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Abstract— This paper proposes a novel distributed control
strategy for large-scale deployment of flexible demand. The
devices are modelled as competing players that respond to
iterative broadcasts of price signals, scheduling their power
consumption to operate at minimum cost. By describing their
power update at each price broadcast through a multi-valued
discrete-time dynamical system and by applying Lyapunov
techniques, it is shown that the proposed control strategy always
converges to a stable final configuration, characterized as a
Wardrop (or aggregative) equilibrium. It is also proved that
such equilibrium is socially efficient and optimizes some global
performance index of the system (e.g. minimizes total generation
costs). These results are achieved under very general assump-
tions on the electricity price and for any penetration level
of flexible demand. Practical implementation of the proposed
scheme is discussed and tested in simulation on a future scenario
of the UK-grid with large numbers of flexible loads.

I. INTRODUCTION

Power systems are undergoing transformations of unprece-
dented scale and impact. One of the most significant changes
is the increasing diffusion of new typologies of loads, such
as electric vehicles and ‘smart’ appliances, that give private
customers a certain flexibility in their power consumption.
Such flexibility can potentially be exploited for multiple ob-
jectives, such as reducing energy costs of private households
or contributing to the safety and reliability of the system
[1], [2]. To fully achieve these benefits, it is necessary to
devise a proper coordination of the flexible loads, balancing
the (potentially conflicting) objectives of private customers
and system operator and avoiding undesirable effects such as
rebound peaks or synchronicity phenomena. As centralized
techniques [3] may not be suitable for large-scale appli-
cations with millions of devices, distributed schemes are
receiving increasing attention. A wide range of different
approaches has been proposed, including Lagrange relaxation
[4], stochastic pricing [5] and distributed optimization [6].

This work adopts a game-theoretical framework, which
allows to explicitly capture the conflicting interactions of
the new loads, preserving customers’ full control over their
power consumption while seeking an efficient resource al-
location within the electricity market. The flexible devices
are modelled as greedy agents that schedule an assigned
task in order to complete it at minimum cost. The agents
interact through the changes in demand (and electricity price)
associated to their aggregate power consumption. In order to

A. De Paola, D. Angeli and G. Strbac are with the Department of
Electrical and Electronic Engineering, Imperial College London, London,
SW7 2AZ UK (e-mail: ad5709@imperial.ac.uk; d.angeli@imperial.ac.uk;
g.strbac@imperial.ac.uk). This work was supported by the Leverhulme Trust
under Grant [ECF-2016-394].

obtain a fair and stable solution, the Wardrop equilibrium is
considered as primary design objective: at the final configura-
tion each device (assumed to have negligible market power)
has no unilateral interest in changing its power scheduling.
It is shown that this solution not only satisfies the individual
agents but it is also socially efficient and corresponds to
reduced generation costs and flattened profiles of demand.

A substantial amount of research has applied game theory
to the problem of flexible demand deployment, with particu-
lar attention to distributed iterative schemes for coordination
of electric vehicles. It has been shown that, with such
approaches, it is possible to converge to equilibrium by
introducing additional quadratic terms in the cost function of
the devices [7], [8] or under some conditions on the number
of loads and the electricity price [9], [10]. These works
consider large populations of devices, assuming that the
power consumption by the individual loads is significantly
smaller than total demand and therefore has negligible impact
on electricity prices. This scenario, analytically characterized
as a Wardrop equilibrium, can be interpreted in a traditional
Nash sense when the number of players goes to infinity.
Recent studies have investigated the existence of pure Nash
equilibria in similar contexts [11] and have assessed their
social efficiency [12].

This paper proposes a novel design methodology for
distributed coordination of flexible demand. On the basis
of the initial analysis and preliminary results presented in
[13], the iterative power scheduling update by the flexi-
ble appliances is modelled as the evolution of a discrete-
time dynamical system, described by a multi-valued corre-
spondence. This allows a rigorous theoretical analysis that,
through the application of established stability tools (e.g.
Lyapunov methods), derives fundamental equilibrium results.
It is shown that the proposed scheme induces a Wardrop
equilibrium in the electricity market for all penetration levels
of flexible demand and it does not require additional terms
in the cost function of the devices nor precise knowledge of
the electricity price function. The scheme is straightforward
to implement in practical contexts by letting each device
iteratively perform advantageous power swaps according
to updated price signals. It is also demonstrated that the
achieved stable solution is socially efficient and maximizes
some global functional of aggregate demand, quantifying for
example the total generation costs of the system.

The paper is structured as follows: Section II models the
flexible loads and their interactions with the electricity mar-
ket while Section III describes the chosen game-theoretical
framework and Wardrop equilibrium concept. The distributed



scheme for flexible demand coordination and its convergence
and optimality properties are presented in Section IV, testing
its performance in the simulations of Section V.

II. MODELLING OF FLEXIBLE DEMAND AND
ELECTRICITY MARKET

A population N = {1, . . . ,N} of price-responsive devices
operate over the discrete time interval T = {1, . . . ,T}. Each
device j ∈ N can be described by three quantities: the
amount of energy E j required to complete its task, its rated
power Pj and the time interval A j ⊆ T during which it is
available to operate. We denote by u j,t the power consump-
tion of device j at time t and by u j = [u j,1, . . . ,u j,T ]∈RT its
scheduled power profile over the considered time horizon.
Representing by 1x the indicator function, the set U j of
feasible power profiles for the device j can be defined as:

U j :=

{
u j :

T

∑
t=1

u j,t∆t = E j, 0≤ u j,t ≤ Pj ·1A j(t) ∀t ∈T

}
.

(1)
where ∆t denotes the chosen time-discretization step. The
first condition in (1) ensures that the total energy consumed
by the device j (equal to the sum over time of the power u j,t
multiplied by the time step ∆t) corresponds to the amount
E j required for task completion. The second condition in (1)
dictates that the consumed power at each time t cannot be
greater than Pj and must be equal to zero when t /∈A j and the
device j is not available to operate. The notation adopted so
far can be extended, representing by u = [u1, . . . ,uN ] ∈ RNT

the scheduled power profile of the whole population and by
U = U1×U2×·· ·×UN the corresponding feasibility set.

Assumption 1: The power scheduling problem is sup-
posed to be feasible and the parameters (E j,Pj,A j) of each
device j are such that U 6=∅.
The electrical appliances are considered to be price-
responsive: they exploit their flexibility so as to consume
power at the cheapest hours of the day, completing their
task at minimum energy cost. For a certain price vector
p = [p1, . . . , pT ] ∈ RT , the cost C j sustained by the device
j for task completion can be expressed as:

C j =
T

∑
t=1

pt ·u j,t ·∆t. (2)

Each term of the sum in (2) corresponds to the energy cost
of the device j at time t and it is equal to the product of the
electricity price pt by the consumed energy u j,t ·∆t.

In the present work, the electricity market has been
abstracted by a price function Π of aggregate power demand.
At a certain time instant t ∈ T , the electricity price pt
corresponds to pt = Π(Dt(u)). The term Dt(u) denotes the
total power demand at time t when the flexible appliances
population applies the scheduling u. It can be expressed as
the sum of the total power dt consumed by the inflexible
loads (assumed to be known a priori) and the aggregate
power consumption of the price-responsive appliances:

Dt(u) = dt +
N

∑
j=1

u j,t . (3)

Assumption 2: The price function Π(D) is strictly mono-
tone increasing with respect to D.
It is assumed that electricity is more expensive when more
power needs to be generated in order to accommodate higher
levels of demand. The presented analysis is still valid as
long as the price function can be expressed as pt = Π(αt +

∑
N
j=1 u j,t), where α is an arbitrary signal over time.

III. GAME-THEORETICAL FORMULATION AND
WARDROP EQUILIBRIUM AS DESIGN OBJECTIVE

The price-responsive appliances are modelled as greedy
agents that compete for power consumption at times with
cheapest electricity. To devise a suitable coordination scheme
for these loads, it is crucial to take into account rebound
effects and synchronicity phenomena. If all devices try to
operate when prices are low, they will increase the aggre-
gate demand and the electricity prices at those times, thus
making their initial strategies suboptimal. To account for the
appliances interaction and properly design their coordination,
the following game-theoretical framework is considered:
• Players: The N = {1, . . . ,N} price-responsive loads.
• Strategies: For each player j∈N , the set U j of feasible

power schedules guaranteeing task completion.
• Objective function: Minimization of the actual energy

cost C̄ j sustained by the individual device j. This
quantity depends, through the price function Π, on the
total power demand D(u), defined in (3):

C̄ j :=
T

∑
t=1

Π(Dt(u)) ·u j,t ·∆t. (4)

The following equilibrium notion is now presented for the
aforementioned game:

Definition 1: Consider a feasible vector of scheduled
power profiles u∗ ∈ U . This corresponds to a Wardrop
(or aggregative) equilibrium in the electricity market if the
following conditions are satisfied for all j ∈N :

T

∑
t=1

Π(Dt(u∗)) ·u∗j,t ·∆t = min
u j∈U j

T

∑
t=1

Π(Dt(u∗)) ·u j,t ·∆t (5)

where the aggregate demand profile Dt(u∗) is equal to:

Dt(u∗) = dt +
N

∑
j=1

u∗j,t . (6)

Remark 1: It is assumed in Definition 1 that the individual
device j neglects its market power and performs its cost
optimization considering a fixed electricity price, equal to
Π(D(u∗)). This approximation is acceptable in the context
of large populations of domestic appliances, whose power
consumption is considerably smaller than total demand.
When the number of players tends to infinity, the above
equilibrium notion corresponds to a Nash equilibrium in the
classical sense.

The Wardrop equilibrium is considered a primary objective
for distributed coordination of flexible appliances, as it
corresponds to a stable and fair solution for all the agents,
which cannot reduce their final energy costs by unilaterally



changing their operation strategy. The proposed equilibrium
notion is also socially efficient: as formally proved in the
next section, it optimizes some global performance index of
the system.

To derive equivalent equilibrium conditions for the subse-
quent analysis, the following quantity is introduced:

γ(u, j, t+, t−) := (Dt−(u)−Dt+(u))
(
Pj−u j,t+

)
·u j,t− . (7)

As clarified below, γ is used to determine whether, for a
certain scheduling u, the single device j can reduce its energy
cost by swapping power from t− to t+.

Proposition 1: A feasible vector of scheduled power pro-
files u∗ ∈ U fulfils (5) and corresponds to a Wardrop
equilibrium according to Definition 1 if and only if:

γ(u∗, j, t+, t−)≤ 0 ∀ j ∈N , ∀(t+, t−) ∈A j×A j. (8)
Proof: Any feasible u j ∈U j can be expressed as:

u j = u∗j +
P

∑
p=1

δp (9)

where each term δp : T →R, for some t+p , t
−
p ∈A j and ∆p >

0, has the following expression:

δp,t = ∆p ·1{t+p }(t)−∆p ·1{t−p }(t). (10)

This formulation is possible since all feasible power profiles
in U j (including u j and u∗j ) have equal total sum. It can
also be assumed, without loss of generality, that each δp
corresponds to a feasible power swap between the time
instants t+p and t−p and therefore we have:

0 < ∆p ≤min
(

Pj−u∗j,t+p ,u
∗
j,t−p

)
. (11)

The cost function in the right-hand side of (5) can then be
rewritten as:

T

∑
t=1

Π(Dt(u∗)) ·u j,t ·∆t =
T

∑
t=1

Π(Dt(u∗)) ·u∗j,t ·∆t

+
P

∑
p=1

[
Π(Dt+p (u

∗))−Π(Dt−p (u
∗))
]
·∆p∆t.

(12)

Note that, if u∗j does not fulfill (5), from (11) and (12) there
must exist t+p = t+ and t−p = t− with the following properties:

Π(Dt+(u
∗))< Π(Dt−(u

∗)) u∗j,t+ < Pj u∗j,t− > 0. (13)

Given the monotonicity of the price function Π established
in Assumption 2, from (13) it follows:

γ(u∗, j, t+, t−) = (Dt−(u
∗)−Dt+(u

∗)) · (Pj−u∗j,t+) ·u
∗
j,t− > 0

which contradicts (8) and concludes the proof.

IV. DISTRIBUTED COORDINATION STRATEGY

The appliances are coordinated through iterative updates
of their power scheduling. A distributed paradigm is adopted:
a central entity sequentially broadcasts a price signal to each
device, which in turn performs an advantageous power swap
to reduce its energy cost.

A. Power Update as Evolution of Dynamical System
The iterative changes in the scheduled power profiles of

the flexible appliances are first described through a discrete-
time dynamical system:

u(0) = u0 u(k+1) ∈ F(u(k)) (14)

where F : U 7→ U is a multi-valued correspondence and
u(k) ∈ U represents the power consumption scheduled by
the whole population of flexible loads after k iterations of
the proposed coordination strategy. We argue that this for-
mulation, formally more rigorous than the pseudo-algorithm
representation usually adopted in similar works on the sub-
ject, allows to directly apply a wide range of theoretical
tools (e.g. Lyapunov stability theory) and derive fundamental
results in the context of flexible demand integration. Practical
implementation methods are discussed in Section IV-B.

In order to formally characterize F , the following quanti-
ties are preliminarily introduced:

S j(u) := argmax
(t+,t−)∈A j×A j

γ(u, j, t+, t−) (15)

∆(u, j, t+, t−) :=min
(

Pj−u j,t+ ,u j,t− ,
bDt−(u)−Dt+(u)c+

2

)
(16)

where bxc+ denotes positive part of x. The set S j(u) as-
sociates to a device j ∈N the pairs of time instants s j =
(t+j , t

−
j ) in its availability interval that maximize the function

γ under the current u and can be considered for cost-reducing
power shifts. The maximum power that can be swapped
between these two times is quantified by ∆ in (16).

A multi-valued correspondence Fj : U 7→ U is first de-
fined for each device j ∈N :

Fj(u) =
⋃

s j∈S j(u)

f (s j)(u) =
⋃

s j∈S j(u)

[
f
(s j)
1,1 (u), . . . , f

(s j)
N,T (u)

]
(17)

where the single component f
(s j)
i,t (u) of f (s j)(u) in (17) has

the following expression when s j = (t+j , t
−
j ):

f
(s j)
i,t (u)= ui,t +∆(u, j, t+j , t

−
j )·1{ j}(i)

[
1{

t+j
}(t)−1{

t−j
}(t)

]
.

(18)
When Fj is applied, a single element s j = (t+j , t

−
j ) ∈ S j(u)

is selected, and the j-th device shifts power from the time
instant t−j to t+j , as detailed in (18). The amount of shifted
power is determined by ∆ in (16), which guarantees that the
new power profile is feasible and that the power swap occurs
only if demand (and therefore price) at t−j is higher then at t+j .
The other devices i ∈N \{ j} preserve their previous power
scheduling. The complete multi-valued correspondence F
in (14) corresponds to an iterative power update over the
whole population of appliances and can be represented as the
composition of N mappings Fj, one for each device j ∈N :

F(u) := (FN ◦ · · · ◦F1)(u). (19)

Definition 2: Given the dynamical system (14) with F as
defined in (19), its solution set Φ is the following:

Φ :=
{

φ : N+→U : φ(k+1) ∈ F(φ(k)) ∀k ∈ N+
}
. (20)



The properties of system (14) and its solutions are studied
with Lyapunov techniques, demonstrating that the proposed
update strategy always converges to the set of Wardrop
equilibria. To this end, the following preliminary results are
provided:

Proposition 2: Consider a functional V : U → R+ of the
following type:

V (u) :=
T

∑
t=1

g(Dt(u)) (21)

where g is a positive strictly-convex function.

1) For all solutions φ ∈ Φ of system (14), as defined in
(20), there exists V∞ ∈ R+ such that:

lim
k→∞

V (φ(k)) =V∞. (22)

2) If V (φ(k+1)) =V (φ(k)), then φ(k+1) = φ(k).
Proof: See Appendix I.

The main results of this section can now be presented:
Theorem 1: Denote by Ω∗ ⊆U the set of Wardrop equi-

libria as expressed in Definition 1 and by |x|Γ the distance
between a point x ∈U and a set Γ⊆U . For each solution
φ ∈Φ of (14) as defined in (20), it holds:

lim
k→+∞

|φ(k)|Ω∗ = 0. (23)

Proof: See Appendix II.
From Theorem 1 we can conclude that all solutions of (14)
asymptotically converge to the set of Wardrop equilibria in
the electricity market. We wish to emphasize that this crucial
result is achieved for all penetration levels of flexible demand
and all parameters of the devices, as long as Assumption 1 is
verified and the scheduling problem is feasible. Note also that
specific knowledge of the price function Π is not required
and only its monotonicity with respect to power demand
needs to be assumed. Before discussing in Section IV-B how
to achieve these results in practical implementations, a global
property of the equilibrium is presented.

Theorem 2: Assume a positive strictly-convex g for the
functional V in (21). For any u∗ ∈ Ω∗ corresponding to a
Wardrop equilibrium and any feasible u ∈U , it holds:

V (u∗)≤V (u). (24)
Proof: See Appendix III.

It follows from Theorem 2 that the equilibrium notion
presented in Definition 1 not only corresponds to a stable
solution for the greedy optimization of the individual flexible
agents but it is also socially efficient, i.e. optimizes some
global performance index of the system. For example, the
functional V can be used to quantify the total generation costs
in the grid or the achieved flattening of aggregate demand.
This is an important result in the context of future large-
scale deployment of flexible demand in power systems. In
particular, it shows that integration of large populations of
price-responsive devices can be performed in a distributed
price-based setting while preserving the efficiency and the
reliability of the grid, with limited centralized intervention.

B. Practical Implementation

The power scheduling update described by F in Section
IV-A can be implemented in practice through a bi-directional
communication scheme between the system operator and the
flexible loads. The general idea is that, on the basis of a price
signal broadcast by a central entity, each device j can choose
a power swap that reduces its energy cost and corresponds
to the application of a certain f (s j)(u)∈ Fj(u). Three distinct
phases can be considered for the implementation:

1) Initialization phase: The initial power scheduling u(0)
is obtained by broadcasting a price signal p(0) : T → R+

to all agents and letting each device j schedule its power
consumption u j(0) so as to minimize its expected cost:

u j(0) ∈ argmin
u j∈U j

T

∑
t=1

pt(0) ·u j,t ·∆t.

The scheduling u(0) is communicated to the central entity,
which calculates the corresponding D(u(0)) through (3).

2) Power scheduling update (summarized in Fig. 1): The
individual power updates Fj in (19) are applied sequentially,
through the following steps:
a) At the l-th iteration, the price signal p(l) = Π(D(u(l))) is

broadcast to the device j (Phase j.A in Fig. 1).
b) The device j reduces its cost by swapping an amount of

power ∆ from t−j to t+j (with lower price), according to (18)
with i = j. Since Π is monotone, s j = (t+j , t

−
j ) and ∆ can

be calculated with minimum modifications, considering
p(l) = Π(D(u(l))) instead of D(u(l)). Convergence and
optimality properties of the algorithm are preserved.

c) Device j communicates t+j , t−j and ∆ to the system
operator (Phase j.B in Fig. 1) which in turn derives a new
power demand D(u(l +1)).

d) Steps a)-c) are repeated for l = l+1 and j = j+1 (resetting
j to 1 if the final value N has been reached).

3) Final results: When the devices do not update further
their power scheduling (equilibrium is reached), the algo-
rithm is stopped. The power scheduling at equilibrium is
u∗ = u(l), where l is the index of the last power update.

Remark 2: The presented implementation assumes that
convergence (which is proved asymptotically) is actually
achieved in a finite number of steps. Numerical simulations
presented in Section V seem to confirm this hypothesis.
Nevertheless, a stopping criterion can be added in order to
terminate the algorithm when the potential cost reduction
achievable by the devices is negligible.
We are aware that the proposed implementation could be
particularly time-consuming when large number of devices
are considered, as a bidirectional communication channel
needs to be established (potentially more than one time)
with each device. Alternative one-shot schemes have already
been derived, allowing the system operator to internally
perform most of the calculations and coordinate the flexible
appliances by broadcasting a single price signal (different
in general for each load). These techniques, discussed in
detail in [13], ensure significantly reduced execution times
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Fig. 1. Bi-directional scheme for practical implementation of power
scheduling updates.

in practical contexts, at the price of a negligible equilibrium
approximation at the final solution.

V. SIMULATION RESULTS

The proposed scheme for flexible demand coordination
has been tested in simulation, considering a future scenario
of the UK power grid. In addition to the inflexible demand
d, chosen as the total power consumption of a typical winter
day [14], the charging of N = 2 ·106 electric vehicles (EVs) is
performed. We assume that the EVs have equal power rating
Pj = P = 10KW while their parameters E j are generally
different and depend on the state of charge of their batteries
when they are plugged into the grid. The chosen values of
E j are normally distributed, with mean µE = 30KWh and
standard deviation σE = 1.5KWh. To determine the EVs’
availability windows A j, it is assumed that the j-th EV is
plugged in at time t j and remains connected for c j hours
where t j and c j are also normally distributed, with the
following mean µ and standard deviation σ :

µt = 21:30h σt = 1.5h µc = 10h σc = 1h. (25)

The procedure described in Section IV-B has been simulated
assuming that each device j, having received a price signal
from the system operator, can perform multiple power swaps
in order to reduce its energy cost. The calculations have
required about 13 minutes to be completed on a standard
laptop machine. The resulting demand profiles D(u(l)) after
l power updates by the individual devices are represented
in Fig. 2. As previously mentioned, when appliances re-
spond to the broadcast price of inflexible demand d (blue-
dashed line), the resulting aggregate power consumption
D(u(0)) of the system (black-dashed line) has a substantial
peak, with most of the vehicles charging at high electricity
prices. Through iterative power swaps, the demand profile
is gradually flattened. At l = 20 · 105 = N, after all EVs
have received an updated price signal and modified their
power scheduling once, no peak appears in the resulting
demand profile (magenta line). The final power scheduling
(corresponding to a Wardrop equilibrium) is obtained at l =
40 ·105 = 2N, when all EVs have rescheduled their charging
twice. Note that the corresponding demand profile (red dot-
dashed line) is mostly flat, with a small valley between 8:00h
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Fig. 2. Profiles of aggregate power demand after l power updates of the
proposed coordination strategy.

and 10:00h which is not filled as most of the vehicles are
not plugged in at such times and cannot consume power.

The performance of the proposed control strategy has been
compared to alternative cases with no appliances coordina-
tion. Specifically, a ‘time-greedy’ (TG) scenario has been
considered, assuming that each device aims at completing its
task as soon as possible. The scenario ‘price-greedy’ (PG)
has also been analysed, with each appliance scheduling its
power consumption on the basis of a single price signal,
equal to the electricity price of inflexible demand d. The
resulting power demand profiles (respectively DT G and DPG)
are compared in Fig. 3 with D(u∗), obtained with the
proposed coordination scheme. Note that, in the absence of
distributed coordination between the loads, their operation
strategies introduce new demand peaks in the system and
do not correspond to a Wardrop equilibrium, as most of
the devices could shift their power consumption to the new
valleys with cheaper electricity appearing in DT G and DPG. It
has been calculated that, with the induced power scheduling
u∗, the average energy cost for the single device is 27%
and 13% smaller than in the TG and PG case. We also
wish to emphasize that u∗ ensures lower generation costs for
the system. As discussed in Section IV-A, this quantity is
actually minimized by u∗ under very general assumptions.

VI. CONCLUSIONS

This paper presents a novel distributed technique for large-
scale deployment of flexible demand in power systems.
By modelling the power scheduling update of the price-
responsive appliances as the evolution of a discrete-time
dynamical system, it is possible to use Lyapunov techniques
and demonstrate that the proposed coordination scheme
converges to a Wardrop equilibrium for all penetration levels
of flexible demand. It is also proved that the final solution
is socially efficient and optimizes some global index of the
system, such as total generation costs. Finally, the effective-
ness of the proposed control strategy has been demonstrated
in simulations, considering future scenarios of the UK power
grid with large populations of flexible loads.
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Fig. 3. Aggregate demand profiles for different power consumption
strategies of the flexible loads.

APPENDIX I
PROOF OF PROPOSITION 2

For the first statement, since V is bounded below by zero, it
suffices to show that V (φ(k+1))≤V (φ(k)) or, equivalently:

V (y)≤V (u) ∀y ∈ F(u), ∀u ∈U . (26)

As F in (19) is the composition of N correspondences Fj,
this is verified if:

V (y)≤V (u) ∀y ∈ Fj(u), ∀u ∈U , ∀ j ∈N . (27)

To prove (27), it can be shown that the following holds for
all s j = (t+j , t

−
j ) ∈ S j(u):

V (y) =V ( f (s j)(u))<V (u) if γ(u, j, t+j , t
−
j )> 0 (28a)

V (y) =V ( f (s j)(u)) =V (u) if γ(u, j, t+j , t
−
j )≤ 0 (28b)

When γ(u, j, t+j , t
−
j ) > 0, since u j,t+j

≤ Pj and u j,t−j
≥ 0 by

definition, as a result of (7) it holds:

Dt−j
(u)> Dt+j

(u) u j,t+j
< Pj u j,t−j

> 0.

From (16) we have that ∆(u, j, t+j , t
−
j ), hereby denoted simply

as ∆, is also positive. In the present case, given expression
(18) for the components of y = f (s j)(u) ∈ Fj(u), it holds:

Dt+j
(u)< Dt+j

(u)+∆ = Dt+j
(y)≤ Dt−j

(y) = Dt−j
(u)−∆ < Dt−j

(u).
(29a)

Dt(u) = Dt(y) ∀t ∈T \{t+j , t
−
j }. (29b)

The values of V at u and y = f (s j)(u) are now compared:

V (y)−V (u) = g(Dt+j
(y))−g(Dt+j

(u))+g(Dt−j
(y))−g(Dt−j

(u))

=
∫

∆

0
g′
(

Dt+j
(u)+ x

)
−g′

(
Dt−j

(u)− x
)

dx < 0
(30)

where the inequality follows from (29a) and the strict
convexity of g. Having verified (28a), condition (28b) is
now considered. With similar arguments, it can be shown
from (7) that ∆(u, j, t+j , t

−
j ) as defined in (16) is equal to

zero when γ(u, j, t+j , t
−
j ) ≤ 0. It follows from (18) that y =

f (s j)(u) = u, implying that V (y) = V (u) and thus proving
(28b) and the first proposition statement. To verify the second
claim consider that, since V is nondecreasing when any Fj
is applied, (28b) must hold for all j when u = φ(k) and
V (φ(k+ 1)) = V (φ(k)). As previously proved, this implies
∆(u, j, t+j , t

−
j ) = 0 for all j and therefore φ(k+1) = φ(k).

APPENDIX II
PROOF OF THEOREM 1

Consider the ω-limit set Ω(φ) associated to the solution
φ and defined as:

Ω(φ) :=
{

u∞ : ∃{kn}n∈N , lim
n→∞

kn = ∞, lim
n→∞

φ(kn) = u∞

}
.

(31)
To prove the theorem, given the definition of distance to a
set, it is sufficient to show the following:

lim
k→∞
|φ(k)|Ω(φ) = 0 (32a)

Ω(φ)⊆Ω
∗. (32b)

A preliminary result is initially demonstrated.
Graph of F is closed: It is shown that F in (19) has closed

graph. The same property is first proven for the graph G j of
Fj in (17), with the following expression:

G j =
{
(u, f (s j)(u)) : u ∈U , f (s j)(u) ∈ Fj(u)

}
=

⋃
s j∈A j×A j

G(s j) =
⋃

s j∈A j×A j

{
(u, f (s j)(u)) : u ∈U (s j)

}
.

(33)
where U (s j) ⊆U is defined as follows:

U (s j) = { u ∈U : s j = (t+j , t
−
j ) ∈ S j(u) }

= { u ∈U : s j = (t+j , t
−
j ),

γ(u, j, t+j , t
−
j )≥ γ(u, j, t+, t−) ∀(t+, t−) ∈A j×A j

}
.

(34)
The graph G(s j) is closed since the state-space subset U (s j)

is closed (defined by a set of non-strict inequalities) and it
can be verified from (18) that each component f

(s j)
i,t (u) of

f (s j)(u) in (17) is continuous with respect to u. The graph
G j is also closed since it is the union of a finite number of
closed sets. One can conclude that also F has closed graph,
since it is the composition of correspondences Fj with the
same property and U is compact [15].

Proof of convergence: Condition (32a) straightly follows
from the outer semicontinuity of F [16, Chapter 6.3.3],
guaranteed by its graph G being closed [17, Chapter 3B].

Proof of equilibrium: It is now shown that (32b) holds
and all the elements in Ω(φ) are Wardrop equilibria. From
Proposition 2, for any u∞ ∈Ω(φ), it holds:

V (u∞)=V
(

lim
n→∞

φ(kn)
)
= lim

n→∞
V (φ(kn))= lim

k→∞
V (φ(k))=V∞.

(35)
Given the weak-invariance of Ω(φ), which follows from the
outer semicontinuity of F [16, Chapter 6.3.3], we have:

F(u∞)∩Ω(φ) 6=∅ ∀u∞ ∈Ω(φ). (36)



Therefore, from (35), there always exists y ∈ F(u∞)∩Ω(φ)
such that V (y) =V (u∞) =V∞, with y = u∞ from the second
part of Proposition 2. From (28b), there must exist s̄1 =
(t̄+1 , t̄−1 ) ∈ S1(u∞) such that:

V ( f (s̄1)(u∞)) =V (u∞) γ(u∞,1, t̄+1 , t̄−1 )≤ 0.

If this were not the case, since V is nonincreasing for all Fj,
we would have V ( f (u∞))<V (u∞) for all f (u∞)∈F(u∞) and
therefore u∞ /∈ F(u∞), contradicting an established result. As
γ is maximized by all s1 ∈ S1(u∞) from (15), we have:

γ(u∞,1, t+1 , t−1 )≤ 0 ∀s1 = (t+1 , t−1 ) ∈ S1(u∞). (37a)

∆(u∞,1, t+1 , t−1 ) = 0 ∀s1 = (t+1 , t−1 ) ∈ S1(u∞) (37b)

where (37b) also implies F1(u∞) = {u∞}. Recursive applica-
tion of the same arguments for j = 2, . . . ,N yields:

γ(u∞, j, t+j , t
−
j )≤ 0 ∀s j = (t+j , t

−
j ) ∈ S j(u∞),∀ j ∈N . (38)

To verify that u∞ ∈Ω(φ) is a Wardrop equilibrium note that,
given expression (15) for S j, (38) are equivalent to (8) for
u∗ = u∞. This means that (32b) holds, concluding the proof.

APPENDIX III
PROOF OF THEOREM 2

The theorem is verified in a reordered time vector. Proper-
ties on partial sums of the demand profiles are first derived,
exploiting the convexity of g to prove the final result.

Time-reordering: Consider a bijective function h :
T → T and the corresponding reordered time vector
[h(1),h(2), . . . ,h(T )]. A bar accent is used to denote any
quantity evaluated over the new time variable:

ū j,t = u j,h(t) ∀ j ∈N , ∀t ∈T (39a)

D̄t(u) = Dh(t)(u) ∀t ∈T . (39b)

The functional V is invariant with respect to this time-
reordering operation. In fact, since h is bijective, we have:

V (u) =
T

∑
t=1

g(Dt(u)) =
T

∑
t=1

g(Dh(t)(u)) =
T

∑
t=1

g(D̄t(u)). (40)

Moreover, for any u and u∗ considered in the theorem state-
ment, h can always be chosen so as to fulfil the following:

D̄1(u∗)≤ D̄2(u∗)≤ ·· · ≤ D̄T (u∗) (41a)

D̄t1(u)≤ D̄t2(u) ∀(t1, t2) : t1 < t2, D̄t1(u
∗) = D̄t2(u

∗). (41b)

Sum properties of demand profiles: Let S̄(u∗) and S̄(u)
denote the partial sums of the demand profiles associated to
u∗ and u respectively, over the reordered time variable:

S̄t(u∗) =
t

∑
l=1

D̄l(u∗) S̄t(u) =
t

∑
l=1

D̄l(u). (42)

Given u∗,u ∈U with u∗ fulfilling (5), we claim:

S̄t(u)≤ S̄t(u∗) ∀t ∈T . (43)

A weaker property is initially demonstrated:

S̄t(u)≤ S̄t(u∗) ∀t < T : D̄t(u∗)< D̄t+1(u∗). (44)

Since u∗ corresponds to a Wardrop equilibrium and fulfils
(5), for any of the subprofiles u∗j ∈U j we have:

t

∑
l=1

ū∗j,l ·∆t = min

E j, ∑
l∈{1,...,t}∩ ¯A j

Pj ·∆t


∀ j ∈N ∀t : D̄t(u∗)< D̄t+1(u∗).

(45)

where ¯A j =
{

t : h−1(t) ∈A j
}

corresponds to the availability
instants of the j-th device in the reordered time coordinates.
To check that (45) holds, note that its left-hand side is always
smaller or equal than its right-hand side. Assume by con-
tradiction that ∑

t
l=1 ū∗j,l ·∆t < min

(
E j,∑l∈{1,...,t}∩ ¯A j

Pj ·∆t
)

.
This implies existence of t+ ≤ t and t− > t in ¯A j such that:

ū∗j,t+ < Pj ū∗j,t− > 0.

One can then define an alternative power profile u� ∈ U j,
with the following expression in the reordered coordinates:

ū�t = ū∗j,t +∆u ·1{t+}(t)−∆u ·1{t−}(t) (46)

where ∆u = min(Pj− ū∗j,t+ , ū
∗
j,t−)> 0. Since t+ ≤ t < t−, the

inequality Π(D̄t+(u∗)) < Π(D̄t−(u∗)) holds by construction
(as we are also assuming D̄t(u∗)< D̄t+1(u∗)) and we have:

T

∑
t=1

Π(D̄t(u∗)) ū�t =
T

∑
t=1

Π(D̄t(u∗)) ū∗j,t

+∆u [Π(D̄t+(u
∗))−Π(D̄t−(u

∗))]<
T

∑
t=1

Π(D̄t(u∗)) ū∗j,t .

This contradicts the hypothesis of u∗ fulfilling (5) as the
considered quantities are invariant with respect to time-
reordering, confirming that (45) is satisfied. As its right-hand
side represents the maximum energy consumed with any
feasible u j ∈U j over the reordered time interval {1, . . . , t},
it holds:

t

∑
l=1

ū j,l ≤
t

∑
l=1

ū∗j,l ∀ j ∈N , ∀t < T : D̄t(u∗)< D̄t+1(u∗).

(47)
Taking the sum of (47) over j ∈N and adding the values of
inflexible demand on both sides yields (44). The more gen-
eral condition (43) is now proved by contradiction. Consider
an interval T= = {tS, . . . , tF} of constant demand D̄(u∗):

D̄t1(u
∗) = D̄t2(u

∗) ∀t1, t2 ∈T= (48a)
D̄tS−1(u∗)< D̄tS(u

∗) (48b)
D̄tF (u

∗)< D̄tF+1(u∗). (48c)

It is assumed that there exists tE ∈T=\{tF} violating (43):

S̄tE (u)> S̄tE (u
∗). (49)

Since S̄tS−1(u) < S̄tS−1(u∗) as a result of (44) and (48b), it
follows that there exists t◦ ∈ {tS, . . . , tE} such that:

D̄t◦(u)> D̄t◦(u∗). (50)

Moreover, given property (41b) for the chosen time-
reordering, it also holds:

D̄t(u)> D̄t(u∗) ∀t ∈ {t◦, . . . , tF} ⊇ {tE , . . . , tF} . (51)



It follows:

S̄tF (u)− S̄tF (u
∗)= S̄tE (u)− S̄tE (u

∗)+
tF

∑
t=tE+1

D̄t(u)−D̄t(u∗)> 0

(52)
where the inequality holds as a result of (49) and (51). Note
that (52) contradicts the verified condition (44), implying that
(43) also holds.

Equilibrium optimality: To prove the initial theorem state-
ment, a more general condition is demonstrated. Consider
two demand profiles D̄ and D̄∗ = D̄(u∗) such that:

S̄t =
t

∑
l=1

D̄l ≤
t

∑
l=1

D̄∗l = S̄∗t ∀t ∈T (53a)

S̄T =
T

∑
l=1

D̄l =
T

∑
l=1

D̄∗l = S̄∗T (53b)

Denoting by V̂ (D̄) = ∑
T
t=1 g(D̄t) and V̂ (D̄∗) = ∑

T
t=1 g(D̄∗t ) =

V (D̄∗) the corresponding functional values, we claim:

V̂ (D̄∗) =
T

∑
t=1

g(D̄∗t )≤
T

∑
t=1

g(D̄t) = V̂ (D̄). (54)

Considering expression (21) for V , it can be seen that (54)
implies (24). In fact, V is invariant with respect to the chosen
time reordering, we have established that (53a) is fulfilled
for any D̄ = D̄(u) with u ∈U and (53b) is always satisfied
by D̄ = D̄(u) and D̄∗ = D̄(u∗) when u,u∗ ∈ U , as the total
demand over time is the same. To prove (54), we introduce
D̄(0) = D̄ and the difference C(0)(t) = D̄(0)

t − D̄∗t . In the non-
trivial case of different D̄∗ and D̄, there always exists x(0)

defined as the minimum t for which it holds:

C(0)(t)> 0 (55a)

C(0)(t +1)≤ 0 if t < T. (55b)

To see this, consider that (53) is equivalent to:
t

∑
l=1

C(0)(l)≤ 0 t = 1, . . . ,T −1 (56a)
T

∑
l=1

C(0)(l) = 0. (56b)

Therefore, the last non-zero term in C(0) is always positive.
The following non-empty sets are now defined:

T
(0)
− :=

{
t : C(0)(t)< 0, t ≤ x(0)

}
T

(0)
+ :=

{
t : C(0)(t)> 0, t ≤ x(0)

}
.

From (56) and the definition of x(0), it always holds:

t1 < t2 ∀t1 ∈T
(0)
− ∀t2 ∈T

(0)
+ . (57)

We introduce now a different profile D̄(1) which guarantees
a reduction of the cost functional V̂ with respect to D̄(0). To
this end, the following quantities are considered:

x(0)− = argmin
t∈T (0)

−

C(0)(t) x(0)+ = argmax
t∈T (0)

+

C(0)(t) (58)

δ
(0) = min

{
|C(0)(x(0)− )|, |C(0)(x(0)+ )|

}
(59)

The new profile D̄(1) can then be defined as:

D̄(1)
t = D̄(0)

t +δ
(0) ·1{

x(0)−
}(t)−δ

(0) ·1{
x(0)+

}(t).
The inequality V̂ (D̄(1))≤ V̂ (D̄(0)) can be demonstrated as in
the proof of Proposition 2, showing that the equivalent of
(29) holds for D̄(0) and D̄(1). The procedure detailed above
can be repeated for increasing values of i, ensuring that at
each step V̂ (D̄(i+1))≤ V̂ (D̄(i)). If δ (i) is chosen through (59)
evaluated at superscript (i), at each iteration the cardinality of
the support of C(i) is reduced by one. Thus, there exists α ≤
T such that D̄(α) = D̄∗. Condition (54), implying the theorem
statement, is verified from the following inequalities:

V̂ (D̄∗) = V̂ (D̄(α))≤ V̂ (D̄(α−1))≤ ·· · ≤ V̂ (D̄(0)) = V̂ (D̄).
(60)
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