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Abstract 18 

Lutein is a high-value bioproduct synthesised by microalga Desmodesmus sp.. It has great 19 

potential for the food, cosmetics, and pharmaceutical industries. However, in order to enhance its 20 

productivity and to fulfil its ever-increasing global market demand, it is vital to construct 21 

accurate models capable of simulating the entire behaviour of the complicated dynamics of the 22 

underlying biosystem. To this aim, in this study two highly robust artificial neural networks are 23 

designed for the first time. Contrary to conventional artificial neural networks, these networks 24 

model the rate of change of the dynamic system, which makes them highly relevant in practice. 25 

Different strategies are incorporated into the current research to guarantee the accuracy of the 26 

constructed models, which include determining the optimal network structure through a hyper-27 

parameter selection framework, generating significant amounts of artificial data sets by 28 

embedding random noise of appropriate size, and rescaling model inputs through standardisation. 29 

Based on experimental verification, the high accuracy and great predictive power of the current 30 

models for long-term dynamic bioprocess simulation in both real-time and offline frameworks 31 

are thoroughly demonstrated. This research, therefore, paves the way to significantly facilitate 32 

the future investigation of lutein bioproduction process control and optimisation. In addition, the 33 

model construction strategy developed in this research has great potential to be directly applied 34 

to other bioprocesses.  35 

 36 

Keywords: artificial neural network; dynamic simulation; lutein production; real-time 37 

framework; fed-batch operation; bioprocess modelling. 38 

 39 

 40 
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1. Introduction 41 

The synthesis of valuable bioproducts from microalgae through photosynthetic related metabolic 42 

pathways is a promising sector (Mata et al. 2010) that can deliver a wide variety of commodities. 43 

One of the most well-known applications is the production of eco-friendly biofuels such as 44 

biodiesel and biohydrogen (Doshi et al. 2016; Zhang, Dechatiwongse, del Rio-Chanona, et al. 45 

2015), which are being developed to replace traditional transportation fuels. Another use is that 46 

as food supplements (Río et al. 2005; Xie et al. 2014), a capability in which they have been long 47 

employed and for which considerable growth of market demand is forecasted. Most importantly, 48 

there is a thriving international research interest, development and deployment of microalgae 49 

based sustainable and environmentally friendly technologies, by the health sector. This is with 50 

the aim of producing specialist high-value products such as lutein (Xie et al. 2014), C-51 

phycocyanin (del Rio-Chanona, Zhang, et al. 2015), and astaxanthin (Zhang et al. 2016), for 52 

which traditional synthesis routes and refinery methods from existing non-renewable sources are 53 

expensive, energy intensive, and of low efficiency (Yen et al. 2011; Capelli et al. 2013).  54 

 55 

One high-value bioproduct that has found particular attention is lutein, a carotenoid of great 56 

interest to the health, pharmaceutical, cosmetics, and food industries (Yaakob et al. 2014; 57 

Fernández-Sevilla et al. 2010). Lutein has been widely used for the treatment of ophthalmic 58 

conditions and cancer, and applied as a natural colorant  in cellular pigmentation and in the food 59 

industry(Ho et al. 2015; Xie et al. 2013). Because of its wide applications, its market demand in 60 

the US was estimated to increase significantly from $150 million in 2000 to $309 million in 2018 61 

(Marz 2011). Nonetheless, further growth in production is hampered by the fact that its current 62 

industrial feedstock is marigold, a plant which has an extremely low intracellular content of 63 
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lutein (0.02~0.1% wt (fresh flowers)) with low growth rate (Lin et al. 2015), explaining the 64 

current high process separation costs and low productivity.  65 

 66 

Therefore, microalgae with their rapid growth rate and ability to utilise plenty of low cost and 67 

abundant resources including solar energy, atmospheric CO2 and wastewater, can provide 68 

significant improvements over existing industrial practice. Research into microalgal lutein 69 

production has already made considerable progress. It was found that nitrogen intake into the 70 

system is vital for the synthesis and accumulation of lutein (Xie et al. 2014; Ho et al. 2015). It 71 

was also discovered that low illumination is a decisive factor to ensure the suitable conditions for 72 

lutein production (Ho et al. 2012; Xie et al. 2013). Furthermore, the influence of different 73 

photobioreactor types and operating modes on microalgae growth and lutein synthesis were 74 

studied (Del Campo 2000; del Rio-Chanona, Zhang, et al. 2016). Different microalgae species 75 

such as Scenedesmus obliquus, Chlorella sorokiniana, Chlorella zofingiensis and Desmodesmus 76 

sp. were found to produce lutein with an intercellular lutein content that is between 6 and 15 77 

times higher than marigold (Shi et al. 2002; Sánchez et al. 2008; Del Campo 2000). 78 

 79 

Despite these achievements, one of the challenges that most severely prevents the 80 

industrialisation of the microalgae based lutein production process is to efficiently conduct a 81 

dynamic optimisation of the process. Precise control over a long-term bioprocess is 82 

indispensable to guarantee its safety and efficiency, as bioprocesses are very sensitive to the 83 

process operating conditions such as pH, temperature and nutrient supply. Hence, executing 84 

process optimisation within a control scheme can remarkably improve the process profitability 85 

(del Rio-Chanona, Zhang, et al. 2016). In order to resolve this challenge, it is essential to initially 86 
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construct a robust mathematical model, which is able to accurately simulate and predict the 87 

dynamic performance of the long-term photo-production system, for both microalgae growth and 88 

lutein production throughout the entire process (Zhang, Dechatiwongse, Del-Rio-Chanona, et al. 89 

2015).  90 

 91 

However, so far little attention has been paid on this aspect. At present, two methodologies have 92 

been predominantly developed for bioprocess simulation, namely kinetic modelling and artificial 93 

neural networks (ANNs). Specific to microalgal lutein production, a kinetic model including 94 

effects of both nutrient concentration and light intensity on biomass growth and lutein synthesis 95 

has not been proposed in the literature. In addition, although a kinetic model can display good 96 

accuracy and predictability, it is noticed that constructing such a complex model is always a 97 

difficult mathematical task (e.g. parameter estimation of highly nonlinear ordinary differential 98 

equation systems) even if the bioproduct synthesis mechanisms have been identified. Hence, its 99 

application in bioprocess control and real-time optimization has not yet been well conducted.  100 

 101 

On the contrary, ANNs have been widely used in traditional chemical engineering processes for 102 

process control (Mjalli 2005; Fissore et al. 2004), and their applications have been recently 103 

extended to biochemical systems (Witek-Krowiak et al. 2014; Rosales-Colunga et al. 2010). 104 

Furthermore, they have been successfully employed for the purpose of reproducing, controlling, 105 

and optimising the dynamical behaviour of microalgae based bioprocesses (García-Camacho et 106 

al. 2016; del Rio-Chanona, Manirafasha, et al. 2016). The key advantage of ANN over kinetic 107 

modelling is that the investigated system can be treated as a black-box, without the necessity to 108 

develop any empirical or analytical correlation. This significantly reduces the difficulty in model 109 
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structure design and model parameter estimation. The challenge in constructing ANNs, however, 110 

is the requirement of large and varied raw data sets to express good predictions in supervised 111 

learning, which is particularly time consuming for long-term bioprocesses (Witek-Krowiak et al. 112 

2014). As a result, there is not much development in the use of ANN for longer lasting biological 113 

systems (del Rio-Chanona, Manirafasha, et al. 2016). 114 

 115 

Therefore, to facilitate the industrialisation of lutein production and investigate the capability of 116 

ANNs in long-term bioprocess simulation, the work presented here aims to construct robust 117 

ANNs capable of accurately modelling and predicting the dynamic behaviour of microalgae 118 

biomass growth and lutein synthesis. Different strategies will be adopted to resolve the challenge 119 

arising from the limited amount of experimental data sets. In particular, Desmodesmus sp. is 120 

selected in the current study due to its highest intracellular lutein content (up to 5.0 mg/g) and 121 

great thermo-tolerant properties (highest growth rate at 35 ̊C and can survive up to 46 ̊C) 122 

compared to other algae species (Xie et al. 2014; Xie et al. 2013). 123 

 124 

The work is divided in the following sections. In this Section 1, a background introduction has 125 

been provided to both the object of investigation and the main tools that are used later in this 126 

study. In Section 2, the specific details of the implementation of ANNs in the current work are 127 

laid out, including a schematic of the structure of the ANNs and use of the “elbow rule” in 128 

deciding the key parameters. In Section 3, the results are presented and discussed, showing how 129 

with a small amount of experimental data points the designed ANNs can give robust predictions 130 

of the dynamic behaviours of the current investigated bioprocesses. This demonstrates their 131 

suitability for use in both real-time and offline optimisation frameworks. Finally, in the 132 
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conclusion section, the original findings are summarised and an overview of future avenues of 133 

research is provided. 134 

 135 

2. Theory and methods 136 

2.1 Experiment setup 137 

Six fed-batch experimental processes have been carried out in our work. In these experiments, 138 

microalga Desmodesmus sp. F51 was used for lutein production, and the operating temperature 139 

was controlled at 35 ̊C for biomass growth and lutein synthesis. This is because 35 ̊C has been 140 

reported to be the optimal temperature for Desmodesmus sp. F51 growth (Xie et al. 2013). A 1 L 141 

tubular photobioreactor (15.5 cm in length and 9.5 cm in diameter) was used in these 142 

experiments with an external light source mounted on both sides. Initial biomass concentrations 143 

in these experiments were kept constant, and incident light intensities were set from 150 μmol m-144 

2 s-1 to 600 μmol m-2 s-1. Nitrate influent was supplied to the reactor from the 60th hour until the 145 

end of the process due to the consumption of initial culture nitrate, and its inflow rate was fixed 146 

at 3 mL hr-1. Influent nitrate concentration was chosen as 0.1 M or 0.5 M in different 147 

experiments, and all the processes lasted for six days. 148 

 149 

Biomass concentration, nitrate concentration, and lutein production in all the processes were 150 

measured once per 12 hours, thus in total for each experimental data set there are 12 data points. 151 

Amongst these data sets, four of them were used in the current study for ANN training (model 152 

construction), and the remaining two (Test 1 and Test 2, under different light intensity and 153 

inflow rate conditions) were used for the predictability verification of the ANNs. All of the 154 

experiments were in duplicate, and the detailed presentation of the experimental measurement 155 
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techniques can be found in the previous research (Xie et al. 2013). The detailed operating 156 

conditions of these experiments are listed in Table I. 157 

 158 

2.2 Selection of number of hidden layers 159 

In this study, two different ANN structures were explored and their performance tested. A first 160 

ANN with one hidden layer, and a second ANN with two hidden layers. This enabled us to 161 

determine which structure is the most suitable one for future process optimization and control, 162 

given that few theoretical bases would highlight one over the other. Both ANN structures were 163 

fully linked and implemented in Python 2.7 using pybrain as a library (Schaul et al. 2010). The 164 

function implemented in the hidden layer nodes was chosen to be a sigmoid function, with a 165 

linear function in the output layer. This choice comes from recommendations in the literature 166 

that suggest such a combination is robust and flexible (Nielsen 2014). 167 

 168 

2.3 Inputs and outputs of ANNs 169 

In all cases the ANNs received 5 inputs which are the key operating factors and state variables in 170 

the current experiments: 171 

• Incident light intensity; 172 

• Biomass concentration; 173 

• Nitrate concentration; 174 

• Lutein production; 175 

• Nitrate inflow concentration. 176 

Of these inputs, incident light intensity and nitrate inflow concentration are experimentally 177 

controllable and known at all times in the experimental settings. The other three inputs are 178 
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measured once per 12 hours throughout the entire experimental operating time course. All inputs 179 

fed to the ANN were rescaled, as the variables in the system under analysis are of very different 180 

magnitude and ANNs require similarly scaled inputs. This can benefit the network training in 181 

terms of speed and numerical performance, therefore producing a smooth reduction in error 182 

during training and promoting a more accurate gradient evaluation.  183 

 184 

Furthermore, the outputs of the ANNs are the change of rate of the state variables including 185 

biomass concentration, nitrate concentration, and lutein production. These changes in the rate 186 

(either accumulation or consumption) are added into the current ANN inputs to predict the 187 

process states at the next time, which is schematically presented in Fig. 1. This strategy was 188 

adopted from our recent research in which using the change of states by giving their past 189 

information is found to give the network higher accuracy compared to directly predicting future 190 

states based on past ones (del Rio-Chanona, Manirafasha, et al. 2016). 191 

 192 

2.4 Selection of number of neurons in hidden layers 193 

Through literature correlations between the number of inputs and outputs desired, an initial 194 

number of nodes in each hidden layer was estimated to be around 20 (Lawrence et al. 1996; 195 

Elisseeff & Paugam-Moisy 1996). The exact number of neurons in the current ANNs, however, 196 

was tested through a hyper-parameter selection procedure, together with the number of training 197 

epochs (times that the ANN is trained). Four experimental data sets, each with 12 points, were 198 

employed in this hyper-parameter selection step.  199 

 200 

This hyper-parameter selection was conducted in k-fold fashion, where a selection of 4 of the 5 201 
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data sets is used for training and the remaining data set is used to obtain an estimate of the 202 

maximum error along the trajectory and across all involved variables. Then another subset of 4 is 203 

selected and the resulting network is evaluated against the remaining data set. This procedure is 204 

repeated until the specific network parameter configuration has been tested against all the sets, 205 

and it is then possible to obtain an average of maximum error for each parameter configuration. 206 

These errors are compared, and the network configuration with the lowest error is chosen. The 207 

choices for the number of nodes in the hidden layers were 5, 10, 15, 20, and 30, and those for the 208 

number of training epochs were 15, 30, 50, 100, 150, 200, and 300. The following figures, i.e. 209 

Fig. 2 and Fig. 3, show the 3D landscapes representing the intersection of these two choices and 210 

the error of cross-validation of the constructed ANNs.  211 

 212 

To better select the parameters for the ANNs, a framework known as “elbow rule” is used. The 213 

objective of this framework is to select the optimal number of layers and training epochs that 214 

would give the best trade-off between accuracy of the network, training time and potential of 215 

model over-fitting. While often increasing the number of epochs or layers brings further 216 

improvement, there are diminishing returns and the improvement is not worth the increasing 217 

training time. In addition, noises from an excessive number of internal parameters can create 218 

problems of over-fitting, thus deteriorating the ANN’s predictive capabilities. 219 

 220 

From Fig. 2 and Fig. 3, it can be seen that for the number of epochs, the error decreases rapidly 221 

at the beginning and flattens long before the maximum of 600 training epochs. As a result, 400 222 

epochs were chosen in the current study for both ANNs. In terms of the number of nodes, in the 223 

single hidden layer case (Fig. 2) adding more than 20 nodes does not result in an improvement in 224 
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performance, while in the ANN with two hidden layers (Fig. 3) a significant increase in the 225 

number of nodes beyond 10 seems to even contribute to a decrease in performance. Therefore, 226 

20 nodes were picked for the first case, and 15 nodes per hidden layer were chosen in the second 227 

case.  228 

 229 

2.5 Training of artificial neural networks 230 

For ANN training, 4 sets of experimental data points, each containing 12 data points, were used. 231 

To enhance the model accuracy, 50 replications of artificial data sets were produced based on the 232 

original data sets with random noise added of 3 % of the variable size, and a further 50 233 

replications with a 5 % noise. These proportions were selected based on the realistic assessment 234 

of the accuracy of the current original experimental measurements. The strategy of embedding 235 

adequate random noise into original data sets to generate significant amount of artificial data sets 236 

has been found to improve ANNs modelling and predictive power when simulating other 237 

biological systems, even when  relatively little experimental data is available (del Rio-Chanona, 238 

Manirafasha, et al. 2016). 239 

 240 

3. Results and discussion 241 

3.1 Training results of the artificial neural networks 242 

Once trained and cross-validated, both ANNs are constructed. The current proposed ANN 243 

construction strategy was implemented on a personal computer with low specifications in a 244 

realistic time (3 hours for the ANN training). This is more time-efficient than constructing a 245 

kinetic model for future process design, since it could be a time-consuming task, in particular at 246 

the early research stage, to fully identify the biochemical kinetic mechanisms. It is useful to 247 
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mention that modern PCs (e.g. Core i7) should have more than acceptable performance (30 248 

minutes at most of ANN training). This is further enhanced by the fact that more advanced ANN 249 

libraries allow computation to take place in Graphics Processing Units (GPU) in place of 250 

traditional CPU usage. The peculiar architecture of GPUs allows for 10-100 times faster training 251 

for equivalent amounts of loss, when CPU computation is used for the same cases. 252 

 253 

Fig. 4 and Fig. 5 show the comparison between the training data and the simulation results. In 254 

order to assess the effectiveness of the current ANN training procedure, in this case only initial 255 

operating conditions are provided, and the ANNs simulate the bioprocess behaviors throughout 256 

the 132 hours of operations. For illustrative purpose, the maximum absolute percentage error 257 

(MAPE) of the one hidden layer ANN is presented in Fig. 4. 258 

 259 

With the above results, it can be clearly seen that the ANNs are capable of accurately modelling 260 

the process dynamics to which they have already been exposed, even if only the initial operating 261 

conditions are given. Furthermore, if these ANNs are used in process optimization and control, 262 

they should be able to predict the performance of the investigated system under the operating 263 

conditions which they have never encountered. It is for this reason that two additional 264 

experimental data sets obtained from different experiments, namely Test 1 and Test 2, were used 265 

to test the predictive power of the designed ANNs.  266 

 267 

3.2 Predictability of the ANNs on a real-time framework 268 

During an ongoing experiment, the ANN should be capable of predicting the dynamic behavior 269 

of the bioprocess several time steps ahead. For this, a real-time framework can be put into place, 270 



13 

 

where in future work the system can be either controlled or optimized. After every set number of 271 

hours (12 hours in the current work) new experimental measurements would become available 272 

and the exact state of the system at that time would be known. Therefore, the ANN would only 273 

need to be able to accurately predict the performance of the current lutein production process for 274 

12 hours in advance, as new system data would be available after this time interval.  275 

 276 

Given that in the current experimental setting only 12 hours would be needed, both ANNs are 277 

used to predict the process behaviors of the two additional experimental tests (Test 1 and Test 2) 278 

after 12 hours once a measurement is given, and such prediction is repeated throughout the entire 279 

experiment operating time. Fig. 6 and Fig. 7 show the prediction results of the two ANNs for 280 

both experimental tests. The MAPE of both models are below 10%, expect for the one hidden 281 

layer ANN when predicting nitrate concentration at Experiment Test 2. The results shown in the 282 

two figures consist in strong proof that both models can be effectively used for the real-time 283 

control and optimization of the investigated bioprocess given their high predictive power. 284 

 285 

3.3 Predictability of the ANNs on offline framework 286 

Moreover, to thoroughly explore the feasibility of applying ANNs into an offline optimal control 287 

framework where the entire process behavior of an unknown experiment is predicted before its 288 

implementation (del Rio-Chanona, Dechatiwongse, et al. 2015), the current ANNs are used to 289 

simulate the processes Test 1 and Test 2. It follows the procedure that a single initial 290 

experimental point is supplied to the network, then the ANN computes the next state. 291 

Nonetheless, at the subsequent time step, instead of using the next experimental measurement as 292 

input to the ANN, the last computed simulated point is used. This means that, with the exception 293 
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of the first point at t=0 (initial condition), the ANN is not supplied with any other experimental 294 

point. Thus, throughout the entire process, the ANN simulation errors are accumulated and the 295 

model to system mismatches are magnified. A competent working model should keep the growth 296 

of simulation errors contained within the time horizon investigated. 297 

 298 

As an example, Fig. 8 compares the prediction results of the ANN with two hidden layers to the 299 

real experimental results. The MAPE of the two hidden layers ANN in both cases are mostly 300 

around 7% to 12%. From the figure, it can be appreciated that the prediction of the ANN 301 

matches the experimental results of both test sets well. This, as mentioned earlier, shows that the 302 

current constructed ANN can predict not only 12 hours in advance, but up to 132 hours with high 303 

accuracy.  This result strongly indicates the great competence of the current ANN for long-term 304 

bioprocess modelling and offline optimization.    305 

 306 

The small tendency for a slight consistent error seen in Test 2 might indicate a bias in the 307 

training sets, mostly in the concentration of nitrogen, where the increase of concentration 308 

influenced by the nitrogen injection is not well represented. This can be attributed to a relative 309 

lack of variety in the training sets, as the nitrogen inflow concentration has only two different 310 

quantities used as input. This seems to be further compounded by the fact that most differences 311 

commence around t=60th  hr, when nitrogen flow is switched on. Adding a relevant feature in a 312 

model usually decreases the modelling error. However, if the feature describes a variable or 313 

quantity in the system that does not vary much, this might actually cause more error than the 314 

addition of this feature would correct (Hagan et al. 2014). This could be solved by having more 315 

data sets with different nitrogen inflow concentrations as the main point of change. This analysis 316 
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can therefore support further experimental design. 317 

 318 

3.4 Comparison of the artificial neural networks 319 

In the current study, the two ANNs are created, one with one hidden layer and the other with two 320 

hidden layers, both of which are tested against Test 1 and Test 2. Some comparison results which 321 

highlight the difference in performance between the two ANNs are presented in Fig. 9. From the 322 

figure, it is observed that the performance of the ANN with two hidden layers is much better than 323 

the one with one hidden layer, when simulating the trajectory of the entire process (offline 324 

framework). Thus, it is concluded that although both ANNs can provide accurate 325 

implementations for a real-time framework, if the aim is to execute offline optimization, only the 326 

ANN with two hidden layers should be selected due to its higher accuracy and predictive 327 

capacities. 328 

 329 

However, it is important to emphasize that the conclusion of a two hidden layers ANN being 330 

superior to a one hidden layer ANN cannot be considered as a general rule for bioprocess 331 

modelling and optimization. This is because there exists a trade-off between model accuracy and 332 

risk of model over-fitting. In other words, although it is possible to enhance the model fitting 333 

results by increasing the number of ANN layers (hence increasing the amount of model 334 

parameters), the addition of extra layers can result in an over-fitting to the constructed ANN and 335 

severely aggravate the ANN predictive capabilities. Moreover, attention should be also paid on 336 

the counter-balance between increasing ANN training times by adding more layers and 337 

decreasing returns in improvements of predictive power. Thus, when employing ANNs to 338 

simulate an unknown biosystem, it is necessary to adopt the current proposed hyper-parameter 339 
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selection framework to determine the optimal ANN structure. 340 

 341 

3.5 Strategy of training data rescaling 342 

Furthermore, the current study concluded that when rescaling experimental data points for ANN 343 

training, it is vital to choose a suitable rescaling method to guarantee the quality of the network. 344 

For example, in the current study, it is found that using the standardization method to center 345 

training data on the mean seems to have worked best in scaling the points and obtaining a 346 

network with better predictive power. This can indicate that the ANN, when trained, becomes 347 

more flexible when data points that maximize the variance are present. A min-max normalization 348 

method would have not captured this characteristic as well (Hastie et al. 2009). In addition, this 349 

type of scaling displays a problem with the presence of larger outliers, as in such data sets it 350 

would force many of the scaled points to lie very close to each other in an attempt to include the 351 

outliers, which will inevitably decrease the accuracy of the ANN. 352 

 353 

Another advantage of choosing a standardization method is connected to the fact that, in the 354 

current study, a sigmoid function was chosen for the hidden layers. Sigmoid functions have the 355 

tendency to saturate, meaning that they make little distinction between inputs that are on the 356 

extremes of the range and produce the same outputs. These functions have worse learning if the 357 

inputs are large for either sign, as the gradients inside the ANN are flattened close to values of 0, 358 

which can lead to serious problems in the ANN learning process (Nielsen 2014). A 359 

standardization method, however, solves this issue by concentrating inputs in a limited range 360 

around a mean.  361 

 362 
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Conclusions 363 

In the current study, two ANNs were constructed to simulate a long-term dynamic biosystem for 364 

microalgae biomass growth and lutein production. To guarantee the high accuracy of the current 365 

models, different strategies were implemented during the model construction. These include 366 

using a standardization method to rescale inputs into the ANN, adding adequate random noise to 367 

efficiently generate sufficient amounts of artificial data sets which are infeasible to obtain in 368 

practice, and identifying the optimal ANN structure and parameter values through a hyper-369 

parameter selection framework. 370 

 371 

By comparing the ANN simulation results with the training data sets, it is found that the current 372 

ANNs can accurately represent the dynamic behavior of the current investigated biosystem. By 373 

comparing the ANN prediction results against the two sets of test experimental results, it is 374 

concluded that both of the current designed ANNs can be effectively applied into real-time 375 

process optimization and control frameworks, which strongly indicates their high potential for 376 

future process design and optimization. Furthermore, the current research demonstrated that the 377 

ANN with two hidden layers is capable of predicting accurately the entire dynamic trajectory of 378 

an unknown process before its implementation, further suggesting its adequateness for its use 379 

even in the offline optimization framework and extended process prediction durations.  380 

 381 

Moreover, due to the necessity of process modelling and optimization for the design of industrial 382 

scale sustainable biochemicals production processes, laboratory scale experimental data provides 383 

an important test set and can be used as a starting point for pilot plant tests. Inaccuracies of 384 

ANNs can be rapidly and easily corrected by further phases of learning. Thus, it is notable that 385 
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the procedure and strategies presented in the current study for ANN construction can be directly 386 

transferred to other bioprocesses and make significant contributions to their further 387 

industrialization. In addition, effective optimization algorithms (such as stochastic and 388 

evolutionary algorithms) can be further developed and embedded into the real-time framework to 389 

facilitate the optimization of ANNs for future bioprocess design and optimal control.  390 
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Table I: Operation conditions of the five experiments. Exp 1~Exp 4 are used for ANN training, 487 

and Test 1~Test 2 are used for ANN predictability verification. 488 

Operation conditions Exp 1 Exp2 Exp3 Exp4 Test 1 Test 2 

Initial Biomass g L-1 0.07 0.07 0.07 0.07 0.07 0.07 

Initial nitrate con. mM 8.8 30 8.8  8.8  30 8.8  

Inflow rate mL h-1 3.0 3.0 3.0  3.0  3.0 3.0  

Influent nitrate con. M 0.5 0.5 0.1  0.1  0.5  0.1  

Light intensity μmol m-2 s-1 300 600 150 600 480 300 

 489 

 490 

  491 
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 492 

Figure 1: Schematic of the current two hidden layer ANN structure. Time interval is chosen as 493 

12 hours based on the real experimental implementation. 494 

 495 

 496 

 497 
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 498 

Figure 2: One hidden Layer elbow rule. 499 
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505 
Figure 3: Two hidden Layers elbow rule. 506 
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 509 

Figure 4: One hidden layer ANN process simulation results (training data set) when only an 510 

initial state is supplied and 132 hours of process operation time are simulated. Experimental data 511 

points are averaged for convenience, and the measurement errors (error bars) are not presented in 512 

the figures. The MAPE (mostly below 5%) indicates the high accuracy of the current ANN. The 513 

slightly higher MAPE in nitrogen at the beginning (12 hours to 36 hours) is explained at Section 514 

3.3. Biomass concentration: g L-1, lutein concentration and nitrate concentration: mg L-1. 515 
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 516 

Figure 5: Two hidden layers ANN process simulation results (training data set) when only an 517 

initial state is supplied and 132 hours of process operation time are simulated. The MAPE of this 518 

ANN is mainly below 3%. Biomass concentration: g L-1, lutein concentration and nitrate 519 

concentration: mg L-1. 520 
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 521 

Figure 6: Comparison of the two hidden layers ANN real-time prediction results with real 522 

experimental data. (a), (b), and (c): Experiment Test 1. (d), (e), and (f): Experiment Test 2. 523 

Biomass concentration: g L-1, lutein concentration and nitrate concentration: mg L-1. 524 
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 525 

Figure 7: Comparison of the one hidden layer ANN real-time prediction results with real 526 

experimental data. (a), (b), and (c): Experiment Test 1. (d), (e), and (f): Experiment Test 2. 527 

Biomass concentration: g L-1, lutein concentration and nitrate concentration: mg L-1. 528 
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 529 

Figure 8: Comparison of the two hidden layers ANN offline prediction results with real 530 

experimental data. (a), (b), and (c): Experiment Test 1. (d), (e), and (f): Experiment Test 2. 531 

Biomass concentration: g L-1, lutein concentration and nitrate concentration: mg L-1. 532 
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 533 

Figure 9: Comparison of prediction results between one hidden layer ANN and two hidden layers 534 

ANN in the offline framework (Experiment Test 2). Biomass concentration: g L-1, lutein 535 

concentration and nitrate concentration: mg L-1. 536 
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 540 

Graphical Table of Contents: Two robust artificial neural networks were constructed to simulate 541 

the dynamic behaviour of microalgae growth and lutein production; different advanced strategies 542 

were incorporated to guarantee the accuracy of the constructed models, including determining 543 

the optimal network structure through a hyper-parameter selection framework, generating 544 

artificial data sets by embedding appropriate random noise, and rescaling model inputs through 545 

standardisation; the accuracy and predictive power of the models for long-term dynamic 546 

bioprocess simulation in real-time and offline frameworks were demonstrated and verified 547 

experimentally.   548 
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