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1. INTRODUCTION

Because of its ability of handling nonlinearity and system
constraints, model predictive control (MPC) is becoming
increasingly popular in industrial applications and pro-
cess control, see examples in Qin and Badgwell (2003).
This control paradigm normally relegates economic and
profitability issues to the design of optimal set-points and
suitable pointwise in time constraints. Real-time control
is, instead, only concerned with the resulting tracking
problem which is translated as an optimization problem
over a finite time horizon and with an objective function
which is (for the sake of stability) chosen to be positive
definite with respect to some equilibrium of interest. In
recent years, however, an alternative approach, economic
MPC (EMPC), has looked into the issue of directly ad-
dressing economic optimization in real time, and to this
end, adopts cost functionals which are not required to be
positive definite with respect to the equilibrium point.

In this respect, various tools in literature have been
proposed and studied in the economic optimization setup.
In analogy to Mayne et al. (2000), where three ingredients
are elaborated in stabilizing MPC, consisting of terminal
cost, terminal constraint and local controller, similar tools
have been proposed for Economic MPC and have allowed
feasibility, stability and performance analysis of the closed-
loop system. In Rawlings et al. (2012), Angeli et al.
(2012) and Amrit et al. (2011), asymptotic stability of
EMPC with terminal constraints or terminal costs has
been proved by using a rotated stage cost in an auxiliary
optimization problem, provided that a condition called
strict dissipativity is satisfied. Moreover, in these papers,
concepts on EMPC are extended to periodic terminal
constraint and average constraints. In order to obtain
a larger feasibility set, a new generalized terminal state
constraint where the terminal state-input pair can be a free
variable in optimization process is studied by Fagiano and

Teel (2013). Based on the generalized terminal equality
constraint, several update rules for the self-tuning terminal
weight are illustrated in Müller et al. (2013). Furthermore,
in Müller et al. (2014), the closed-loop asymptotic average
performance bounds can be improved if the generalized
terminal equality is relaxed by regional constraint.

However, optimal regimes of operation may have com-
plex nature, periodic operation can outperform steady-
state and even more general regimes of operations could
sometimes arise. To deal with such instances, this work
will remove terminal equality constraints and employ a
suitable notion of “control storage function” (CSF) as the
terminal penalty function. The note is organized as follows.
Notation and problem setup are described in Section 2.
Section 3 provides an estimate to some upper and lower
bound for system asymptotic average performance. The
extension of EMPC formulation and the closed-loop sta-
bility are discussed in Section 4. Two examples indicating
the convergence to the best periodic solution are included
in Section 5. Section 6 concludes this paper.

2. PRELIMINARIES AND SETUP

2.1 Notation

The Euclidean norm of x is |x|. Let symbols R and I denote
the sets of real numbers and integers, respectively. I[a,b]
denotes the integers {a, a + 1, · · · , b} and I≥0 denotes
the non-negative integers. A continuous function α: [0,∞)
→ [0, ∞) is of class K, if it is zero at zero and strictly
increasing. A continuous function ρ : Rn → R is positive
definite with respect to some point xe ∈ Rn if ρ(xe) = 0
and ρ(x) > 0 for all x 6= xe. The distance of a point x ∈ Rn
to a set Π is denoted as |x|Π := minz∈Π |x− z|.



2.2 Problem setup

We consider finite dimensional discrete-time nonlinear
control systems described by difference equations

x+ = f(x, u) (1)

with state x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm, and a
continuous state transition map f : X× U→ X. Together
with system (1), let us consider a time-invariant, nonlinear,
nonconvex, but continuous stage cost given as

`(x, u) : Z→ R (2)

where Z is a compact set capturing the pointwise-in-time
state and input constraints which our system is subject to:

(x(k), u(k)) ∈ Z ∀k ∈ I≥0. (3)

Our goal is to enhance profitability by minimizing the
economic costs incurred in the long term system operation:

V (x,u) =
∑
k

`(x(k), u(k)), x+ = f(x, u), x(0) = x.

(4)
To this end, we need to identify a viable subset of state
space and corresponding control actions. As well known,
the notion of control invariant set is crucial in this respect.

Definition 1. A control invariant set is a non-empty set
X ⊆ X, such that

∀x ∈ X,∃u : f(x, u) ∈ X and (x, u) ∈ Z. (5)

The non-empty set of all admissible control input which
keeps the system state inside X is denoted as:

U(x) := {u | (x, u) ∈ Z and f(x, u) ∈ X}. (6)

The set of state and corresponding admissible input pairs
is given as:

Z :=
⋃
x∈X

[{x} × U(x)]. (7)

Remark 2. We consider the largest control invariant set
X ⊆ X. This contains all control invariant sets in X and
any given intial condition x(0) /∈ X generates trajectories
which violate system constraints (3) at some point in time.
Therefore, constraints (3) can be strengthened as follows:

(x(k), u(k)) ∈ Z ∀k ∈ I≥0, (8)

and viability is still guaranteed whenever the system is
initialized in X.

Notice that investigating state trajectories within a control
invariant set is also a fundamental step in standard MPC
Lyapunov stability analysis.

It will be convenient to also define an additional control
invariant set for later use as in the assumption below

Assumption 1. There exists a control invariant set Xf ⊆
X.

The set of all admissible control law which keeps the
system state inside Xf is defined for all x ∈ Xf as:

Uf (x) := {u ∈ U(x) | f(x, u) ∈ Xf}. (9)

The set of state and corresponding admissible input pairs
is given as:

Zf :=
⋃
x∈Xf

[{x} × Uf (x)]. (10)

3. DISSIPATIVITY AND CONTROL STORAGE
FUNCTIONS

In order to have a grasp of the system long-run optimal
average performance, three quantities `∗av, ` and `, which
are explicitly defined below, will be discussed in this
Section.

Definition 3. Let x ∈ X be a given initial state, then the
best average asymptotic cost is defined as:

`∗av(x) := inf
u(·)

x(0) = x

x+ =f(x, u)

(x(t), u(t)) ∈ Z
∀t ∈I≥0

lim inf
T→+∞

∑T−1
t=0 `(x(t), u(t))

T
.

(11)
Moreover, we denote by `∗av = inf

x∈X
`∗av(x).

Recall the notion of dissipativity as given in Definition 4.1
in Angeli et al. (2012),

Definition 4. A discrete time system is dissipative with
respect to a supply rate s : Z→ R if there is a continuous
storage function λ : X→ R such that:

λ(f(x, u))− λ(x) ≤ s(x, u) (12)

for all (x, u) ∈ Z. If in addition a positive definite function
ρ : X→ R≥0 exists such that:

λ(f(x, u))− λ(x) ≤ −ρ(x) + s(x, u), (13)

then the system is said to be strictly dissipative.

Alternatively, given the role of dissipativity in providing
lower bounds to the best asymptotic performance, one may
consider the following quantity.

Definition 5. The tightest lower bound of `∗av is defined
as:
` := sup

c
{ c | ∃λ(·) : X→ R, continuous, such that

λ(f(x, u)) ≤ λ(x) + `(x, u)− c,∀(x, u) ∈ Z}.
(14)

Next, along the lines of the well known tool of Control
Lyapunov Function (CLF) (see definition in Rawlings and
Mayne (2009)), we propose a similar concept referred to
as Control Storage Function (CSF).

Definition 6. A control storage function is a function Vf :
Xf → R that is continuous and such that for all x ∈ Xf

inf
u∈Uf (x)

Vf (f(x, u))− s(x, u) ≤ Vf (x), (15)

where s : Zf → R is the supply rate.

From this definition, we can see that CSF is a special case
of CSF, in which s(x, u) = 0. Since the CLF is frequently
used to approximate the tail of the infinite horizon cost
in tracking MPC (see Jadbabaie (2000) for instance), our
CSF is meant to be an appropriate choice of terminal cost
in an economic setup. This will be discussed in a later
Section.

In order to estimate upper bounds for the best asymptotic
performance, the quantity below can be specified,

Definition 7. The tightest upper bound of `∗av is defined
as:



` := inf
c
{ c | ∃Vf : Xf → R, such that ∀x ∈ Xf ,

inf
u∈Uf (x)

Vf (f(x, u)) + `(x, u) ≤ Vf (x) + c}.

(16)

Remark 8. Notice that the above CSF inequality in Def-
inition 6 follows the same form of the Hamilton-Jacobi-
Bellman (HJB) inequality in Bardi and Capuzzo-Dolcetta
(2008), so any CSF can also be regarded as a solution of
the HJB inequality, which is a value function of an infinite
horizon optimal control problem.

We are now ready to state the main result of this Section:

Theorem 9. Consider system (1) subject to constraints
(8), then, the following inequality holds:

` ≤ `∗av(x), ∀x ∈ X. (17)

In addition, if Assumption 1 is fulfilled, we have the
following upper bound for `∗av(x):

`∗av(x) ≤ `, ∀x ∈ Xf . (18)

Proof. i) We first prove inequality ` ≤ `∗av(x),∀x ∈ X.
Suppose system (1) is, for all ε > 0, dissipative with supply
rate s(x, u) = `(x, u) − `a where `a = ` − ε. Then, there
exists a continuous storage function λε such that for all
(x, u) ∈ Z

λε(f(x, u)) ≤ λε(x) + `(x, u)− `a.
Next, for any time K, and any given feasible solution, it
holds
K−1∑
t=0

λε(x(t+ 1))− λε(x(t)) ≤
K−1∑
t=0

(`(x(t), u(t))− `a).

By applying liminf on both sides, we obtain

lim inf
K→+∞

λε(x(K))− λε(x(0))

K
≤ lim inf
K→+∞

∑K−1
t=0 `(x(t), u(t))

K
− `a.

Moreover, exploiting boundedness of solutions, we see that

lim inf
K→+∞

λε(x(K))− λε(x(0))

K
= 0,

and therefore,

`a ≤ lim inf
K→+∞

∑K−1
t=0 `(x(t), u(t))

K
.

Then, taking infimums with respect to u(·) for any fixed
x(0) = x ∈ X, we can see that

`a ≤ `∗av(x).

Since ε > 0 was taken arbitrary to start with,

` ≤ `∗av(x).

ii) Next, we prove `∗av(x) ≤ `,∀x ∈ Xf .
Suppose system (1) admits continuous CSFs with supply
rate s(x, u) = `b − `(x, u) where `b = ` + ε for all ε > 0.
The corresponding inequality is:

inf
u∈Uf (x)

V εf (f(x, u)) + `(x, u) ≤ V εf (x) + `b, ∀x ∈ Xf .

Next, let us consider any state trajectory starting from
arbitrary initial state x(0) = x ∈ Xf with corresponding
control input sequence defined as:

u(t) ∈ argmin
u∈Uf (x(t))

V εf (f(x(t), u)) + `(x(t), u),

x(t+ 1) = f(x(t), u(t)), t ∈ I≥0.

The state-input pair at any time instant is denoted as
(x(t), u(t)) ∈ Xf × Uf (x(t)),∀t ∈ I≥0; then, it holds
K−1∑
t=0

V εf (x(t+ 1))− V εf (x(t)) ≤
K−1∑
t=0

(`b − `(x(t), u(t))).

Dividing by K and applying limsup on both sides, we see
that

lim sup
K→+∞

V εf (x(K))− V εf (x(0))

K

≤ `b − lim inf
K→+∞

∑K−1
t=0 `(x(t), u(t))

K
,

and exploiting boundedness of solutions and continuity of
V εf ,

lim inf
K→∞

∑K−1
t=0 `(x(t), u(t))

K
≤ `b.

Then,

`∗av(x) ≤ lim inf
K→∞

∑K−1
t=0 `(x(t), u(t))

K
≤ `b,

and, since ε > 0 was taken arbitrary to start with,

`∗av(x) ≤ `.
Remark 10. If a system is optimally operated at an equi-
librium point xe with corresponding input ue, then `∗av =
`(xe, ue) and one may consider s(x, u) = `(x, u)−`(xe, ue).
This supply rate is used in Angeli et al. (2012) as a
sufficient condition to prove Lyapunov stability of the
equilibrium point.

When a system is controllable within finite time to the best
optimal operation, every initial condition gives the same
best asymptotic average performance, that is `∗av(x) =
`∗av, ∀x ∈ X. However, when this is not the case, the strict
inequality `∗av(x) > `∗av may hold. This gap arising from
uncontrollable systems will be illustrated in the following
Example 5.2.

4. STABILITY OF PERIODIC OPTIMAL
OPERATION

4.1 Economic MPC formulation

Now, we consider the EMPC problem for a given finite
prediction horizon N ∈ I[1,+∞). The open loop EMPC
problem can be formulated as

V 0
N (x,u) = min

u

N−1∑
k=0

`(x(k), u(k)) + Vf (x(N))

s.t. x(k + 1) = f(x(k), u(k)), x(0) = x

(x(k), u(k)) ∈ Z ∀k ∈ I[0,N−1]

x(N) ∈ Xf

(19)

where u := {u(0), u(1), · · · , u(N − 1)} is the control
sequence, Vf is the terminal penalty function and a CSF

according to Definition 6. The admissible set ZN ⊆ Z for
(x,u) pairs is

ZN := {(x,u) | ∃x(1), · · · , x(N) : x+ = f(x, u), x(0) = x,

x(N) ∈ Xf , (x(k), u(k)) ∈ Z, ∀k ∈ I[0,N−1]},
(20)

and the projection of ZN onto X is

XN := {x ∈ X | ∃u such that (x,u) ∈ ZN}. (21)

A classic assumption from literature is



Assumption 2. The economic optimization problem (19)
admits a feasible solution in the non-empty set ZN .

If the above assumption holds, the optimal feedback policy
from EMPC controller is defined as:

u = u0(0, x), x ∈ XN , (22)

where u0(k, x) denotes the kth element of the optimal
control sequence u at the given initial state x.

In order to analyse the stability of the closed-loop trajec-
tories induced from optimal solutions of EMPC problem
(19), we propose an assumption as below:

Assumption 3. The optimal control policy as in (22) is a
continuous function of x in neighborhood of the optimal
states.

4.2 Performance analysis

Considering the optimal cost-to-go function in (19), at any
time instant t, the following inequality holds,

V 0
N (x(t+ 1)) =V 0

N (x(t))− Vf (x(t+N)) + Vf (x(t+N + 1))

+ `(x(t+N), uf (x(t+N)))

− `(x(t), u0(0, x(t)))

≤V 0
N (x(t))− `(x(t), u0(0, x(t))) + `,

(23)
where uf (·) is the terminal control policy and fulfills

uf (x) ∈ argmin
u∈Uf (x)

Vf (f(x, u))− s(x, u). (24)

Then, for any time K, we have,

K−1∑
t=0

V 0
N (x(t+ 1))− V 0

N (x(t)) ≤
K−1∑
t=0

(`− `(x(t), u0(0, x(t)))).

(25)
By applying liminf on both sides and exploiting boundness
of solutions, we finally obtain

lim sup
K→∞

∑K−1
t=0 `(x(t), u(t))

K
≤ `. (26)

Therefore, the closed-loop performance of EMPC problem
is no worse than `.

4.3 Stability analysis

This sub-section explores the asymptotic stability of the
closed-loop system under EMPC control actions.

In this context, we only consider the no gap case, viz:

Assumption 4. There is no gap between the tightest upper
and lower bounds of `∗av:

` = `∗av = `∗av(x) = `, ∀x ∈ X. (27)

Moreover, there exists a storage function λ(·) and a control
storage function Vf (·) for which inequalities (13) and (15)
are achieved with supply rates `(x, u)−`∗av and `∗av−`(x, u),
respectively.

The rotated stage cost and terminal cost are defined as:

L(x, u) := `(x, u) + λ(x)− λ(f(x, u))− `, (28)

V f (x) := Vf (x) + λ(x), ∀x ∈ Xf , (29)

then, the new objective function is

V N (x,u) :=

N−1∑
k=0

L(x(k), u(k)) + V f (x(N)). (30)

It is noticed that the strict dissipation inequality (13) with
supply rate s(x, u) = `(x, u)− ` implies that the modified
stage cost is positive definite with respect to some closed
subset of state space X, denoted by ΠX. Thus it can be
bounded from below by a class K function

L(x, u) ≥ α(|x|ΠX
) ≥ 0. (31)

We recall next a Lemma that was first introduced in Amrit
et al. (2011),

Lemma 11. For every function λ(·) and constant ` ∈ R,
the solutions of optimization problem (19) and the one by
using (30) as the objective function are identical.

Proof. The proof is similar to the proof of Lemma 14 in
Amrit et al. (2011).

Lemma 12. If Assumption 4 holds, then for all x ∈ Xf ,

the CSF inequality in (15) with s(x, u) = `− `(x, u) holds
if and only if the following inequality is satisfied

V f (f(x, uf (x)))− V f (x) ≤ −L(x, uf (x)). (32)

Proof. The proof follows the same lines as that of Lemma
9 in Amrit et al. (2011).

Then, the main result on asymptotic stability is given as:

Theorem 13. Let Assumption 1, 2 and 4 hold, the set
ΠX by using control policy (22), is asymptotically stable
within a region of attraction XN .

Proof. The proof is similar to the corresponding part of
the proof of Theorem 15 in Amrit et al. (2011).

4.4 Extension to periodic solutions

This sub-section introduces suitable terminal ingredients
to specialize the stability analysis of EMPC to the case of
systems with a periodic optimal regime of operation.

Denote the optimal period-T solution and associated con-
trol of the optimal control problem (4) on Z as Π :=
{(x∗i , u∗i ), i ∈ I[0,T−1]} for some T ∈ I[1,+∞). For con-

venience, we denote the projection of Π on X as ΠX, and
we simply consider i ∈ I[0,T−1] and use i+ j to respresent
(i+ j) modT, ∀j ∈ I.

The system cost over a time period T achieves its minimum
at Π, viz.
T−1∑
i=0

`(x∗i , u
∗
i ) ≤

T−1∑
i=0

`(xi, ui),∀(xi, ui) ∈ Z, xi+1 = f(xi, ui).

(33)
For every state x∗i ∈ ΠX, three important terminal in-
gredients, as discussed on optimal steady state operation
in Amrit et al. (2011), are adopted. A terminal region,
containing x∗i , is denoted by Xif , with the corresponding
terminal control policy and penalty functions denoted by
uif (x) and V if (x), respectively.

Let us first make an assumption on the relationship
between Xif and uif (x):



Assumption 5. There exists a family of compact sets
Xif , i ∈ I[0,T−1], each containing x∗i , such that for all

x ∈ Xif , the solutions of x(t + 1) = f(x(t), ui+tf (x(t)))
converge exponentially to ΠX.

Accordingly, the feedback law uif (x) which drives any state

x ∈ Xif to Xi+1
f takes values in:

Uif (x) := {u ∈ U(x) | f(x, u) ∈ Xi+1
f }. (34)

Then, the ith set of feasible state-input pairs is given as:

Zif :=
⋃
x∈Xi

f

[{x} × Uif (x)], (35)

and we let

Xf =
⋃
i

Xif , Uf =
⋃
i

Uif (x). (36)

With regards to the terminal penalty function V if (x)
in period-T optimal operation, the concept of CSF in
Definition 6 is adapted to give us a T -CSF as follows:

Definition 14. A T -CSF is a family of continuous func-
tions V if : Xif → R, i ∈ I[0,T−1] and the following holds

min
u∈Ui

f
(x)

V i+1
f (f(x, u))−s(x, u) ≤ V if (x), ∀x ∈ Xif , (37)

where s :
⋃
i∈I[0,T−1]

Zif → R is the supply rate.

Notice that V if (x) is the ith component of a T -CSF defined

for all x ∈ Xif . We can adopt the following convention

Assumption 6. V if (x) is a finite-valued function if x ∈ Xif ,

whereas V if (x) := +∞,∀x /∈ Xif .

Then, for any point x ∈ Xf a single terminal penalty
function can be defined as:

Vf (x) := min
i
V if (x). (38)

Lemma 15. The minimum of a T -CSF as in (37) and (38)
is a suitable CSF.

Proof. Denote the T -CSF by {V 0
f , V

1
f , · · · , V

T−1
f }, and

let x ∈ Xf be arbitrary. Then for any i∗ ∈ argmin
i

V if (x),

∀x ∈ Xi∗f , the following inequality is satisfied,

V i
∗+1
f (f(x, ui

∗

f (x))) ≤ V i
∗

f (x) + s(x, ui
∗

f (x))

hence, from (38) and the above inequality,

Vf (f(x, ui
∗

f (x))) ≤ V i
∗+1
f (f(x, ui

∗

f (x)))

≤ V i
∗

f (x) + s(x, ui
∗

f (x))

= Vf (x) + s(x, ui
∗

f (x)).

Therefore, there exists an admissible control policy ui
∗

f (x) ∈
Ui∗f (x) ⊆ Uf (x) such that

inf
u∈Ui∗

f
(x)⊆Uf (x)

Vf (f(x, u))− s(x, u) ≤ Vf (x),

and Vf (x) defined in (38) is a CSF.

Then, according to Theorem 13, the optimal periodic
solution is orbitally asymptotically stable.

Remark 16. Notice that our notion of dissipativity, which
is motivated by the continuous-time results proposed in

L. Finlay and Lebedev (2008), is different from the three
extended notions of dissipativity for periodic systems
defined in Grüne and Zanon (2014). Exploring the link of
our concept respect to those extensions and analysing the
case in which Assumption 4 does not hold is an interesting
question for future investigations.

Lemma 17. Suppose a continuous automous system x+ =
f(x) has a periodic solution. Then this periodic solution is
Lyapunov asymptotically stable if and only if it is orbitally
asymptotically stable.

Proof. Let us denote Π := {x∗0, · · · , x∗T−1} as the op-
timal T -period solution fulfilling x∗i+1 = f(x∗i , u

∗
i ),∀i ∈

I[0,T−2] and x∗0 = f(x∗T−1, u
∗
T−1). Suppose the state at any

time t ∈ I≥0 with x as the initial condition is denoted as
ϕ(t, x). The optimal state at t = 0 is assigned as x∗0 without
loss of generality.
Since the periodic solution is orbitally stable, there exists
a Lyapunov function V (x) fulfilling

α̂1(|x|Π) ≤ V (x) ≤ α̂2(|x|Π), V (f(x)) ≤ V (x)− α̂3(|x|Π)

where α̂1(·), α̂2(·) and α̂3(·) are class K functions.

We select ε > 0 and Xif for every i ∈ I[0,T−1] as the

connected components of Xf := {x |V (x) ≤ ε} which

contains x∗i . Then, Xf =
⋃
i={0,··· ,T−1} X

i

f is forward

invariant. Moreover, for ε > 0 sufficiently small, Xif ∩
Xjf = ∅ if i 6= j, and in addition we have

argmin
k
|x− x∗k| = {i}, ∀x ∈ Xif .

Notice that, by Proposition 4.6 in Bredon (2013), f(Xif )

is connected. Hence, there exist j such that f(Xif ) ⊆ Xjf .

Since f(x∗i ) = x∗i+1, we concluded that f(Xif ) ⊆ Xi+1

f .
Therefore, arguing by induction, we see that solutions

initiated within X0

f will evolve in phase with the optimal

periodic solution, that is ϕ(t, x) ∈ XtmodT

f ,∀x ∈ X0

f .

Thus, for any x ∈ X0

f ,

argmin
k
|ϕ(t, x)− x∗k| = {tmodT},

or equivalently,

min
k
|ϕ(t, x)− x∗k| = |ϕ(t, x)− ϕ(t, x∗0)|,

since
ϕ(t, x∗0) = x∗tmodT .

By substituting the above equality into the following
definition of orbital asymptotic stability:

∀ε1 > 0, ∃δ1 > 0, such that

min
k∈I[0,T−1]

|x− x∗k| ≤ δ1 ⇒ min
k∈I[0,T−1]

|ϕ(t, x)− x∗k| ≤ ε1

∀t ∈ I≥0,

and
∃δ2 > 0, ∀x such that min

k∈I[0,T−1]

|x− x∗k| ≤ δ2

it holds lim
t→∞

min
k∈I[0,T−1]

|ϕ(t, x)− x∗k| = 0,

we obtain the conditions for Lyapunov asymptotic stability
as follows
∀ε1 > 0, ∃δ1 > 0, such that

|x− x∗0| ≤ δ1 ⇒ |ϕ(t, x)− ϕ(t, x∗0)| ≤ ε1 ∀t ∈ I≥0.



and
∃δ2 > 0, ∀x such that |x− x∗0| ≤ δ2

it holds lim
t→∞

|ϕ(t, x)− ϕ(t, x∗0)| = 0.

Hence, the conclusions of the lemma follow.

Now, it is sufficient to have a statement on Lyapunov
stability of the optimal periodic solution.

Corollary 18. If Assumption 3 holds, the optimal periodic
solution is orbitally asymptotically stable and asymptoti-
cally stable in the sense of Lyapunov.

4.5 Construction of terminal penalty function

We propose next a constructive formula for computing T -
CSF. In particular,

V
i

f (x) =

∞∑
k=0

L(xi(k), ui+kf (xi(k))). (39)

where xi(k) is the solution of xi(k+1) = f(xi(x), ui+kf (xi(k)))

initiated at xi(0) = x if x ∈ Xif .

To analyze the convergence of (39), we consider the dissi-
pation inequalities along the optimal periodic solution,

λ(x∗1)− λ(x∗0) ≤ `(x∗0, u∗0)− `, (40.1)

λ(x∗2)− λ(x∗1) ≤ `(x∗1, u∗1)− `, (40.2)
...

λ(x∗0)− λ(x∗T−1) ≤ `(x∗T−1, u
∗
T−1)− `. (40.T )

Summing both sides of (40.2)-(40.T ) and using the defini-
tion of `∗av(x) and (27), we have

λ(x∗1)− λ(x∗0) ≥ `(x∗0, u∗0)− `. (41)

Comparing (40.1) and (41), we conclude

λ(x∗1)− λ(x∗0) = `(x∗0, u
∗
0)− `. (42)

Using the same technique, the following equalities hold

λ(x∗i+1)− λ(x∗i ) = `(x∗i , u
∗
i )− `. (43)

Equivalently, the rotated stage cost at the periodic solution
is

L(x∗i , u
∗
i ) = 0 ∀i ∈ I[0,T−1] (44)

Assumption 7. There exists a δL > 0 such that the func-
tions `(·) and λ(·), and hence the rotated stage cost L(·)
are Lipschitz continuous for all (x, u) fulfilling |(x, u)|Π <
δL. Then, the corresponding Lipschitz constants are de-
noted by L`, Lλ and LL. Moreover, for all i ∈ I[0,T−1],

uif (x) is Lipschitz continuous with respect to x.

Since Assumption 5 implies that there exists constant real
number A and |a| < 1 such that |(x(k), u(k))|Π ≤ A · |a|k.
Together with Assumption 7 and (44), we conclude that
|L(x(k), u(k))| ≤ LL ·A · |a|k, and therefore the T -CSF in
(39) is upper bounded by LL·A

1−a .

Notice that, provided all the series converge for arbitrary
i ∈ I[0,T−1], it is straightforward to have

V
i

f (x) = L(x, uif (x)) +

∞∑
k=1

L(xi(k), ui+kf (xi(k)))

= L(x, uif (x)) +

∞∑
k=0

L(xi+1(k), ui+kf (xi+1(k)))

= L(x, uif (x)) + V
i+1

f (f(x, ui(x))).
(45)

Thus, the proposed T -CSF follows Lemma 12 and the
terminal cost function can be selected as

V f (x) = min
i
V
i

f (x). (46)

Moreover, knowledge of the storage function λ(·) used in
the definition of rotated stage and terminal costs is not
needed in designing the EMPC controller. To see this, we
consider the terminal cost

Vf (x) = min
i
V if (x), (47)

where

V if (x) = V
i

f (x)− λ(x)

=

∞∑
k=0

L(xi(k), ui+kf (xi(k))) − λ(x)

=

∞∑
m=0

T−1∑
k=0

(`(xi(mT + k), ui+kf (xi(mT + k)))− `).

(48)

4.6 SOSTOOLs for storage function

The MATLAB toolbox SOSTOOLs which can be used to
determine a candidate for λ(·) in polynomial form was
proposed in Prajna et al. (2002). SOSTOOLs is a free
MATLAB toolbox which can be used to solve two types of
sum of squares programs: the feasibility and optimization
problems. This toolbox has been applied to many control
problems, such as construction of Lyapunov function, state
feedback control synthesis, and nonlinear optimal control
Parrilo (2000); Prajna et al. (2004).

In this paper, in order to find the construction of storage
function, we consider the optimization problem as follows:

min
`,c0,c1,··· ,cP

` (49)

such that

λ(x) =

P∑
i=0

cix
i (50.1)

λ(x)− λ(f(x, u)) + `(x, u)− ` is sum of squares (≥ 0),

∀(x, u) ∈ Z.
(50.2)

In this formulation, x and u are independent variables
which are created as symbolic variables in MATLAB,
whereas `, ci are decision variables.

The objective in (49) is to minimize the lower bound
of asymptotic average. (50.1) shows the construction of
the storage function that is formulated as a polynomial
of order P . In addition, (50.2) is from the dissipation
inequality or the rotated stage cost, this inequality must
hold for all admissible state-input pairs.

By using the returned values of coefficients, the storage
function can be formulated as a polynomial function of
the system state.

5. EXAMPLES

5.1 No gap: ` = ` - optimal period-2 operation

Consider the nonlinear system, known as logistic map or
demographic model, described by the following difference
euqation



x+ = ux(1− x) (51)
in which x is the ratio between current population and
the maximum possible population with value in [0, 1] and
a parameter u in interval (0, 4]. To avoid the trivial case
x = 0, we only consider the robust control invariant set
X := [ε, 1 − ε],

⋂
x∈X U(x) := [ 1

1−ε , 4(1 − ε)] and Z = X ×⋂
x∈X U(x), where ε is a small positive value.

The following stage cost

`(x, u) = −x4 (52)

results in an optimal periodic regime of operation which
can be expressed as

x∗0,1 =
(5− 4ε)∓

√
(1− 4ε)(5− 4ε)

8(1− ε)
, u∗0,1 = 4(1− ε).

(53)
Particularly, when ε = 0.01, the optimal periodic operation
is x∗0 ≈ 0.3507 and x∗1 ≈ 0.9018 with optimal control
u∗0 = u∗1 = 3.96, so that the best asymptotic average cost
for all initial states x ∈ X is

` = `∗av = `∗av(x) = − (x∗0)4 + (x∗1)4

2
= −0.3382. (54)

To construct the terminal cost function, a terminal state
feedback control law is needed

uif (x) = u∗i +Ki(x− x∗i ), i ∈ I[0,1], (55)

where Ki is determined from the linearized system of (51)
along the optimal solution that is

δx+
0 = −3.1821δx1 + 0.0886δu1

δx+
1 = 1.1821δx0 + 0.2277δu0

(56)

Correspondingly, constraints of this linearized system are

− 0.3407 ≤ δx0 ≤ 0.6393, −2.9499 ≤ δu0 ≤ 0,

− 0.8918 ≤ δx1 ≤ 0.0882, −2.9499 ≤ δu1 ≤ 0.
(57)

Since there is no [K0 K1]T being able to stabilize system
(56) within the whole region in (57), we consider maxi-
mizing the region of attraction of the linearized system
by solving a bilinear matrix inequality problem based
on the method in Vassilaki et al. (2004). The resulting
feedback gain is [K0 K1]T = [−5.2 10.75]T which is able
to stabilize the linear system for 0 ≤ δx0 ≤ 0.5681 and
−0.2606 ≤ δx1 ≤ 0.

Next, we determine a potentially smaller set where the
above control policy works for the nonlinear system (51).
If the terminal state feedback control law is implemented
into (51), the dynamic of state deviation becomes

δx+
0 = −10.75 δx3

1 − 12.6 δx2
1 − 2.23 δx1,

δx+
1 = 5.2 δx3

0 − 5.513 δx2
0 − 0.0016 δx0.

(58)

Trajectories described by these two equations admit a
small region 0 ≤ δx0 ≤ 0.22 and −0.21 ≤ δx1 ≤ 0 such
that any interior point can be attracted to the origin with-
out constraints violation. Therefore, the terminal region is
Xf = X0

f ∪ X1
f = [0.3507, 0.5707] ∪ [0.6918, 0.9018].

Then, according to the equations in (47) and (48), it is
sufficient to construct the terminal cost function as follows

Vf (x) = min
i
V if (x), (59)

where

V if (x) =

∞∑
m=0

T−1∑
k=0

(`(xi(mT + k), ui+kf (xi(mT + k)))− `),

ui+kf (xi(mT+k)) = u∗i+k+Ki+k(xi(mT+k)−x∗i+k), (60)

Moreover, by using SOSTOOLs, a candidate polynomial
storage function of 3rd order which fulfills dissipativity
approximately is

λ(x) = 0.30471x3 − 0.81183x2 + 1.2215x. (61)

Fig.1 shows the closed loop state transition and input at
initial condition x = 0.5 and prediction horizon N = 6.
It can be seen that the state trajectory converges to
the optimal periodic solution in several steps with the
control input remaining at its upper bound. It also shows
the convergence of asymptotic average performance to
` = ` and the decreasing of optimal cost-to-go which is
a candidate of Lyapunov function.
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Fig. 1. Closed-loop behaviour of the logistic map system

5.2 With gap: ` > ` - optimal period-4 operation

Next, we consider a bidimensional nonlinear system of
equations:

x+ =

 1− u2

1 + u2

2u

1 + u2

−2u

1 + u2

1− u2

1 + u2

x (62)

where x is the state variable and u is the input. This
nonlinear system gives a state trajectory which rotates on
a circle with radius that is equal to the magnitude of the
initial state. Thus, only states on this circle are reachable.

Consider the state space X := {|x| ≤ 1} and input
constraint u ∈ U := (−∞, 0], a stage cost

`(x, u) = −(xTQx)2 + (u+ 1)2, Q =

[
1 0
0 −1

]
(63)

results into the global optimal periodic solution x∗0 =
[1, 0]T , x∗1 = [0, 1]T , x∗2 = [−1, 0]T and x∗3 = [0,−1]T .

However, due to the structure of reachable sets, any given
initial condition with distance to the origin |x| = r, 0 <
r < 1 moves within a control invariant set X := {x | |x| =
r}. Then, a sub-optimal periodic operation is x∗0 = [r, 0]T ,
x∗1 = [0, r]T , x∗2 = [−r, 0]T and x∗3 = [0,−r]T with optimal
control u∗0 = u∗1 = u∗2 = u∗3 = −1. Thus, there is a gap
between `∗av and `,

` = −1 ≤ `∗av(x) = −|x|4. (64)



In terms of terminal control policy, it is expected to be
a continuous function of state x. Therefore, we consider

uf (x), x ∈ Xf = X \ { (2k+1)π
4 }, k ∈ R which forces the

system to follow the dynamic in polar coordinate,

θ+ = θ +
π

2
−K sin(4θ), (65)

where θ is the angle of the state vector with respect to
the positive horizontal axis and K is the state feedback
gain. Since the optimal solution evolves π

2 radius counter-
clockwise every step, K sin(4θ) is used to reduce the bias
between the practical state to the optimal ones. To keep
in phase with the rotation of periodic solution, K should
be selected from (0, 1

4 ]. In this example, K = 1
4 for faster

convergence.

Then, with uf (·) defined above, the terminal cost function
for x ∈ Xf is

Vf (x) =

∞∑
m=0

T−1∑
k=0

(`(x(mT +k), uf (x(mT +k)))− `). (66)

Notice that, this terminal cost function will only be finite
for x in {x| |x| = 1} and Lyapunov asymptotic stability
discussed in Section 4 applies for {x| |x| = 1}.
Furthermore, a candidate of storage function is

λ(x) = (xTQx)2. (67)

The state trajectory initialized at x = [0.48 0.64]T and
with a prediction horizon N = 6 is shown in Fig.2 in
which we see that closed-loop system catches the periodic
solution after several control moves. The system average
performance for this cost objectives convergences to `∗av(x)
= -0.4096 instead of ` = -1.
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Fig. 2. Closed-loop behaviour of the circle system

6. CONCLUSION

In conclusion, this paper discusses a generalized approach
for estimation of system asymptotic average performance
from above and below by means of the CSF and dissipation
inequalities. Such tools are adapted to formulate EMPC
control schemes and eventually analyze their performance
and stability. In the case of “no-gap”, as previously de-
fined, if the economic MPC controller generates a con-
tinuous input, the optimal periodic operation is Lyapunov

asymptotically stable when the CSF is used as the terminal
penalty function.
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