Revision of the ISN/RPS classification for lupus nephritis: modified NIH activity and chronicity indices and clarification of definitions

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Kidney International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>KI-08-17-1259.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Meeting Report</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>13-Nov-2017</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Bajema, Ingeborg; Leiden University Medical Center, Department of Pathology
Wilhelms, Suzanne; Leiden University Medical Center, Pathology
Alpers, Charles
Bruijn, Jan
Colvin, Robert; Mass Gen Hosp, Pathology
Cook, Terence; Imperial College London, Medicine
D'Agati, Vivette; Columbia University, Pathology
Ferrario, Franco; University of Milano-Bicocca, Surgery and Translational Medicine
Haas, Mark; Cedars-Sinai Medical Center, Dept of Pathology and Laboratory Medicine; Cedars-Sinai,
Jennette, Charles
Joh, Kensuke
Nast, Cynthia; Cedars-Sinai Medical Center, Pathology
Noël, Laure-Hélène
Rijnink, Emilie; Leiden University Medical Center, Pathology
Roberts, Ian; Oxford University Hospital, Cellular Pathology
Seshan, MD, Surya V; Cornell University, New York, pathology
Sethi, Sanjeev; Mayo Clinic, Laboratory Medicine and Pathology
Fogo, Agnes; Vanderbilt University, Pathology |
| Keywords: | systemic lupus erythematosus, renal pathology |
| Subject Area: | Renal Pathology |
Revision of the ISN/RPS classification for lupus nephritis:
clarification of definitions, and modified NIH activity and chronicity indices

Ingeborg M. Bajema¹, Suzanne Wilhelmus¹, Charles E. Alpers², Jan A. Bruijn¹, Robert B. Colvin³, H. Terence Cook⁴, Vivette D. D’Agati⁵, Franco Ferrario⁶, Mark Haas⁷, J. Charles Jennette⁸, Kensuke Joh⁹, Cynthia C. Nast⁷, Laure-Hélène Noël¹⁰, Emilie C. Rijnink¹, Ian S.D. Roberts¹¹, Surya V. Seshan¹², Sanjeev Sethi¹³, Agnes B. Fogo¹⁴

Affiliations: see page 2

Corresponding author
Ingeborg M. Bajema, MD PhD
Department of Pathology, Leiden University Medical Center
PO Box 9600
2300 RC Leiden
The Netherlands
Telephone number: +31 71 526 6621
Fax number: + 31 71 526 6952
i.bajema@lumc.nl

Running title: revision of lupus nephritis classification
Key words: lupus nephritis, renal biopsy, systemic lupus erythematosus

Word count abstract: 197
Word count text (excluding references, figures and tables): 3616
Affiliations:

1Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands

2Department of Pathology, University of Washington, Seattle, WA, USA

3Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, USA

4Department of Medicine, Imperial College, London, UK

5Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA

6Nephropathology Center, San Gerardo Hospital-Monza, Milan Bicocca University, Milan, Italy

7Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California USA

8Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

9Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan

10Department of Pathology, Necker Hospital, Paris, France

11Department of Cellular Pathology, Oxford University Hospitals, Oxford, UK

12Department of Pathology and Laboratory Medicine, Weill Cornell University Medical Center, New York, New York, USA

13Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA

14Dept. of Pathology, Vanderbilt University School of Medicine, MCN, USA
ABSTRACT

We present a consensus report pertaining to the improved clarity of definitions and classification of glomerular lesions in lupus nephritis that derived from a meeting of 18 members from an international nephropathology working group in Leiden, 2016. Here we report detailed recommendations on issues for which we can propose adjustments based on existing evidence and current consensus opinion (phase 1). New definitions are provided for mesangial hypercellularity and for cellular, fibrocellular and fibrous crescents. The term endocapillary proliferation is eliminated and the definition of endocapillary hypercellularity considered in some detail. We also eliminate the Class IV-S and IV-G subdivisions of Class IV lupus nephritis. The active/chronic (A/C) designations for Class III/IV lesions are replaced by a proposal for activity and chronicity indices which should be applied to all classes. In the activity index, we include fibrinoid necrosis as a specific descriptor. We also make recommendations on issues for which there are limited data at present, and that can best be addressed in future studies (phase 2). We propose to proceed to these investigations, with clinicopathologic studies and tests of inter-observer reproducibility to evaluate the applications of the proposed definitions and to classify lupus nephritis lesions.
On May 9-11th 2016, a Working Group for Lupus Nephritis Classification (the Group) met at Leiden University Medical Center to reach a consensus on recently raised issues concerning problems with definitions of lupus nephritis lesions. Prior to the meeting, those attending received a questionnaire asking for anonymous suggestions for improving the definitions. The responses served as a starting point for making adjustments to the definitions of lupus nephritis lesions, a process that was further accomplished by group discussions and a multi-head microscopy session. The Group decided that consensus had to be reached for any proposed changes and that recommendations should be divided in two types: Phase 1 recommendations are clarifying modifications for which we could propose adjustments based on existing published evidence and mutual agreement. Phase 2 recommendations will address issues that can best be validated or modified through an evidence-based process. These include more problematic lesion definitions and adjustments to the lupus nephritis classification. We now report on phase 1 recommendations, and provide a framework for phase 2 issues.

Our immediate aim is to improve problematic definitions that form the basis of the lupus nephritis classification and thereby increase the interobserver agreement between nephropathologists worldwide who apply these definitions to classify lupus nephritis. Our eventual goal is to improve the lupus nephritis classification using an evidence-based approach, but refining the definitions for lesions is necessary because they form the essential elements for the classification. Here we describe a plan to proceed in the near future to gather data and, as indicated, modify the lupus nephritis classification.

Many renal lesions encountered in lupus nephritis also are present in other renal diseases, providing a rationale for harmonizing definitions for lesions irrespective of the
disease context. Depending on the setting, i.e. evaluation of renal biopsies in a clinical
setting or for research purposes, different guidelines may apply regarding biopsy
requirements. In a clinical setting, it is necessary to obtain as much information as possible
from the biopsy by evaluating all stains in all levels and sections and to apply a basic format
of the kidney biopsy report. As a general rule, 10 glomeruli for evaluation seem to be
appropriate. By studying definitions of frequently occurring lesions as currently formulated
(e.g., as in classification systems for IgA nephropathy2-4 and ANCA-associated
glomerulonephritis,5 as well as definitions created by the Neptune,6 CureGN7 and Banff8
workgroups), we strove for uniform definitions but recognized that certain thresholds may
be different among diseases. For example, it remains to be determined (an evidence-based
phase 2 issue) which thresholds – for instance for mesangial hypercellularity – have clinical
and prognostic value in lupus nephritis, and whether these should be different from those
for another disease such as IgA nephropathy. Below, we discuss our modifications of
definitions by class. Glomerular, tubulointerstitial and vascular lesions are discussed
separately. At this stage, we mainly focus on lesions evaluable by light microscopy, although
we do take into account findings by immunofluorescence (IF) and electron microscopy (EM)
if they are helpful in the decision-making process. An overview of the alterations to the
ISN/RPS lesion definitions and classification9 that we propose is found in Table 1.
Table 1. Phase 1 recommendations for lupus nephritis classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendation</th>
<th>Comments on ISN/RPS guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class II</td>
<td>Definition for mesangial hypercellularity adjusted: Four or more nuclei fully</td>
<td>Cutoff for mesangial hypercellularity unclear</td>
</tr>
<tr>
<td></td>
<td>surrounded by matrix in the mesangial area not including the hilar region (A)</td>
<td></td>
</tr>
<tr>
<td>Class III and IV</td>
<td>The term endocapillary proliferation is replaced by endocapillary hypercellularity (B)</td>
<td>Definition for endocapillary proliferation unclear; the term proliferation was considered imprecise</td>
</tr>
<tr>
<td></td>
<td>The term crescent is used for a lesion consisting of extracapillary hypercellularity, composed of a variable mixture of cells. Fibrin and fibrous matrix may be present; 10% or more of the circumference of Bowman's capsule should be involved.</td>
<td>Extracapillary proliferation involving < 25% of the circumference of Bowman's capsule was original cutoff. There were no definitions for fibrous or fibrocellular crescents</td>
</tr>
<tr>
<td></td>
<td>Cellular crescent: more than 75% cells and fibrin and less than 25% fibrous matrix (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrous crescent: more than 75% fibrous matrix and less than 25% cells and fibrin (D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrocellular crescent: 25-75% cells and fibrin and the remainder fibrous matrix (E)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adhesion: an area of isolated continuity of extracellular matrix material between the tuft and capsule even when the underlying segment does not have overt sclerosis (F)</td>
<td>There was no definition for an adhesion</td>
</tr>
<tr>
<td></td>
<td>Fibrinoid necrosis: fibrin associated with glomerular basement membrane disruption and/or lysis of the mesangial matrix; this lesion does not require the presence of karyorrhexis</td>
<td>There was no definition for fibrinoid necrosis</td>
</tr>
<tr>
<td></td>
<td>Elimination of segmental and global subdivisions of class IV</td>
<td>Definitions for segmental and global were unclear; interobserver variability was large; clinical significance uncertain</td>
</tr>
<tr>
<td></td>
<td>Modification of the NIH lupus nephritis activity and chronicity scoring system (Table 2) to be used instead of the currently used A, C and A/C parameters</td>
<td>Designation of activity/chronicity through A, C and A/C considered too broad and nonspecific; preference for a semiquantitative approach to describe active and chronic lesions</td>
</tr>
<tr>
<td>Tubulointerstitial lesions</td>
<td>Indicate whether interstitial inflammation occurs in presence or absence of interstitial fibrosis</td>
<td>Lack of cut-off values for reporting the severity of tubulointerstitial lesions</td>
</tr>
</tbody>
</table>
Glomerular lesions, Class I – VI:

Class I and II

An important question was the threshold between class I and class II. We questioned whether the current cutoff for mesangial hypercellularity implies that hypercellularity in merely one mesangial area in one glomerulus in the entire biopsy would suffice. We agreed that mesangial hypercellularity in one area in one glomerulus seems rather low. The appropriate threshold will be investigated in phase 2. In the meantime, we propose increasing the threshold of mesangial hypercellularity from 3 cells/mesangial area to 4 cells, not including the hilar region, in line with the Oxford classification of IgA nephropathy and specify that mesangial cell nuclei be fully surrounded by matrix. An evidence-based approach to define an appropriate threshold was judged to be necessary. Whether and to what extent mesangial matrix expansion should be incorporated in the definition together with this cell number cut-off level, also needs to be investigated in an evidence-based approach. Of note, only peripheral mesangial areas should be assessed for cellularity, with central and perihilar areas excluded, as described for IgA nephropathy. Importantly, we discussed whether or not hypercellularity within the mesangial zone caused by monocytes/macrophages, lymphocytes, or neutrophils should be considered as mesangial hypercellularity or as endocapillary hypercellularity. This topic will be discussed in more detail below.

Class III and IV

A substantial amount of discussion centered on Class III and IV lesions. We agreed, as previously noted, that the definitions of endocapillary “proliferation” are unclear and inconsistent, with issues raised about the types and numbers of cells involved in
endocapillary lesions, the definition of lumen reduction, and the specific contribution of
endothelial cells. The Group decided that the term “endocapillary proliferation” is a
misnomer, which should be abandoned and replaced by the term “endocapillary
hypercellularity” because most of the hypercellularity in glomerular capillaries in lupus
nephritis is caused by influx of inflammatory cells rather than by actual cell proliferation.
Phase 2 will address if there should be, for instance, an overall glomerular inflammation
score.

Endocapillary Hypercellularity

Hypercellularity in lupus nephritis may be due to increase in cells in mesangial, endocapillary
and/or extracapillary locations. With regard to mesangial hypercellularity, it could be argued
that this should be named mesangial hyperplasia in lesions purely consisting of an
abundance of mesangial cells (Figure 1), representing lupus nephritis class II lesions. It is
unknown if the presence of inflammatory cells in the mesangium indicates a more active
lesion; the cut-off values for mesangial hypercellularity and significance of mesangial
inflammation remain to be determined in phase 2. Likewise, the cut-off levels for number of
inflammatory cells, extent of capillary luminal narrowing and role of endothelial cell swelling
need to be defined in a phase 2 exercise. Figure 1 shows ultrastructural features of a single
glomerular capillary affected by lupus glomerulonephritis. Inflammatory cells can be in the
capillary lumen, beneath endothelial cells in capillary walls, and in the mesangial
extracellular compartment. It has to be decided in phase 2 whether endocapillary
hypercellularity should encompass all glomerular hypercellularity internal to the capillary
wall glomerular basement membrane (GBM) and paramesangial GBM (excluding pure
mesangial hyperplasia), or whether it should be restricted to an increase of cells within
capillary lumens. Endothelial cell swelling alone was considered insufficient for a lesion to be regarded as representing endocapillary hypercellularity. If endothelial cell swelling is encountered in the absence of inflammatory cells, TMA should be considered, taking into account the number and extent of swollen endothelial cells and whether or not this is accompanied by subendothelial expansion or thrombosis. Relevant thresholds for this situation should be defined more precisely in phase 2. Hypercellularity external to the GBM is extracapillary hypercellularity.

Membranoproliferative glomerulonephritis (MPGN) pattern

We discussed the value of using the term ‘MPGN pattern’ in relation to the modifications of definitions for lesions within class III and IV lupus nephritis. The group concluded that an MPGN pattern of injury is subsumed in class III/IV lupus nephritis as a form of endocapillary injury. We agreed with the ISN/RPS approach of considering subendothelial deposits that can be seen by light microscopy (i.e. wire loops) and hyaline masses within capillary lumens caused by immune complexes (i.e. hyaline thrombi) as lesions indicative of class III/IV. Determination of the clinical significance of the MPGN pattern and whether or not acute and chronic variants should be distinguished, is a phase 2 exercise.

Crescents

The term crescent is used for a lesion consisting of extracapillary hypercellularity, composed of a variable mixture of cells. Because some crescents may have predominantly epithelial proliferation, whereas others consist predominantly of monocytes/macrophages, the Group chose the description of a ‘variable mixture of cells’. Fibrin and fibrous matrix may also be present. The ISN/RPS criterion of a crescent involving 25% or more of the glomerular capsular circumference was discussed. It was decided that this threshold should be 10% or
more in accord with evidence from the Oxford Classification of IgA nephropathy and
standard approaches used in clinical reporting of renal biopsy lesions. Crescents should be
composed of more than 2 cell layers in order to distinguish them from apposition of the
single layers of hypertrophied visceral and parietal cells. We propose definitions for the
distinction of cellular, fibrous and fibrocellular crescents, which were lacking in the ISN/RPS
lupus nephritis classification (Table 1). Some glomeruli may have more than one type of
crescent. In line with conventional nephropathology practice, extracapillary hypercellularity
attributable to concurrent collapsing glomerulopathy lesions should not be designated as
crescents. We propose to preserve the term ‘adhesion’ for a lesion characterized by an area
of isolated continuity of extracellular matrix material between the tuft and capsule even
when the underlying segment does not have overt sclerosis. This is a lesion that is distinct
from both crescents and segmental sclerosis, although this differs from the Oxford
classification of IgA nephropathy in which such lesions are considered manifestations of
segmental sclerosis. How to deal with a lesion characterized by cellular continuity between
the tuft and Bowman’s capsule, which is not extensive enough to be called a crescent, needs
to be further discussed based on evidence acquired in phase 2.

Global/segmental

We previously discussed problematic issues concerning the distinction between segmental
and global lesions in class III and IV. As recently demonstrated in a meta-analysis by Haring
et al, the clinical importance of distinguishing between segmental and global lesions in
class IV as defined by the ISN/RPS Classification System has been questioned. A caveat is that
there is poor interobserver agreement among nephropathologists worldwide in determining
whether a glomerular lesion in lupus nephritis is segmental or global. The latter, in
combination with the uncertainty of how to evaluate the combination of intra- and extracapillary lesions into a segmental/global division, may have added greatly to the variability in outcomes of studies addressing the clinical impact of segmental and global lesions. The ISN/RPS approach to subclassifying class IV did not use segmental necrosis as a defining feature of a segmental variant of lupus nephritis, which may have reduced reproducibility and precluded recognition of a pathophysiologically distinct variant of lupus nephritis. Therefore, for phase 1, based on the lack of reproducibility and weak evidence of clinical significance, we propose to eliminate the S and G subdivisions of Class IV. We believe that the distinction between segmental and global lesions should be retained in the microscopic description, as such distinctions still may prove to have clinical value with further study using the modified classification of lupus nephritis. As noted below, segmental fibrinoid necrosis as well as segmental endocapillary hypercellularity will be evaluated.

Fibrinoid Necrosis

It was emphasized during the meeting that another potentially important feature not taken into consideration in the ISN/RPS identification of segmental lesions is the occurrence in lupus nephritis of fibrinoid necrosis. This is usually segmental and resembles lesions caused by anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis. Conceptually, segmental endocapillary lesions may be merely a distribution variant of global endocapillary hypercellularity caused by the same pathogenic mechanisms, whereas segmental fibrinoid necrosis may be a pathogenetically distinct lesion. Therefore, for classes III and IV, we recommend noting the presence of fibrinoid necrosis. In phase 1, we propose to adjust the definition for fibrinoid necrosis in lupus nephritis as follows: fibrin associated with GBM disruption and/or lysis of the mesangial matrix; this lesion does not require the presence of
karyorrhexis. Furthermore, karyorrhexis is defined as the presence of apoptotic, pyknotic
and fragmented nuclei—a definition used uniformly in other classification systems. In phase
2, we propose that the clinical significance of fibrinoid necrosis should be reevaluated in
addition to assessing the coexistence of necrotizing lesions with crescents. Whether these
lesions have “pauci-immune” features by IF and/or co-existent ANCA serology requires
further study. The Group concluded that phase 2 studies should determine and compare the
clinical and pathogenic significance of karyorrhexis alone, which is common in class III and IV
lupus nephritis, versus fibrinoid necrosis, which is less common.

Activity and Chronicity Assessment

For a critical re-evaluation of activity and chronicity, we turned to the paper by Austin et al on which the currently widely used NIH activity and chronicity index in lupus nephritis was based. This system can be used to report the extent of overall activity and chronicity in a semiquantitative way. It should be emphasized that this system has a number of limitations: the cut-offs for the scores 0-3 are arbitrary and the scoring system was not developed using an evidence-based approach. Therefore, in phase 2, we will use an evidence-based approach without prior assumptions to modify these indices. We propose in phase 2 that the evaluation for active and chronic lesions in lupus nephritis should be refined to improve interobserver reproducibility and to validate prognostic value. In the meantime, we advocate the usage of these indices, but modified as indicated below, for all classes in a modified classification for lupus nephritis, thereby not restricting them to class III and IV. The modified NIH activity and chronicity scoring system provides more information than the shorthand A, C and A/C parameters currently used. We decided it is important to retain total scores of 24 in the activity index and 12 in the chronicity index, in particular for comparing the scores.
recorded for earlier renal biopsy samples from the same patient using the original NIH
scoring system. We therefore continue to accord double weight to the presence of fibrinoid
necrosis and cellular/fibrocellular crescents; results from our phase 2 study will be used to
find out whether this approach is valid.

In the modified NIH activity index, we have made the following modifications:

because in the original description of the combined karyorrhexis/fibrinoid necrosis category,
the emphasis was on the presence of fibrinoid necrosis,13 we now have modified this into a
stand-alone category of fibrinoid necrosis whereas we link the presence of karyorrhexis to
neutrophil infiltration. Because most karyorrhexis represents apoptotic cell death of
neutrophils, and because the original description for ‘leukocyte infiltration’ refers to the
presence of neutrophils only, we have changed the name and description of this category to
indicate the presence of neutrophils and/or karyorrhexis. In the original description of the
category ‘cellular crescents’, it was unclear to what extent fibrocellular crescents should be
included. Whereas fibrous crescents are part of the chronicity Index, we have now included
fibrocellular crescents in the activity index (see our proposal for definitions in Table 1). We
refer to our considerations about the definition for endocapillary hypercellularity above: in
the original description of Austin et al,13 only monocytes were taken into account in this
category with respect to inflammatory cells leading to hypercellularity. We have to
investigate in phase 2 how to approach the presence of inflammatory cells in endocapillary
hypercellularity in more detail. For the moment, we find it important to specifically score
neutrophils as a separate entity. Also the composition of the interstitial infiltrate as well as
its presence in areas affected by interstitial fibrosis and tubular atrophy (IFTA) should be
studied in further detail in phase 2.
Table 2. Modified NIH lupus nephritis activity and chronicity scoring system proposal

<table>
<thead>
<tr>
<th>Modified NIH Activity Index</th>
<th>Definition</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocapillary Hypercellularity</td>
<td>Endocapillary hypercellularity in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>0-3</td>
</tr>
<tr>
<td>Neutrophils/Karyorrhexis</td>
<td>Neutrophils and/or karyorrhexis in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>0-3</td>
</tr>
<tr>
<td>Fibrinoid Necrosis</td>
<td>Fibrinoid necrosis in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>(0-3) x 2</td>
</tr>
<tr>
<td>Hyaline Deposits</td>
<td>Wire loop lesions and/or hyaline thrombi in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>0-3</td>
</tr>
<tr>
<td>Cellular/Fibrocellular Crescents</td>
<td>Cellular and/or fibrocellular crescents in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>(0-3) x 2</td>
</tr>
<tr>
<td>Interstitial Inflammation</td>
<td>Interstitial leukocytes in <25% (1+), 25-50% (2+), or >50 (3+) in the cortex.</td>
<td>0-3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0-24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modified NIH Chronicity Index</th>
<th>Definition</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Glomerulosclerosis Score</td>
<td>Global and/or segmental sclerosis in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>0-3</td>
</tr>
<tr>
<td>Fibrous Crescents</td>
<td>Fibrous crescents in <25% (1+), 25-50% (2+), or >50 (3+) of glomeruli.</td>
<td>0-3</td>
</tr>
<tr>
<td>Tubular Atrophy</td>
<td>Tubular atrophy in <25% (1+), 25-50% (2+), or >50 (3+) of the cortical tubules.</td>
<td>0-3</td>
</tr>
<tr>
<td>Interstitial Fibrosis</td>
<td>Interstitial fibrosis in <25% (1+), 25-50% (2+), or >50 (3+) in the cortex.</td>
<td>0-3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0-12</td>
</tr>
</tbody>
</table>
Global and segmental glomerulosclerosis

We previously mentioned difficulties in the attribution of global glomerulosclerosis to either lupus nephritis or another cause, an issue related to the classification of lesions into class III/IV, which requires deciding if global sclerosis is the sequel of an active class III/IV lesion. It was discussed that some globally sclerotic glomeruli show features that indicate lupus nephritis was the cause of the global sclerosis, for example fragmented tuft with surrounding fibrosis, and extensive disruption of Bowman’s capsule. Moreover, residual deposits other than IgM and C3 found by IF in globally sclerotic glomeruli should also be considered evidence that the lesion is the result of lupus nephritis. Globally sclerotic glomeruli should not be considered in the evaluation of lupus chronicity if they have a typical pattern of arterionephrosclerosis, e.g. subcapsular clusters of glomeruli with ischemic tuft collapse surrounded by collagen in Bowman’s space. Incorporating globally sclerotic glomeruli that resulted from non-lupus injury in a chronicity index would overestimate the lupus nephritis chronicity and severity, but still may correlate with outcome. This issue should be addressed by phase 2 studies. It should be emphasized that in lupus nephritis the term global sclerosis is used for those glomeruli that are completely sclerotic, and that any other form of glomerulosclerosis should be regarded as segmental sclerosis. As mentioned previously, it is difficult to reliably differentiate segmental sclerosis as a consequence of class III/IV lupus nephritis from segmental sclerosis due to other causes (e.g., post-adaptive segmental sclerosis). Still, only the former should be designated as lesions of class III/IV, employing the same features noted above to differentiate segmental sclerosis due to prior active lupus nephritis from that due to other causes. Within the chronicity index, segmental and global glomerulosclerosis are considered together.
Class V

Two issues were addressed in Class V. First, we considered whether or not to distinguish Class V with and without mesangial hypercellularity and agreed this decision should be evidence based (phase 2). Second, phase 2 studies should determine the allowable extent of non-wire-loop subendothelial deposits within class V, above which one would have to classify as III + V.

Class VI

We recognize that the RPS/ISN category VI is rarely seen in renal biopsy specimens, and propose that this class be re-evaluated in phase 2, especially in view of our discussion above on the recognizability of globally sclerotic glomeruli resulting from preceding lupus nephritis active lesions versus nonspecific global sclerosis associated with other factors (e.g., aging, hypertension or healed TMA lesions). Class VI will either need to be eliminated, or some fraction of globally sclerotic glomeruli designated as the cut-off between chronic class IV and class VI.

Tubulointerstitial lesions

We previously indicated the lack of cut-off values in the ISN/RPS classification for reporting of severity of tubulointerstitial lesions.¹ This deficiency will be addressed by the development of a valid activity and chronicity index that scores the severity of tubulointerstitial injury. We propose that in phase 2 we gather data on IFTA, and interstitial infiltrates in a semi-quantitative fashion, rounding fibrosis to nearest 10%, with minimal fibrosis stated as 5%. These values then can be translated into reproducible scoring categories (e.g. on a scale of 0-3+) based on cut-off values to be evaluated for prognostic
significance as currently done for the Banff and Oxford classifications. We advocate at this
time, as a phase 1 recommendation, to indicate in biopsy reports whether interstitial
inflammation occurs in the presence or absence of interstitial fibrosis. For the present,
interstitial inflammation remains part of the activity index as proposed above, while
interstitial fibrosis and tubular atrophy remain as separate entities within the chronicity
index. It has to be determined in phase 2 whether interstitial fibrosis and tubular atrophy
should be considered separately or combined into one parameter (as in the Oxford
classification for IgA nephropathy) and whether making a distinction between interstitial
inflammation in areas with or without interstitial fibrosis has clinical significance.

Vascular lesions

Currently, the ISN/RPS lupus classification does not evaluate vascular lesions. We believe it is
important to have a standardized approach and terminology to distinguish ordinary
arterial/arteriolar sclerosis from lupus-related lesions such as vasculopathy associated with
immune complex deposition, vasculitis, and TMA. In phase 2, a grading system for vascular
lesions could be used following the Banff classification, and the definitions of the Cure GN
group for evaluating hyalinosis. Definitions for TMA and vasculitis in lupus nephritis still have
to be created, as they can occur in an isolated manner with or without associated specific
serologic findings (ANCA, APA, etc.) or coexist with immune complex-mediated lupus
glomerular lesions. We propose that lupus vasculopathy be defined as luminal narrowing of
arterioles or terminal interlobular arteries by intramural immune deposits, typically admixed
with fibrinoid changes, without inflammation of the vessel wall. The immunoglobulin and
complement composition of the deposits is confirmed by IF.14-16 Future studies will
determine any impact of such lesions on prognosis and response to treatment.
Summary and Future Directions

In our efforts to work towards a more effective, more reproducible and more valuable classification for lupus nephritis, we have proposed improvements in the definitions of lupus nephritis lesions, which could impact treatment and prognosis. We have also proposed two important alterations in the classification system, namely to abandon the segmental/global designations in class IV, and to replace the A/C/AC designations of class III and IV by use of modified NIH lupus nephritis activity and chronicity scoring indices. Our proposed modifications are based on published evidence, expert experience and mutual agreement; we regard this as a phase 1 venture. The new definitions for lesions in lupus nephritis and the modifications to the classification system address some of the disagreement that currently exists among nephropathologists world-wide in classifying lupus nephritis according to the ISN/RPS lupus nephritis classification.

We would like to emphasize that many of the proposed changes involve descriptions of lesions that in other settings, such as the Oxford classification of IgA nephropathy, have proved challenging even for experienced pathologists to reliably reproduce. We will proceed to a phase 2 evidence-based approach using clinicopathologic studies and tests of inter-observer reproducibility to evaluate and validate the value of the newly proposed definitions and adjustments to the classification system and include tubulointerstitial and vascular lesions. This will entail a process similar to that used to develop the Oxford classification for IgA nephropathy, i.e. scoring of individual lesions by multiple pathologists in lupus nephritis biopsies obtained from patients for whom clinical outcomes are available. Once these data become available, it will be possible to modify the currently used cut-off points to optimize
the classes of lupus nephritis and to develop and validate reproducible activity and
chronicity indices that are of clinical utility.
References

7. NIH/NIDDK Cure Glomerulonephropathy Network (CureGN) Pathology Scoring System Definitions, provided by JC Jennette, CureGN Core Scoring Committee Chair.

ACKNOWLEDGMENTS

Boehringer Ingelheim gave financial support (Contract No.: 43074068) for the organization of the meeting of this Workgroup in Leiden, the Netherlands, May 2016.
Legend: Drawings depicting the ultrastructural features of a single glomerular capillary affected by lupus glomerulonephritis: Class I with mesangial immune deposits (black) but no mesangial cell (red) hypercellularity or influx of leukocytes; Class II with mesangial immune deposits and mesangial cell hypercellularity but no influx of leukocytes; and Class III/IV (upper right) with mesangial and capillary influx of leukocytes; Class III/IV (lower right) with subendothelial capillary wall immune deposits that can be seen by LM and mesangial but no capillary influx of leukocytes (dark green neutrophils and light green monocytes/macrophages); Class III/IV + V with influx of leukocytes and numerous subepithelial immune deposits in addition to subendothelial deposits; and Class V with numerous subepithelial immune deposits but no influx of leukocytes (podocyte = outer green cell, endothelial cell = yellow cell, mesangial cell = red cell, neutrophil = green cell with segmented nucleus, monocyte/macrophage = light green cell)

216x149mm (120 x 120 DPI)
<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendation</th>
<th>Comments on ISN/RPS guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class II</td>
<td>Definition for mesangial hypercellularity adjusted: Four or more nuclei fully surrounded by matrix in the mesangial area not including the hilar region (A)</td>
<td>Cutoff for mesangial hypercellularity unclear</td>
</tr>
<tr>
<td>Class III and IV</td>
<td>The term endocapillary proliferation is replaced by endocapillary hypercellularity (B)</td>
<td>Definition for endocapillary proliferation unclear; the term proliferation was considered imprecise</td>
</tr>
<tr>
<td></td>
<td>The term crescent is used for a lesion consisting of extracapillary hypercellularity, composed of a variable mixture of cells. Fibrin and fibrous matrix may be present; 10% or more of the circumference of Bowman's capsule should be involved.</td>
<td>Extracapillary proliferation involving < 25% of the circumference of Bowman's capsule was original cutoff. There were no definitions for fibrous or fibrocellular crescents</td>
</tr>
<tr>
<td></td>
<td>Cellular crescent: more than 75% cells and fibrin and less than 25% fibrous matrix (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrous crescent: more than 75% fibrous matrix and less than 25% cells and fibrin (D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrocellular crescent: 25-75% cells and fibrin and the remainder fibrous matrix (E)</td>
<td></td>
</tr>
<tr>
<td>Adhesion: an area of isolated continuity of extracelluar matrix material between the tuft and capsule even when the underlying segment does not have overt sclerosis (F)</td>
<td>There was no definition for an adhesion</td>
<td></td>
</tr>
<tr>
<td>Fibrinoid necrosis: fibrin associated with glomerular basement membrane disruption and/or lysis of the mesangial matrix; this lesion does not require the presence of karyorrhexis</td>
<td>There was no definition for fibrinoid necrosis</td>
<td></td>
</tr>
<tr>
<td>Elimination of segmental and global subdivisions of class IV</td>
<td></td>
<td>Definitions for segmental and global were unclear; interobserver variability was large; clinical significance uncertain</td>
</tr>
<tr>
<td>Modification of the NIH lupus nephritis activity and chronicity scoring system (Table 2) to be used instead of the currently used A, C and A/C parameters</td>
<td>Designation of activity/chronicity through A, C and A/C considered too broad and nonspecific; preference for a semiquantitative approach to describe active and chronic lesions</td>
<td></td>
</tr>
<tr>
<td>Tubulointerstitial lesions</td>
<td>Indicate whether interstitial inflammation occurs in presence or absence of interstitial fibrosis</td>
<td>Lack of cut-off values for reporting the severity of tubulointerstitial lesions</td>
</tr>
</tbody>
</table>