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by	J.	A.	Röhr	et	al.	
This	supplementary	information	(SI)	contains	the	derivation	of	key	equations	in	the	main	text,	
namely	eq.	4	(the	current	at	low	voltages	when	a	built-in	voltage	is	present)	and	eq.	6	(the	moving	
electrode	 equations).	 The	 SI	 also	 contains	 a	 description	 of	 the	 performed	 drift-diffusion	
simulations	along	with	some	preliminary	drift-diffusion	results	showing	the	effect	of	a	built-in	
voltage	 and/or	 exponential	 tails	 on	 single-carrier	 device	 J-V	 curves.	 Furthermore,	 additional	
fitting	results	are	shown,	namely	 for	 the	 temperature	series	of	a	115,	190	and	290	nm	single	
carrier	device,	and	fits	to	asymmetric	J-V	curves	using	analytical	equations.	Finally,	the	SI	contains	
a	 detailed	 analysis	 of	 the	 accuracy	 of	 eq.	 17	 in	 the	main	 text	 compared	 to	 the	Mark-Helfrich	
equation[1].	References	are	included	where	needed.	
The	content	of	the	SI	is	not	necessary	to	understand	the	key	message	of	the	paper,	but	is	merely	

included	for	the	interested	reader.	

	

1		 Derivation	of	eq.	4	and	eq.	6	in	the	main	text	
The	one	dimensional	drift-diffusion	equation	for	positively	charged	carriers	(holes)	is	
given	by,	
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where	Jp	is	the	current	density,	q	is	the	elementary	charge,	Dp	is	the	diffusion	coefficient,	p	
is	the	hole	density,	µp	is	the	hole	mobility	and	F	is	the	electric	field.	By	rewriting	the	equation	
on	the	form	of	a	first-order	differential	equation	(in	terms	of	the	charge	carrier	mobility	
and	the	valence	band	edge)	we	obtain,		
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We	can	multiply	both	sides	of	eq.	S2	with	the	integration	factor,	𝑒9
:
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The	left	hand	side	of	eq.	S3	can	be	rewritten	through	the	reverse	product	rule,	



	

(
()
𝑝(𝑥)𝑒9

:
;3<

∫>?6(@)>@ () = C− !"
7"234

D 𝑒9
:

;3<
∫>?6(@)>@ () 	 	 (S4)	

	

and	by	integration	of	both	sides	over	the	whole	space-charge	region	(0	to	L),	and	by	using	
the	corollary	theorem	of	calculus,	we	obtain,	
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For	 large	 built-in	 voltages,	 the	 valence	 band	 edge	 will	 depend	 linearly	 on	 the	 spatial	
position	inside	the	semiconductor,	and	is	given	by,	
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which	yield	the	boundary	conditions	for	the	valence	band	edge,	

	

𝐸R(0) = −𝑞(𝑉 + 𝜙WXY),	 (S7)	

𝐸R(𝐿) = −𝑞𝜙[\] .		 (S8)	

	

The	boundary	conditions	 for	 the	charge	carrier	density	 is	given	by	 the	 injection	barrier	
heights	and	the	effective	density	of	states	(assuming	Boltzmann	statistics),	
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The	left	hand	side	of	eq.	S5	can	now	be	evaluated	by	using	the	boundary	conditions	for	the	
conduction	band	edge	(eq.	S7	&	S8)	and	the	boundary	conditions	 for	 the	charge-carrier	
density	(eq.	S9	&	S10),	whereas	the	right	hand	side	of	the	eq.	S5	must	be	evaluated	using	
eq.	S6	(note	that	the	integrals	inside	the	exponentials	can	be	evaluated	using	the	corollary.	
i.e.,	simply	from	considering	the	boundary	conditions).	This	evaluation	leads	to,	
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which	is	the	general	expression	for	the	trap-free	drift-diffusion	hole	current	density	in	a	
single-carrier	device	neglecting	band	bending	at	 the	 interface	 (flat	 band	picture)	where	
𝜙[\] − 𝜙WXY = 𝑉xW.	With	𝜙WXY = 𝜙[\] = 0	the	general	expression	reduces	to,	
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which	is	Ohm’s	law	in	the	saturation	limit[2].	When	the	injection	barrier	heights	are	non-
zero	and	of	similar	height	𝜙WXY = 𝜙[\] > 0,	the	general	expression	reduces	to,	
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which	is	Ohm’s	law	in	the	saturation	regime	corrected	by	the	injection	barriers.	Eq.	S14	is	
only	truly	valid	when		𝜙WXY/[\] > 2𝑘G𝑇,	and	close	to	degeneracy	S13	must	be	corrected	by	a	
term	 allowing	 for	 Fermi-Dirac	 statistics.	 When	 the	 built-in	 voltage	 is	 low,	 the	 built-in	
voltage	is	reduced	due	to	band	bending	at	the	injecting	interface.	We	denote	this	reduction	
in	voltage	as	b.	We	can	modify	eq.	S12	to	take	this	reduction	into	account	by	changing	the	
boundary	conditions	to,	
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𝐸R(0) = −𝑞(𝑉 + 𝜙WXY + 𝑏),	 (S16)	

𝐸R(𝐿) = −𝑞𝜙[\] .		 	 (S17)	
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which	yields,	
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which	is	eq.	4	in	the	main	text.	At	low	built-in	voltages,	a	proposed	approximation	of	b	is	
given	by[3,4],	
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However,	 for	 the	 built-in	 voltages	 estimated	 in	 this	 study	 (≥	 0.8	 V),	 b	 can	 usually	 be	
neglected.	From	eq.	S20	we	can	derive	the	moving	electrode	(ME)	equation[5,6,7].	The	ME	
equation	assumes	that	𝑞𝜙[\] = 𝑞𝜙WXY = 0,	reducing	S20	to,	

	

𝐽 =
#7mn6(9�9b)q[\rC

st
;3<

D91u

N [\rC s�
;3<

Dq[\rCws�;3<
D9 [\rC st;3<

Du
	 (S22)	

	

We	can	neglect	b	by	realising	that	the	magnitude	of	the	carrier	density	is	dominated	by	the	
density	in	the	middle	of	the	device.	The	carrier	density	in	a	symmetric	single-carrier	device	
can	be	approximated	by[7],	

	

𝑝(𝑥) = ������K2�4
#�N�

1
������A@J9

:
�B�
	 (S23)	

	

which	yields	a	carrier	density	in	the	middle	of	the	device,	𝑝M = 𝑛(𝐿/2),	which	is	given	by,	
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Finally,	we	replace	𝑁R	with	2𝑝M	and	set	b	=	0	in	eq.	S22,	and	we	obtain	the	ME	
equation[5,6,7],	
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2	 Drift-diffusion	simulations	
The	 simulations	 of	 the	 current	 density-voltage	 profiles	 of	 the	 single-carrier	 devices	 were	

performed	 using	 commercially	 available	 device	 simulator	 called	 Advanced	 Semiconductor	
Analysis	(ASA),	which	solves	Poisson’s	equation	and	the	drift-diffusion	equations	for	electrons	
and	holes[8],	
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where	φ	 is	the	electric	potential,	ρ	 is	the	space-charge	density,	εrε0	is	the	permittivity,	q	 is	the	
elementary	charge,	Jn	and	Jp	are	the	current	densities	for	electrons	and	holes	respectively,	Dn	and	
Dp	are	the	diffusion	coefficients,	n	and	p	are	the	charge-carrier	densities,	µn	and	µp	are	the	charge-
carrier	mobilities,	and	F	is	the	electric	field.	The	boundary	conditions	for	the	simulations	are	set	
by	 the	device	boundaries	 through	the	 injection	and	extraction	barrier	heights,	qϕinj	 and	qϕext,	
which	in	turn	defines	the	built-in	voltage,	Vbi	(figure	1c),	through,	

	

𝑞𝑉�� = 𝑞𝜙[\] − 𝑞𝜙WXY.	 (S29)	

	

Shallow	 trap	 states	due	 to	 energetic	disorder	 can	be	modelled	 through	 the	 inclusion	 of	 an	
exponential	 density	 of	 states	 from	 the	 transport	 level	 into	 the	 band	 gap.	 The	 density	 of	 the	
conduction	band	tails,	hCBT,	and	valence	band	tails,	hVBT,	are	given	by,	
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where	𝑛],X	and	𝑛],r	are	the	trap	densities	per	unit	energy,	EC	and	EV	are	the	conduction	and	valence	
band	edge	values,	respectively,	and	𝐸�y,X	and	𝐸�y,r	are	the	characteristic	energies	which	defines	
the	energetic	depths	of	the	exponential	tails.	We	utilize	a	multiple	trapping-release	model	where	
all	charge	carriers	in	the	extended	states	within	the	gap	are	immobile,	such	that	transport	can	
only	 take	 place	 at	 the	 band	 edge.	 Shockley-Read-Hall	 statistics	 was	 used	 to	 model	 the	 trap	
occupancies,	 which	 assumes	 that	 charge	 carriers	 are	 trapped	 at	 a	 rate	 which	 is	 energy	
independent	 and	 thermally	 de-trapped	 at	 a	 rate	which	 is	 field	 independent.	 Since	 this	 study	
involves	hole-only	devices,	the	tails	density	and	characteristic	energy	will	only	be	presented	for	
holes.	A	more	detailed	description	of	the	simulations	can	be	found	in	the	literature[8,9,10].	



The	slope	of	the	J-V	curve	of	a	log-log	scale,	𝑚,	can	be	derived	by,	
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where	𝑚	will	be	unity	 for	linear	currents	and	𝑚	will	be	2	when	the	current	 follows	 the	Mott-
Gurney	 law.	 The	 slope	 function	 is	 therefore	 a	 convenient	 tool	 for	 analysing	 different	 voltage	
regimes.	 	 It	 is	 well-known	 that	 the	 slope	 will	 take	 a	 higher	 value	 than	 2	 when	 traps	 are	
present[11].	
A	 shunt	 current	 is	 defined	 as	 an	 unwanted	 current	 flowing	 between	 the	 front	 and	 back	

electrode.	 This	 is	 usually	 caused	 by	 diffusion	 of	 metal	 through	 the	 probe	 material	 during	
fabrication	or	at	very	high	applied	electric	fields,	giving	rise	to	Ohmic	current	pathways.	We	can	
model	this	by	allowing	for	a	parallel	current	to	flow	alongside	our	SCLC	current,	which	is	defined	
by	the	shunt	(or	parallel)	resistance,	RP.	Since	the	shunt	resistance	is	the	resistance	hindering	the	
shunt	current,	a	large	shunt	resistance	is	usually	desired	for	electronic	devices.	

	
Figure	S1	–	Drift-diffusion	simulations	of	J-V	curves	of	single-carrier	devices	with	a)	built-
in	potential	of	0.5	V,	b)	traps	in	the	form	of	exponential	tails	(𝐸£¤	=	0.050	eV	and	𝑁¥¦�§¨ =
5	 ∙ 101«	cm-3	eV-1),	and	c)	a	combination	of	a	built-in	potential	and	traps.	d-f)	show	the	
corresponding	slope	plots	of	a-c).	The	dashed	line	represents	the	slope	value	of	the	Mott-
Gurney	law.	

In	order	to	elucidate	the	effect	of	a	built-in	voltage	and	shallow	traps	 in	combination,	drift-
diffusion	simulations	of	2	eV	band	gap	100	nm	single-carrier	devices	were	performed.	Figure	S1	
shows	the	result	of	drift-diffusion	simulations	where	the	charge-carrier	mobility	was	arbitrarily	
chosen	to	be	109¬	cm2/Vs.	However,	the	charge-carrier	mobility	only	affects	the	magnitude	of	the	
current	density	and	not	the	voltage	regimes.	Figure	S1a	shows	the	simulated	J-V	curves	of	a	single-
carrier	device	with	 and	without	 a	built-in	 voltage	of	 0.5	V.	The	built-in	 voltage	 introduces	 an	
energetic	barrier	for	the	charge-carriers	to	overcome	in	forward	bias	before	drift	currents	can	
dominate	the	J-V	curve,	whereas	the	reverse	bias	current	will	be	injection	limited	(with	a	barrier	
height	of	qVbi).	The	energetic	barrier	manifests	itself	by	an	exponential	increase	of	the	current	
density	on	a	log-log	scale.	The	corresponding	m-V	curves	for	fig.	S1a	are	seen	in	fig.	S1d,	where	



the	slope	is	seen	to	have	a	large	peak	until	reaching	the	slope	(𝑚 ≈ 2)	of	the	device	without	a	
built-in	voltage.	This	peak	in	the	m-V	curve	can	be	used	as	an	additional	fitting	landmark	to	help	
extract	the	built-in	voltage.	Figure	S1b	shows	the	J-V	curves	with	and	without	traps	in	the	form	of	
exponential	 tails	 (𝐸�y = 0.050	 eV	 and	𝑛] = 5 ∙ 101«	 cm-3eV-1).	 The	 traps	 are	 seen	 to	 lower	 the	
current	across	the	entire	voltage	range	due	to	the	lowering	of	the	number	of	free	charge-carriers	
present	for	conduction.	Figure	S1e	shows	the	corresponding	m-V	curves	to	fig.	S1b,	where	the	
slope	at	high	voltages	is	seen	to	approach	a	value	substantially	higher	than	𝑚 ≈ 2	which	is	a	clear	
indication	that	we	cannot	analyse	these	curves	using	the	Mott-Gurney	law.	Figure	S1c	shows	the	
J-V	curve	for	when	a	combination	of	traps	and	a	built-in	voltage	is	present.	We	see	that	the	built-
in	voltage,	in	this	case,	dominates	at	low	voltages	whereas	the	traps	dominate	at	higher	voltages.	
That	 the	built-in	 voltage	dominates	 at	 low	voltages	 is	 of	 course	 completely	dependent	on	 the	
choice	of	the	values	chosen	for	the	simulation.	However,	given	that	the	built-in	voltage	is	high	and	
the	trap	density	and	characteristic	energy	is	low,	one	can	assume	that	the	built-in	voltage	will	be	
the	dominant	factor.	The	corresponding	m-V	curves	to	fig.	S1c	is	shown	in	fig.	S1f,	where	the	peak	
due	to	the	built-in	voltage	is	slightly	lowered	due	to	the	presence	of	traps.	Most	importantly,	the	
slope	at	high	voltages	still	takes	a	value	which	 is	larger	 than	what	 is	expected	from	the	Mott-
Gurney	 law.	 So	 from	 considering	 the	m-V	 curves	 alone	 we	 can	 already	 determine	 that	 the	
transport	in	the	device	is	governed	by	traps	in	the	form	of	exponential	tails	and	that	there	is	a	
substantial	built-in	voltage.	

	
Figure	S2	–	Drift-diffusion	simulations	of	a)	J-V	curves	of	an	asymmetric	single-carrier	
device	 with	 decreasing	 shunt	 resistance,	 i.e.,	 increasing	 shunt	 current,	 and	 b)	
corresponding	m-V	curves.	c)	Simulated	J-V	curves	with	a	fixed	shunt	resistance,	and	d)	
corresponding	m-V	curves.	

Figure	S2	shows	the	effect	on	simulated	J-V	curves	and	the	corresponding	m-V	curves,	of	a	trap-
free	asymmetric	single-carrier	device	with	a	built-in	voltage	of	0.5	V	present,	when	the	shunt	



resistance	is	lowered	(the	situation	𝑅¯ = ∞	is	when	no	shunt	current	is	present).	By	comparing	
fig.	 S1a	with	 fig.	 S2a	we	 see	 that	where	 the	 increase	of	 the	 current	 of	 the	 asymmetric	device	
without	a	shunt	current	is	seen	to	increase	exponentially	on	a	log-log	scale,	the	addition	of	a	shunt	
current	 is	 acting	 to	 linearize	 the	 current	 density	 at	 low	 voltages.	 Consequently,	 if	 the	 shunt	
resistance	 is	 so	 low	 that	 it	 completely	masks	 the	 space-charge	 limited	 current,	 the	 device	 is	
considered	completely	short-circuited,	and	 the	current	across	 the	device	will	be	due	 to	shunt	
pathways	only.	The	linearization	of	the	current	can	also	be	seen	from	fig.	S2b	where	the	slope	is	
seen	to	remain	linear	up	to	higher	voltages.	Additionally,	the	sharpness	of	the	peak	caused	by	the	
built-in	voltage	is	seen	 to	increase	while	 the	magnitude	of	the	peak	is	seen	 to	decrease	as	the	
shunt	resistance	 is	decreased	(the	peak	ultimately	disappears	when	the	current	 is	completely	
linear	with	voltage).	A	very	sharp	peak	can	then	be	attributed	to	a	combination	of	a	large	built-in	
voltage	and	the	presence	of	a	shunt	current,	and	we	can,	as	before,	use	this	peak	as	an	additional	
fitting	landmark.	Figure	3c	is	showing	the	effect	of	increasing	the	built-in	voltage	given	that	the	
shunt	resistance	is	low	enough	to	mask	the	effect	of	the	Vbi	at	low	voltages.	The	onset	to	a	higher	
order	 current-voltage	 dependence	 is	 seen	 to	 shift	 to	 higher	 voltages	 along	 with	 an	 overall	
increase	of	the	slope	(fig.	S2d).	
	

	
	
	
3	 Additional	fitting	results	
The	following	section	contains	additional	fits	and	fitting	results	of	SCLC	temperature	series	at	

three	different	thicknesses	(115	nm,	190	nm	and	290	nm).	Each	J-V	plot	is	accompanied	by	a	plot	
showing	the	band	edge	mobility,	a	plot	showing	the	characteristic	energy,	and	a	plot	showing	the	
trap	density,	all	of	them	as	a	function	of	temperature	and	injection	barrier	height.	It	should	here	
be	noted,	 that	 a	 consistent	 fit	 across	 all	 thicknesses	 and	 temperatures	 could	not	be	 achieved	
without	the	 inclusion	of	both	exponential	 tails	and	 injection	barrier	heights	as	presented.	The	
band	edge	mobility	show	a	small	increase	with	increase	in	temperature	(for	all	three	thicknesses),	
whereas	the	trap	density	was	seen	to	decrease	with	less	than	a	factor	of	2	from	200K	to	300K	(for	
all	thicknesses).	The	characteristic	energy	was	found	to	be	primarily	unaffected	by	the	change	in	
temperature.	



	
Figure	 S3	 –	 Fitting	 results	 to	 the	 SCLC	 temperature	 series	 of	 a	 115	 nm	 device.	 a)	
Experimental	and	fitted	J-V	curves	(using	an	injection	barrier	height	of	0.11	eV	and	the	
corresponding	 mobility	 and	 trap	 characteristics),	 b)	 obtained	 band	 mobility,	 c)	
characteristic	energy	of	exponential	tail	states,	and	d)	exponential	trap	density	at	varying	
injection	barrier	heights	(0.09	eV	to	0.12	eV)	and	temperature	(200K	to	300K).	

Figure	S3	shows	the	fitting	results	to	the	temperature	series	of	a	115	nm	device.	The	inclusion	
of	 injection	 barriers	 were	 needed	 in	 order	 to	 fit	 to	 the	 whole	 temperature	 series	 without	
significant	variation	of	both	the	band	mobility,	characteristic	energy	and	the	trap	density.	Minimal	
variation	was	obtained	when	an	 injection	barrier	between	0.09	eV	and	0.12	eV	was	 included.	
Figure	 S3a	 shows	 the	 resulting	 fits	 to	 the	 experimentally	 obtained	 J-V	 curves	 (both	 the	
experimental	and	fitted	curves	are	shown	on	a	log-log	scale).	The	best	fits	were	obtained	using	
injection	 barrier	 heights	 for	 both	 injection	 and	 extraction	 of	 0.11	 eV.	 Figure	 S3b	 shows	 the	
resulting	band	hole-mobility	as	a	function	of	temperature	at	different	injection	barrier	heights.	A	
slight	 increase	 of	 the	mobility	with	 temperature	 is	 observed.	 Figure	 S3c	 shows	 the	 resulting	
characteristic	energy.	No	significant	variation	was	observed	with	increasing	temperature.	Figure	
S3c	 shows	 the	 resulting	 trap	 density.	 Where	 the	 hole-mobility	 was	 seen	 to	 increase	 with	
temperature,	the	trap	density	was	seen	to	decrease	with	temperature.		



	
Figure	 S4	 –	 Fitting	 results	 to	 the	 SCLC	 temperature	 series	 of	 a	 190	 nm	 device.	 a)	
Experimental	and	fitted	J-V	curves	(using	an	injection	barrier	height	of	0.11	eV	and	the	
corresponding	 mobility	 and	 trap	 characteristics),	 b)	 obtained	 band	 mobility,	 c)	
characteristic	energy	of	exponential	tail	states,	and	d)	exponential	trap	density	at	varying	
injection	barrier	heights	(0.09	eV	to	0.12	eV)	and	temperature	(200K	to	300K).	

Figure	S4	shows	the	fitting	results	to	the	temperature	series	of	a	190	nm	device.	Similar	to	the	
115	 nm	 case,	 the	 inclusion	 of	 injection	 barriers	 were	 needed	 in	 order	 to	 fit	 to	 the	 whole	
temperature	series	without	significant	variation	of	both	the	band	mobility,	characteristic	energy	
and	the	trap	density.	Minimal	variation	was	obtained	when	an	injection	barrier	between	0.09	eV	
and	0.12	eV	was	included.	Figure	S4a	shows	the	experimental	data	along	with	the	fits.	Figure	S4b,	
c,	and	d	shows	the	resulting	band	hole-mobility,	characteristic	energy	and	trap	density	obtained	
from	the	fits.	Contrary	to	the	115	nm	case,	the	190	nm	case	does	not	show	a	significant	increase	
of	 the	mobility	with	 temperature.	A	decrease	 in	 the	 trap	density	was	however	observed	with	
increased	temperature	as	with	the	115	nm	case.	
Figure	S5	shows	similar	fits	for	a	290	nm	device	as	was	shown	for	a	115	nm	and	a	190	nm	

device	in	figure	S3	and	S4.	Similar	to	the	115	nm	device,	the	mobility	is	seen	to	increase	with	
temperature	while	the	trap	density	is	decreasing	with	temperature.	



	
Figure	 S5	 –	 Fitting	 results	 to	 the	 SCLC	 temperature	 series	 of	 a	 290	 nm	 device.	 a)	
Experimental	and	fitted	J-V	curves	(using	an	injection	barrier	height	of	0.11	eV	and	the	
corresponding	 mobility	 and	 trap	 characteristics),	 b)	 obtained	 band	 mobility,	 c)	
characteristic	energy	of	exponential	tail	states,	and	d)	exponential	trap	density	at	varying	
injection	barrier	heights	(0.09	eV	to	0.12	eV)	and	temperature	(200K	to	300K).	

 

 

 

 

 

 

 



	

	
Figure	S6	 –	 Comparison	between	SCLC	data	and	 the	drift-diffusion	 simulations	when	
fitting	the	entire	data	set	with	a	single	set	of	(temperature	independent)	parameters.	Eg	
=	3	eV,	εr	=	3,	NV	=	1019	cm-3,	µh	=	3.5	∙	10-3	cm2/Vs,	qϕinj	=	qϕext	=	0.11	eV,	Ech	=	0.045,	nt	=	
1020	cm-3eV-1.	a)	115	nm,	b)	190	nm,	and	c)	290	nm.		



	
Figure	S7	–	a)	Numerical	fits	to	m-V	data	from	the	asymmetrical	Spiro-OMeTAD	device	J-
V	curves,	obtaining	a	built-in	voltage	of	1.9	V.	Normalized	fit	of	eq.	4	to	b)	Spiro-OMeTAD	
device	data,	obtaining	a	built-in	voltage	of	1.75	V.	The	peak	of	the	slope	(m)	of	eq.	4	is	
uniquely	defined	by	the	built-in	voltage.	Normalized	fit	using	a	sum	of	eq.	4	and	eq.	7	
(Ohm’s	 law)	 to	 c)	 Spiro-OMeTAD	data.	d)	Apparent	 field	dependence	observed	when	
fitting	with	the	Mott-Gurney	law	across	the	entire	voltage	range.	

	
Figure	S8	–	a)	The	value	of	 the	voltage	where	m	=	2	(point	of	evaluation	of	 the	Mott-
Gurney	law).	b)	Ratio	of	average	values	of	the	free	to	total	(free	+	trapped)	charge	carrier	
densities	evaluated	at	the	voltages	in	a).		

	

	

	



3	 Accuracy	of	eq.	17	

	
Figure	S9	–	Accuracy	of	eq.	17	compared	to	the	MH	equation	in	terms	of	match	between	the	input	values	
for	the	trap	characteristics	to	the	output	values	obtained	from	the	equations,	𝛾	and	𝛿,	when	the	mobility	
is	kept	fixed.	The	trap	density,	semiconductor	thickness	and	temperature	was	varied.	

	

In	order	to	evaluate	how	well	eq.	17	determines	the	trap	characteristics,	the	equation	is	fitted	to	
J-V	 curves	 generated	 from	 drift-diffusion	 simulations	 of	 symmetric	 single-carrier	 devices	
containing	traps	in	the	form	of	exponential	tails.	We	compare	these	fitting	results	to	fits	of	the	
same	curves	using	the	Mark-Helfrich	equation.	We	examine	how	the	fitting	values	of	𝐸�y	and	𝑁]	
compare	to	the	input	values	of	the	same	parameters,	
	

𝛾 = 5�m
³´l

5�m
gh 							and							𝛿 =

nl³´l

nl
gh .	 	 (S33)	

	
Figure	S9	shows	𝛾	and	𝛿	as	a	function	of	the	characteristic	energy	when	either	the	trap	density,	
the	semiconductor	thickness	or	the	temperature	is	varied.	The	following	values	were	kept	fixed	
during	the	fitting	procedures	with	both	the	numerical	simulations	and	the	equations:	𝑁[·· =	1020	
cm-3eV-1,	𝐸¢ = 2	eV	and	𝜇 = 109¬	cm2/Vs.	



Figure	S9a),	b)	and	c)	shows	the	ratio	of	characteristic	energy	obtained	from	fitting	equation	
17	and	the	MH	equation	compared	to	the	input	characteristic	energy	as	this	energy	is	varied.	A	
very	small	deviation	from	unity	is	seen	in	all	examples	when	eq.	17	is	used,	indicating	that	the	
low	voltage	J-V	curve	can	be	very	well	reproduced.	Moreover,	the	ratios	are	seen	to	converge	for	
large	values	of	the	characteristic	energy.	Figure	S9c),	e)	and	f)	shows	the	ratio	of	the	trap	density	
obtained	 from	 fitting	 to	 the	 input	 trap	 density	 using	 eq.	 17.	 In	 all	 cases	 the	 trap	 density	 is	
estimated	within	an	order	of	magnitude.	Where	 excellent	agreement	 is	found	with	eq.	17,	 the	
results	using	the	MH	equation	are	seen	to	deviate	dramatically.	
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