, TP, PP\}$$

- *Obj* objective
- SP search space
- *DS* decision strategy
- *TP* type
- PP percentage of population

Demand projections

Fuel Consumption

Investement decision

Attributes of Agents $A = \{Obj, SP, DS, TP, PP\}$

Search Space *SP*

- Find all available alternatives
- Find same type or fuel
- Find popular alternatives (society, past decisions, peer group, etc.)
- Find mature alternatives

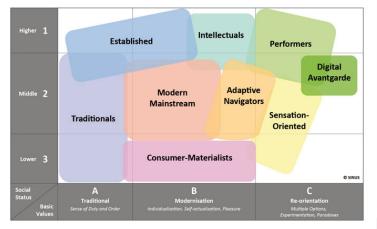
Objective(s)
Obj

- Economic (capital, payback, NPV, etc.)
- Environmental impact (energy consumption, CO2, etc.)
- Comfort

Decision Strategy *DS*

- One objective
- Multiple objectives
 - Weighted sum $\min \sum_{i=1}^{3} w_i obj_i$
 - Epsilon-constraint $\min obj_1$ $obj_2 \le \varepsilon_2 \quad obj_3 \le \varepsilon_3$
 - Lexicographic strategy

1)
$$obj_1^* = \min obj_1$$
 2) $\min obj_2$
 $obj_1 \le obj_1^* \delta_1$



Demand projections

Fuel Consumption

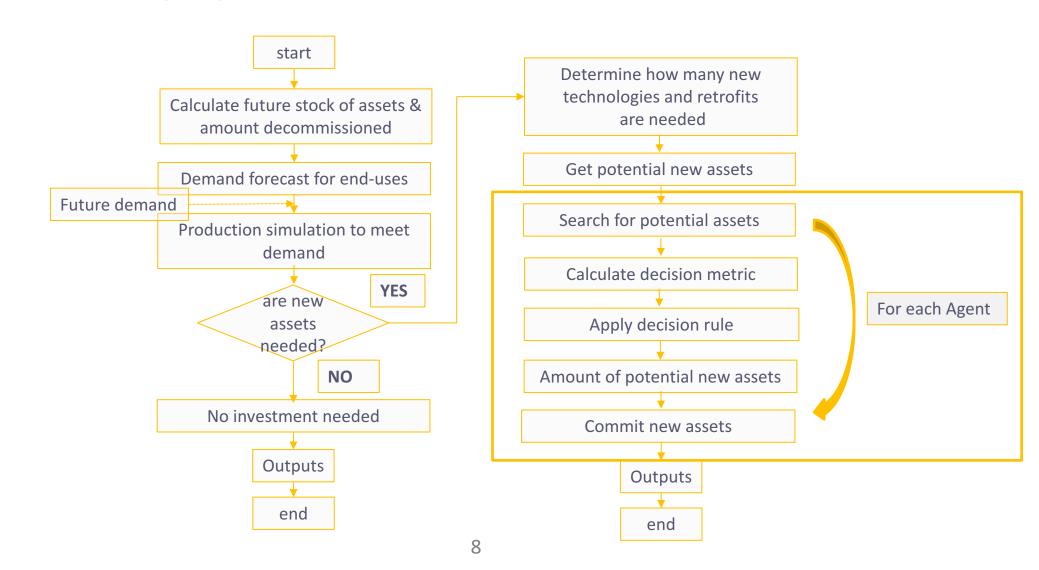
Investement decision

Sinus-Meta-Milieus® in established markets

- Groups population according to their social status and basic values
- USA shows a wide span between different groups
- Definition of 6 agents to guarantee simplicity

1		,		Obj3	SP	DS	TP
Traditional	20%	Capital Cost	-	-	Type & Maturity	Single obj.	Retrofit
Partially Modern	15%	NPV	-	-	Туре	Single obj.	Retrofit
Modern Middle America	40%	NPV	Emissions	Capital Cost	Fuel	Weighted sum	Retrofit
Performers	25%	Emission	Payback Time	Efficiency	All	Epsilon-con.	Retrofit
Traditional	40%	Capital Cost	Efficiency	Operation Cost	Maturity	Epsilon-con.	New
Modern	60%	Emissions	Payback Time	Efficiency	All	Weighted sum	New

Challenge: Adequate definition of agents on a global scale


Determination of investment

Demand projections

Fuel Consumption

Investement decision

Agent-based method (ABM)

Case Study

Imperial College London

Demand projections

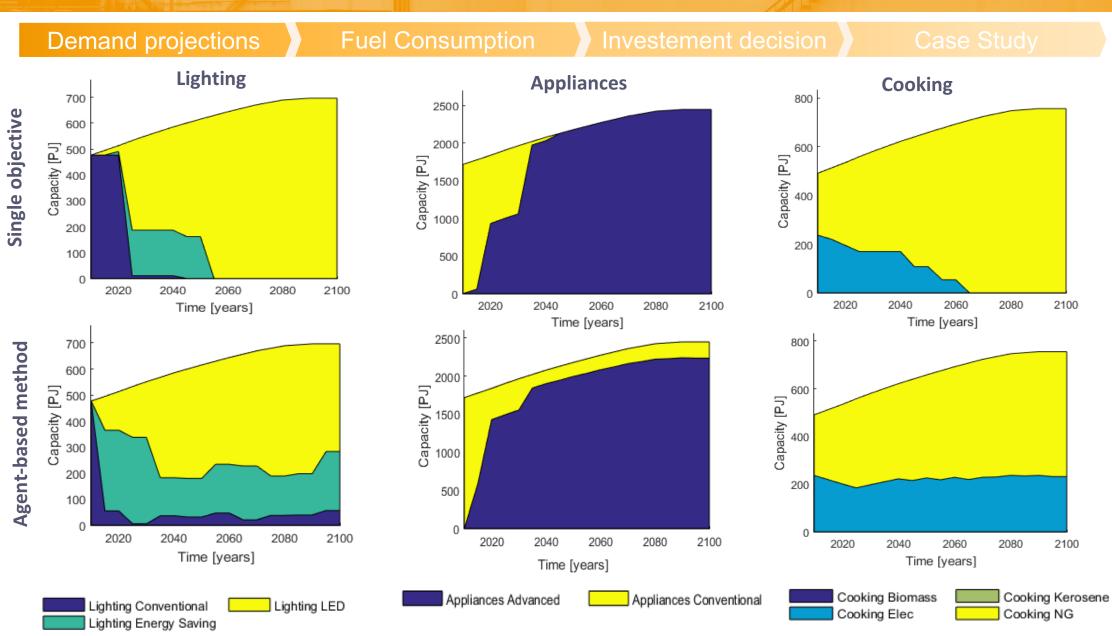
Fuel Consumption

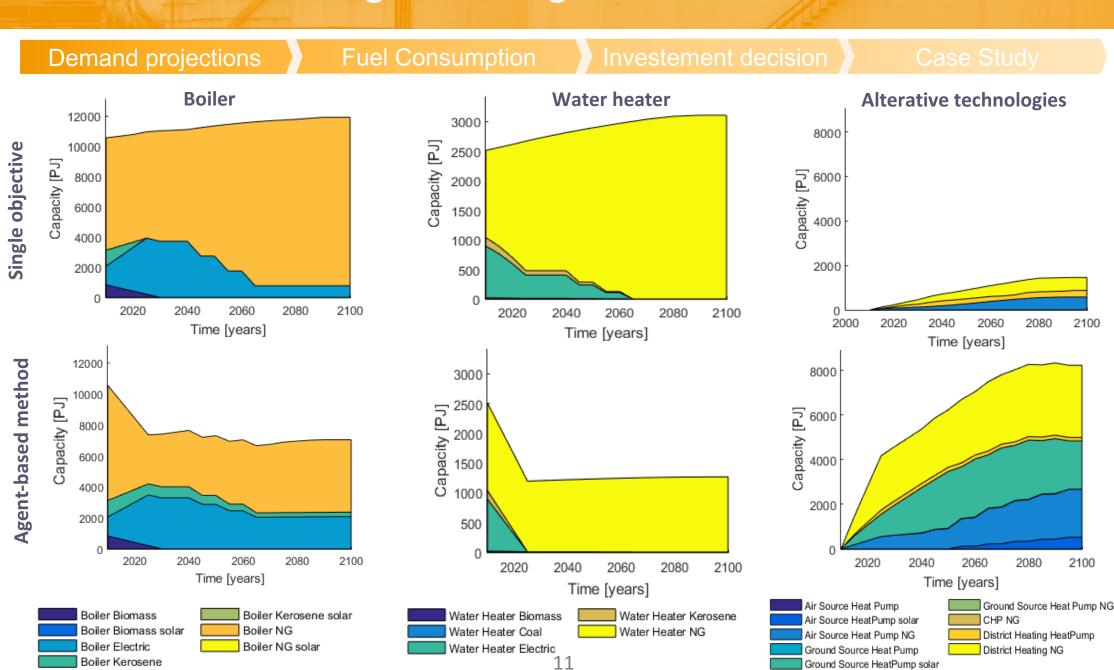
Investement decision

Case Study

Aims

- Illustrate functionality of ABM
- Highlight benefits and suitability of ABM for RCBSM
- Comparison of agent-based method to single-objective -> Partially modern agent: NPV
- Determine diffusion of technologies
 between 2010 2100 in the USA


Assumptions


- Changes in cost over time are not considered
- Macrodrivers SSP2 by IIASA
- Capacity addition limits for singleobjective case:
 - 10% growth
 - maximum addition of 20% of installed capacity
 - total capacity of 120% of the installed technology for one enduse
- Limited foresight of 5 years

Diffusion of appliances and lighting

Imperial College London

SUSTAINABLE GAS INSTITUTE

Conclusion and Challenges

Demand projections

Fuel Consumption

Investement decision

Case Study

- ABM presents effective framework for the determination of energy-related investment decisions in the residential building sector
- ABM yields a plausible scenario for the diffusion of technologies
 - Gain in market share of technologies with low lifetime cost
 - Upcoming of new efficient technologies
 - Continuous investment of people in cheap technologies
- Single-objective method highly dependent on capacity constraints whereas ABM reduced sensitivity of results towards changes in parameters
- ABM enables the inclusion of a variety of different objectives and investment methods to capture the diversity in the behaviour of a population
- Captures several aspects of the human behaviour: information gathering, analysis strategies, decision making

Conclusion and Challenges

Imperial College London

Demand projections

Fuel Consumption

Investement decision

Case Study

Agent Specification

The definition of the agents still requires a lot of investigation and study of empirical data to be able to accurately define representative decision-makers

Agent Interaction

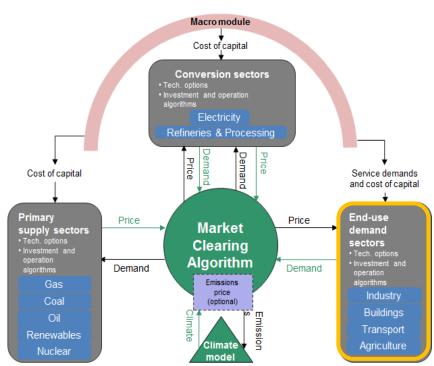
Interactions between agents are difficult to be modelled for the simulation. Possible change in agent attributes and decision strategy.

Current Stock of Technologies

Data is needed to give an accurate representation of the technologies currently available in households on a global scale.

The cultural difference between countries need to be considered.

The suitability of a technology for a certain country need to be identified.


Thank you for your attention

Agent-Based Model for Energy-Related Investment Decisions in the Residential Building Sector

MUSE - ModUlar energy systems Simulation Environment

Julia Sachs, Sara Giarola, Adam Hawkes Sustainable Gas Institute, Imperial College London

12.7.2017

Imperial College London

