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Abstract All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples

of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the

code which build on the existing corpus of models are shown throughout.

1 Introduction

ALICE is a plasma atomic physics, atomic kinetics and lineshape package: it calculates the energy levels and

cross sections for transitions in a given ion which are then used to perform an atomic kinetics calculation

to find the populations of those levels, and used to produce the emissivity and opacity of the material.

The radiation field produced is fed back self-consistently and spectrally resolved into the atomic kinetics to

calculate the trapping of the radiation in a given geometry, and the entire problem is solved time dependently

for either a single material or a mixture. ALICE was designed to model experiments on the ORION short

pulse laser system at AWE and includes various corrections to account for effects on the energy levels and

lineshapes in dense plasmas. Experimental results in the regimes accessed in those experiments will be

compared to ALICE in the paper.

Several detailed atomic physics codes for calculating the energy levels in ions and the rates between them

have been written, for example the codes at the Los Alamos National Laboratory [1], HULLAC[2], or FAC

[3]; and there are also older, less detailed codes using analytic approximations, for example GALAXY [4],

and more limited calculations performed in LTE when the full compliment of rates are not required, for

example DAVROS [6] or IMP [7]. There are a number of atomic kinetics models in use, often drawing on an

atomic physics code (for example [2]) or using the input from such a code, for example FLYCHK [8], SCRAM
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[9] or CRETIN [10]. Lastly many lineshape models exist, both incorporated into code such as FLYCHK,

ATOMIC or CRETIN or as standalone codes of varying levels of sophistication [11].

Papers such as [4] or [12] provide a good summary of the operation of such models and show the basic

structure of any code performing atomic physics, kinetics and lineshape calculations. Also [1] provides a

comprehensive discussion of the rate and energy level calculations involved in producing a detailed term

accounting (DTA) model within a consistent framework. In this paper we will therefore focus on the aspects

of ALICE which are particularly different from these models or which lead to different results.

The first section covers the atomic physics calculations, discussing the methods used to calculate the

energy levels and cross-sections required for the atomic kinetics model. In the second section we discuss the

atomic kinetics model, divided into four sub-sections.

1) We begin by describing the overall flow of the program and how time dependence is included, followed

by a demonstration of the importance of time dependence in short-pulse laser-plasma interactions.

2) We then discuss the effects of optical depth, which are illustrated by analysis of a K-shell Scandium

experiment where two spectrometers at different angles to the target normal must be modelled simultane-

ously.

3) Completeness of configurations is important in any atomic kinetics model, particularly in the inclusion

of satellite lines, autoionising and Rydberg states, and we demonstrate ALICE’s ability to deal with such

situations in the more computationally complex cases of open L-shell Chlorine and Germanium.

4) Finally, at high densities lineshapes play an important role as an experimental diagnostic - we discuss

the lineshape model in ALICE and show how comparison with the same K-shell Scandium results motivates

the inclusion of higher order multipole effects in Ly-γ and He-γ lines.

2 Atomic physics

2.1 Orbitals and basic atomic structure

The methods used in the atomic physics calculations in ALICE are different to the more usual methods

involving Racah algebra. ALICE instead uses a novel approach which directly uses Slater determinants. The

details of this method are discussed in [13, 14].

The radial wavefunctions for the configurations along with the energies of those configurations are ob-

tained using Cowan’s atomic structure code, RCN[15]. This has been modified, firstly to output the required

quantities in a format for reading into ALICE, and secondly to give an additional stability when calculating

excited neutral atoms which is useful for cold K-shell spectroscopy (involving a modification to introduce

a permanent slight damping in the calculation of the radial wavefunctions). RCN[15] is fast, stable, and

produces reliable energy differences, even for the exotic configurations found in hot dense plasmas. The file

format is designed to be simple so that the code could be easily replaced by other models which calculate

wavefunctions in plasma conditions (PURGATORIO [16] for example). The energies returned are those for

configurations defined in nl notation, for example 1s22s22p2, reflecting the focus of ALICE on low to mid-Z

ions. The small part of the wavefunction, Q(r) is not used in ALICE, and the large part is normalised to

account for this.

Using these energies and wavefunctions we calculate the Hamiltonian matrix for the fine structure states
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within the configuration and through diagonalisation obtain the eigenvalues (energies) of the states and

their eigenvectors which are linear combinations of the determinantal basis states. Our method is based on

the observation that we can choose a set of M states (which we represent as linear combinations of Slater

determinants) such that only one represents each fine structure state, while still being able to calculate all

required matrix elements between those states for the transition matrix element calculations.

The results have been compared to various sources of experimental and theoretical data and are found

to be in sufficiently good agreement for Z ≤ 36 which covers a large number of elements of laboratory and

astrophysical interest. The errors in the energy levels for simple configurations e.g. He-like, are typically ∼
0.1eV for Al (Z = 13) and ∼ 1eV for Kr (Z = 36). The term structure including and excluding configuration

interaction has been extensively tested both against other theoretical data, tabulated experimental data and

by comparing to experimental data through the use of the atomic kinetics model. Typical agreement is shown

in Figure 1 - full configuration interaction is included and since the total spread of the levels is 13.7 Ryd, the

energy deviations of alice are all < 0.3% relative to that spread. Configuration interaction amongst sets of

levels can be included when the levels to be calculated are selected. Spin-orbit interaction, sometimes called

limited configuration interaction, is always included.
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Figure 1: A comparison of the deviations from GRASP[17] of alice (bold) and SS[18] and CAHF[19] using

data from [20]. We consider the energy levels in the configuration 1s22s22p6{3s2, 3s3p, 3s3d, 3p2, 3p3d, 3d2}
in Fe XV (Z = 26), where the {} denote configuration interaction between the levels. The lines are to guide

the eye, and the dashed line denotes zero deviation. The energies in all cases are relative to the lowest energy

level. The abscissa refers to the labelling of the levels in [20].
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2.2 Calculation of the collisional cross sections

In the calculation of collisional cross-sections, the main problem is the calculation of the radial integrals,

and in particular reaching convergence of the sum over angular momenta of the free electrons in the dipole

transition case. The minimisation of the number of radial integrals which must be calculated has been the

subject of considerable study ([1] Section 4) involving the truncation of the sum of angular momenta as early

as possible and the calculation of the cross-section at the smallest possible number of energies to minimise

the number of such integrations consistent with a sufficiently accurate result.

ALICE uses a parametrisation of the collisional excitation cross-section which is different to that usually

used, and which is related to the method of minimising the number of radial integrals. ALICE lies between

the two approaches of either calculating many points of the cross-section and then performing a least-squares

fit to those points while in some cases trying to maintain some physical limits, and calculating a simple cross-

section and then applying scalings to it in order to reproduce behaviour seen in other calculations[23, 24].

In particular we wish to avoid calculating distorted wave collision strengths, particularly those for the dipole

transitions and particularly at energies significantly above threshold. This is because at those energies, as

well as an increase in the difficulty of the numerical calculation due to the highly oscillatory nature of the

functions [24], the number of partial waves which must be summed becomes very large.

The resulting fits aim for an accuracy somewhere between the large scale calculations with large numbers

of distorted waves[1] and those which employ techniques such as scaling the cross-sections obtained from the

Plane Wave Born (PWB) approximation[23, 25]. The fits in ALICE include more physics than the latter,

for example the exchange contributions, with a minimum amount of extra numerical effort. Accuracies for

the scaled PWB calculations are typically 20% [24, 15] or 30% [25] near threshold, and they have no ability

to be accurate for exchange dominated transitions since exchange cross-sections cannot be calculated using

this method. The accuracy of the distorted wave calculations[1] is hard to define; the agreement between

different codes is generally good (∼ 5 − 10%) and the agreement of those codes with experiment [26] is at

the 10% level. We are therefore aiming for fits at the 5− 10% level to bring the results of our code into line

with other more detailed codes.

The fit used in ALICE is

σ(E)E = [c0 + c3 ln(U)] g(U) + (1− g(U)) [c2 + c1 ln (U)] + cUa
(

d

d+ U

)−2.5−a
(1)

where

g(U) =
A

(U − 1) +A
(2)

where E is the incident electron energy, and ∆E is the energy change of the transition. In the case of

direct transitions (those with r = 0∗), the rates at high energies are calculated using the Plane Wave Born

approximation and generalised oscillator strengths [15]. This, since g(U)→ 0 as U = E/∆E →∞ allows us

to fit the values of c2 and c1, therefore obtaining a form consistent with the Bethe high energy limit (a feature

we will return to below). For t = 1∗, c2 and c1 are both non-zero, whereas if t 6= 1∗, we assume c1 = 0.

Near threshold, the cross section deviates from the PWB form - here the details of the interaction between

∗ t and r are the rank of the associated tensor operator in the orbital and spin angular momentum transition matrix

elements respectively [13, 14]
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the continuum and bound electrons are important and hence we cannot expect to have a good accuracy

without performing some kind of calculation including the ion structure. Two distorted wave calculations

are performed at energies ∆E + ε and ∆E + 2ε, close to threshold, and determine the values of c0 and c3.

The value of A in g(U) is fixed for different types of transition and is the characteristic value of U where

the PWB approximation breaks down. The cross-section is relatively independent of A ∼ 1, however we find

that A = 1/2 for direct dipole matrix elements and A = 3/2 for direct non-dipole elements gives good fits

to other results.

We next consider the indirect part of the transition, r = 1∗, which we fit using the final term in the

cross-section expression, which allows an asymptotically appropriate form with a deviation near U = 1. The

indirect and exchange terms converge very quickly with few continuum electron angular momenta.

Some examples of the cross-sections calculated using this method are shown in Figure 2:

Firstly we consider the 1s2s 1S0 → 1s2p 1P1 transition in Aluminium in Figure 2a. The graph shows

the results from the LANL suite of codes (black) with deviations from that result of ±5% (black dashed)

along with the result from alice (red) and from FAC (blue). The agreement between the codes is generally

good. The cross-sections have also been compared for Krypton and the decrease in discrepancy near threshold

supports the assertion that these differences are due to the form of the bound-continuum electron interaction.

The discrepancy is similar to that of the results of HULLAC ([2] Figure 4). ALICE gives a slightly different

asymptotic form of the cross-section at high energies when compared to the LANL codes, which appears

to be attributable to the difference in the dipole matrix element between the states, and therefore to the

underlying atomic physics. Taking the common, strong 1s2 1S0 → 1s2p 1P1 transition in Aluminium as an

example, oscillator strength values in the literature range from f = 0.742 [27] , through FAC’s f = 0.768

and alice’s value of f = 0.777 to the LANL value of f = 0.808. These differences affect the calculation

because of the relationship between the dipole strength and the Bethe high energy asymptote (e.g. [28]); c1
is proportional to the dipole oscillator strength.

Secondly, we look at the intercombination transition, 1s2 1S0 → 1s2p 3P1. Figure 2b shows the fit, where

A = 1/2, c0 = 2.19 × 10−21, c1 = 5.41 × 10−21, c2 = 1.04 × 10−21, c3 = 2.96 × 10−23, c = 2.67 × 10−19,

d = 19.03 and a = 1.8 (where σ(E)E is in units of cm2Ryd). It is interesting that the threshold value of the

cross section for the 1s2 1S0 → 1s2p 1P1 transition is ∼ 9 × 10−19cm2Ryd and therefore for temperatures

around 300−500eV where He-like Aluminium is most prevalent at solid densities, the collision strength from

the ground state 1s2 1S0 to the 1s2p 3P1 level is about 2 orders of magnitude larger than would be expected

from the ratio of dipole strengths. This could not have been predicted from the PWB collision strengths.

2.3 Relativistic formulae

Because of the use of an exact high energy limit with the coefficients c1 and c2, the formulae shown above

extend to the relativistic case.

For the dipole allowed transitions, including relativistic effects on the free electron, it is necessary to

modify equation 1, by replacing

1

E
(c1 lnU + c2)→ 2Ryd

mv2

(
c1

[
ln

(
β2

1− β2

)
− β2

]
+
[
c1 ln(mc2/2Ryd) + c2 − c1 ln ∆E

])
. (3)

where Ryd stands for a Rydberg unit of energy (∼13.605 eV), included in the equation since E and ∆E are

5



1 1 0 1 0 0

1

2

σ(E
)E 

(10
-16

 cm
-2 Ry

d)

I m p a c t  e n e r g y  ( R y d )

(a)

1 0 0 1 0 0 0 1 0 0 0 0
0

1

2

3

σ(E
)E 

(10
-19

 cm
-2 Ry

d)

I m p a c t  e n e r g y  ( R y d )

(b)

Figure 2: Examples of the fitting of (2a) a direct, dipole transition, and (2b) a transition with a significant

indirect component. The transitions are in He-like Al, and the results from ALICE (red) are compared with

those from FAC (blue) and the LANL suite of codes (black).

Energy (keV) Bostock and Fontes[29] alice (NR) alice (R)

50 93 91 95

100 68 60 71

500 43 19 46

1000 44 11 47

5000 57 3 64

Table 1: We compare cross sections from ALICE against those reported in [29]. The cross sections are for

Z = 28 1s1/2 → 2p3/2 electron-impact excitations. The energy is that of the incident electron and the cross

sections are in barns. (NR) are non-relativistic and (R) are relativistic as discussed in the text.

measured in Rydbergs.

For direct, but dipole disallowed transitions, the modification in equation 1 is

1

E
c2 →

2Ryd

mv2
c2. (4)

Other parts of the cross-section are unimportant at relativistic energies for elements we consider here,

and more complex implementation would only be consistent with a relativistic level of treatment of the

atomic physics and of the free electron-ion interaction which are not present in ALICE, see [29]. In Table 1

we compare the cross sections derived in this way with those from [29] for the 1s1/2 → 2p3/2 transition in

H-like Ni. We see that the increase (rather than decrease) of the cross section with energy at high energies

when relativistic effects are included, commonly called the ‘relativistic rise’, is reproduced.

The calculation of relativistic cross sections is very important for including the effect of ‘hot’ or ‘fast’

electrons which have typical energies around 1MeV which are produced in the interaction of high powered
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lasers with both gas and solid targets. As shown in Table 1, a 5MeV electron energy which is typical in

laser-plasma interactions at laser intensities of 1020Wcm−2 has a cross-section about 20 times larger than

the non-relativistic result.

2.4 Collisional and photo-ionisation rates

The photoionisation cross sections are calculated in the Distorted Wave Approximation, and are fitted using

a c1U
−c2 form, where values of c2 of 2 to 3 are typical[30]. The angular parts are calculated in a very similar

way to that for the rates above, and it can be shown [1] that the angular parts required for the photoionisation

cross sections are identical to those needed for collisional ionisation, despite all multipole elements needing

to be considered in the latter case. The factoring out of the angular part of the matrix elements renders the

collisional ionisation cross-section between pure J-states separable into angular and radial parts, and so the

latter can be evaluated separately. The energy dependence of the collisional ionisation cross-section is highly

independent of the atomic structure, while also being very computationally expensive to calculate (requiring

a sum over two degrees of freedom in the free electron energies). We use the tabulations of the appropriate

energy-summed radial integrals found in [1].

2.5 Autoionisation rates

These are calculated in ALICE by decoupling the 4 active electrons (two from the initial state, one from the

final state and one from the continuum) obtaining a double sum over fractional parentage coefficients, and

a number of 6j and 9j-symbols. These matrix elements have been validated against those from FAC, and,

although the values differ slightly due to the extreme sensitivity to the radial matrix elements, an overall

linear correlation between the values can be seen as is shown in Figure 3, where the autoionisation rates in

Aluminium XII (He-like) from the {2s2, 2s2p, 2p2} → 1s, Aluminium XI (Li-like) 1s{2s2, 2s2p, 2p2} → 1s2

and Aluminium X (Be-like) 1s{2s22p, 2s2p2, 2p3} → 1s2{2s2, 2s2p, 2p2} are shown, along with a diagonal

dashed line which the points would lie on if the results from FAC and ALICE were equal. This sensitivity to

these elements will become increasingly important in atomic kinetics calculations at low densities - ensuring

the completeness of autoionising configurations and the accuracy of the autoionisation rates continues to be

a challenge for atomic kinetics codes.

2.6 Parallelisability

For a typical calculation using thousands or tens of thousands of levels, hundreds of CPU hours of com-

putational time are required, and hence it is desirable to have a code which parallelises efficiently. Due to

the nature of these calculations, particularly the independence of the different cross section calculations, we

expect to be able to achieve close to a linear scaling with the number of cores. Tests have been performed

on the cx1 computer at Imperial College [31] with up to 72 cores, and a linear scaling is found. Due to

the large amount of reading and writing from and to files which is required in ALICE, this scaling may be

expected not to hold on bandwidth limited computing systems, and there are also small deviations from a

linear scaling when the total number of cores is kept constant and the number of cores used per CPU is

varied.
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Figure 3: Autoionisation rates in ALICE for the Aluminium XII (He-like) {2s2, 2s2p, 2p2} → 1s, Aluminium

XI (Li-like) 1s{2s2, 2s2p, 2p2} → 1s2 and Aluminium X (Be-like) 1s{2s22p, 2s2p2, 2p3} → 1s2{2s2, 2s2p, 2p2}
transitions are compared against those from FAC. The diagonal dashed line is the line the points would lie

on if the results from ALICE and FAC were equal.

2.7 The DCA-type model

ALICE also allows the construction of a DCA-type model, where the levels in a configuration are averaged

together in the calculation of the rates. The photoexcitation rates are excluded from this averaging and

this allows the photoexcitation rates and, importantly, the emission, to always be treated in a DLA model.

UTAs are not used; however the assumption of Boltzmann statistics among the fine structure levels is made.

No correction is made for this and the assumption of statistical distribution between the levels within a

configuration is noted as a shortcoming of the approximation. The conditions which ALICE is designed to

work in (high temperature and density plasmas) are those in which this approximation would be expected

to hold well, and, in the future, corrections involving an effective temperature could be implemented. The

rates other than photoexcitation rates for the averaged levels are calculated simply using analytic formulae

for rates between averaged levels [1], and therefore ignore the populations of the incident levels which are

assumed to be proportional to their degeneracy. This is inaccurate both when in LTE (by a Boltzmann

factor) or when out of LTE, and is recognised as a deficiency of the model, particularly in low density,

non-LTE plasmas.

This model can be used for LTE calculations at any density; the use of detailed dipole-allowed transi-

tion arrays allows the porosity of those arrays to be treated correctly at low densities unlike in the UTA
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approximation leading to more accurate spectra in that regime.

In order to decrease computational time, ALICE allows for a mixture of the DCA and DTA descriptions.

For example, in the experiment considered below involving K-shell Scandium the set of levels employed is

extended down to Ne-like in order to remove any dependence on the initial conditions. The DTA model is only

used for the diagnostically important Be-, Li-, He- and H-like levels. This results in a considerable decrease

in computational time while also allowing a satisfactory completeness of configurations to be obtained.

However, if for example, Ne- and Na-like Scandium were to be investigated, a new model using a DTA

description in the region of those charge states and a more averaged DCA description elsewhere would be

created.

For all the DTA rates discussed in the previous four sections, tests have been undertaken, involving

checking that the rates between configurations are the same when evaluated numerically from the average of

DTA rates and when calculated from the formulae (see e.g. [1]) found by performing this average analytically.

The analytic formulae contain no factors relating to the angular momenta of the electrons, leading to very

simple formulae which are easy to implement.

3 Atomic kinetics

In this section we describe the atomic kinetics model. ALICE was developed to provide a new, independent

and robust model for diagnosis of the density and temperature of high density, high temperature (solid

density, hundreds of eV) plasmas such as are created in buried layer targets heated by the ORION laser

at AWE, Aldermaston. These experiments aim to use a mixture of low and high Z materials to allow the

opacity of the high Z materials to be determined at a temperature and density which is well characterised.

To analyse these experiments ALICE must address the following considerations:

1) The timescales for the heating and hydrodynamic expansion of these targets is of the same order as

the ionisation timescales of the plasma and therefore the ionisation states of the mixture of materials must

be solved self-consistently and time dependently.

2) The spatial dimensions of the layers (typically ∼ 0.1µm) result in the strong transition lines having

significant optical depth. This has an effect on the level populations and radiation leaving the plasma. In the

conditions of temeprature and density encountered in the experiments, existing methods based on escape fac-

tors would be expected to be unreliable because of the departure of the lineshapes from Doppler, Lorentzian

or Voigt. Instead we employ a radiation transport calculation with accurately calculated lineshapes coupled

in a frequency resolved way to the atomic kinetics.

3) Mixtures of low, mid and high Z materials must be treated, requiring a self-consistent description of

each material and a dependence of the lineshapes and pressure ionisation on the properties of the surrounding

mixed-material environment.

The code has three different levels of detail - full DTA, a DCA model with detailed line positions (the

atomic data production for these two was described above), and an effective-temperature modified Thomas-

Fermi model. These are intended to be used for low, mid and high Z materials respectively.
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3.1 The scheme of the code

The scheme may be written in pseudo-code as:

1. Read in the atomic physics data for the elements and initialise the code

2. Solve for steady state at the initial temperature and material density

2.1 Guess the initial ne and radiation field

2.2 For each element

2.2.1 Calculate the rate matrix for current guesses of ne, radiation field, Te, Ti, ... obtaining the

spectrum

2.2.2 Solve for the populations using the current value of ne, to obtain the charge state

2.3 Using the charge states and spectra found for the elements, recalculate the values of ne and the

total radiation field, and loop to 2.2 until consistency is reached

3. Move forward one time step

3.1 Use the current charge states and radiation field as an initial guess, along with density and Te
from the time history

3.2 For each element

3.2.1 Calculate the rate matrix for current guesses of ne, radiation field, Te, Ti, and populations

3.2.2 Solve implicitly for the populations using the current values, to obtain the charge state

3.2.2.1 Loop to 3.2.2 iterating only on the charge state for that single element

3.3 Using the charge states and spectra found for the elements, recalculate the values of ne and the

total radiation field, and loop to 3.2 until consistency is reached.

4. Output diagnostic information - charge states and spectra - and loop to 3 until end of

time series is reached

In more detail, ALICE solves
dn

dt
= An (5)

where n is the vector of populations of the levels and A is the rate matrix. Due to the poor conditioning of

the rate matrix, this equation must be solved implicitly, and due to the dependence of A on the populations

n through both the charge state and through the radiation field it must be solved by iteration to consistency.

We define ni,j as the jth iteration involved in finding the populations at timestep i, and

ni+1,∞ = (I +A∆t)−1ni,∞ (6)

is the equation to be solved, where I is the identity matrix. However A = A(n, Te, I(ν), ne, ...), and Step 2

above involves solving the same equation in the limit of large ∆t to obtain the initial steady-state populations.

We note that throughout we assume the material motion to be Lagrangian and non-relativistic, and that

the plasma consists of a single, uniform slab of constant composition with a known history of temperature,

density and extent.

We begin with ni,∞, the populations at timestep i after convergence of the iterations for that timestep,

and form A = A(ni,∞, Te(i+1), I(ν)i,∞, nei,∞, ...) as an initial guess for A, and then solve for ni+1,0. We then

iterate, incrementing j, by defining m = βni+1,j +(1−β)ni,∞ where A = A(m, Te(i+1), I(ν)i+1,j , ne(m), ...).

ALICE allows the choice of β between 0 and 1 with β = 1 being fully implicit and β = 0.5 being usually used.
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We solve for ni+1,j+1 using this A in Equation 6, and thereby obtain I(ν)i+1,j+1. To stabilise the iterations,

we then replace all the xi+1,j+1 quantities with suitably damped and limited values. For example I(ν)i+1,j+1

is calculated as αI(ν)i+1,j+1 + (1−α)I(ν)i+1,j and then bounded below by 0. ni+1,j+1 is similarly damped,

bounded below by 0 and renormalised.

α is a damping factor which is chosen in ALICE to achieve a balance between stability and computational

time. Unlike β, where the values considered are taken at the previous and current timesteps, α relates to

consecutive iterations of a value at the current timestep. Both of these factors can be used at the same time,

the value found at the current iteration being damped (with α) followed by using a chosen β to determine

how that variable is used in the calculation of A. Explicitly, we first calculate ni+1,j and then damp it

against ni+1,j−1: ni+1,j = αni+1,j + (1 − α)ni+1,j−1. We then calculate m = βni+1,j + (1 − β)ni,∞ and

use that to calculate A. It was found that for all other variables apart from n (and importantly, ne which

is derived directly from it) a fully implicit (β = 1) scheme could be chosen with no significant increase in

computational time while providing optimal stability.

In the above, we have included in the definition of A an indication that there are dependencies beyond

those explicitly noted. This is because there are frequently other variables which must be included, for

example the target thickness, a hot electron population, or an external radiation field; however the major

dependencies are often on Te and ne. The presence of other materials is taken into account through defining

ne as a function of m with addition of the electron number densities resulting from the other elements, while

these other elements will also affect the ion dynamic broadening and the broadening used in the quasistatic

ion lineshapes. All of these effects are treated in the same way in this damped, iterative loop. Only ne and

m are treated differently in that another inner iterative loop (3.2.2 to 3.2.2.1) is used in order to allow the

convergence in ne to be performed more quickly. No attempt is made to split A as a quadratic in ne.

Equation 6 is solved using a 2-step process. Firstly the DTA rates are aggregated. The rate matrix, A,

is formed on the computer node indexed 0 and is Gauss-Jordan inverted. To give an example the levels 1s2,

1s2s and 1s2p have 7 DTA terms, the rates between which are conglomerated onto the 3 nl-representation

DCA states. The solution is then projected back out on to the DTA vectors by statistical weighting with

Boltzmann factors. This vector is then used as the beginning to a parallel Jacobi iterative process, since

often the rate matrix is too large to store in RAM on a single node and this allows the entire computational

cluster to be utilised.

Jacobi iteration was chosen due to its simplicity and ease of parallelisation, but also has the useful feature,

peculiar to this problem, that the first iteration will reproduce coronal equilibrium. Taking the system of

1s2, 1s2s and 1s2p at low density as an example, the population is predominantly in the 1s2 state and the

populations in the 1s2s and 1s2p terms will be poorly predicted by the projection back with Boltzmann

factors due to metastability, particularly in the 1s2s 3S1 case. However, the first iteration of the Jacobi

iteration gives the population, pe, of any excited state in terms of the ground state, pg, and other excited

states pe′ as

pe =
1∑

e′ Re→e′

[
Rg→epg +

∑
e′

Re′→epe′

]
(7)

which is, to first order,

pe =
1∑

e′ Re→e′
[Rg→epg] (8)
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and coronal equilibrium is obtained.

At high density, the system is close to LTE and therefore the projection back from the Gauss-Jordan

step is close to the correct answer. Thus, we see that the method used here needs one iteration in the

case of coronal equilibrium and no iterations in the case of LTE. The ability to obtain the two limits easily

suggests that the method will be successful and robust, and indeed the convergence has not been seen to be

problematic.

Figure 4: The spatially averaged temperature (black line) and density (blue line) of an initially 0.4µm thick

Scandium layer predicted by NYM[33][32]. The integrated K-shell emission (black dashed line) and the

charge state (red line) calculated by ALICE are also shown.

The capability discussed above proves to be particularly important in the analysis of experiments using

short-pulse lasers, an example of this is given in Figure 4. The laser is incident on the front surface of a

buried layer target: a thin layer of Scandium sandwiched between two thicker layers of plastic or diamond.

The layer is rapidly heated to ∼ 1keV while the surrounding plastic slows the expansion, meaning that it

remains within a factor of a few of solid density. Figure 4 shows how the ionisation change lags behind

the temperature change, particularly near the peak in temperature and emission. The spectra produced are

sensitive to the time dependence. In addition to the time dependence the damped iterative scheme discussed

above is required to obtain consistency and convergence in the radiation field, particularly for the optically

thick lines [34]. The criteria for convergence depend on the sum of the absolute value of fractional deviations

in all of the calculated quantities, for example
∑

2(ni,j+1 − ni,j)/(ni,j+1 + ni,j) in the case of the level

populations and similar with I(ν)i,j in the case of the radiation field. This is significantly more stringent

than using conditions based on integrated values e.g. ne or the integrated emission.
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3.2 Line trapping and radiation transport

ALICE calculates two radiation fields. The first is an averaged radiation field in the target which is used

for the solution of the atomic kinetic model, and the second is the radiation field escaping the target at a

given angle (corresponding to the observation angle of the spectrometer). For the first case the radiation

field is calculated by solving the frequency-resolved radiation transfer equation along a mean chord (given

by the Cauchy mean chord theorem) in the plasma. For example, for a slab of plasma where d is the

perpendicular thickness the main chord is given by 2d. This has been tested against more complex, multi-

zonal 1D simulations and has been seen to give good agreement. For the second case in which the radiation

escaping the target is calculated, the radiation transport equation is solved as before but along the line of

sight through the plasma. The spectral grid for the radiation field is more detailed in the region of the K-

and L-shell of any elements present in the mixture, and the fully detailed radiation field as seen in the output

below is used at all stages of the calculation. This means that photopumping both within a material and

between different materials can be treated.

We consider Scandium spectra obtained from the ORION laser[32]. Two spectrometers at 15◦ and 75◦ to

the target normal were used. The distance across the Scandium layer along the spectrometer line of sight is a

factor of 3 larger in the second case; and this causes a difference between the observed spectra. Figures 5 and

6 show the spectra taken at these two angles. The ratio between the α and β line intensities, which in the

optically thin limit must be < Aβ/Aα ≈ 1/4 (where A are the Einstein A coefficients), is much larger in the

second spectrum. This is because at high optical depth the emitted spectrum tends to the source function,

and, due to the radiation field affecting the atomic kinetics, the source function tends to a Planckian. The

intensities of the Ly-α peaks in the second spectrum are in an almost 1 : 1 ratio, yet in the optically thin

limit should have a ratio of 1 : 2 which is determined by the detailed atomic physics. To obtain the ratio

observed here, the optical depth at line centre of the more intense line of the doublet must be ∼ 10, which

allows a semi-analytic verification of the thickness of the Scandium layer inferred from the code.

Figures 5 and 6 show that the agreement between the code and the experiment is generally good. The

line ratios are well reproduced, the linewidths and shapes are generally accurate, and the agreement at the

two different angles from the same simulation are indicative of an underlying accuracy in the model. The

time and density histories are extracted from NYM simulations performed at AWE[32]. When ALICE was

being developed, it was notable that a lack of inclusion of accurate radiation transport, deficiencies in the

lineshape physics, or lack of completeness of the model all led to situations where one of the spectra could be

fitted by a change in the radiation hydrodynamic modelling, however the agreement with the other spectrum

would always be very poor. Modelling with ALICE suggested that the target thickness was about double

that originally inferred during target fabrication which was confirmed by more advanced target metrology.

However, some features are not reproduced as well. The satellites to the He-α line are over-estimated using

ALICE, which is possibly due to underestimation of the speed of the target disassembly using a radiation

hydrodynamics code. An examination of the sound speed shows that after ∼ 5ps the rarefaction wave from

the front surface will have reached the buried layer, and a slightly faster disassembly than that predicted

by the radiation hydrodynamics code, will decrease the density and temperature in the layer, decreasing the

intensity of those satellites.

Another possible cause of some of the smaller discrepancies in the spectra is the lack of transverse unifor-

mity of the target predicted by 2D PIC simulations which is not seen in 1D or 2D radiation hydrodynamics
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Figure 5: The time-integrated spectrum from the Scandium target which evolved as shown in figure 4 when

viewed at 15◦ to the target normal. The experimental spectrum is shown in black, the predicted spectrum

from ALICE is shown in red.

simulations. The majority of the emission is predicted to occur before transverse perturbations to the tem-

perature of the layer predicted by 2D PIC simulations have been smoothed by thermal diffusion. Such

perturbations are predicted to be caused by filamentation of the hot electron and return currents and are

consistently seen in 2D PIC simulations of short-pulse laser plasma experiments [35].

3.3 Completeness of configurations

Completeness of configurations has become an issue that has received increasing study in non-LTE modelling

in recent years. The first issue related to this, involves including a sufficiently large number of configurations

that the partition function is converged. This is particularly problematic in situations with large numbers

of highly populated excited states, for example near LTE. A second issue arises from the need to include

levels of low population that provide important kinetic pathways. At astrophysical densities these issues are

successfully mitigated by approximations based on radiative cascades or using resonance contributions to the

recombination cross-sections. At higher densities these issues can not be resolved in this way and this need

to treat large numbers of excited and doubly excited levels is the major problem in modern non-LTE physics.

Here we describe how these levels are included in ALICE. The issue of how many of these high lying levels

to include is decided by the pressure ionisation, where the surrounding plasma removes high lying states.
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Figure 6: The time-integrated spectrum from the Scandium target which evolved as shown in figure 4 when

viewed at 75◦ to the target normal. The experimental spectrum is shown in black, the predicted spectrum

from ALICE is shown in red.

3.3.1 The series approach

Current non-LTE models consider a set of levels {li} and a set of transitions {(li, lj)} between pairs of

levels, where each transition is considered entirely separately. This has the advantage of being compact,

easily extendible and also follows naturally from LTE codes. While a full Liouville space representation

calculation is currently intractable, in ALICE we have attempted to make some steps towards it by dividing

the calculation into subsets of transitions, which consist of a series of transitions and their series limit. We

have sets of levels and transitions, treated as one object, for example

[{1s2, 1s2s, 1s2p, 1s3s, 1s3p, 1s3d, 1sε}{(1s2, 1s2s), (1s2, 1s2p), ..., (1s2, 1sε)}] (9)

or

[{1s2s, 1s2p, 1s3s, 1s3p, 1s3d, 1sε}{(1s2s, 1s2p), (1s2s, 1s3s), ..., (1s2s, 1sε)}] (10)

where it will be noted that the sets of levels used to make up these objects are not disjoint, however along

with the transitions there is no overlap and each represents a clearly separate physical concept - a series

up to a continuum limit - in the first case the ionisation of one of the 1s electrons from 1s2 and in the

second case the ionisation of the 2s electron from 1s2s. The properties of the transitions and levels are

then considered together, which then allows a natural treatment of the movement of the levels into the
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continuum, and conversely a relatively simple treatment of additional levels which are not ionised. While

this may appear cumbersome in a human-readable form, through the localisation of the information into a

single data structure it simplifies computations considerably. If one were more concerned about the effects

of overlapping lines and the interference between them, transitions grouped by their proximity in energy

rather than by series could be optimal, an example of this is found in [36].

Treating problems where levels are removed by continuum lowering is simple in this model, and the

representation used here would lend itself to codes seeking to impliment more advanced models of the

continuum, for example treating resonances or using the results of models such as PURGATORIO[16].

3.3.2 Treating Rydberg series

The representation above makes it easy to extend a series of lines by allowing the code to use a detailed model

for the lower series lines which tend to exhibit more term structure and have larger oscillator strengths, but

then to switch to a continuation of that series up to the continuum when data is no longer available. This

is an alternative to the use of superconfigurations for these high lying levels.

In a given series, the lower level, n′, is always the same and so its population and energy is known. The

upper levels can be found by applying the following changes to the highest known member of the series, the

n′ → n transition, where n′ and n are principal quantum numbers with energy En, for some other transition

n′ → m with energy Em with m > n. We define the energies to be relative to the unperturbed continuum.

First we consider the energies, which in a screened hydrogen approximation are given by

Em = En

( n
m

)2
(11)

Since the Z∗2 of the screened hydrogen model can be found as Enn
2 and then used in the calculation of Em.

The oscillator strength is given by

fn′→m =

(
Enn

Emm

)3

fn′→n (12)

which is Unsold’s formula [30], and which should approximately preserve the sum rule as the continuum is

lowered (this can easily be ensured exactly in the series representation used here). The width of the line is

given by

wn′→m =
(m
n

)4
wn (13)

where the scaling is with the fourth power from the r2 matrix element in the line width. If the system is

in LTE, the population of the upper level, pm, can be found either by using a Boltzmann factor from the

population of the level below it, pn, or by a Saha-Boltzmann factor from the population of the level it ionises

to, p+, with both methods necessarily giving the same result. However if the system is not in LTE these

methods do not produce the same result, and so it is natural to consider a method which obtains the correct

answer in LTE and merges between the two methods of calculating the population, pm, depending on which

would be expected to be the most valid. We choose an expression of the form

pm = (1 + a1χ
a2
m )±1S(ne, Te, χm)p+ (14)

where S(ne, Te, χm) = neΛ(Te)e
−χm/Te is the Saha-Boltzmann factor, χm is the ionisation energy of the

state taking into account the pressure ionisation term (i.e. if the level were about to be ionised χm = 0 and
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when the level exists χm < 0), and Λ is the thermal be Broglie wavelength. ±1 is used as the exponent to

allow pm to be either less than or greater than p+, and provides a simple function with the desired property

of switching from pm- to p+-dominated behaviour when a1χ
a2
m ∼ 1. The Griem condition [51] is derived

by considering the scalings of the collisional and radiative rates with energy changes. This condition, and

further discussions comparing different sets of rates, conclude that the magnitude of deviation of a level from

LTE is determined by a parameter a1χ
a2
m , where a2 is a value in the range 3− 4. a1 may then be determined

for the system considered here by solving

pn = (1 + a1χ
a2
n )±1S(ne, Te, χn)p+ (15)

where pn and p+ are known, being the population of the highest level in the atomic structure model and the

population of the ionised state respectively. We are introducing a deviation from the normal Boltzmann factor

to correct for departures from LTE - if we are in LTE, a1 = 0 and so pm = S(ne, Te, χm)p+ = pnB(Te) where

B(Te) is the Boltzmann factor B(Te) = exp((Em−En)/Te). In non-LTE, we have pm → S(ne, Te, χm)±1p+
as m→M , its largest value (which is finite due to pressure ionisation), since χm → 0, as expected. Clearly,

more sophisticated expressions could take the place of χa2m if this were considered necessary. The Chlorine

case below is in LTE, and a1 = 0, however in the Scandium case the He-δ line (n = 1→ 5) at 5450−5500eV

is included in using this method with a1 6= 0.

3.3.3 Supplementing the edges

Finally, extra ionisation edges from the Rydberg levels must be added. This uses the ionisation n → ε for

the largest available n and hydrogenic scaling to simulate the effect of multiple m → ε transitions. The

scalings are as (m/n)−5 in strength and (m/n)2 in degeneracy. In order to account for the m→ m+k, k > 0

transitions, the photoionisation edges are extended downwards in energy to the energy of the m → m + 1

transition.

3.3.4 Satellite lines

The kinetics model will also attempt to include satellite lines not included in the atomic data by using a

formula for the population of the upper and lower levels of the satellite lines analogous to that decribed for

Rydberg series above. It is primarily designed to help to include Rydberg satellites. We look at a primary

transition a → b, and now add an electron anl → bnl: In the limit of the nl electron being uncoupled the

line will look exactly the same as the primary line but with a different population of the upper and lower

states. As the electron becomes increasingly coupled to the other electrons through the direct and exchange

interactions, i.e. as n decreases, the satellite line will shift to lower energies, there will be a contribution to

the broadening, and the term structure will change. We approximate this by neglecting the broadening and

the change in term structure. The broadening is neglected as a simple approximation to the interference

effects described in [37], and the term structure is neglected since if the term structure is important, the

satellites should be included in the detailed model.

Satellite lines are often important in high density and temperature plasmas such as those ALICE is

designed to model. The magnitude of the satellite lines can be estimated as gs
gl
neΛ

3 times that of the

primary transition, where gl is the degeneracy of upper level of the transition and gs that of the satellites.
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This can be a significant fraction of the strength of the primary line. In Scandium, at half of its solid density

and a temperature of 1.2keV the satellites from the n = 3−5 levels can add 20% to the strength of a line; at

lower temperatures, for K-shell Aluminium, the differences are even more pronounced. When ALICE is used,

the number of configurations needed may preclude putting all of the satellite lines to a transition into the

atomic kinetics model and in that situation the satellite lines can be included in an approximate way using

the scheme described in this section. This has two purposes: Firstly in situations where the approximations

are justified, it provides a way to include the many satellites on the low energy wing of stronger lines with

good fidelity but with a small increase in computational time. Secondly, by switching on and off this method

of including satellites, it can be used to highlight areas where the set of configurations used in the atomic

kinetics model should be extended to include more satellite lines.

When new levels are included which are not in the underlying set of levels, higher members of a Rydberg

series, for example, the populations of those new levels are summed. The total ion population is renormalised

and the charge state recalculated, ensuring conservation of number and charge when these new levels are

included.

3.4 Chlorine spectra Te = 100eV , ρ = 0.005g/cc

Having discussed the methods used in ALICE to ensure completeness of configurations in the previous

Section, we consider the absorption spectrum of Chlorine in LTE at T = 100eV and ρ = 0.005g/cc. This

will be used to demonstrate the method of including Rydberg series, and the ability to reproduce to a good

accuracy, the results from other well benchmarked codes.

The Rosseland opacity, κR, is defined by κ−1R =
∫
κ(ν)−1u(T, ν)dν/

∫
u(T, ν)dν with u(T, ν) = ∂BT (ν)/∂T .

u(T, ν) for T = 100 eV, peaks at ∼ 380eV . κR is therefore primarily determined by the spectrum in this

region which is a ‘window’, a region of low opacity, bounded on the high energy side by the low energy (and

therefore low charge state) n = 2 → 3 transitions at 300 − 400eV and with its depth determined by the

n = 3→ n transitions running up to the M-shell ionisation edge at ∼ 400eV (Figure 7, red line). This makes

inclusion of the high Rydberg states crucial to get an accurate value of κR. It is important that ALICE

can produce reasonable agreement with other codes so that comparisons can be made and so the effect of

non-LTE physics on Rosseland opacities can be determined. Here we demonstrate good agreement between

ALICE and the online tabulations of the LANL opacity codes [40] and also compare with IMP, an average

atom LTE opacity model [38].

Figure 7 shows the frequency resolved spectra with (red) and without (black) including the extra edges

and extra Rydberg series lines calculated by ALICE. The filling in of the window can be clearly seen, and

while the Planck opacity shows a < 10% difference between the two spectra, the Rosseland opacity calculated

by ALICE without the extra Rydberg levels and edges included is too small by a factor of 2. In Figure 8 where

we compare against the LANL codes in the same conditions some differences exist, in the line broadening for

example, and the treatment at low frequency; however the overall shape of the frequency dependent opacity

is very similar. This leads to a similarity in the Rosseland mean opacities (Table 2), with a difference of

∼ 5% between the detailed codes, along with differences of ∼ 0.1 in the charge state, as expected. We also

compare the values for the Rosseland opacity and charge state against IMP[38], an average atom model. The

agreement between ALICE and IMP is fair. It must be emphasised however that the computational time

needed to run IMP is very much lower than that needed by ALICE (by about 2 orders of magnitude) and
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this example shows the value of more detailed codes for performing spot-checks on less detailed codes which

are however more amenable to the production of large scale tabulated data. While modern computational

facilities make tabulation in ρ and T practical with detailed codes for low to mid-Z elements, for high-Z

elements or if higher dimensional tables, including mixtures of materials for example, are required, codes

such as IMP or CASSANDRA[39] are still generally used.
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Figure 7: A comparison of the frequency resolved LTE opacities of Chlorine calculated by ALICE. The

density if 0.005g/cc and the temperature is 100eV . The curves show the result with (red), and without

(black), the inclusion of the extra Rydberg levels and edges.

3.5 Germanium spectra - 300− 700eV , 1g/cc

Here we consider Germanium and compare to experimental results from AWE, again from a buried layer

target[41], to demonstrate the ability of ALICE to combine DTA and DCA representations in a single calcula-

tion and thereby to treat non-LTE open L-shell problems without incurring a large increase in computational

time compared to the simpler Scandium K-shell problem above. These experiments have previously been

modelled using DTA and average atom LTE codes and in steady state using FLYCHK, a non-LTE model,

which uses a UTA formalism for the majority of the spectrum [41].

As the L-shell is opened the number of possible configurations to be included in the model increases

rapidly, as is also the case but to a greater extent for the M- and N-shells. It is well known that both single
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Figure 8: A comparison of the frequency resolved LTE opacity of Chlorine calculated by ALICE (red) and

the LANL opacity codes [40] (black). The density if 0.005g/cc and the temperature is 100eV .

(to obtain the spectral lines) and double (to obtain the autoionisation rates) excitations from the ground

state must be included and inclusion of doubly excited states leads to a very large number of levels in the

atomic model. This is particularly problematic since all the rates between those levels must be calculated,

unlike if the assumption of LTE and statistical population of the levels is made.

The autoionising states in this case are included using the hybrid DTA-DCA scheme. The configurations

are listed in the input file, with ground states and single excitations treated in a DTA formalism and the

doubly excited states included in a DCA formalism. Both are then included in the complete model. Including

doubly excited states causes two differences to the spectrum. The first is a filling in of the dips between the

strong lines, caused by the presence of the autoionising satellite lines and the second is a small change in

ionisation state due to the inclusion of autoionisation. In Figure 10 we show calculations of the spectrum of

Germanium at 900eV and 1.5g/cc with solely single and single and double excitations included in the model

to demonstrate these effects.

The Germanium case, as has been noted in previous papers[41], is a sensitive test of the accuracy of

the energy levels and therefore transition energies calculated by the atomic physics code. The position of

the transitions can be accurately obtained from the spectra, particularly in the higher energy (& 1700eV )

Lithium- and Beryllium- like lines where the simpler term structure leads to the lines being well-separated

20



0 200 400 600 800

Photon energy (eV)

101

102

103

104

105

106

O
p

a
c
it
y
 (

c
m

^2
/g

)

Figure 9: A comparison of the frequency resolved LTE opacity of Chlorine calculated by ALICE (red) and

IMP [38] (black). The density if 0.005g/cc and the temperature is 100eV .

and readily identifiable. The accuracy of the energy levels in ALICE is similar to those in other modern DTA

LTE opacity codes (e.g. [42] Figure 4), and to reiterate that paper’s conclusion, shows the continuing value

of experimental data even in these relatively simple cases. The discrepancy of +2.5eV in the position of the

strong 1s22p1/2 → 1s23d3/2 line at 1765eV is a deficiency shared by this code, LANL[43], and NIST data; and

there are also other discrepancies, which point to the usefulness of further investigation of line broadening

mechanisms and the inclusion of configuration interaction as well as into the effect of time dependence on the

problem. The spectrum from ALICE in Figure 10 has not been scaled in intensity and so ALICE reproduces

the absolute emissivity measured in the experiment well.

3.6 Line broadening

Line broadening is very important in producing results which are qualitatively consistent with experiment

and is crucial if quantitative comparisons are to be made. In this section we will describe the line broadening

mechanisms implemented in ALICE.

As is standard in line broadening theory, we use the observation that generally the electron timescales

are significantly faster than the ion timescales and so separate the contibutions from the two species. The

fluctuations related to the electrons lead to the elastic electron broadening contribution and (through the
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Density (g/cc) ALICE LANL IMP

0.001 52.19 53.27 67.08

14.44 14.39 14.67

0.005 359.9 378.3 358.9

13.58 13.53 14.02

0.01 687.6 719.1 686.8

13.10 12.95 13.60

Table 2: A comparison of the Rosseland mean opacities from ALICE, LANL [40] and IMP [38]. The opacities

are given in cm2/g and the values of Z∗ are shown in italics.
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Figure 10: Spectrum of Germanium from a short pulse buried layer taget experiment [41] (blue solid line).

Theoretical spectrum produced by ALICE including double excitations (red dotted line) and single excitation

(green dashed line) in a DCA representation at a temperature of 900 eV and density 1.5g/cc. An instrument

function of 2.5 eV FWHM is convolved with the output. The two excitations ALICE spectrum for 700 eV

is also included for comparison (brown dot-dashed line). Time-dependently there will be contributions from

a range of temperatures, the lower temperatures contributing to the lower energy members of the array in

the . 1650 eV region as shown in this graph.
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atomic kinetic model) to a significant fraction of the inelastic broadening; these are both treated in the

impact approximation. The ion broadening is treated separately - as a first approximation the ions are not

moving and so the quasistatic approximation is used which is then corrected using a fluctuation model..

3.6.1 Inelastic broadening

Broadening due to inelastic effects - collisional and radiative transitions - is included in the lifetime broadening

of the levels, which is derived from the diagonal rate matrix elements. One problem is that as a level moves

towards the continuum, analytic approximations to the collisional ionisation rates can become very large; or

in the case of a collisional excitation at high density, the rate of excitation, R, can be equivalent through

E = hR to an energy, E, larger than the energy difference, ∆E, between the levels. In ALICE the largest

of the excitation and de-excitation rates is bounded above by ∆E/h (and the other decreased by the same

fraction so as to maintain detailed balance), a manifestation of both the uncertainty principle (the levels

cannot be distinguished). And also a breakdown of Fermi’s Golden Rule on which the rate calculations

are based. Regarding the atomic kinetics, the collisional rates between these levels are then so large that

they are in thermodynamic equilibrium, however as regards the spectrum, cases like this should be treated

using Rabi oscillation-type arguments and the lineshapes should show the effect of dynamic broadening; in

particular motional narrowing will eventually become apparent. To the authors’ knowledge this has not been

investigated.

3.6.2 Elastic broadening

Elastic broadening due to the electrons is included using the formalism of Dufty [44] and we use the approx-

imations for his G function discussed by Lee [45].

3.6.3 Ion dynamic broadening

Ion dynamic broadening - the fact that the ion microfield fluctuates between different values with a finite and

non-negligible frequency in hot plasmas - is included using the Frequency Fluctuation Model [46] with the

clarifications from [47]. The fluctuation rate is given by [48], where the prefactor to the basic n
1/3
i T

1/2
i µ−1/2

scaling, 1.92×10−10eV −1/2ms−1 used in ALICE, is consistent to within 7% to either the computational work

in [46] or the ν derived from [48] using the fluctuation rate at the maximum of the Holtzmark distribution.

ALICE is often used to treat mixtures of materials. Considering the origin of the terms in [48], which treats

stellar motion, and making the connection between gravitational mass and charge, and inertial mass and

atomic mass, we redefine Ti/µ in the above equation as

∑
j fj

TjZ
1/2
j

µj(∑
j fjZ

3/2
j

)1/3 (16)

for a number of species with temperatures Tj , masses µj and number fractions fj . This reproduces the result

for a single species with a single T1 = Ti, µ1 = µ and f1 = 1.
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3.7 Ion broadening and the quadrupole effect

For plasmas at these densities quasistatic ion broadening is an important broadening mechanism, both from

the point of view of radiation transport and for diagnostics.

We use a simple quasistatic broadening model - the electron impact widths are given by the same model

as used in the usual lines, and the quasistatic shapes are calculated in the usual way [45] in the Liouville

formalism. The plasma has two components - the radiating species and a perturbing species, since we use the

standard APEX model[49]. We use a simple average for the charge on the perturber when multiple species

are present, which, for the relatively weakly coupled plasmas we are considering is deemed sufficient.

While the effects described above are those usually included in a non-LTE model, the widths, particularly

of the Ly-γ and He-γ lines are significantly larger experimentally than would be expected from these standard

broadening models. ALICE has the capability to include quasistatic ion quadrupole effects in the broadening

calculation, on the same footing as ion dipole effects and therefore again in line with the code as described

above. The distribution of the dipole and quadrupole fields required, Q(E, qzz, qxx, qyy, qxz, qxy, qyz) in the

electric field in the z-direction and the 6 independent components of the quadrupole tensor (which replaces

the dipole distribution Q(E) from APEX usually used) is found using an in-line Monte-Carlo simulation of

the plasma structure. Full details of the implementation of the quadrupole broadening along with further

examples of its use in Aluminium plasmas are given in [50]. The use of this broadening model below provides a

significantly different, though not conclusively better, fit to the He-γ line shape in the case of these Scandium

spectra and is also seen to rectify significantly larger problems with the fitting of Aluminium spectra.

The Scandium experiment discussed at the beginning of the section is shown below. The instrument

function in this experiment can be bounded by considering the resolution of the Ly-α doublet and of the

features to the low energy side of the He-α line, and we can therefore compare the spectrum of the He-γ

line with and without the quadrupole broadening model to investigate this effect, while the goodness of fit

to the rest of spectrum ensures that the conditions are known with the accuracy needed. We propose that

a quadrupole broadening model is required to remedy the discrepancy seen, specifically that the sharply

peaked feature in the dipole calculation at 5335eV should be clearly visible with this spectrometer in these

conditions, while the overall ‘triangular’ shape of the line is fitted much better by the model including

quadrupole effects (see figure 11). It is however acknowledged that other effects discussed above or explicitly

ignored in ALICE, particularly spatial non-uniformity, could be responsible in some way for these effects.

4 Conclusions

In this paper we have presented the physical models used in the non-LTE plasma atomic physics, kinetics

and lineshape package ALICE and demonstrated the need for those models in conditions of interest by

comparisons of ALICE’s output both against that of other codes and against experimental data. We have

shown a capability to model in LTE at low density with the approximate inclusion of Rydberg states, an open

L-shell capability at solid density, the modelling of time dependent non-LTE problems in materials where the

radiation transport in non-analytic lineshapes is important and the need to include higher order multipole

quasistatic ion broadening to reproduce experimentally observed spectra from solid density plasmas.
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Figure 11: The time-integrated spectra from the Sc target as shown in figures 5 and 6 showing in detail the

He-γ profiles. The left panel corresponds to 15◦ and the right panel 75◦ to target normal. The black curve

is the experimental data, the red curve is the simulated spectrum from ALICE. In no case is there very good

agreement between theory and experiment. However, the overall triangular shape of the feature is better

reproduced by the quadrupole model (blue).
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