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Abstract—This paper introduces a procedure for the calculation of the vertex
positions in Marching-Cubes-like surface reconstruction methods, when the
surface to reconstruct is characterised by a discrete indicator function. Linear or
higher order methods for the vertex interpolation problem require a smooth input
function. Therefore, the interpolation methodology to convert a discontinuous
indicator function into a triangulated surface is non-trivial. Analytical formulations
for this specific vertex interpolation problem have been derived for the 2D case by
Manson et al. [Eurographics (2011) 30, 2] and the straightforward application of
their method to a 3D case gives satisfactory visual results. A rigorous extension to
3D, however, requires a least-squares problem to be solved for the discrete values
of a symmetric neighbourhood. It thus relies on an extra layer of information, and
comes at a significantly higher cost. This paper proposes a novel vertex
interpolation method which yields second-order-accurate reconstructed surfaces
in the general 3D case, without altering the locality of the method. The associated
errors are analysed and comparisons are made with linear vertex interpolation and
the analytical formulations of Manson et al. [Eurographics (2011) 30, 2].

Index Terms—Surface reconstruction, volume fractions, discrete indicator
function, marching-cubes, vertex interpolation
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1 INTRODUCTION

IN computer graphics [1], [2] and computational physics [3], it is
common to represent a closed subset () of the d-dimensional space
with a discontinuous indicator function x : R? — R defined as

x={,

If the domain encompassing () is discretised into an ensemble M of
small cuboids (or cells), then to each cell K is associated the local
fraction of volume occupied by K N (). That is to say

if z€Q,

it z¢ Q. )

_KnQ 1

7.9 =
M SR TR,

x(z)dx. 2
This discrete field y, illustrated in Fig. 1, is referred to as the volume
fraction or the discrete indicator function (DIF) field. Both denomina-
tions are used in this paper.

DIF formulations can be found in various disciplines including
computer graphics and image processing (e.g., font rasterization or
curve/surface reconstruction), medical and geophysical computed
tomography, or interfacial flow modelling. In order to reconstruct
an approximation of a free-boundary 9} from its associated dis-
crete data field, classical polygonisation methods such as the
Marching-Cubes method [6] or Bloomenthal’s polygoniser [7]
require to solve local vertex interpolation problems, i.e., compute the
position of the intersections between d() and the edges of the dis-
crete mesh.
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Most vertex interpolation techniques available in the literature
are based on linear or higher order polynomial interpolation [8],
and rely on the assumption that the sampled function is smooth
along the edges of the discrete mesh. The discontinuous nature of
an indicator function makes it badly suited for such methods.
Fig. 2 shows a comparison between different vertex interpolation
methods and post-reconstruction treatments applied to the DIF
surface reconstruction problem. High-frequency error patterns are
clearly visible in Fig. 2b where linear interpolation is used directly
on the DIF field. Beyond the visual aspect of the reconstruction,
some applications (e.g., in computational physics) require the posi-
tion of the triangulated vertices to be very accurately computed. In
the modelling of interfacial flows, for instance, an accurate estima-
tion of the surface curvature is essential in order to prevent the
generation of parasitic flow currents [9], [10]. If computed from the
reconstructed interface, its accuracy directly depends on the qual-
ity of the vertex interpolation process.

This paper proposes a method to accurately position the vertices
of a surface reconstructed from DIF values in a general 3D case. It
relies on the computation of local volume-fraction-compliant piece-
wise-linear surface approximations, based on which the positions
of the reconstructed surface vertices are iteratively corrected. The
proposed method conserves the locality of the interpolation proce-
dure and does not require to solve for a least-squares problem.

2 RELATED WORK

The DIF surface reconstruction problem can be addressed in various
ways. A trivial and frequently used solution consists in mollifying
the DIF field (e.g., by means of convolution) before reconstructing
the surface using a classical linear or higher order vertex interpola-
tion method. This greatly reduces the high-frequency errors visible
in Fig. 2b, and provides the reconstructed surface with a better
visual aspect. However, it leads to changes in its shape—for
instance in regions of high curvature—which may be unacceptable
(see Fig. 2c where, prior to the Marching-Cubes reconstruction, the
DIF field has been mollified via convolution with a radial basis func-
tion which is compact on a sphere of radius r = 2Az; Az being the
mesh spacing).

Applying a mesh smoothing operator to the post-reconstruction
triangulated surface is also a way to improve the visual aspect of
the free-boundary approximation, as shown in Fig. 2d. The itera-
tive use of a discrete smoothing operator defined as

Do cv (p; —p)
#V ’

for example, where V' is the local neighbourhood of vertices around
the vertex p, allows for a reduction of the high-frequency errors at
low cost but tends to significantly alter high-curvature features of
the triangulated surface. Enhanced mesh smoothing techniques
based on the successive use of Laplacian smoothing [4] or on mean
curvature flow smoothing [11] can filter small errors and conserve
the volume and small scale structures of the surface more accu-
rately. Such methods come at a higher cost and still exhibit errors
which can be unsuitable for applications that require a high recon-
struction accuracy.

Another way to obtain smooth surfaces from volume fractions
is to solve a global constrained optimisation problem for the sur-
face smoothness, as done in methods which extract smooth surfa-
ces from binary data [12], [13], [14]. Starting from an initial surface
guess, such methods minimise the local curvature under the con-
straint that the surface must remain consistent with its associated
data field. These techniques mainly focus on the smoothness
of the reconstructed surface, and they exhibit a relatively large

Sp)=p+ 3)
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Fig. 1. Example of the volume fraction or discrete indicator function field y associ-
ated with a circular free-boundary 3. The domain under consideration is discre-
tised into an ensemble M of squares K.

computational cost. Alternatively, Prilepov et al. [15] use a gradient
field approximation based on trilinearly blended Coons-patches to
generate a smooth volume fraction function, which results in
smooth reconstructed surfaces with good volume-conservation
properties. Finally, Ledergerber et al. [16] rely on the well-known
moving least-squares formalism to reconstruct smooth isosurfaces
and compute differential quantities accurately.

In fact, it is possible to avoid using any form of smoothing and
still obtain both smooth and accurate results by considering the
nature of the information provided by the DIF data, i.e., local occu-
pancies. In order to do this, it is relevant to work with the dual of
M, named D, whose vertices correspond to the cell centers of M,
as shown in Fig. 3a. By using D instead of M, a Marching-Cubes or
similar reconstruction algorithm can be applied with direct vertex
access to the DIF values [17]. With this direct access to the volume
fractions, the local vertex interpolation problem (i.e., finding the
position of p in Fig. 3a) can be formulated as a function of the two
volume fractions y, and y, available at both ends of each edge of D.

For a given edge of D in 2D, there exists a unique straight line that
locally approximates the free-boundary d{) while complying with
the local occupancies y, and y,. Manson et al. [5] showed that finding
this line can only take the form of four distinct problems for each of
which an analytical solution is available. These cases are depicted in
Fig. 3a, and Fig. 3b shows which case relates to a given combination
(0,v1)- In formal terms: considering an edge of D linking two
cuboids of M with centers xy and z; and associated volume fractions
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(a) The four reference cases encountered when trying to
constrain a line with two volume fractions o and 1
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(b) Case repartition based on the values of o and 1
Fig. 3. A unique local linear approximation can be recovered from the volume frac-
tions y, and y, available at both ends of an edge of D.

yo and yy, then if sign(y, — 0.5) = —sign(y; — 0.5), the free-boundary
intersects the edge, and the position of the intersection p writes

p=pnmo+ (1 —p)mz. )
Assuming y, < y; and with the notation y = 1 — y, the parameter

u is given by

_ 0.5 -y,
Y1 = Yo

Case 1: " (linear interpolation) (5a)

(a) Reference surface (b) Linear vertex
interpolation on the

sharp DIF mollified DIF

(c) Linear vertex
interpolation on the

(f) Proposed vertex
interpolation method

(d) Mesh smoothing on (e) Vertex interpolation
the triangulated surface  method of Manson et
using Taubin [4] al. [5]

Fig. 2. Reconstruction of a Golf Ball (obtained from the Princeton University Suggestive Contour Gallery) with Marching-Cubes using different vertex interpolation meth-
ods and/or post-reconstruction treatments: (a) Reference model from which the DIF is computed; (b) Reconstructed surface using a linear vertex interpolation method;
(c) Reconstructed surface using a linear vertex interpolation method on a mollified DIF; (d) Reconstructed surface using linear vertex interpolation and after 15 post-
reconstruction Taubin [4] mesh smoothing iterations; (e) Reconstructed surface using the vertex interpolation method of Manson et al. [5]; (f) Reconstructed surface using

the vertex interpolation method proposed in this paper.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.25, NO.3, MARCH 2019

3
Case 2 : K=5=Yo~ N (column height) (5b)
2y, —1
Case 3 : nw=1- " (5¢)
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Case 4 : 4 (5d)

n=1-— — — —.
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From a computational point of view, a sequence of simple tests
allows to determine which case is associated with a given couple
(Y0, v1)- If vy > vy, then (yg, o) and (y;, x1) are swapped and the
vertex interpolation follows the same process.

The same reasoning cannot be applied to the general 3D case
without losing the locality of the method: that is because two values
of the DIF are not enough to constrain a plane—doing so would
require to solve a minimisation problem for the errors in volume
fractions of the neighbouring cells (in a way which is similar to what
the so-called (E)LVIRA methods [18] do for the computation of sur-
face normals from volume fractions). In practice, applying the For-
mula (5) ‘as is” for the 3D case provides satisfactory visual results [5].
This, however, is equivalent to constraining the surface normal to
have a zero-component in one of the main grid directions perpendic-
ular to the considered edge, which can lead to relatively large errors
when, in reality, the normal component in that direction is large.

3 PRoPOSED METHOD

The present section proposes an iterative vertex positioning proce-
dure which allows to consider the local normal orientation of the sur-
face during the vertex interpolation process. This novel approach
couples piecewise-linear volume-fraction-compliant surface approxi-
mations, widely used in the field of interfacial flow modelling, with
the Marching-Cubes surface reconstruction problem.

3.1 Piecewise-Linear Surface Approximations

In the proposed approach, prior to iteratively positioning the verti-
ces, a linear approximation of the surface that complies with the
local volume fraction is computed in each interfacial cell' of M,
using the analytical solutions of Scardovelli and Zaleski [19]. This
requires the surface normal orientation to be estimated in the inter-
facial cells.

3.1.1  Estimation of the Surface Normals from the DIF

The surface normals are estimated directly from the volume frac-
tions. Making use of the Cartesian nature of the grid M, a height-
function (HF) method [20] is employed to do so. The HF method
applies central-differences on the ‘heights of material’ in a local
3 x 3 x 9 stencil of cells. This stencil is oriented based on an estima-
tion of the local dominant normal direction, and the heights of
material H;; are obtained by summing the volume fractions in
each column, following:

4
Hi:j = Z yi,j,k Az ) (7’7.]) € {717071}27 (6)
k=—4

where y; ;; is the volume fraction in the (4, j, k)th cell of the HF
stencil. Assuming, for instance, that the dominant normal direction
is along the z-direction, the surface normal for the stencil under
consideration is given by

—H.
1 T
—H,
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1. An “interfacial’ cell has a volume fraction that satisfies 0 < y < 1.

; (7)
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The formulas for z-dominant or y-dominant normal directions are
straightforward to obtain. The HF method is known to provide
erroneous results when heights are not ‘consistent’, that is when
one of the following conditions is not satisfied:

e At least one cell in each column is full (i.e., there is at least
one cell for which y = 1)

e At least one cell in each column is empty (i.e., there is at
least one cell for which y = 0)

e Each column crosses the interface exactly once (i.e., all cells

with 0 < y < 1 are adjacent to each other)

For this reason, the HF method is here coupled with a mixed-
Youngs-centred (MYC) method [21]. The MYC method estimates the
local surface normal on a 3 x 3 x 3 stencil, using central-differences
on the mollified DIF field or on the local heights of material, regard-
less of their consistency. It provides the initial normal guess used to
determine the dominant normal direction in the HF method, as well
as an alternative to it when consistent heights are not found on the
3 x 3 x 9 stencil.

3.1.2  Computation of the Piecewise-Linear Approximations
Once the surface normals n have been evaluated, a plane

n-r=a, (10)

is defined in each interfacial cell. Without loss of generality and
using simple coordinate transformations, the cell can be oriented
such that 0 < n; < ny < n3. The local volume fraction y can then be
expressed as a function of « following the relation [22]

o

3
y {1ZH(aniCi)(1nici/“)3

~ 6K munang
1n
3

+ Z H (o — o + 1¢i) (1 — ot/ + nzCi/a)},

i=1

where ¢ = (¢, ¢2, 03)T contains the dimensions of the cuboids of M,
the parameter oy, corresponds to the smallest « for which y =1
(hence ayax = n-c), and H is the Heaviside function. The coeffi-
cient @ which complies with a given local volume fraction y is cal-
culated using the analytical formulations of Scardovelli and
Zaleski [19] for the inverse problem « = f(n,y). An example of
piecewise-linear surface approximations obtained from given nor-
mals and volume fractions is shown in Fig. 4a.

3.2 Iterative Vertex Positioning

A given vertex p of the triangulated surface belongs, by con-
struction, to an edge [z, z;] of the dual grid D, with zy and z,
the centres of two cells Ky and K; of M (as illustrated in
Fig. 4a). During the Marching-Cubes surface reconstruction pro-
cess, the vertex p is positioned on the edge (for instance: it is
arbitrarily placed at the middle of the edge or, alternatively, is
positioned using linear interpolation or the vertex interpolation
method of Manson et al. [5]). As part of the method proposed in
this paper, a temporary cuboid 7" with similar dimensions as K
and K is then centred around the vertex p, as shown in Fig. 4b.
The piecewise-linear approximations in K and K, are used to
compute the volume fractions y, and y, associated with Ko NT
and K| NT, from which the volume fraction associated with T,
named y;, follows as
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(a) Piecewise-linear volume-fraction-compliant
approximations in the cells K¢ and K3

(b) Fractions of volume 4o and 41 contained in the
cuboid centred around p

(c) Piecewise-linear approximation in the temporary
cell and vertex p* after projection

Fig. 4. lterative vertex positioning procedure: (a) Piecewise-linear approximations
of the surface are computed in the two cuboids of M associated with a given edge
of D; (b) The fractions of volume ,, in a temporary cuboid centred around the
vertex p are calculated; (c) Using the calculated volume fraction y, and the vertex
normal nr, a piecewise-linear approximation of the surface is computed in the tem-
porary cuboid. The corrected vertex p* is the projection of p on this plane.

VolKoNT| +y [ K1 NT
T:y()‘ 0 |+V1‘ 1 | 12)
7]
The plane coefficient oy in the temporary cell T is then calculated
using the volume fraction y; and the normal ny given by

(1= p)ng +pm

—_ 13
10— mo + ] 43

nr =

The variable p, associated with the position of p on the edge
[®0, 1], is introduced in Equation (4). Finally, the vertex p is moved
on the edge [z, z1] until reaching the plane computed in the tem-
porary cell T, or one of the extremities of the edge. Restricting the
vertex to stay on the edge yields a vertex interpolation that remains
consistent with the Marching-Cubes formalism. The resulting sur-
face is thus guaranteed not to self-intersect. The corrected vertex is
shown as p* in Fig. 4c.
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Other than the volume fractions y, and y, and the local nor-
mals ny and n;, no information is required from the neighbour-
ing cells in order to execute this procedure. This simplifies the
implementation of the method and keeps the vertex interpola-
tion process entirely local. Moreover, the proposed method
does not require to solve a non-linear minimisation problem
for each cell, but instead simply requires to execute a limited
number of geometric operations, which keeps its computational
cost low.

The process is repeated until the projection leaves x unchanged
(within the tolerance of a small positive constant § < 1). Algorithm 1
provides a summary of the proposed surface reconstruction
method.

Algorithm 1. Proposed Surface Reconstruction Method

Parameters:
kmax < Maximum number of iterations
8 «— Small positive constant

1. Marching-Cubes surface reconstruction on D
(e.g., using linear vertex interpolation)
2. Piecewise-linear surface reconstruction on M
for each cell K € M do
if0 < yx < lthen
ng « Compute MYC normal from DIF
if heights are consistent then
ng <« Compute HF normal from DIF
ai < Compute plane coeff. from (y,, ng)
3. Iterative vertex positioning
for each vertex p on an edge [zyz:] of D do
a. Initialisation
w0 — 1

wM — Compute p from position of p on [zoz1]
k<0

b. Iterative vertex projection
while [u*) — W] > sand k < kyay do
T «— Temporary cuboid centred around p

vr «— Compute volume fraction in 7'
nr  « Compute normal from (u*+Y ng, ny)
ap < Compute plane coeff. from (y,, ny)

P «— Project p on plane ny - a7 =0
PCIP (Y
wulE1) « Update p from new position of p

k — k+1

4 ERROR ANALYSIS

The proposed approach is compared with linear vertex interpola-
tion and the method of Manson et al. [5], on implicit surfaces and a
3D model. For the first test-case, a Sphere given by the expression

F(z) =2 +y + 2 — I?, 14

is considered. The second test-case considers a fifth-order polyno-
mial, referred to as Genus, given by the expression

F(z) =2y(y — 32°)(1 - 2%)

. 15
+ @+ = (92 - 1)(1 - 2). {15

Third, the so-called Stanford Bunny model issued from the Stanford
3D Model Repository is considered.
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Shape error ¢

Co0

(b) Manson et al.

f=}

(a) Reference surface (c) Proposed method

Method llellz/R llelloo /22

Linear interpolation 3.06 x 104 6.73 x 104

Manson et al. 1.95 x 1072 7.99 x 1075
(x0.064) (x0.119)

Proposed method 1.23 x 1072 1.80 x 1072
(x0.040) (x0.027)

Fig. 5. Shape error ¢ for the reconstruction of a Sphere with R/Az = 64 using dif-
ferent vertex interpolation methods. The reference error used for visualisation is
Eret = 2.5 X 107° R.

The DIF fields associated with the implicit surfaces are gener-
ated by integrating the volume fraction in each cell using the Vofi
library [23], whereas the DIF field for the Stanford Bunny is gener-
ated by sampling, using the original 3D model. For the Sphere, the
errors are computed by calculating the exact distance between the
reconstructed vertices and their projection on the implicit surface.
For the Genus, the errors are obtained by computing the distance
between the reconstructed vertices and a high resolution reference
model generated using a 512° grid. The errors for the Stanford
Bunny are obtained by computing the distance between the recon-
structed vertices and the original 3D model. Finally, the following
parameters are chosen for the iterative vertex positioning proce-
dure: kyax = 100, and § = 107!2. Three configurations are consid-
ered for the initial Marching-Cubes surface reconstruction (step 1
of Algorithm 1): Mid-edge—the vertices are initially positioned at
the middle of their associated edge of D, regardless of the local vol-
ume fraction values; Linear—the vertices are initially positioned
using linear vertex interpolation; Manson—the vertices are initially
positioned using the method of Manson et al. [5]. For all tests con-
ducted in this paper, all three types of initial surface guesses lead
to identical reconstructed surfaces after convergence of the pro-
posed iterative vertex positioning procedure (step 3 of Algo-
rithm 1). A fixed-point solution thus exists regardless of the initial
surface guess obtained from the Marching-Cubes reconstruction.

Figs. 5, 6, and 7 show the shape errors for the reconstruction of
the Sphere, Genus, and Stanford Bunny, respectively (the error reduc-
tion relative to the linear vertex interpolation case is given in

Eref
w
g
(5]
2
E]
w
0
(a) Reference surface (b) Manson et al. (c) Proposed method
Method llell2/D llelloo /D
Linear interpolation 5.88 x 10~ 1.37 x 1073
Manson et al. 1.99 x 10~4 1.13 x 103
(x0.34) (x0.82)
Proposed method 1.60 x 10—4 5.62 x 10~4
(x0.27) (x0.41)

Fig. 6. Shape error ¢ for the reconstruction of a Genus with D/Az = 75 (D being
the diagonal of the surface’s bounding box) using different vertex interpolation
methods. The reference error used for visualisation is e,.f = 4.2 x 10~* D.
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Eref
w
g
=1
5}
2
]
w
0
(a) Reference model  (b) Manson et al.  (c) Proposed method
Method lell2/D llelloo /D
Linear interpolation 4.88 x 10~ 2.52 x 1073
Manson et al. 2.87 x 10~% 2.52 x 1073
(x0.59) (x1.00)
Proposed method 2.56 x 10~* 2.13 x 1073
(x0.53) (x0.85)

Fig. 7. Shape error ¢ for the reconstruction of the Bunny with D/Az = 100 (D being
the diagonal of the surface’s bounding box) using different vertex interpolation
methods. The reference error used for visualisation is e,.; = 5.2 x 107* D.

brackets). In all cases, the root mean square (|| - ||,) and maximum
(|l - |lo) values of the shape errors are maximal with linear vertex
interpolation and minimal using the proposed method. Overall,
the proposed method performs significantly better than the other
two methods when the free-boundary is not locally almost normal
to the considered grid edge (which mostly happens in the cases 1,
3, and 4 of Fig. 3). When the free-boundary is locally almost normal
to the grid edge (e.g., case 2 of Fig. 3), then both Manson et al. [5]
and the proposed method give results of similar accuracy. This can
be clearly observed in Fig. 5 as well as in Figs. 6 and 7. From a
visual point of view, if there is an obvious improvement between
linear vertex interpolation and both Manson et al. [5] and the pro-
posed method, there is no noticeable difference between these last
two methods. When extracting information from the reconstructed
surface, however, there can be a significant improvement with the
proposed method compared to Manson et al. [5]. To quantify this
gain, the impact of the vertex interpolation method on the local
mean curvature of the reconstructed Sphere is studied. Curvature is
evaluated at each vertex of the reconstructed surface by fitting a
parabolic patch onto a local neighbourhood of vertices,” using the
fitting approach of Taubin [24]. Tests are conducted over a range of
grid resolutions, and 100 simulations are performed with random
center positions for each resolution. The root mean square (RMS)
errors are averaged over the 100 simulations, and the maximum
errors correspond to the maximum encountered during the 100
simulations. The results, plotted in Fig. 8, show that all vertex inter-
polation methods tested (i.e., linear interpolation —o—, Manson
et al. —a—, and the proposed method —o—) yield shape errors that
converge with mesh refinement. Over the range of resolutions
tested, the proposed method consistently performs 25 to 50 per-
cents better than Manson et al. [5] with regards to the RMS shape
error. The maximum shape errors associated with these two meth-
ods present notable differences: as the resolution R/Az increases,
the method of Manson et al. [5] exhibits a convergence rate some-
what between first- and second-order, whereas the method pro-
posed in this paper converges with second-order accuracy. Indeed,
use of the method of Manson et al. [5] in 3D cannot yield second-
order accurate results since it is not able to consider arbitrary sur-
face normal orientations, while the method proposed in this paper
relies on second-order accurate piecewise-linear local surface
approximations. This improvement translates into significant dif-
ferences when considering the curvature errors. For Az < R/10,

2. The local neighbourhood of a vertex is here defined as the two consecutive
layers of neighbours surrounding it.
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Max shape error ||€]|oo /R RMS shape error ||||2/R

1071 E T T IIIIII| T T IIIIIE 1071 E T T IIIIII| T T IIIIIE

E 3 E 3
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077 E 107 g 3
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0t E E 107t g 3

10—5 i 1 1 IIIIII| L1 II\III_ 10—5 i L1 IIIIII| L1 I\.IIIII_
10° 10t 102 10° 10t 102

R/Ax R/Ax
Max curvature error RMS curvature error

101 E T T IIIIII| T T IIIII_ 101 E T T IIIIII| T T IIIII_

10° E 10° E

B 3 E 3

w0t E E 107t E E

102 F E I E

107° g E 10°°F 3

10—4 i 1 L1 IIIII| L1 1 I\I\II_ 10—4 i L1 1 IIIII| L1 1 I\I\II_
10° 10t 102 10° 10t 102

R/Azx R/Ax

Fig. 8. Shape and curvature errors for the reconstruction of a Sphere with different
mesh resolutions. Squares —o— represent linear vertex interpolation, triangles
—a— represent the vertex interpolation method of Manson et al. [5], and empty
circles —o— represent the proposed method. The slope of the dashed line corre-
sponds to second-order convergence.

LD

(b) Proposed method

Mean curvature k

Kmin

(a) Manson et al.

Fig. 9. Mean curvature of a Smooth Box evaluated by fitting a parabolic patch on
the local neighbourhood of each vertex. Low curvatures are represented in blue
and high curvatures in red. (a) The surface is reconstructed with Marching-Cubes
using the vertex interpolation method of Manson et al. [5]; (b) The method pro-
posed in this paper is employed.

the maximum curvature error is consistently larger with the
method of Manson et al. [5] than with the method proposed in this
paper. When reaching Az = R/50, the average curvature error
with the method of Manson et al. [5] is more than one order of
magnitude larger than with the proposed method. The reduction
of the curvature errors associated with the proposed method is
illustrated in Figs. 9 and 10 which show the mean curvature fields
of a Smooth Box and an Ellipsoid. With the method of Manson et al.
[5], visible error patterns can be observed on the mean curvature
field, in locations where the reconstruction errors are the largest.
Using the proposed method, these errors are greatly reduced, as
shown in Figs. 9b and 10b.

Finally, execution times for the reconstruction of the Sphere with
R/Ax = 50 are given in Table 1. They are averaged over 100 simu-
lation runs, and the three initial configurations Mid-edge, Linear,
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Rmax

Mean curvature K

ce

(b) Proposed method

Kmin

(a) Manson et al.

Fig. 10. Mean curvature of an Ellipsoid evaluated by fitting a parabolic patch on the
local neighbourhood of each vertex. Low curvatures are represented in blue and
high curvatures in red. (a) The surface is reconstructed with Marching-Cubes
using the vertex interpolation method of Manson et al. [5]; (b) The method pro-
posed in this paper is employed.

TABLE 1
Average Execution Times (Given in s) for the reconstruction of the
Sphere with R/Axz = 50 Using the Method Proposed in this Paper, and
for Different Initial Surface Guesses

Initial guess Mid-edge Linear Manson
Marching-Cubes reconstruction 0.278 0.308 0.326
(x1.11) (x1.17)
Normals evaluation 0.996 0.995 0.996
(x0.99) (x1.00)
Iterative vertex projection 0.786 0.521 0.440
(x0.66) (x0.56)
Total 2.060 1.824 1.762
(x0.89) (x0.86)

The time increase relative to the “mid-edge” initial Quess case is given in
brackets.

TABLE 2
Average Number of lterations to Reach the Fixed-Point Solution for the
Cases Presented in Figs. 5, 6, and 7, Using the Method Proposed in this
Paper, and for Different Initial Surface Guesses

Sphere Genus Bunny
Mid-edge initial guess 4.93 6.75 8.68
Linear initial guess 4.42 6.25 8.10
Manson et al. initial guess 3.49 4.06 7.22

and Manson are considered. It is worth mentioning that the majority
of cells do not contain any surface element, yet they are explored
during the Marching-Cubes reconstruction process. The cost associ-
ated with these cells is considered negligible as a simple test on the
volume fraction values at the corners of each cell allow to determine
whether to skip them or not. Additionally, Table 2 shows the aver-
age number of iterations (in step 3 of Algorithm 1) necessary to
reach convergence to the fixed-point surface solution, for the cases
presented in Figs. 5, 6, and 7. Here also, the three initial configura-
tions Mid-edge, Linear, and Manson, are considered.

Several conclusions can be drawn out of these tables. Table 1
logically shows that the more elaborate the initial guess strategy is,
the more expensive the Marching-Cubes reconstruction process
becomes. This is counter-balanced by the fact that the more elabo-
rate and accurate the initial guess strategy is, the less expensive the
iterative vertex positioning process becomes. This concurs with
Table 2 which shows that the complexity and accuracy of the initial
guess is inversely proportional to the number of iterations neces-
sary to reach convergence to the fixed-point solution. Overall, it
appears from Table 1 that using the method of Manson et al. [5]
for the initial surface reconstruction (i.e., the most expensive and
accurate initial guess option) allows for the fastest execution of
Algorithm 1. The iterative vertex positioning is indeed associated
with a higher cost than the Marching-Cubes reconstruction, due to
the resolution of the inverse problems « = f(n, y), which require to
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solve cubic polynomial equations. For all cases tested, the addi-
tional costs associated with the estimation of the surface normals
and the iterative vertex positioning process induce a total execution
time that is 5 to 10 times larger than the Marching-Cubes recon-
struction itself.

5 CONCLUSION

A procedure to accurately position the vertices of a surface recon-
structed from a discrete indicator function (or volume fraction)
field has been presented. The proposed method, which relies on
the computation of local volume-fraction-compliant piecewise-lin-
ear approximations of the surface, conserves the locality of the ver-
tex interpolation process and does not require to solve local least-
squares problems. A range of tests on algebraic surfaces and a 3D
model, show that the method performs better than other techni-
ques thanks to its ability to consider arbitrary normals for the local
linear approximations used in the vertex interpolation problem.
The associated reduction of reconstruction errors is hardly visible
on the triangulation itself, but leads to significant improvements
when extracting information from the triangulation, such as the
local curvature components. This, for example, improves both the
accuracy and stability of surface tension dominated interfacial flow
simulations, where an accurate evaluation of the interface curva-
ture is essential.
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