
1 

 

Combining Densification and Coarsening in a Cellular Automata-Monte-Carlo 

Simulation of Sintering: Methodology and Calibration 

Xin Wang and Alan Atkinson 

Department of Materials, Imperial College London SW7 2BP, UK 

Abstract 

A hybrid Cellular Automata-Monte Carlo (CA-MC) approach is developed to simulate the 

sintering of particulate materials. The approach embodies a new, and physically realistic, way 

of simulating densification by grain boundary diffusion and collapse that takes into account the 

stresses arising from interactions with neighbouring particles (grains) by minimising the stored 

energy and energy dissipation rate using the variational principle. The parameters in the CA-

MC simulations are calibrated in terms of measurable physical quantities by simulating the 

sintering of two identical contacting spheres, for which analytical solutions are well known and 

widely accepted. The use of the model is illustrated by simulating the densification of a 

randomly packed assembly of spherical particles.  This demonstrates that the interactions 

between particles significantly inhibits shrinkage compared with that of two isolated spheres. 
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1 Introduction 

Sintering of assemblies of particulates (such as powder compacts) involves both coarsening 

and densification driven by the excess energy of solid/pore interfaces.  Surface diffusion, from 

positions of high curvature to positions of low curvature, leads to coarsening without 

densification. In crystalline materials densification is caused by diffusion from grain 

boundaries to positions of low curvature and subsequent collapse (annihilation of vacancies) at 

the grain boundary bringing the grain centres closer together. Theoretical modelling plays an 

important role in improving understanding of the sintering process. Originally, sintering theory 

concentrated on simple two-sphere models [1-5] with one neck formed between two identical 

spherical particles. Despite the simplification, these models were successful in providing 
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fundamental understanding about the sintering driving force and the transport processes 

controlling the kinetics of neck growth and shrinkage.  

The initial morphology and topological features of real microstructures, and their evolution 

during sintering are much more complicated than is assumed in most simulation methods 

described in the literature. For example, it has been observed experimentally [6] that the faceted 

surfaces of particles can lead to neck growth kinetics that are significantly different from the 

predictions of classic continuum theory (which is based on idealised spherical particles). 

Therefore there is a clear need to include the evolution of more realistic microstructural features 

during the simulation of sintering [7].  

Although useful for fundamental insight, two-sphere models cannot describe the macroscopic 

behaviour of a typical powder compact, in which multi-particle interaction occurs, involving 

thousands to millions of particles having different shapes, sizes and arrangements. To try and 

tackle this, micromechanical models [5, 8, 9] based on periodic unit cells were developed, 

which described the macroscopic viscous behaviour of a powder compact based on information 

such as starting particle size and/or pore size, particle coordination and fundamental parameters 

such as diffusion coefficients for different matter transport pathways. However constitutive 

parameters obtained in these models are rather approximate as they are obtained from analytical 

solutions for highly simplified grain and pore structures (mostly spherical or cylindrical) [7]. 

More recently the discrete element method (DEM) has been developed to take multiple 

particle-particle interactions into account. This approach has been used particularly in 

modelling constrained sintering [10-15]. It uses the analytical model for sintering of a pair of 

spherical particles to calculate the forces acting on any given pair in the assembly of particles 

and then computes their consequent rigid motion [16]. A key feature of the DEM method is 

that it models the response of typically tens of thousands of particles and is therefore well-

suited to simulating semi-macroscopic behaviour.  It has been successfully applied to simulate 

the development of anisotropic microstructure during sinter forging [14], shape distortion and 

delamination during constrained sintering of ceramic strips [17] and defect evolution (e.g. 

cracks) in sintering [12]. However, the DEM method requires that the particles are initially 

spherical and that densification can be simulated by the interpenetration of the initial spheres 

and described quantitatively by the two-sphere sintering model.  Consequently, the initial 

spherical solid portions that have not overlapped during densification are retained in the 

evolving microstructure. Hence the approach is suitable for simulating only the early and 

intermediate stages of sintering. Particle coarsening and shape changes of solid surfaces and 
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pores, which are extremely important in understanding the detailed microstructure 

development, and sintering in the later stages, are not included.  

The phase field method is capable of modelling real complicated microstructural changes for a 

wide variety of material processes [18-20]. However a realistic phase field model of sintering 

including densification is yet to be developed. The obstacle hindering the phase field approach 

to sintering is associated with the difficulty in treating the particle rigid body motions in an 

effective way consistent with phase field formalism [20, 21]. 

Cellular automata (CA) [22-24] and Monte-Carlo (MC) [7, 25-32] methods can be used to 

model evolution of any complicated microstructure without prohibitive computation cost. In 

these methods space is discretised into cells (or voxels in 3 dimension). The state of any given 

cell is allowed to change with advancing time (e.g. from one grain orientation to that of a 

neighbouring grain if simulating grain growth) determined by simple switching rules. This 

mimics what happens in reality on an atomistic level and therefore reflects the fundamental 

energy driving forces and kinetic mechanisms underpinning the microstructure changes. One 

major advantage of this approach is that both CA and MC have the capability of modelling 

multiple processes acting simultaneously. For example curvature-driven grain growth and 

coarsening by surface transport acting in parallel can be taken into account in a CA and MC 

model [30, 32, 33]. 

Previously we have used the CA approach in simulating the evolution of the 2D microstructure 

of materials [23] and the 3D microstructure degradation of nickel/zirconia cermet fuel cell 

electrodes [22] by evaporation-condensation and grain growth.  The CA models have also been 

shown to reproduce well known phenomena such as wetting, grooving and particle coarsening. 

Quantitative relationships have been established in those studies between modelling parameters 

and wetting angle and grain boundary groove angle [23].  

However, the potential benefits of CA and MC methods have not yet been fully explored or 

exploited in sintering. In particular, the process of grain boundary diffusion and resulting grain 

boundary collapse that leads to densification has not been implemented in the CA-MC 

approach.  This, and calibration of the model parameters in terms of real physical quantities, 

are necessary to simulate microstructure evolution during sintering of particle assemblies. 

In this paper, we first extend our CA-MC simulation approach to matter transport in a sintering 

body by surface diffusion. We then develop a physically realistic CA-MC methodology to deal 

with grain boundary diffusion and collapse (which is responsible for densification) that takes 
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into account the effect of shrinkage mismatch, among different neck-connected particle pairs, 

on the rigid body motion of particles using the variational principle. To the best of our 

knowledge, this is the first time that a sintering model can not only account for multiple mass 

transport mechanisms and deal with real microstructure without simplification, but also treat 

grain boundary collapse appropriately. The simulations of individual processes (corresponding 

to different mass transport mechanisms) are calibrated against classical continuum theories 

using the well-studied two-sphere case. This allows us to establish the quantitative relationship 

between the CA-MC model parameters and fundamental physical parameters such as surface 

and grain boundary diffusion coefficients. Finally, we illustrate the use of the methodology by 

applying it to the sintering of a randomly packed assembly of spherical particles. 

 

2 Methodology 

Glossary of symbols 

Agb     grain boundary area 

b        grain boundary width. 

C          normalising parameter describing the interaction energy between two filled cells  

𝐶𝑚𝑖𝑠
𝑖𝑗

   mismatch coefficient between the cell cij and the target cell cx. 

Dij      inter-particle distance between particle i and j  

δDij,   change in inter-particle distance  

Dg      grain size 

Ds      surface diffusivity 

DB     grain boundary diffusion coefficient 

Ea        activation energy  

G       total free energy 

K       time constant for grain growth  

Lij     circumference length of the grain boundary between particle i and j 

n       the number (index) of a given time step in the simulation 

Nmv    number of matter voxel moving out of a given grain boundary area in a given time step 

Ntp     total number of triple point (TP) vacant voxels around a given neck between two 

particles.   

𝑁𝑖
𝐶𝑂   the number of particles which are in contact with particle i 

𝑝th    threshold probability for state switch of a triple point voxel, fixed to be 0.1 in this paper 
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p       probability of state switch 

Pc      capillary pressure 

ra      random number generated by computer 

rgb     equivalent radius of a given grain boundary 

rc       radius of curvature 

T        absolute temperature.   

Δtgb    real time length for each time step in the simulation for GB diffusion and collapse 

Δtsd     real time length for each time step in the simulation for surface diffusion 

Uf       energy “imbalance” of a cell sitting on a flat interface 

Ux       energy imbalance of an interface cell under consideration 

∆𝑢𝑖     relative energy (with respective to a flat interface) of cell i 

∆𝑢𝑖𝑗    energy difference between cell i and j 

∆𝑢𝑡𝑝   relative energy of a vacant cell at a triple point 

∆𝑢𝑒𝑑
𝑟𝑒𝑓

 reference energy set for evaporation and deposition, fixed to be 1.0 in this paper 

Δuth      the limit set for the state switch for triple point vacant voxel 

Vi        volume of particle i 

Vij       interaction volume between particle i and j 

x,        radius of a circular neck 

a         radius of spherical particle 

γgb      specific grain boundary energy 

γ         specific surface energy  

𝛿𝑖𝑗       Kronecker delta 

𝜀�̇�𝑗        inter-particle strain rate between particle i and j  

𝜀�̇�       macroscopic strain rate  

k          Boltzmann constant 

µij        inter-particle viscous modulus between particle i and j 

Π         sum of free energy change rate and energy dissipation rate 

𝜎𝑖𝑗
𝑚𝑖𝑠     local mismatch stress in the space particle i and j with respective to matrix 

ψ         dihedral angle 

 ψij
diss   dissipation energy 

Ω         atomic volume 
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2.1 Energy functions and state switching  

In both CA and MC, space is discretised as cells. Each cell is assigned an internal state 

describing its nature (e.g. solid, pore, surface, interface, crystal orientation) and its internal 

energy with respect to a common reference energy. The system evolves by the exploring 

switching the state of the cells according to an energy-based criterion or set of rules. The energy 

of a given cell depends on its interaction with neighbouring cells which we term “structural 

imbalance” [22, 23]. In CA, all the cells that are in a position to make a switch to a lower energy 

state are allowed to switch their state simultaneously (within one time-step). This is applicable 

to some physical processes (such as evaporation-condensation and grain boundary migration) 

where the probability of a cell’s state switch can be assumed to be independent of the outcome 

of its neighbour’s state switch. When simultaneous state switching cannot be applied (e.g. for 

grain boundary diffusion and collapse, or surface diffusion) the MC approach is used to decide 

whether a state switch occurs. When MC is used, one relevant cell is chosen randomly for a 

decision regarding a state switch. Therefore, time in the MC model is measured in units of a 

“Monte Carlo step” (MCS) which corresponds to N attempted changes (or sub-steps), where N 

is the total number of relevant cells.  

During sintering, the driving force for matter transport is the free energy change associated 

with surface curvature. In the classical continuum theories (e.g. Gibbs-Thomson equation) the 

excess free energy is related to curvature as ΔG  1/rc (where rc is the local radius of curvature).  

Curvature is a macroscopic concept which is simple, accurate and elegant in dealing with 

surface/interface energy problems. While the classic Gibbs-Thomson equation is convenient to 

apply in 2 dimensions or to a sphere, for 3-D non-spherical surfaces a generalized Gibbs-

Thomson equation [34] may be used with the two principal curvatures in orthogonal directions 

1/rc = 1/r1 +1/r2.  Johnson’s generalized Gibbs-Thomson equation [34] is simple in form but 

not computationally efficient to apply.  Furthermore, the concept of curvature only applies to 

smooth surfaces and cannot deal with sharp features or edges. Therefore, in order to develop a 

generally applicable method for computer simulation, it is necessary to use a concept which is 

not only physically equivalent to curvature for smooth surfaces, but is also computationally 

more efficient. In our earlier papers we have demonstrated that the concept of “structural 

imbalance” accurately represents the local energy increase due to the presence of non-balanced 

bonding at a surface or interface [22, 23] (i.e. bonding that is different from that in the 

homogeneous bulk material). The quantified structural imbalance of surface and interface 
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voxels is consistent with the local ‘curvature’ (the concept used in classical continuum theories) 

in describing the local energy increase. By using this concept of structural imbalance, interface 

wetting, grain boundary grooving and grain growth can all be reproduced accurately using 

cellular automata approach [22, 23]. The concept of energy change due to curvature is thus one 

way of describing structural imbalance for a smooth surface. Furthermore, the concept of 

structure imbalance is more generally applicable in dealing with interface energy problems. It 

can easily accommodate anisotropic surface/interface energies and complicated geometrical 

features into quantification. 

In our modelling approach, all the state switch rules are based on Boltzmann statistics for 

overcoming an energy barrier of magnitude Ea per atom with respect to a suitable reference 

state (e.g. a bulk atom).  The probability of the reference state atom overcoming the activation 

barrier is then proportional to exp(-Ea/kT). If the initial state has, as a result of its position (e.g. 

it is a surface atom), an energy u higher than the reference, then the barrier height is reduced 

to Ea-u and the jump probability becomes proportional to exp(-Ea/kT)exp(Δu/kT).  Thus the 

relative probability of a successful jump is exponentially related to its excess energy i.e., p  

exp(Δu/kT).  Since the excess energies tend to be rather small (u << kT), the probability of a 

successful jump is directly proportional to the excess energy.  Applying this to a voxel then 

gives the result that the probability of a successful state switch of the voxel will be proportional 

to its excess energy and hence a methodology is required to calculate a parameter proportional 

to the excess energy of interface and surface voxels.  

The relative excess energy of an interface cell due to local curvature can be calculated as [22, 

23] 

∆𝑢𝑥 = (𝑈𝑥 − 𝑈𝑓) /𝑈𝑓             Eq. 1 

In this equation Uf is the energy “imbalance” of a cell sitting on a flat interface and Ux is that 

of an interface cell under consideration. The “imbalance” is proportional to the energy of a 

surface or interface voxel compared with a voxel in the bulk and can be expressed as 

𝑈𝑓 = 𝑐 ∑ [𝒏
𝒊=𝟏

(2𝑖+1)3−(2𝑖−1)3−8𝑖

2𝑖(2𝑖−1)3 ]         Eq. 2 

and 

                                        𝑼𝒙 = 𝑪 ∑
∑ 𝑪𝒎𝒊𝒔

𝒊𝒋
(𝟏−𝜹𝑪𝒙𝑪𝒊𝒋

)𝟐𝟒𝒊𝟐+𝟐
𝒋=𝟏

𝒊(𝟐𝒊−𝟏)𝟑
𝒏
𝒊=𝟏           Eq. 3 
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C is a normalising parameter describing the interaction energy between any two neighbouring 

solid cells under consideration. Since only relative energy is relevant, C will be cancelled out 

in Eq.1.  i is the number index of the layer in which the neighbouring cell is located. The nearest 

neighbours are layer 1, the next nearest neighbours are in layer 2, and so on. n is the mask size 

or the total number of layers to be considered. In 3-D the interaction with voxels in layers 

beyond layer 2 can be regarded as negligible due to screening effects in the underlying physical 

processes, so n can be set equal to 2 to save computation time.  𝛿𝑐𝑥𝑐𝑖𝑗
 is the Kronecker delta 

and 𝐶𝑚𝑖𝑠
𝑖𝑗

 is the “mismatch coefficient” between a cell in the mask and the target cell. For 

example, the mismatch coefficient between a cell in a condensed phase and a void cell is taken 

as 1, whereas that between different condensed phases or crystallite orientations is between 0 

and 1.   

A consequence of the above formalism is that in the simulations that are described later, the 

energy parameter appearing in the simulations is dimensionless.  This also applies to other 

parameters such as length, which is measured in units of voxel size, and time which is measured 

in units of time steps.  In order to convert to real world units it is necessary to calibrate the 

simulation as described later. 

 

2.2 Surface diffusion 

Surface diffusion is simulated by considering movement of matter from a surface cell to a 

neighbouring vacant surface cell in each time step of the simulation. This is done by 

considering the “detachment” and “attachment” of either vacant voxels or matter (filled) voxels 

at a surface depending on which is the more efficient for computation in a given situation. 

(There exists a spectrum of surface transport mechanisms depending on the range of the atomic 

jumps over the surface. This variety can be reflected in the simulation by changing the range 

of the possible switching cells.) The rules for redistribution of both vacant and matter voxels 

are very similar. The following is a description for vacant voxel movement. The process is 

considered to take place in two consecutive steps: detachment of voxels and their re-attachment 

elsewhere on the surface. At a detachment step, each surface vacant voxel (i.e. a vacant voxel 

with a nearest neighbour matter voxel) is allowed a chance of switching its state (i.e., becoming 

a matter voxel) with a probability proportional to its energy level as expressed by Eq.4.  
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𝒑 = {
𝟎                       ∆𝒖𝒊 < 𝟎
∆𝒖𝒊 

∆𝒖𝒆𝒅
𝒓𝒆𝒇                   ∆𝒖𝒊  > 𝟎                   Eq. 4 

Here ∆𝑢𝑒𝑑
𝑟𝑒𝑓

 is a reference energy set for detachment and attachment. It is fixed to be 1.0 in this 

paper.  This ensures that ∆𝑢𝑒𝑑
𝑟𝑒𝑓

 is larger than the highest possible energy of any surface vacant 

voxel in the system. A non-Metropolis Monte Carlo algorithm [35] is used to make a final 

decision on whether the detachment of a particular surface vacant voxel is successful or not. A 

random number ra (0<ra<1) is generated by the computer and if ra ≤ p, the state switch is 

accepted, but if ra > p the switch is rejected. In order to conserve matter, the attachment step 

requires exploration of a sufficiently large number of attachment attempts so that the number 

of successful attachments is equal to the number of successful detachments. This is achieved 

in the following way. In an attachment step, each detached vacant voxel will try to find a matter 

surface voxel in the neighbourhood to make vacant. Therefore, the attachment step will consist 

of multiple MC sub-steps with the number of successful sub-steps equal to the number of 

vacant voxels which successfully switched in the detachment step (which is equal to 

∑
∆𝑢𝑖

∆𝑢
𝑒𝑑
𝑟𝑒𝑓𝑖∈𝑆𝑉  , with SV being the set containing all the surface vacant voxels having   ∆𝑢𝑖 > 0). 

In each attachment MC sub-step, a detached vacant voxel is randomly selected. Then the matter 

surface voxel in its Von Neumann neighbourhood (the 6-voxel octahedral neighbourhood) 

which has the highest energy level is located. This matter surface voxel is allowed a chance of 

being filled with a vacant voxel with a probability proportional to its energy level as expressed 

by Eq.4.  Again a non-Metropolis Monte Carlo algorithm is used to make a final decision on 

whether the attachment is successful. If the attachment is not allowed by the Monte Carlo 

algorithm, the detached vacant voxel goes back to its original position. The detachment step is 

a typical CA step (which allows all the surface matter voxels to act simultaneously) while the 

attachment step consists of multiple MC sub-steps. Therefore the surface diffusion model is a 

CA-MC hybrid model. 

The free energy for each matter surface voxel ∆𝑢𝑖 (in Eq.4) is calculated using Eq.1-3, with 

the mismatch constant Cmis = 1 for interaction between a surface matter voxel and any vacant 

voxels in the neighbourhood. For a surface matter voxel next to a triple point boundary (which 

is not only a surface matter voxel, but also a grain boundary voxel), interaction also exists 

between matter voxels in different grains, for which Cmis has a value between 0 and 1 

(Cmis=cos(ψ/2), with ψ being the equilibrium dihedral angle between the two grains [22]). 
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Similarly for calculation of the free energy of a vacant surface voxel, Cmis also takes the value 

1 for interaction between a surface vacant voxel and matter voxels in the neighbourhood. 

However, a surface voxel next to a triple point boundary will have interactions with matter 

voxels belong to different grains. In this case, Cmis takes the value 1 for the interaction between 

a surface vacant voxel and a matter voxel belong to the ‘home’ grain and Cmis=1cos(ψ/2)) for 

its interaction with a matter voxel belonging to a neighbour grain.  

When a matter voxel has been transported to a location on a different grain, the state (i.e. the 

crystalline orientation) of this matter voxel has to be changed to that of its new ‘home’ grain 

Therefore a so-called ‘assimilation process’ is included in each detachment step of vacant 

voxels in which all the newly deposited voxels will have to change their crystalline orientation 

state to those of their new home grains. 

2.3 Grain boundary diffusion and collapse (GBDC) 

Grain boundary collapse is the mechanism responsible for the shrinkage and densification of 

the sintering powder body. This requires removal of material from a grain boundary and its 

transport to an adjoining pore surface and the centres of the adjoining grains moving closer 

together by a rigid body displacement. According to classical continuum theories the driving 

force for this is the curvature of the adjoining pores. In our approach, we simulate this same 

process by energy-based rules controlling the behaviour of grain boundary and surface voxels.  

It is convenient to represent this process from the point of view of vacant voxels, which is 

similar to the movement of lattice vacancies in a real material in which vacancies are injected 

into a grain boundary intersecting a pore and are subsequently annihilated in the boundary by 

the climb of grain boundary dislocations.  The driving force in the simulation is the excess free 

energy of the vacant voxels at the triple point where a pore and two particles or grains meet 

(abbreviated as a TP vacant voxel hereafter).  

In discretized space, each TP vacant voxel has at least one filled voxel for each neighbouring 

grain in its Von Neumann neighbourhood. Eqs.1-3 are again used for the calculation of the 

excess energy of the TP vacant voxels (Δutp) with Cmis = 1 for the interaction between a TP 

vacant voxel and a filled voxel belonging to its ‘home’ grain and Cmis = 1cos(ψ/2) for its 

interaction with a filled voxel belonging to a neighbouring grain. . The probability of a TP 

vacant voxel to be filled with a matter voxel is proportional to its Δutp , because Δutp represents 

the driving force (curvature). Meanwhile the average migration distance from a matter source 

to the matter sink (TP) can be assumed to be equal to the equivalent radius of the grain boundary 
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area. Therefore, in order to determine the state switch probability of a TP vacant cell, the energy 

term Δutp needs to be modified, by dividing it by the equivalent radius of the grain boundary. 

The equivalent radius of grain boundary can be expressed as  

rgb=(Agb/π)0.5     Eq. 5 

with Agb being the grain boundary area. Thus the state switch probability of a TP voxel will be 

proportional to: 

ptp= π0.5Δutp /Agb
0.5         Eq. 6 

At each time step, each TP vacant voxel is allowed a chance to be filled with a matter voxel (or 

in other words, allowed a chance to diffuse into the grain boundary and the grain boundary to 

subsequently collapse), with a probability described by Eq.6 (a non-Metropolis Monte Carlo 

algorithm is used to make a final decision on whether it is successful) normalised by a factor 

pth. The higher pth is set, the smaller is the probability, which corresponds to a smaller time step 

length. Ideally pth should be set at a value just above the maximum possible value of ptp in the 

system. For the examples given in this paper a value of 0.1 was found to be appropriate. 

To model the grain boundary collapse, at each time step the distance between the centres of 

adjoining particles or grains (particle i and particle j) changes by δDij, which is defined as a 

negative quantity for shrinkage. Therefore, the inter-particle distance at the start of the next 

time step is Dij(n+1) = Dij(n) + δDij(n). The magnitude of the grain boundary collapse thickness 

δDij depends on the number of newly filled TP voxels at the neck between the two particles 

(or the number of GB matter voxels which have diffused out of GB area), Nmv, and the grain 

boundary area, Agb, i.e. δDij=Nmv/Agb. 
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Fig.1 a) Schematic of multiple particle interactions: particle i with 7 neighbour particles in 

contact b) Spatial distribution of contacts on particle i. 

 

This assumes a uniform collapse of the grain boundary as all the newly vacant voxels in the 

boundary are annihilated simultaneously. The way in which this is related to shrinkage of the 

particle assembly is described later. This uniform collapse approach is different from the 

‘columnar collapse method’ adopted by Tikare et al. [30, 36] in their KMC models for sintering. 

In their method a straight line is projected from the vacant grain boundary voxel through the 

centre of mass of the adjacent grain to the outside boundary of that particle, and then the vacant 

grain boundary voxel is exchanged with the filled surface voxel [7, 27, 36]. However, 

‘columnar collapse’ is not as physically realistic as a uniform collapse. It cannot take local 

mismatch stress into consideration (as described later) and therefore will have difficulty in 

dealing with rigid body motion. 

We now relate the collapse of individual boundaries to the shrinkage of the particle assembly. 

For modelling the multi-particle situations that are relevant to powder compacts, the individual 

grain boundaries contacting a given particle or grain will have different collapse distances.  

Therefore there will be a mismatch in strain, arising from collapse, amongst different neck-

connected pairs that has to be considered. As illustrated in Fig1a, particle i has 7 neighbouring 

particles. These necks (grain boundaries) are orientated in different directions as shown in Fig. 

1b. In an ideal case of uniformly sized spherical initial particles and uniform grain boundary 

a 
b 
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size, in a regular packing geometry there would be no mismatch of local strain among different 

pairs. In such a case the macroscopic shrinkage strain will be the same as the local shrinkage 

strain arising from local grain boundary collapse. In a real case, the collapse of each individual 

boundary is constrained by its surroundings (which are different for every grain) to be 

compatible with each other and with the macroscopic strain. This constraint is manifest as local 

stresses that either accelerate or oppose the local grain boundary collapse to maintain overall 

strain compatibility. For free sintering of a powder compact considered here, the macroscopic 

strain rate may be assumed to be homogenous and isotropic. (This would be modified in the 

presence of an external constraint, as in sintering a film on a substrate, or a non-isotropic initial 

packing, as for a die-pressed compact. Such macroscopic constraints can also be 

accommodated within the general formalism described here.) 

We now consider how the local stresses achieve strain compatibility by viscous deformations 

which are additional to the grain boundary collapse. In principle there is also an elastic 

contribution to the total strain and an elastic strain rate if the stresses change. However, 

sintering is carried out under conditions in which viscous strains are much larger than elastic 

strains and therefore the elastic contribution can be neglected. Consider a pair of particles i and 

j with an unconstrained grain boundary strain rate of 𝜀�̇�𝑗  (negative for collapse leading to 

shrinkage) = Dij/Dij, embedded in the surrounding matrix of particles which has a strain rate 

of 𝜀�̇� equal to the macroscopic strain rate (also negative for densification). We define the local 

effective viscous modulus µij, which depends on the local porosity.  𝜀�̇�𝑗 , 𝜀�̇�, and µij are all 

regarded as constants within a given time step.  The difference between the unconstrained grain 

boundary strain rate and the macroscopic strain rate, 𝜀�̇�𝑗  𝜀�̇�, can be regarded as the mismatch 

strain for the pair of particles If a given pair of particle tries to shrink by a strain larger in 

magnitude than the macroscopic shrinkage strain then a local tensile stress develops to oppose 

the local unconstrained shrinkage.  

In the simulation the unit of time is the time step.  Therefore, the increment of strain and the 

strain rate for a given time step become equal.  Thus, 𝜀�̇�𝑗(𝑛) = 𝜀𝑖𝑗(𝑛) and 𝜀�̇�(𝑛) = 𝜀𝑀(𝑛), 

with 𝜀𝑖𝑗(𝑛)and 𝜀𝑀(𝑛) being the local strain and macroscopic strain generated in time step n. 

Consequently, the mismatch stress between the bonded pair and the matrix can be written as 

𝜎ij
mis = −𝜇ij(εij̇ − 𝜀Ṁ)         Eq. 7 

and the energy dissipation associated with local viscous creep during the time step is: 
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 ψij
diss = μij(εij̇ − εṀ)

2
             Eq. 8 

 

The variational principle requires the sum of the rate of change of stored energy and dissipated 

energy  G , to be a minimum with respect to the independent variables [37-40].  

The independent variable in consideration is the macroscopic strain, so the variational principle 

can be applied here as: 

∂ψ

∂𝜀Ṁ
+

∂�̇�

∂𝜀Ṁ
= 0                 Eq. 9 

 

The free energy G generally can be regarded as the sum of total surface energy, total grain 

boundary energy and total stored elastic energy. As pointed out earlier, the elastic stored energy 

change as a function of time is expected to be much smaller than the sum of surface energy and 

grain boundary energy changes, so it is neglected in this work. In the simulations the surface 

energy and grain boundary energy minimisations have been dealt with by the AC-MC 

implementation, and are independent of the macroscopic strain rate. Therefore Eq. 9 can be re-

written as: 

∂ψtot(𝑛)

∂𝜀M(𝑛)
= 0           Eq. 10 

The total dissipation energy can be expressed as: 

ψtot(𝑛) = 1/2 ∑ ∑ (𝜀𝑖𝑗(𝑛))2𝜇𝑖𝑗(𝑛)𝑉𝑖𝑗(𝑛)𝑗∈𝑆𝐶
𝑁
𝑖=1     Eq. 11 

The factor of ½ in these expressions accounts for the fact that there are two particles in each 

pair, and the set SC means all the particles which are in contact with particle i. The local 

interaction volume between particles i and j can be approximated as: 

𝑉𝑖𝑗 (𝑛) =
𝑉𝑖(𝑛)

𝑁𝑖
𝐶𝑂(𝑛)

+
𝑉𝑗(𝑛)

𝑁𝑗
𝐶𝑂(𝑛)

                 Eq. 12 

where Vi(n) and Vj(n) are the volumes of the particle i and j at time step n, and 𝑁𝑖
𝐶𝑂(𝑛) and  

𝑁𝑗
𝐶𝑂(𝑛) are the coordination numbers (i.e., the number of particles which are in contact with 

particles i and j, respectively) at time step n. 

Combining Eqs.10-11 leads to: 

𝜀M(𝑛) =
∑ ∑ 𝜇𝑖𝑗(𝑛)𝜀𝑖𝑗(𝑛)𝑉𝑖𝑗(𝑛)𝑗∈𝑠𝑐

N
i=1

∑ ∑ 𝜇𝑖𝑗(𝑛)𝑉𝑖𝑗(𝑛)𝑗∈𝑠𝑐
𝑁
𝑖=1

        Eq. 13 

The local viscous modulus is approximated by (assuming a Coble creep mechanism, see the 

Appendix) 
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𝜇𝑖𝑗(𝑛) = 𝐴gb
1.5𝐷𝑖𝑗(n)𝑝th/(𝐿𝑖𝑗(𝑛)π0.5)          Eq. 14 

 

where Agb is the grain boundary area, Lij is the circumference length of the neck, and Dij is the 

distance between the centres of the two particles and pth is the probability normalising factor 

for the state switch of a triple point voxel.  

The local mismatch stress at time step n is calculated by Eq.7. The driving force for sintering 

at time step n is influenced by the mismatch stress from the previous time step (n1).  This can 

be taken into account by modifying the excess energy of a grain boundary voxel to give  

𝑝𝑡𝑝(𝑛) = 𝜋0.5[∆𝑢𝑡𝑝 + 𝜎𝑖𝑗
𝑚𝑖𝑠(𝑛 − 1)]/𝐴𝑔𝑏

0.5             Eq. 15 

In the simulation, the viscous modulus 𝜇𝑖𝑗  is dimensionless and hence the stress 𝜎𝑖𝑗
𝑚𝑖𝑠  is also 

dimensionless and so can be added to the dimensionless excess energy of a triple point voxel 

∆𝑢𝑡𝑝. 

In summary, simulating grain boundary diffusion and collapse and the resulting shrinkage 

involves the following procedure in each time step: 

1) Calculate the excess energy (∆𝑢𝑡𝑝) for each triple point voxel; 

2) Calculate the local driving force using Eq.7 which includes also the influence of local 

stress from the previous time step; 

3) Implement the MC steps for grain boundary diffusion and collapse; 

4) Calculate the local strain and the macroscopic strain using the variational principle;  

5) Calculate the new local stress which will be used as an input for calculating the driving 

force for the next time step. 

Regarding the morphological change resulting from grain boundary collapse, for the two-

sphere case it is treated as happening when the accumulated change in boundary thickness is 

equal to, or larger than, one layer of voxels (i.e., Σ(δDij(n)Agb(n) ≥Agb(n)). At that point one 

whole layer of grain boundary cells will be removed. This way of dealing with grain boundary 

collapse is disruptive, but it is implementable in the case of two spherical particles. However, 

for multi-particle, or powder compact cases, this step-wise disruptive treatment is not 

appropriate. For the simulation of the free sintering of a powder compact, an isotropic 

shrinkage can be assumed. Therefore, in order to efficiently deal with the morphology changes 

arising from grain boundary collapse, the following are also required: 
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6) After each time step, the voxel size is changed by a factor 1+εM so that the whole volume 

of the sintering body changes by a single factor, and  

     7) A number of new matter voxels is deposited on particle surfaces to compensate the mass 

loss due to the decrease of the voxel size, so that mass conservation is maintained.  This extra 

step of deposition is similar to that described in section 2.2 for condensation after evaporation. 

The resulting modifications to the shapes of the grain surfaces meet the overall requirement of 

energy minimization in that time step and therefore should be close to reality.  

3 Calibration with Classical Theory  

In this section known solutions for the sintering of two spheres are used to calibrate the 

parameters used in the simulations in terms of the macroscopic surface and grain boundary 

diffusion coefficients. The methodology is illustrated using nickel as an example material. We 

have considered nickel as a model material because the key energy and mass transport 

parameters have been measured independently in this case.  

The two-sphere model (as shown in Fig.2a) is used for calibration because it is a simple 

geometry with well-known solutions based on classical continuum theories [2-4, 41-45].  

                        

Fig.2 a) The two-sphere model, composed of two identical spherical particles with one growing 

neck; a is the radius of the spherical particles and x is the radius of the neck, b) the initial state 

of the two spheres in CA-MC simulation. 

 

For the CA-MC simulation, each spherical particle (in Fig.2b) was discretised into ~142,000 

voxels (all voxels in this work are of cubic shape), with radius a=32.1 (units of distance are 

voxel size in the simulation). The initial distance between the sphere centres is 32 and the initial 

neck size is 2.18, as shown in Fig.2b. For the purpose of simplicity each particle is assumed to 



17 

 

be one crystallite and therefore there is only one grain boundary, which is coincident with the 

neck. 

3.1 Surface diffusion 

As described in section 2.1, in the CA-MC simulation of surface diffusion, the two variables 

which affect the kinetics of system evolution are the dihedral angle (through the parameter Cmis 

in Eq.3) and ∆𝑢𝑒𝑑
𝑟𝑒𝑓

  (in Eq.4). After 500 time steps of surface diffusion in the simulation, the 

two spheres in Fig.2b have evolved into the configuration shown in Fig.3a. Surface diffusion 

leads to neck growth, but does not lead to shrinkage. Fig.3b shows how the neck size increases 

with number of time steps for different dihedral angles. It is clear that the higher the dihedral 

angle, the faster is the neck growth, which is consistent with the numerical analysis results of 

Bouvard - McMeeking [41] and Zhang - Schneibel [43] based on classical theory.  

There are several analytical expressions available in the literature for describing the kinetics of 

neck growth by surface diffusion from the continuum theory. These analytical equations have 

different forms and show different time dependence, which result from different simplifying 

assumptions, especially regarding the neck curvature.  Some of these equations listed in [46] 

are regarded as incorrect.  Nevertheless some of the analytical equations have been shown to 

be quite reliable and accurate [41]. One such example is the kinetic equation of Coblenz et al. 

[42]: 

𝒙𝟓

𝒂
=

𝟐𝟐𝟓𝑫𝑺𝛄𝜴𝜹𝒔

𝒌𝑻
𝒕      Eq. 16 

where γ is the surface free energy, Ω atomic volume, δs surface thickness (~Ω1/3), Ds surface 

diffusivity, a radius of the spheres, k Boltzmann constant, and T absolute temperature.  Another 

equation is by Nichols and Mullins [45] 

𝒙𝟔

𝒂𝟐 =
𝟐𝟓𝑫𝑺𝛄𝛀𝟏.𝟑𝟑𝟑

𝒌𝑻
𝒕       Eq. 17 

Based on their numerical analysis, Bouvard and McMeeking [41] concluded that in the very 

early stage, the neck growth rate should be lower than that predicted by either of the two 

equations. Fig.3b clearly shows our simulation points to the same conclusion: before 30 time 

steps, the simulated neck size is smaller than that predicted by Eqs.16 and 17. After 30 time 

steps, the simulated neck growth is fairly close to the analytical solutions. 
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Fig.3 a ) Neck formation between the two spheres after 500 time steps of simulated surface 

diffusion (from the initial state shown in Fig.2b); b) simulated neck growth compared with 

fitting to analytical expressions. 

The simple analytical expressions in Eqs.16 and 17 also do not account for the influence of 

dihedral angle on neck growth which reflects the influence of the grain boundary energy. 

Nevertheless, they are still useful for describing the relationship between neck growth and 

diffusivity at longer times.  This is seen in Fig3b where the power of time (1/5 or 1/6) predicted 

by the equations matches the simulations sufficiently well to allow quantitative calibration of 

the CA-MC parameters.  Using the Coblenz equation (Eq.16) the real time length for each 

simulation time step can be written as: 

∆𝒕𝒔𝒅 = (
𝒙

𝒂
)

𝟓 𝒌𝑻𝒂𝟒

𝑫𝑺𝜴𝜸𝒔𝜹𝒔𝒏𝒔
                      Eq. 18 

a 
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where ns is the number of time steps in the simulation and Δtsd is the real time length for each 

time step in the simulation of surface diffusion. Space discretization has a major influence on 

Δtsd because the larger the voxel size, the longer the real time corresponding to each time step 

(according to Eq 18, Δtsd is proportional to the fourth power of voxel size).  

3.2 Grain boundary diffusion and collapse (GBDC) 

It is well established that GB collapse leads to both neck growth and shrinkage. According to 

Coblenz [42], the neck growth kinetics by GBDC can be expressed by: 

𝒙𝟔 =
𝟏𝟗𝟐𝜸𝛀𝒃𝑫𝑩𝒂𝟐

𝒌𝑻
𝒕                    Eq. 19 

Meanwhile the shrinkage can be expressed as: 

𝒘

𝒂
= (

𝟑𝜸𝛀𝒃𝑫𝑩

𝒌𝑻𝒂𝟒 𝒕)
𝟏/𝟑

                    Eq. 20 

The meaning of symbols in Eqs. 19 and 20 is similar to those in Eq.18, with DB as the GB 

diffusion coefficient and w in Eq.20 is the decrease of the distance from the centre of one of 

the spheres to the centre of the grain boundary. 

The simulated neck growth results for different dihedral angles caused by GBDC are shown in 

Fig.4a. The step wise feature in Fig.4a is an artefact as a result of the disruptive treatment of 

collapse used in the two sphere case. The numerical modelling of Bouvard and McMeeking 

(Fig.3 in [41]) found that the initial neck growth rate by GBDC should also be slower than that 

predicted by the Coblenz equation. Our simulation results in Fig.4a show the neck growth in 

the initial 8 time steps is indeed slower than the Coblenz prediction, which is consistent with 

the numerical modelling result in [41].  

The simulated shrinkage results are given in Fig.4b, which shows a faster shrinkage increase 

in the initial stage (before 30 time steps), which is again in consistent with the numerical 

simulation results by Bouvard and McMeeking [41]. However after 30 time steps the shrinkage 

kinetics matches the Coblenz equation (Eq.20) quite well. From Figs.4a and b it is clear that, 

with an increase in dihedral angle, the neck size is slightly increased while shrinkage is slightly 

decreased. This is also qualitatively consistent with the numerical simulation results of Bouvard 

and McMeeking (Figs.3 and 4 in [41]). To calibrate the GBDC model the simulated shrinkage 

data were fitted to Eq.20 and the neck growth data to Eq.19. It was confirmed that the GBDC 

parameters could fit both Eq.19 and Eq.20 simultaneously. For example, if the grain boundary 

diffusivity is 2.27x10-12 m2 s-1 (corresponding to nickel at 923 K) , and when voxel size, 

threshold probability for state switch and dihedral angle (the three model parameters) are set 
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to be 100 nm, 0.1 and 120˚ respectively, the real time length Δtgb is found to be 9.95 s when 

calibrated using simulated neck growth data and Eq.19, and 10.1 s using simulated shrinkage 

data and Eq.20. From Eqs.19 and 20, Δtgb is proportional to the fourth power of voxel size.  
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b) 

      

Fig.4 a)  Simulated neck growth kinetics b) simulated shrinkage for the case of two contacting 

spheres sintering by grain boundary diffusion and collapse compared with the predictions of 

the Coblenz analytical equations. Each simulation step consists of one step of GBDC and one 

step of surface diffusion as described in section 2.3 and 2.2, respectively. 

3.3 Grain Growth  

To calibrate the grain growth simulation, a fully dense polycrystalline microstructure was 

generated with an average crystallite size of 1.1µm and then evolved over 300 time steps. The 

initial microstructure was generated using the Monte Carlo method within a total volume of 

100  100  100 voxels with a size of 0.2 µm and periodic boundary conditions. The initial 

microstructure is shown in Fig.5a. The microstructure at time step 300 is given in Fig.5b. The 

grain growth kinetics simulated is shown in Fig.6. 
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a)                      b)         

Fig. 5 a) the initial microstructure generated by Monte Carlo method and b) the simulated 

microstructure at time step 300. 

 

Fig.6 Simulated grain growth and the fitting by 𝐷𝑔
𝟑 − 𝐷𝑔,𝑜

𝟑 = 𝐾𝑡  for a case in which the 

reference energy for grain boundary switching increases by 0.16% per time step, whci mimics 

a boundary mobility decreasing with time due to increasing impurity segregation and “drag”, 

 

Grain growth kinetics are often expressed by: 

𝑫𝒈
𝒎 − 𝑫𝒈,𝒐

𝒎 = 𝑲𝒕    Eq. 21 
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Where Dg and Dg,o are the final grain size and initial grain size respectively, K is a constant, t 

is the time, and m is the power index. In reality m is found experimentally to vary over a wide 

range of values. For example, m varies from 2-7 for nanostructured nickel [47, 48], while in 

the micrometer range (e.g. grain size > 0.3 m) the kinetics of nickel grain growth appear to 

fit m = 3 well (e.g., the data shown in Fig. 2 of [47]). From the simulation point of view, we 

found m can vary from 2 to 20 when restrictions (such as boundaries having different mobility 

depending on misorientation) are put on some of the grain boundaries, or the reference energy 

difference for state switching changes with the time step. Our earlier work has shown that for 

the simplest case (in which grain boundary energy is assumed to be isotropic and the reference 

energy difference for a GB cell state switch is constant), the simulation results (Fig.4e in [23]) 

fit Eq. 21 well with m = 2, which is consistent with the analytical and simulation results of 

other workers [49, 50]. As an example of departure from m = 2, we can simulate the value of 

3 observed experimentally for nickel by decreasing the mobility as a function of time. Fig.6 

shows the grain growth kinetics for a case where the reference energy difference in the CA 

model is set to increase at a rate of 0.16% per time step. This mimics a situation in which a 

‘pinning effect’ increases with time (e.g., as a result of impurity enrichment at the grain 

boundaries [51]). In this case the simulation results fit Eq.21 with m = 3.  

4 Simulation of sintering an assembly of spherical particles  in random 

packing 

Random particle packing was used to specify the initial state of the compact in the simulations 

as being representative of a typical powder body. In the computer spherical particles were 

dropped into a container, one by one, from the top of the container. Each particle was allowed 

to roll without friction to its most stable position between other particles already settled, or 

between settled particles and container walls.  

 

The particles were assumed to be spherical of the same size of 3 m. The container size was 

20µm  20µm  20µm. Our random packing code typically leads to a packing density of 0.61. 

A representative volume of 15µm  15µm  15µm of the particle assembly was chosen for 

simulation. This volume was taken from the central part of the container volume to avoid the 

possible influence of the container walls on the packing. The simulation volume contained 
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about 140 particles. Mirror boundary conditions were applied at the boundaries of the 

representative volume.  

Fig.8 shows the simulated densification, the average pore size and the average grain size as a 

function of time step, by assuming grain boundary diffusion and collapse as the dominating 

mechanism. The average pore size was calculated using the linear intercept method [52]. The 

grain size was taken as the diameter of an equivalent sphere with the same volume. For all the 

simulations in this paper, an initial voxel size of 100 nm was used. As shown in Fig.8, the 

average particle size remains almost as a constant. This is because the presence of pores does 

not allow free grain boundary migration in the early stage of densification.  

The microstructure evolution with time step is illustrated in Fig.9. In the initial stage of the 

random packing (Fig.9a), the packing density is clearly not uniform. It contains both densely 

packed areas and loosely packed areas. The dense packing regions densify much faster than the 

rest of the simulated volume. By comparing Fig.9 b and c with a, it is not difficult to see the 

small pores disappear much faster than the relatively large pores. The region with local low 

packing density is observed to lead to a large sintering defect, which survives to the very late 

stage (300th time step). It seems that all the pores, whether small or large, tend to decrease in 

size, leading to a decreasing average pore size during the whole simulated time as shown in 

Fig.8. 
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Fig.8 Evolution of microstructure, density, pore size (equivalent diameter) and grain (particle) 

size (equivalent diameter) as a function of time step obtained by CA-MC simulation. 
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Fig.9 Simulated microstructure at different stages of sintering for a randomly packed assembly 

of spherical particles: a) initial state; b) after 68 time steps; and c) after 300 time steps. 

Simulated evolution for a bcc packing of spheres: d) initial state; e) after 12 time steps; and f) 

after 70 time steps. Note that in d), e) and f)  two layers are shown, with the top layer being 

indicated by dark arrows and second layer by white arrows. Each sphere in the top layer sits 

on four spheres at second layer. 

To provide further insight, Fig.10 shows the simulated shrinkage curve of the randomly packed 

assembly compared with that for two isolated spheres having the same size (30 µm in diameter) 

as the randomly packed particles. The linear shrinkage is given directly by the simulation and 

is used here to compare with the case of two particles for which volumetric densification is not 

appropriate. It is clear that the random packing leads to much slower shrinkage. This is because 

the mismatch of local shrinkage (as described in section 3.2) in the random packing case, exerts 

a restraining influence that is absent in the case of two isolated particles. Figs.9 and 10 also 

shows the sintering simulations for assemblies of equal sized spheres (also 30 µm in diameter) 

a c 
b 

d e f 
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in body-centred cubic packing (BCC). This ideal BCC packing has a higher initial density of 

0.68 and good uniformity of local curvature and neck size. Therefore there is no mismatch in 

local densification and no corresponding restraint on densification. As expected, the initial 

shrinkage of the BCC assembly is the same as that of two spheres (shown in Fig.10), but 

quickly becomes faster than that of the two sphere case and stops at about the 40th time step as 

the density approaches 100 %.  (The inflection seen in the BCC curve in Fig.10 is an artefact 

caused by the relatively small number of particles and the boundary conditions used in the 

simulation). The fast sintering rate is due to the fact that the channels between the neighbouring 

particles (not in contact initially) gradually become narrower with the time and eventually turn 

into closed pores. This leads to a higher curvature and higher driving force for sintering. In 

contrast the neck curvature in the two sphere case always becomes smaller with time. This 

illustrates the limitations of a simple two sphere model and highlights the importance of having 

available real 3-D models which not only take care of 3-D microstructure details, but also take 

into account the local strain rate mismatch caused by packing irregularity. 

Fig 10 also shows shrinkage curves for two other ideal packing cases: i.e., face-centred cubic 

(FCC) packing and simple cubic (SC) packing. Both SC and FCC show a similar shrinkage 

rate to that of two spheres in the initial stage. Although the initial packing density of SC (0.53) 

and that of FCC (0.74) are very different from that of BCC (0.68), they all show a similar 

shrinkage rate in the initial stage, indicating that early stage densification in these ideal periodic 

geometries is more dependent on the uniformity of the microstructure than the porosity.  

When the sintering of these ideal periodic geometries goes beyond the initial stage, the inter-

particle channels will evolve into different geometries and therefore the sintering driving force 

becomes different. For example in the case of FCC, it has the smallest inter-particle channels 

amongst these ideal periodic geometries. Therefore it has a slightly faster densification at an 

early stage. In the case of SC, because it has relatively lower density and larger inter-particle 

channels, it shows a slightly slower densification in the early stage. For example, the density 

of the SC arrangement has only reached 0.72 at time step 80. At this stage, the inter-particle 

channels are mostly still open pores and therefore its densification kinetics are similar to the 

two sphere case.  

Both the FCC and BCC arrangements have a high initial density and show significant slowing 

down as they approach full density. In the case of FCC, densification slows down noticeably 

at a shrinkage of approximately 0.065 (roughly corresponding to a density of 0.9).  In the case 

of the BCC arrangement, densification slows down noticeably at a shrinkage of 0.105 (or 
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density of 0.95). The slowing down of densification can be attributed to the microstructure 

heterogeneity which develops in the late stage of the simulated sintering, namely that some of 

the pores are eliminated earlier than others. This variability occurs in the simulated 

microstructures due to the Monte-Carlo approach used in the simulation. The resulting 

microstructure heterogeneity leads to more local stress mismatch, which hampers the 

densification.  

 

 

 

 

 

Fig.10 Simulated linear shrinkage kinetics for a randomly packed assembly of spheres, 

assemblies of spheres in regular packing (BCC, FCC and SC) and two isolated spheres (all 

spheres have the same size). 
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5 Summary and Conclusions 

A Cellular Automata-Monte Carlo (CA-MC) approach for simulating sintering of particulate 

materials has been presented, which extends an earlier implementation of this method to 

include surface diffusion and grain boundary diffusion and collapse leading to densification. 

It has been shown that the CA-MC simulation results for the sintering of two identical spherical 

particles are consistent with those of analytical expressions for the kinetics of neck growth and 

densification. The quantitative comparison between the simulated kinetics and the analytical 

expressions allows the simulation parameters to be related to real mass transport parameters 

(e.g. surface and grain boundary diffusion coefficients, and grain boundary migration rate).  

A method for dealing with grain boundary diffusion and collapse has been developed which 

takes into account the local shrinkage mismatch between pairs of particles in the sintering body. 

This has shown that shrinkage of a randomly packed assembly of spherical particles is 

significantly slower that of two isolated particles due to the restraining effects of interaction 

between particles. In contrast an ideally regular packing of spheres (body centred cubic packing) 

shows a similar shrinkage rate to that of two isolated spheres in the early stage of sintering 

because the uniform nature of the arrangement of particles produces no restraining interactions. 

Thus it has been demonstrated that both microstructure details and local mismatch in 

interactions between particles are important for accurately simulating sintering.  

 

Appendix 

A. Viscosity of two particles bonded by a neck 

The viscous modulus is defined as μ = 𝜎/𝜀̇, where σ is the stress and 𝜀̇ is the strain rate. The 

driving force for sintering by grain boundary diffusion is the difference between the chemical 

potential of atoms at the neck surface and those at the grain boundary. This chemical potential 

difference is equivalent to a stress (σ), or capillary pressure (Pc), induced by surface tension 

around the circumference [2, 53]. Therefore, the driving force for atoms moving from the 

boundary to the neck is proportional to the capillary pressure which is determined by surface 

energy. With σ = Pc, the local viscous modulus can thereby be expressed as μ = 𝑃𝑐/𝜀̇. 

According to our previous papers [22, 23], the capillary pressure can be described by the 

average energy (∆𝑢tp) of the vacant voxels at triple points: 
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Pc=∑ ∆𝒖𝐭𝐩(𝒊)𝒊∈𝐓𝐏  /Ntp          Eq. a 1 

where the TP set includes all the TP vacant voxels and Ntp is the total number of TP vacant 

voxels around the neck.   

As shown in Fig.1, assuming all the voxels at TPs along the periphery of the neck have the 

same energy Δutp, then according to Eq. 9, the probability of a state switch P = 

Δutp/[(AGB/π)0.5uth], with AGB being the grain boundary area. Thus in each time step the number 

of voxels which would move out of the grain boundary, Nmv = PLij, with Lij being the 

circumference of the neck between particles i and j. The distance between the two central points 

of the particles would be shortened by ΔL=Nmv/AGB. The strain rate is ̇ = �̇�= -ΔL/Dij with Dij 

being the distance between the two central points of the particles. Therefore 

μ = 𝑨𝐆𝐁
𝟏.𝟓𝑫𝒊𝒋𝒑𝐭𝐡/(𝑳𝒊𝒋𝛑𝟎.𝟓)        Eq. a 2 

For a pair of spherical particles of an equal radius of a and a neck size of x, AGB=πx2, Lij=2πx 

and Dij = 2 a, Eq.a1 can be simplified as  

µ = x2a 𝒑𝒕𝒉                                         Eq. a 3 

For a fully dense material, x can be regarded as equal to a, and therefore the viscosity for a 

fully dense polycrystalline material should be proportional to a3, which is consistent with 

Coble’s derivation [54] of the viscosity for boundary controlled creep of a polycrystalline 

material: 

µ = f (T,DB) a 3                      Eq. a 4 

Correspondingly, in Eq. a2, pth implicitly contains the information regarding temperature and 

grain boundary diffusion rate. 
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