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Extracting	charge-carrier	mobilities	for	organic	semiconductors	 from	space-charge-limited	
conduction	measurements	is	complicated,	in	practice,	by	non-ideal	factors	such	as	trapping	
in	defects	and	injection	barriers.	Here,	we	show	that	by	allowing	the	band-like	charge-carrier	
mobility,	trap	characteristics,	injection	barrier	heights	and	the	shunt	resistance	to	vary	in	a	
multiple-trapping	drift-diffusion	device	model,	a	numerical	fit	can	be	obtained	to	the	entire	
current	 density-voltage	 curve	 from	 experimental	 space-charge-limited	 current	
measurements	 on	 both	 symmetric	 and	 asymmetric	 Spiro-OMeTAD	 single-carrier	 devices.	
This	approach	yields	a	band-like	mobility	that	is	more	than	an	order	of	magnitude	higher	than	
the	effective	mobility	obtained	using	analytical	approximations,	such	as	the	Mott-Gurney	law	
and	 the	 Moving	 Electrode	 equation.	 It	 is	 also	 shown	 that	 where	 these	 analytical	
approximations	 require	 a	 temperature-dependent	 effective	 mobility	 to	 achieve	 fits,	 the	
numerical	 model	 can	 yield	 a	 temperature-,	 electric	 field-	 and	 charge-carrier	 density-
independent	mobility.	Finally,	we	present	a	novel	analytical	model	describing	 trap	 limited	
current	flow	through	a	semiconductor,	in	a	symmetric	single-carrier	device.	We	compare	the	
obtained	charge-carrier	mobility	and	trap	characteristics	from	this	analytical	model	to	the	
results	 from	 the	 numerical	 model,	 showing	 excellent	 agreement.	 This	 work	 shows	 the	
importance	of	accounting	for	traps	and	injection	barriers,	explicitly,	when	analysing	current	
density-voltage	curves	from	space-charge-limited	current	measurements.	

	
	
I.	INTRODUCTION	
	
In	 recent	 years,	 there	 has	 been	 a	 great	 deal	 of	 interest	 in	 understanding	 the	 charge-carrier	
transport	of	weakly-doped	or	undoped	semiconducting	thin	films	based	on	disordered	molecular	
materials,	such	as	π-conjugated	small	molecules	and	polymers[1,2,3,4].	Studying	space-charge-
limited	currents	(SCLC)	in	single-carrier	devices	is	an	important	means	to	understand	electron	
and	hole	transport	in	such	semiconductors.	Although	there	have	been	many	earlier	reports	on	
the	charge-carrier	transport	of	molecular	materials	using	SCLC,	the	vast	majority	of	these	rely	on	
using	the	Mott-Gurney	(MG)	law[5]	which	is	not	necessarily	suitable	for	the	analysis,	since	this	
law	relies	on	idealised	and	trap-free	semiconductors	in	devices	with	contacts	which	are	not	too	
injection	limiting.	In	contrast,	many	molecular	materials	contain	charge-carrier	traps	and	single-
carrier	devices	usually	have	some	contact	asymmetry	due	to	the	relative	difficulty	of	ensuring	
truly	identical	and	ideal	contacts	on	both	sides	of	the	semiconducting	thin	film	whose	mobility	
has	to	be	measured.		
Analytical	equations	have	been	derived	to	describe	charge-transport	when	either	traps[6,7,8]	

or	a	built-in	voltage	resulting	from	contact	asymmetry	is	present[9,10].	Mark	and	Helfrich	derived	
an	equation	describing	SCLC	in	the	drift-dominated	voltage	regime	when	the	charge	transport	of	
the	semiconductor	was	limited	by	energetic	disorder	due	to	the	localization	of	charge	carriers	in	
exponential	tails	in	the	band	gap[8].	Fischer	et	al.	have,	however,	pointed	out	that	this	so-called	
Mark-Helfrich	equation	is	imprecise	in	estimating	the	trap	characteristics	since	the	equation	does	
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not	take	diffusion	of	charge	carriers	into	account[11],	which	may	affect	the	current	density	in	the	
Mott-Gurney	regime	when	charge	carriers	are	localised	in	exponential	tails.	For	that	reason,	a	
good	 analytical	 model	 describing	 space-charge-limited	 charge	 transport	 in	 disordered	
semiconductor	 devices	 does	 not	 currently	 exist.	 Moreover,	 no	 analytical	 model	 exists	 that	
describes	 the	 common	 practical	 situation	 where	 both	 a	 large	 built-in	 voltage	 and	 traps	 are	
present.	 As	 a	 result,	 less	 suitable	models,	 such	 as	 the	MG	 law,	 are	 often	 used	 to	 analyse	 the	
experimental	 data,	 despite	 evidence	 for	 both	 trapping	 and	 built-in	 voltages.	 	 Whilst	 more	
sophisticated	 drift-diffusion	 simulations	 can	 be	 used	 to	 analyse	 the	 experimental	 data	 more	
accurately,	only	a	small	number	of	publications	adopt	that	approach[3,12,13,14].		
It	is	common	within	the	organic	semiconductor	community	to	model	the	total	density	of	states	

(DOS)	using	a	Gaussian	distribution	(alternative	approaches	using	master	equations	have	also	
been	used[15,16]).	Hopping	charge-transport	in	such	a	Gaussian	DOS	leads	to	a	dependence	of	
the	(effective)	mobility	on	temperature,	electric	field	and	charge-carrier	density	that	has	been	
parametrized	by	Pasveer	et	al,	and	subsequently	used	in	a	series	of	papers	describing	unipolar	
transport	 in	 organic	 semiconductors[17,18].	 However,	 it	 has	 previously	 been	 shown	 that	
exponential	tails	(which	is	a	good	approximation	of	a	Gaussian	in	a	limited	energy	range),	or	even	
more	 complex	 shapes	 of	 the	 DOS,	 are	 sometimes	 required	 to	 describe	 certain	 aspects	 of	 the	
physics	of	organic	semiconductor	devices[3,12,13,14,19,20].	For	 instance,	molecular	dynamics	
and	tight	binding	simulations	on	P3HT	lead	to	a	DOS	that	is	neither	a	pure	Gaussian	nor	a	pure	
exponential	tail,	but	rather	a	combination	of	both[21].	Thus,	there	is	value	in	having	models	that	
allow	us	to	change	the	shape	of	the	DOS	without	starting	with	the	process	of	parameterizing	a	
mobility	as	a	function	of	temperature,	electric	field	and	charge-carrier	density	as	previously	done,	
but	 rather	 account	 for	 these	 effects	 directly	 in	 the	 drift-diffusion	 model	 through	 the	 trap	
characteristics	and	interface	statistics.	
Here,	 we	 show	 how	 using	 drift-diffusion	 simulations	 improves	 the	 accuracy	 and	 physical	

interpretation	of	the	determined	mobility	relative	to	traditional	analytical	approaches.	We	show	
that	the	obtained	mobility	only	depends	on	temperature,	electric	field	and	charge-carrier	density	
through	the	 trap	and	injection	characteristics.	 In	addition,	we	derive	a	novel	simple	analytical	
description	 of	 the	 current	 density,	 which	 can	 be	 used	 to	 determine	 trap	 characteristics	 of	 a	
symmetric	single-carrier	device	with	high	precision,	when	the	semiconductor	has	an	exponential	
trap	distribution	by	examination	of	the	low-voltage	current	regime,	rather	than	from	the	current	
in	 the,	 intermediate,	Mott-Gurney	 regime.	A	 small	molecule	 system	commonly	used	 as	a	hole	
selective	 interlayer	 for	 dye-sensitized	 solar	 cells	 and	 organometallic	 perovskite	 cells,	 Spiro-
OMeTAD,	 is	 used	 for	 the	 study.	 Spiro-OMeTAD	was	 chosen	 based	 on	 the	 expectation	 that	 its	
amorphous	microstructure	is	largely	insensitive	to	the	layer	thickness	allowing	for	a	thickness	
series	to	be	performed.	It	is	shown	that	when	hole	transport	in	Spiro-OMeTAD	is	characterised	
using	either	the	drift-diffusion	solver	approach	(including	exponential	tails)	or	by	using	the	new	
analytical	 model	 proposed	 herein,	 the	 band-like	 hole	 mobility	 is	 determined	 to	 be	 both	
temperature,	 field	 and	 charge	 carrier	 density	 independent	 and	 substantially	 higher	 than	 the	
effective	mobility	that	has	been	previously	extracted	using	the	more	simple	Mott-Gurney	law[22].	
	
	

II.	BACKGROUND	THEORY	
	
First	we	discuss	the	concept	of	single-carrier	devices,	along	with	injection	barriers	and	built-in	
voltages	in	such	devices,	and	then	we	discuss	some	common	analytical	approximations,	that	have	
been	used	to	analyse	SCLC	data.	
	
A. Single-carrier	devices	
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Figure	1	–	Schematic	of	the	energy	level	diagrams	of	a)	symmetric	electron-only	device	
at	 thermodynamic	 equilibrium,	 where	 qϕinj	 and	 qϕext	 represents	 the	 injection	 and	
extraction	barrier	heights	 respectively,	EC	and	EV	 is	 the	 conduction	and	valence	band	
edge,	respectively,	EF	is	the	Fermi	level	of	the	semiconductor	at	thermal	equilibrium,	and	
F	is	the	electric	field;	b)	symmetric	electron-only	device	with	enough	applied	voltage	to	
assume	 drift-dominant	 transport	 (Mott-Gurney	 regime);	 c)	 asymmetric	 electron-only	
device	at	equilibrium	showing	the	energy	barrier	arising	from	a	built-in	voltage,	qVbi	=	
qϕext	−	qϕinj;	and	d)	is	a	sketch	of	the	total	DOS	including	exponential	tail	states	(the	depth	
of	the	tails	are	given	by	their	respective	characteristic	energies).	Electron	transport	was	
shown	 for	 simplicity	 (Hole-transport	 is	 completely	analogous).	 In	 b)	 and	 c),	 forward	
injection	of	electrons	from	the	left-hand	side	is	assumed.	

 

When	the	selected	electrodes	 form	contacts	both	 to	 the	conduction	band	edge,	or	both	 to	 the	
valence	band	edge,	of	an	intrinsic	(or	weakly-doped)	semiconductor,	the	current	voltage	relation	
is	governed	by	a	single-carrier	type,	with	the	charge	carrier	species	determined	by	the	charge	
selectivity	of	the	contact	(an	electron-only	device	is	shown	in	fig.	1a).	When	a	voltage,	V,	is	applied	
across	such	a	single-carrier	device,	excess	charge-carriers,	of	the	same	species	as	the	ones	present	
at	equilibrium,	are	injected,	and	the	current	is	space-charge-limited	(fig.	1b).	For	an	electron-only	
device,	 if	 the	work	 functions	(WFs)	of	 the	contacts	are	 larger	 than	 the	electron	affinity	of	 the	
semiconductor,	injection	barriers	will	arise	(shown	as	qϕinj	and	qϕext	in	fig.	1a),	and	if	these	values	
are	different	(and	non-zero),	a	built-in	voltage	will	be	present	across	the	device	(qVbi	=	qϕext	−	
qϕinj)	which	will	give	rise	to	large	diffusion	currents	when	V	<	Vbi	(fig.	1c).	
	
	

B. The	Mott-Gurney	law	
	
The	most	commonly	used	method	for	fitting	data	obtained	from	single-carrier	devices	is	to	use	
the	 Mott-Gurney	 (MG)	 law.	 The	 MG	 law	 describes	 space-charge-limited	 drift	 current	 in	 an	
idealised	 single-carrier	 device,	 made	 from	 a	 trap-free	 and	 undoped	 semiconductor,	 in	 the	
intermediate	voltage	regime,	and	in	the	limit	of	barrier	free	injection	(fig.	1b)[5,6,23].	The	MG	law	
is	given	by,	
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where	µ	is	the	charge-carrier	mobility	for	either	electrons	or	holes	(𝜇-	for	electrons	and	𝜇.	for	
holes),	εr	 is	 the	static	relative	permittivity,	ε0	 is	 the	permittivity	of	 free	space,	V	 is	the	applied	
voltage	 and	 L	 is	 the	 thickness	 of	 the	 semiconductor	 layer.	 However,	 organic	 semiconducting	
materials	are	rarely	trap	free,	rendering	the	simple	MG	theory	improper	for	describing	charge	
transport	for	most	realistic	cases.	It	is	however	still	common	to	assume	an	effective	mobility,	𝜇/00,	
in	the	case	where	the	MG	law	is	used	even	though	the	semiconductor	contains	traps.	This	effective	
mobility	is	usually	defined	as[11,24],		
	

𝜇/00 = 𝜇12-3
〈56788〉
〈5:;:<=〉

	 	 (2)	

	
where	𝜇12-3 	is	the	band-like	mobility	of	the	semiconductor	(which	will	be	approximately	equal	
to	𝜇	in	eq.	1	in	an	ideal	case),	〈𝜌0'//〉 = 𝐿@A ∫ 𝜌0'//(𝑥)	𝑑𝑥

+
( 	is	the	spatial	average	of	the	free	charge-

carrier	density	and	〈𝜌HIH2J〉 = 	 𝐿@A ∫ [𝜌0'//(𝑥) + 𝜌H'2MM/3(𝑥)]𝑑𝑥
+
( 	is	the	total	charge-carrier	density	

across	the	thickness	of	the	semiconductor.	Since	the	effective	mobility	in	eq.	2	is	defined	from	the	
ratio	of	the	free	to	total	charge	carrier	density,	the	effective	mobility	is	usually	electric	field-,	and	
temperature-dependent.	However,	 the	band	mobility	 is	not	 inherently	dependent	on	either	of	
these	quantities[19].	Note,	that	this	definition	of	the	effective	mobility	does	not	account	for	non-
ideal	injection.	
	
	
C. The	Mark-Helfrich	equation	

	
One	of	the	few	analytical	equations	which	describes	SCLC	charge	transport	in	a	semiconductor	
with	traps,	assumed	to	be	distributed	as	exponential	tails	of	states	in	the	DOS,	is	called	the	Mark-
Helfrich	equation[6,8].	For	an	electron-only	device	it	is	given	by,	
	

𝐽 = 𝑞A@P𝜇-𝑁/00 R
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where	𝑞	is	the	elementary	charge,		𝑙 = 𝐸^. 𝑘`𝑇⁄ ,	with	𝐸^.	being	the	characteristic	energy	of	the	
exponential	tail	(see	fig.	1d	and	eq.	S30	and	S31),	𝑁/00	is	the	effective	density	of	states,	and	𝑁H	is	
the	 trap	 density	 (per	 unit	 volume),	 and	𝑘`𝑇 	is	 the	 thermal	 energy.	 Equation	 3	 predicts	 that	
exponential	tail	states	in	the	band	gap	give	rise	to	a	stronger	power-law	dependence	of	voltage	
on	current	than	expected	from	the	MG	law	in	the	intermediate	voltage	regime.	However,	it	was	
recently	shown	that	this	equation	is	not	accurate	since	it	fails	to	account	for	diffusion	currents,	
which	 can	 make	 a	 significant	 contribution	 to	 the	 total	 current,	 especially	 when	 traps	 are	
present[11].	
	
	
D. Built-in	voltages	
	
Besides	 assuming	 the	 semiconductor	 to	be	 trap	 free,	 the	MG	 law	also	 assumes	 that	 there	 are	
negligible	energy	barriers	for	both	injection	(𝑞𝜙d-e)	and	extraction	(𝑞𝜙/fH)	from	the	metal	contact	
into	the	semiconductor.	This	criterion	can	however	rarely	be	met	in	real	experimental	cases,	and	
a	 finite	 injection	 barrier	 can	 have	 a	 significant	 influence	 on	 the	 probed	 charge-transport	
behaviour.	With	𝑞𝜙d-e//fH = 0	eV	being	assumed,	 the	MG	law	therefore	also	 implicitly	requires	
that	there	exists	no	built-in	voltage,	Vbi,	across	the	device	arising	from	a	difference	in	the	WFs,	and	
hence	the	injection	barrier	heights,	Vbi	=	qϕext	–	qϕinj	(fig.	1c)[5],	a	feature	which	is	often	difficult	
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to	achieve	from	a	practical	device	fabrication	perspective.	The	limited	choice	of	contact	materials	
available	to	match	very	deep	(>	~6	eV	below	the	vacuum	level)	or	very	shallow	(<	~2	eV	below	
the	 vacuum	 level)	 transport	 levels	 often	 results	 in	 contacts	with	poor	 injection	 properties.	 A	
common	hole-selective	material	 for	 organic	 optoelectronic	devices	 is	 the	 conductive	polymer	
blend,	poly(3,4-ethylenedioxythiophene)	polystyrene	sulfonate	(PEDOT:PSS).	Literature	values	
for	 the	 WF	 of	 this	 conductive	 polymer	 range	 between	 4.8	 and	 5.2	 eV[25,26].	 With	 many	
semiconducting	polymers	and	small	molecules	having	their	highest	occupied	molecular	orbital	
(HOMO)	levels	lying	much	deeper	than	5.2	eV	below	the	vacuum	level,	this	interlayer	material	
will	not	 form	a	perfectly	 injecting	contact	with	such	materials.	Another	popular	hole-selective	
material	 is	 MoO3,	 with	 literature	 values	 for	 the	 WF	 ranging	 between	 6	 and	 6.9	 eV[27,28].	
Sandwiching	a	deep	HOMO	(>	6	eV	below	the	vacuum	level)	material	between	these	two	contact	
materials,	for	example,	would	allow	for	Ohmic	injection	from	MoO3	into	the	HOMO	level,	whereas	
the	PEDOT:PSS	will	 form	an	 injection-limited	 contact,	while	 at	 the	 same	 time	 resulting	 in	 the	
formation	of	a	Vbi	across	the	device	due	to	the	difference	in	the	contact	WFs	(fig.	1c).	Due	to	lack	
of	contact	materials	it	is	common	to	measure	SCLC	on	asymmetric	single-carrier	devices,	since	
such	 devices	 are	 more	 realistic	 to	 fabricate	 than	 symmetric	 single-carrier	 devices	 (fig.	 1c).	
However	 this	 Vbi	 will	 greatly	 affect	 the	 current	 density-voltage	 (J-V)	 curves	 at	 low	 and	
intermediate	bias	voltages	until	the	internal	voltage	is	overcome[9,10].	
In	order	to	correct	for	the	built-in	voltage,	an	effective	applied	voltage,	Veff	=	V	-	Vbi,	where	the	

Vbi	 is	used	as	a	fitting	parameter	in	the	MG	law	(or	other	analytical	equations	of	variant	types,	
such	 as	 the	 MH	 equation	 or	 the	 Murgatroyd	 equation[29]),	 is	 commonly	 used[30,31].	 This	
indirect	approach	is	however	rather	uncertain,	since	the	band	diagram	at	V	=	0	V	for	a	symmetric	
device	and	V	=	Vbi	for	an	asymmetric	device	are	not	necessarily	similar.	At	a	significant	applied	
bias	such	that	the	built-in	voltage	is	overcome,	and	if,	hypothetically,	the	value	of	Vbi	 is	exactly	
known,	then	using	this	effective	voltage	approach	is	a	good	approximation.	The	Vbi	 is	however	
rarely	known	precisely	in	advance,	and	is	sometimes	estimated	by	shifting	the	voltage	axis	to	a	
regime	where	J	varies	with	V2	which	can	eventually	lead	to	misinterpretation	of	carrier	mobility	
values,	especially	when	traps	are	present.		
Analytical	drift-diffusion	equations	have	been	derived	to	account	for	built-in	voltages,	directly,	

in	intrinsic	single-carrier	devices	at	low	voltages	directly,	such	as[9,10],	
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	 	 (4)	

	
where	b	is	the	voltage	reduction	due	to	band	bending	at	the	injecting	interface	(the	derivation	of	
eq.	4	is	shown	in	the	supplementary	information[32]	and	in	ref.	[10]).	Assuming	the	𝑉1d	is	large	
enough	so	that	band	bending	at	the	interface	is	negligible,	b	=	0,	and	the	injection	barrier	height	
at	the	injection	point	is	zero,	qϕinj	=	0	eV,	eq.	4	is	reduced	to	a	simpler	form	
	

𝐽 =
ijU866()�n@))s/fMt

uv
wxy

z@A{

+s/fMt
uv�n
wxy

z@ /fMt uvwxy
z{

	 	 (5)	

	
which	 is	 a	 useful	 equation	 for	 determining	 the	 built-in	 voltage	 of	 a	 single-carrier	 device[9].	
Equation	5	describes	the	current	density	of	an	asymmetric	intrinsic	semiconductor	device	for	all	
𝑉 < 	𝑉1d .	 However,	 it	 cannot	 describe	 the	 situation	 where	 traps	 are	 present.	 Even	 though	
analytical	models	 exist	 to	 describe	 both	 a	 built-in	 voltage	 and	 traps	 separately,	 no	 analytical	
model	exists	to	describe	the	common	practical	situation	featuring	both	traps	and	a	large	built-in	
voltage.	
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E. Low	voltage	regime	
	

The	 final	 set	 of	 analytical	 models,	 presented	 here,	 apply	 to	 the	 low	 voltage	 regime	 (from	 a	
symmetric	 single-carrier	 device)	 where,	 in	 practice,	 a	 linear	 dependence	 of	 J	 on	 V	 is	 often	
observed.	It	has	previously	been	shown	that	linear	currents	observed	in	SCLC	J-V	curves	are	due	
to	one	of,	or	a	combination	of,	the	following	effects:	flow	of	equilibrium	charge-carriers	at	low	
voltages	 in	 symmetric	 single-carrier	 devices	 (the	Moving	 Electrode	 equation)[33,34,35],	 a	 large	
increase	of	the	charge-carrier	density	away	from	the	equilibrium	value	due	to	doping[35,36],	or	
bulk	 saturation	of	 charge	 carriers	 inside	 the	device	 either	 at	 high	bias	or	with	 large	 injection	
barriers[37].	
In	 the	absence	of	traps,	doping	and	a	built-in	voltage,	 the	current	density	at	low	voltages	is	

given	by	the	Moving	Electrode	(ME)	equation[33,34,38,39,40],	
	

𝐽 = 4𝜋X ���
i
𝜇𝜀'𝜀(

)
+,
.		 (6)	

	
Linear	currents	can	however	also	arise	at	low	voltages	in	single-carrier	devices	through	shunts	
due	to	low	resistance	pathways	through	the	semiconducting	film.	This	linear	current	density	is	
given	by	Ohm’s	law	as	
	

𝐽 = 	 (𝑅�)@A𝑉/𝐿	 	 (7)	
	

where	RP	 is	 the	 shunt	 resistivity,	 or	parallel	 resistivity	 (in	units	 of	Ωcm2).	 Shunt	 currents	 are	
especially	 relevant	 for	 asymmetric	 devices	 with	 a	 large	 Vbi	 since	 the	 current	 density	 at	 low	
voltages	is	greatly	reduced	in	these	devices	(as	will	be	obvious	later	in	this	study).	
In	principle,	the	total	current	density	of	an	asymmetric	single-carrier	device	could	be	calculated	
by	using	a	combination	of	eqs.	1	(with	the	𝑉 − 𝑉1d 	correction),	4,	and	7,	if	the	semiconductor	in	
the	 device	 is	 intrinsic	 (a	 symmetric	 device	 could	 likewise	 in	 principle	 be	 calculated	 using	 a	
combination	of	eq.	1	and	6).	However,	this	description	of	the	current	density	does	not	account	for	
the	presence	of	traps,	which	have—on	numerous	occasions—been	shown	to	be	present	in	organic	
semiconductors[14,41].	
	
	
III.	ANALYTICAL	RESULTS	
	
Ref.	[40]	has	shown	that	the	spatial	distribution	of	the	equilibrium	charge-carrier	density	of	an	
intrinsic	and	trap-free	single-carrier	device,	𝑛,	can	be	described,	to	a	very	good	approximation,	
by,	
	

𝑛 = X�*S7ST�x�
i*+*

�cosX R𝜋 ��
+
− A

X
�W�

@A
	 	 (8)	

	
where	𝑥 	is	 the	 distance	 from	 the	 injecting	 contact.	 As	 we	 shall	 show,	 equation	 8	 precisely	
describes	 the	 charge-carrier	 density	 in	 the	 middle	 of	 the	 device,	 𝑥 = 𝐿 2⁄ ,	 but	 produces	
unphysical	singularities	at	the	contacts,	𝑥 = 0	and	𝑥 = 𝐿,	as	seen	in	fig.	2a.	By	taking	𝑥 = 𝐿 2⁄ ,	the	
equilibrium	charge-carrier	density,	in	the	middle	of	the	device,	is	given	by,	
	

𝑛( =
X�*S7ST�x�

i*+*
.	 (9)	
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A	comparison	of	eq.	9	with	numerically	calculated	values	of	the	electron	density	is	shown	in	fig.	
2b	(solid	lines).		
The	arithmetic	mean	of	eq.	8,	〈𝑛〉 = 𝐿@A ∫ 𝑛+( 𝑑𝑥,	cannot	be	calculated,	since	the	integral	does	

not	converge.	However	𝑛@A	can	be	integrated	and,	thus,	the	harmonic	mean	of	the	charge-carrier	
density	can	be	written	as,	
	

〈𝑛〉2-2. =
A

[
� ∫ (�)~[�
T ��

.	 	 (10)	

	
This	yields,	
	

〈𝑛〉2-2. =
��*S7ST�x�

i*+*
	 	 (11)	

	
which	is,	of	course,	just	2𝑛(.	Upon	insertion	of	this	charge-carrier	density	into	the	drift	current	
equation,	𝐽 = 𝑞𝜇-〈𝑛〉2-2.

)
+
,	we	obtain	 the	ME	equation,	 eq.	 6.	The	ME	equation	 is	 a	 very	 good	

approximation	 of	 the	 current	 density	 in	 an	 intrinsic	 single-carrier	 device	 at	 low	 voltages.	
Equation	9	is	a	very	good	approximation	of	the	charge-carrier	density	in	the	middle	of	device	at	
low	applied	voltages,	since	the	overall	shape	and	magnitude	of	the	charge-carrier	density	profile	
does	not	change	significantly	between	0	and	0.1	V	(see	fig	2a).	
	

  

	
Figure	2	–	a)	Electron	density	as	a	function	of	spatial	position	of	a	trap	free	device	and	a	
device	with	localized	states	in	the	form	of	exponential	tail	trap	states	in	comparison	with	
the	eq.	8.	b)	Average	electron	densities,	〈𝑛〉,	of	the	numerical	calculation	(red	dashed	line)	
and	the	analytical	approximation,	eq.	11	(green	dashed	line),	and	electron	density	in	the	
middle	of	the	device,	𝑛(,	from	the	numerical	calculation	(solid	red	line)	and	from	eq.	9	
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(solid	green	line).	c)	Schematic	of	the	description	of	the	localised	states	in	the	band	gap.	
In	this	case	T	=	0	K	is	assumed	for	the	representation	of	the	occupied	density	of	states.	d)	
Electron	density	in	the	middle	of	the	device	calculated	using	eq.	15	(solid	lines)	and	from	
numerical	calculations	(dashed	lines)	when	traps	are	included,	for	three	values	of	Ech	as	
indicated,	0.04	eV,	0.06	eV	and	0.08	eV.	

	
It	is	important	to	note	that	the	harmonic	mean	of	the	charge-carrier	density,	〈𝑛〉2-2.,	does	not	

give	the	same	value	of	the	arithmetic	mean	of	the	charge-carrier	density	of	a	device	calculated	
using	a	numerical	approach,	〈𝑛〉-��,	since	the	device	boundaries	are	not	correctly	described	in	
the	 analytical	 approximation	 (since	 the	 charge-carrier	 density	 at	 the	 boundary	 is	 set	 by	 the	
effective	density	of	states	in	the	numerical	calculations	and	blows	up	to	infinity	in	eq.	8).	For	this	
reason,	the	ME	eq.	cannot	be	directly	used	to	determine	the	charge-carrier	density	of	the	entire	
device,	but	only	in	the	middle	of	the	device[35].	Figure	2b	shows	that	〈𝑛〉-��. > 〈𝑛〉2-2.,	in	general,	
for	an	intrinsic	and	trap-free	device.	
We	now	proceed	to	derive	a	formula	for	the	current-voltage	response	of	a	single-carrier	device	

in	 the	 low	voltage	 regime	 in	 the	presence	of	 traps.	The	 following	derivation	 follows	 from	the	
assumptions	of	trapped	and	free	charge-carrier	density	statistics,	in	exponential	tails,	given	by	
Mark	and	Helfrich[8].	For	simplicity,	the	derivation	is	given	for	the	case	of	electron	transport.	The	
derivation	in	the	case	of	hole	transport	is	completely	analogous.	The	density	of	localized	states	in	
the	band	gap	(electron	traps)	per	unit	volume	and	energy	interval,	ℎ,	far	away	from	the	device	
contacts,	i.e.,	in	the	middle	of	the	device	(𝑥 = 𝐿/2),	is	described	by,	
 

ℎ = 𝑛H exp �
¢
¢£¤
� (12) 

 
where	𝑛H = 𝑁H/𝐸^.	is	the	trap	density	per	unit	energy	right	below	the	conduction	band	edge,	and	
𝐸	is	the	energy	measured	below	the	conduction	band	edge	(note	that	the	conduction	band	edge	
is	set	to	zero,	𝐸^ = 0,	and	the	energy	increases	upwards	in	energy,	as	shown	in	fig	2c).	Given	that	
𝑁H	is	much	larger	than	the	total	amount	of	charge	carriers	at	absolute	zero,	𝑛(	(𝑇 = 0	K),	it	is	safe	
to	 assume	 that	 approximately	 all	 of	 these	 charge	 carriers	 will	 be	 trapped	 and	 will	 fill	 the	
exponential	tail	states	up	to	a	quasi-Fermi	level,	𝐸¥,H.	Within	this	assumption	we	can	write,	
 

𝑛( = ∫ U:
¢£¤

exp � ¢
¢£¤
�𝑑𝐸 =¢§,:

@¨ 𝑁H exp �
¢§,:
¢£¤
�. (13) 

 
As	the	temperature	is	increased	(𝑇 > 0	K),	some	charge-carriers	will	escape	the	traps	and	will	be	
free	to	conduct.	Given	that	the	Fermi	level	governing	free	charge	carriers	is	more	than	a	few	𝑘`𝑇	
away	 from	 the	 conduction	 band	 edge,	 we	 can	 describe	 the	 free	 charge-carrier	 density	 using	
Boltzmann	statistics	(again	implying	𝐸^ = 0),		
 

𝑛0'// = 𝑁©exp	 �
¢§
�x�

�  (14) 

 
where	𝑁©	is	the	effective	density	of	electron	states	at	the	conduction	band.	Assuming	that	𝐸¥ =
𝐸¥,H	which	is	a	fair	assumption	given	that	𝐸^. > 𝑘`𝑇,	we	can	combine	the	above	two	expressions	
and	describe	the	free	charge-carrier	density	in	terms	of	the	total	charge-carrier	density	as,	
 

𝑛0'// = 𝑁©𝑁H@P𝑛(P  (15) 
 
where	𝑙 = 𝐸^./𝑘`𝑇.	Figure	2d	shows	a	comparison	of	eq.	15	with	numerical	calculations	of	the	
charge-carrier	density	as	the	characteristic	energy	is	varied	from	0.04	eV	to	0.08	eV	(with	a	fixed	
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𝑁©	and	𝑁H).	Since	 the	current	 is	only	governed	by	 the	 free	charge-carrier	density,	we	can	now	
describe	the	drift	current	as,	
 

𝐽 = 𝑞𝜇-𝑛0'//
)
+
= 𝑞𝜇-𝑁©ª𝑁H@P𝑛(P «

)
+
.  (16) 

 
Since	we	are	only	concerned	about	the	trap	density	far	away	from	the	contacts,	we	can	describe	
the	total	charge-carrier	density	by	eq.	9.	We	then	obtain,	
 

𝐽 = 𝑞A@XP𝜇-𝑁© R
��*S7ST�x�

U:
W
P )
+*YZ[

 (17) 

 
which	 describes	 the	 current	 density	 at	 low	 applied	 voltages	 when	 some	 charge	 carriers	 are	
trapped	in	exponential	tails.	Note	that	in	this	case	we	do	not	need	to	introduce	the	concept	of	an	
effective	mobility	 since	 the	 reduction	 of	 free	 charge-carriers	 are	 included	 implicitly	 through	
𝑛0'// = 𝑁©𝑁H@P𝑛(P .	𝜇-	is,	for	that	reason,	a	band-like	mobility.	Equation	17	reduces	to	eq.	6	in	the	
trap	 free	 limit.	The	accuracy	of	estimating	 trap	densities	and	energies	using	eq.	17	 in	 the	 low	
voltage	 regime	 is	 compared	 to	 the	 accuracy	 of	 estimating	 traps	with	 the	MH	 equation	 in	 the	
intermediate	voltage	regime	is	discussed	in	the	supplementary	information[32].	It	is	shown	that	
eq.	17	is	more	precise	in	describing	charge	transport	in	a	semiconductor	containing	traps	(in	the	
investigated	parameter	space),	and	can	estimate	the	characteristic	energy	and	trap	density	more	
accurately.	The	reason	why	eq.	17	works	especially	well,	is	due	to	the	fact	that	the	free	charge-
carrier	density	is	very	well	described	in	the	middle	of	the	device	using	the	surprisingly	simple	
trap	statistics	(see	figs.	2a	and	b),	and	the	fact	that	this	middle	region	of	the	device	dominates	the	
ME	current.	
	
	
IV.	EXPERIMENTAL	RESULTS	

In	 order	 to	 make	 a	 comparative	 evaluation	 of	 the	 different	 analytical	 approaches	 and	 the	
numerical	drift	diffusion	simulation,	we	prepared	and	measured	a	set	of	hole-only	devices	based	
on	 the	small	molecular	semiconductor	Spiro-OMeTAD	(fig.	3a).	We	 fabricated	both	symmetric	
and	asymmetric	hole-only	devices	 in	order	 to	 test	 the	 theoretical	models	over	a	wide	voltage	
range	of	J-V	data	for	the	different	device	types.	All	devices	were	fabricated	using	a	similar	front	
contact	consisting	of	a	thin	layer	of	PEDOT:PSS	(~30	nm)	spun	cast	on	top	of	a	predefined	tin-
doped	indium	oxide	(ITO)	covered	glass	slide.	The	ITO	was	cleaned	by	ultrasonication	in	acetone	
and	isopropanol	for	10	minutes,	respectively,	prior	to	PEDOT:PSS	deposition.	Thin	films	of	Spiro-
OMeTAD	of	varying	thicknesses	were	spun	cast	from	chlorobenzene	onto	 the	 ITO/PEDOT:PSS	
contacts	under	atmospheric	conditions.	For	the	asymmetric	devices,	a	back	contact	consisting	of	
a	thick	layer	of	aluminium	(150	nm)	was	evaporated	under	high	vacuum	(of	~10-6	mbar).	For	the	
symmetric	devices,	a	thin	layer	of	MoO3	(30	nm)	followed	by	a	thick	layer	of	Al	(150	nm)	was	used	
as	 a	 back	 contact.	 Two	 types	 of	 steady-state	 J-V	 experiments	 were	 performed:	 at	 room	
temperature	 and	 at	 varying	 temperature	 using	 a	 cryostat.	 The	 current	 of	 the	 samples	 was	
recorded	 using	 a	 Keithley	 SMU	 236	 in	 a	 nitrogen	 atmosphere	 for	 the	 room	 temperature	
measurements	 and	 in	 a	 helium	 atmosphere	 for	 the	 cryostat-based	 temperature-dependent	
measurements.	The	structures	of	the	studied	single-carrier	devices	are	depicted	in	fig,	3b.		
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Figure	3	–	a)	Molecular	structure	of	Spiro-OMeTAD,	b)	symmetric	and	asymmetric	hole-
only	devices	employing	MoO3/Al	and	Al	back	 contacts	 respectively	(energy	 levels	 are	
taken	from	literature).	The	WFs	of	MoO3	and	PEDOT-PSS	will	shift	to	match	the	HOMO	of	
the	 organic	 compound	 through	 Fermi-level	 pinning,	 resulting	 in	 estimated	 built-in	
voltages	of	0	V	and	0.9	V	respectively	for	the	two	devices.	The	energy	levels	are	all	given	
relative	to	the	vacuum	level.	

 

Based	on	the	values	for	the	contact	WFs	shown	in	fig.	3b,	one	could	expect	that	the	Vbi	of	the	so-
called	symmetric	Spiro-OMeTAD	device	is	around	1	V,	actually	rendering	the	device	asymmetric.	
However,	Fermi-level	pinning	between	a	metal	contact	and	an	organic	compound	whose	HOMO	
level	is	shallower	than	the	contact	WF,	will	shift	this	contact	WF	to	match	the	HOMO	level	(upon	
thermodynamic	equilibration),	rendering	both	effective	WFs	to	be	equal	to	the	HOMO	level	and	
the	built-in	voltage	therefore	to	be	zero.	Again,	assuming	Fermi-level	pinning,	the	built-in	voltage	
would	be	estimated	to	be	≈ 0.9V	for	the	asymmetric	device	(using	a	WF	value	for	PEDOT:PSS	of	
5.2	eV).	However,	interfacial	states	(potentially	bearing	considerable	dipole	moments)	between	
the	contacts	and	the	organic	material,	and	the	highly	reactive	nature	of	aluminium	under	ambient	
atmosphere,	might	give	rise	to	deviations	from	these	estimated	Vbi	values.	
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Figure	4	–	a)	Forward	and	reverse	bias	J-V	curves	obtained	from	SCLC	measurements	of	
symmetric	(grey	circles)	and	asymmetric	Spiro-OMeTAD	hole-only	devices	(orange	and	
red	circles)	of	200	and	230	nm	respectively.	Since	the	forward	and	reverse	bias	curves	
overlap	for	the	symmetric	device,	only	the	forward	bias	curve	is	shown.	Mott-Gurney	law	
forced	“fits”	and	Ohm’s	law	fits	are	shown	as	solid	and	dashed	lines	respectively.	b)	plots	
of	𝑚 = (𝑑 𝑙𝑜𝑔 𝐽) /	(𝑑 𝑙𝑜𝑔 𝑉)	of	the	asymmetric	data	in	a)	against	voltage.	c)	J-V	curves	of	
symmetric	Spiro-OMeTAD	devices	at	temperatures	varying	from	200K	to	300K	in	steps	
of	20	K,	showing	fitting	with	the	Mott-Gurney	law	(eq.	1,	solid	lines)	and	either	the	moving	
electrode	equation	(eq.	6,	dashed	lines)	or	eq.	17.	d)	m-V	curves	of	the	J-V	curves	shown	
in	c).	The	high-voltage	slope	values	approach	a	value	larger	than	2	in	both	a)	and	c).	

 

Figure	4a	shows	the	experimental	J-V	curves	of	a	symmetric	200	nm	hole-only	device	and	an	
asymmetric	230	nm	device.	In	contrast	to	the	non-rectifying	behaviour	observed	for	the	current	
density	between	the	forward	and	reverse	bias	in	the	symmetric	device,	a	significant	rectifying	
behaviour	is	present	for	the	asymmetric	device.	Since	a	large	asymmetry	between	the	forward	
and	reverse	bias	current	is	observed,	a	built-in	voltage	is	present	and	the	current	at	low	voltage	
must	be	given	by	eq.	4	(or	eq.	5	given	the	current	is	not	limited	by	injection).	The	local	slope	of	
the	J-V	curve	on	a	log-log	scale	can	be	given	by,		
	

𝑚 = �	JI±	 ²
�	JI±	 )

	 	 (18)	

	
such	that	𝐽 ∝ 𝑉´()).	It	is	seen	from	the	slopes	of	the	J-V	curves	on	a	log-log	scale	in	fig.	4b	that	the	
forward	bias	current	for	the	asymmetric	device	goes	from	a	linear	dependence	at	low	voltages	
(𝑚 = 1),	 to	a	 large	peak	at	intermediate	voltages	(𝑚 ≅ 30),	and	eventually	approaches	values	
(𝑚	 ≅ 3.7)	which	are	larger	than	what	would	be	expected	from	trap-free	behaviour	(𝑚 = 2)	at	
high	voltages[7].	Also,	the	reverse	bias	current	is	seen	to	be	linear	with	voltage	over	the	whole	
regime	for	the	asymmetric	device.	From	the	observation	of	the	linear	regime	in	both	the	forward	
and	reverse	bias	regime	of	the	symmetric	device,	it	is	clear	that	the	low	voltage	current	cannot	be	
explained	by	 eq.	 4	 alone	 (fig.	 S1).	However	 the	 current	 can	be	modelled	 as	 a	 combination	of	
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diffusion	currents	due	to	a	large	𝑉1d	and	a	shunt	current	(eq.	7).	That	the	current	must	include	a	
shunt	term	at	low	voltages	can	also	be	seen	from	the	very	sharp	onset	to	the	large	peak	at	forward	
bias	(fig.	S2)	along	with	the	large	overlap	between	the	forward	and	reverse	bias	current	at	low	
voltages.	Based	on	this	reasoning,	the	linear	currents	at	very	low	voltages	can	be	described,	in	
both	forward	and	reverse	bias,	using	eq.	7	(dashed	lines)	and	a	value	for	the	shunt	resistivity	of	
RP	=	18	MΩcm2	can	be	extracted.	The	deviation	of	the	power-law	dependence	of	the	J-V	curves	
away	from	𝑚 = 2	at	high	voltages	(fig.	4b)	gives	evidence	that	the	charge	transport	is	governed	
by	traps[6,8],	as	traps	in	the	form	of	exponential	tail	states	gives	rise	to	an	increase	in	the	slope	
away	from	2	(eq.	3)(fig.	S1).		
Since	it	is	quite	evident	from	the	slope	at	high	voltages	that	a	proper	charge-transport	analysis	

cannot	be	 achieved	using	 the	 simple	MG	 theory,	we	 carry	out	numerical	 fitting	using	 a	drift-
diffusion	solver	(see	supplementary	information	 for	details[32]).	To	reduce	 the	uncertainty	 in	
fitting	parameters,	 especially	 regarding	 trap	 states,	we	 analyse	 J-V	 data	 as	a	 function	of	 both	
temperature	 and	 semiconductor	 thickness.	 Figure	 4c	 shows	 the	 series	 from	 a	190	 nm	Spiro-
OMeTAD	symmetric	hole-only	device	at	temperatures	varying	from	200	K	to	300	K	along	with	
linear	fits	with	the	ME	equation	or	eq.	17	(dashed	lines)	and	fits	with	the	MG	law	(solid	lines).	m-
V	curves	of	the	J-V	curves	in	figure	4c	are	shown	in	figure	4d.	The	linear	regime	and	the	apparent	
Mott-Gurney	 regime	 are	 shown	 as	 dashed	 lines	 (the	 linear	 equations	were	 fitted	 in	 the	 low	
voltage	regime,	and	the	MG	law	was	fitted	at	the	point	where	𝑚 = 2).	If	a	fit	with	the	MG	law	is	
performed	in	the	trap-influenced	regime,	as	is	sometimes	seen	in	the	literature,	values	for	the	
effective	 charge-carrier	mobilities	 between	 1-3	 ×	 10-4	 cm2/Vs	 for	 the	 symmetric	 devices	 are	
obtained	(at	room	temperature).	These	values	are	similar	to	what	has	been	presented	in	the	past	
using	SCLC[22]	(a	fit	to	the	asymmetric	data	shown	in	fig.	4a	gave	a	mobility	with	a	comparable	
value	of	1.1	×	10-4	cm2/Vs).	The	results	of	the	ME	and	MG	fits,	as	a	function	of	temperature,	are	
shown	in	fig.	6a.	
	

	
Figure	 5	 –	 Numerical	 fits	 to	 SCLC	 data.	 a)	 Forward	 and	 reverse	 bias	 current	 of	 an	
asymmetric	device,	b)	 forward	bias	 current	of	 a	 symmetric	device	 (the	 forward-	 and	
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reverse-bias	 currents	 overlap),	 and	 c)	 forward	bias	 current	 of	 a	 symmetric	 device	at	
varying	temperatures.	Results	of	the	fits	in	a)	and	b)	are	shown	in	the	graphs.	An	injection	
barrier	of	0.11	eV	and	an	exponential	tail	of	trap	states	were	required	to	consistently	fit	
to	the	temperature	series.	

 

Figure	5a	shows	the	fits	from	the	drift-diffusion	simulations	to	both	the	forward	and	reverse	
bias	asymmetric	device	data.	Figure	5b	shows	the	fits	to	the	forward	bias	current	of	the	symmetric	
device	 (the	 forward	 and	 reverse	 bias	 currents	 overlapped).	 	 Since	 the	 shunt	 resistivity	 was	
determined	from	a	fit	with	Ohm’s	law	(figure	4a),	this	value	could	be	used	as	input	for	the	drift-
diffusion	 fit	 along	 with	 the	measured	 device	 thickness.	 The	 field-,	 temperature-	 and	 charge-
carrier	density	independent	hole	band-like	mobility,	𝜇.,	characteristic	tail	energy,	𝐸^.,	tail	state	
density,	nt,	 and	 injection	and	extraction	barrier	heights,	𝑞𝜙d-e	and	𝑞𝜙/fH ,	were	allowed	to	vary	
during	the	fitting	process	for	both	the	symmetric	and	asymmetric	device	data.	Figure	5c	shows	
the	fits	using	the	drift-diffusion	model	to	the	temperature	series	with	the	inclusion	of	exponential	
tails	and	injection	barriers	as	those	obtained	in	fig.	5b	(fitting	results	along	with	additional	fits	
performed	on	a	115	nm	and	a	290	nm	devices	are	shown	in	figures	S3,	S4	and	S5.	These	results	
are	consistent	with	the	results	shown	in	fig.	5.	A	deviation	from	the	trend	is	observed	for	the	115	
nm	device	at	low	temperature,	which	is	assigned	to	be	due	to	the	experimental	conditions).	Note	
that	 the	 parameters	 obtained	 from	 this	 fitting	 vary	 slightly	 with	 temperature.	 The	 relative	
insensitivity	of	the	parameters	to	temperature	indicate	that	the	underlying	transport	model	is	
valid.	However,	a	moderately	good	set	of	fits	to	the	SCLC	J-V	data	can	be	obtained	by	making	the	
fit	with	the	constraint	that	all	parameters	are	temperature	independent,	as	shown	in	fig.	S6b,	c	
and	d.		Whereas	the	values	for	the	trap	characteristics	and	barrier	heights	affect	the	slope	of	the	
J-V	curves,	since	no	recombination	occurs	and	the	measurement	is	performed	under	steady-state	
conditions,	𝜇.	only	affects	the	magnitude	of	the	current	density,	meaning	that	the	m-V	curves	can	
be	fitted	prior	to	the	J-V	curves.	
	

	
V.	DISCUSSION	
	
The	Vbi	for	the	symmetric	device	(fig.	5b)	was	found	to	be	zero,	as	expected,	with	barrier	heights	
for	 both	 injection	 and	 extraction	 of	 0.11	 eV.	 The	 Vbi	 for	 the	 asymmetric	 device	 (fig.	 5a)	was	
determined	to	be	1.78	V	with	an	injection	barrier	height	of	0.11	eV.	The	determined	Vbi	for	the	
asymmetric	device	is	therefore	0.88	V	higher	than	the	value	expected	from	the	nominal	energy	
level	 offset	 (fig.	 2b).	 This	 is	 likely	 due	 to	 oxidation	 of	 the	 aluminium	 contact	 forming	 a	 thin	
aluminium-oxide	layer	at	the	contact/semiconductor	interface[42].	An	underestimation	of	the	Vbi	
using	eq.	5	was	observed	(fig.	S7b	and	c),	since	this	equation	does	not	account	for	both	traps	and	
injection	barrier	heights.		
Both	the	symmetric	and	asymmetric	devices	showed	evidence	of	shallow	exponential	tails	(Ech	

≅	0.045	eV)	obtained	from	the	drift-diffusion	simulations,	with	trap	densities,	extending	from	the	
band	edges,	of	4.49	×	1019	cm-3	eV-1	and	7.02	×	1019	cm-3	eV-1	for	the	asymmetric	and	symmetric	
device,	 respectively.	 The	 MH	 equation,	 eq.	 3,	 gives	 a	 much	 higher	 estimate	 of	 𝐸^. 	( 𝐽 ∝
𝑉PVA	with	𝑙 = 𝐸^. 𝑘`𝑇⁄ )[11]	of	0.070	eV	if	fit	to	the	asymmetric	device	data	shown	in	fig.	5a.	Note	
that	 using	 the	MH	 equation	 to	 the	 temperature	 dependent	 data	 would	 yield	 a	 value	 for	 the	
characteristic	energy	which	would	decrease	with	increased	temperature	(fig.	4d)	since	the	slope	
decreases.	A	temperature	dependent	characteristic	energy	was,	however,	not	observed	when	we	
analysed	the	data	using	the	numerical	model	(figs.	S3c,	S4c	and	S5c).	
For	the	devices	in	figs.	4a,	the	hole	band-like	mobility,	µh,	was	determined	to	be	3.22	×	10-3	

cm2V-1s-1	and	4.56	×	10-3	cm2V-1s-1,	for	the	asymmetric	and	symmetric	devices	respectively,	which	
is	orders	of	magnitude	higher	than	the	effective	mobility	obtained	from	the	MG	evaluation	(fig.	
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6a),	and	an	order	of	magnitude	higher	than	the	effective	hole	mobility	reported	in	the	past	from	
SCLC	characterisation	of	Spiro-OMeTAD[22].		
	

  
Figure	6	-	a)	Resulting	mobility	values	using	various	techniques	(red	for	numerical	fitting,	
blue	for	the	Mott-Gurney	law	fitting,	eq.	1,	and	green	for	the	Moving	Electrode	equation	
fitting,	 eq.	6).	The	 set	of	 various	 symbols	 refers	 to	values	 inferred	 from	devices	with	
different	 semiconducting	 layer	 thicknesses:	 290	 (squares),	 190	 (circles)	 and	 115	 nm	
(triangles),	 respectively.	 b)	 Comparison	 of	 the	 band-like	 mobility	 with	 the	 effective	
mobility	from	the	MG	law	modified	by	the	ratio	of	total	to	free	charge	carriers	(figure	S7a	
and	b),	and	with	the	value	estimated	using	eq.	17.	c)	Comparison	of	the	band-like	mobility	
with	 the	 MG	 mobility	 modified	 for	 both	 traps	 and	 injection	 limitation	 at	 the	
metal/semiconductor	 interfaces.	 If	 the	MG	mobility	was	used	to	 fit	 the	entire	voltage	
range	for	the	190	nm	device,	an	apparent	field	dependence	is	observed,	as	shown	in	fig.	
S7d.	

 

Figure	6a	compares	the	hole	mobility	values	obtained	from	fits	with	the	numerical	model	to	
the	 data	 (fig.	 5c)	 to	 mobilities	 obtained	 by	 fitting	 eqs.	 1	 or	 6	 (fig.	 4c).	 The	 obtained	 trap	
characteristics	from	the	numerical	fits	are	shown	in	the	supplementary	information	(figs.	S3,	S4	
and	S5)[32].	Where	a	temperature-dependent	mobility	was	obtained	using	analytical	fits	with	eq.	
1	and	6,	a	temperature	independent	band-like	mobility	was	obtained	using	numerical	fits	with	
the	inclusion	of	traps	and	the	inclusion	of	injection	limitation	at	the	device	interfaces.	From	the	
numerical	model,	the	obtained	charge-carrier	mobility	at	room	temperature	(300	K)	was	found	
to	be	more	 than	an	order	of	magnitude	higher	 than	 the	effective	mobility	and	more	 than	 four	
orders	of	magnitude	higher	at	200	K.	While	the	mobility	returned	by	the	numerical	model	is	a	
band-like	mobility,	 the	mobility	returned	by	 the	analytical	equations	represents	 the	band-like	
mobility	weighted	by	the	effects	of	trapping	and	poor	charge	injection,	i.e.,	an	effective	mobility.	
The	temperature	dependence	of	the	charge	transport	then	originates	from	injection	limitation	
along	with	de-trapping	being	a	thermally	activated	process	that	becomes	more	difficult	at	lower	
temperatures,	and	not	from	a	temperature	dependent	band-like	mobility.		
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Figure	 6b	 compares	 the	 temperature-independent	 band-like	 mobility	 with	 the	 mobility	
obtained	from	eq.	17	and	the	effective	mobility	extracted	from	fitting	with	the	MG	law	(modified	
by	the	ratio	of	the	arithmetic	means	of	the	total	to	free	charge	carriers	obtained	from	the	drift-
diffusion	simulations,	𝜇¼½ ∙ 〈𝑛HIH2J〉/〈𝑛0'//〉).	Note	that	the	MG	law	modification	was	only	possible	
by	simulating	the	densities	of	free	and	trapped	holes	in	the	device.	Thus,	this	modification	would	
not	be	available	if	a	purely	analytical	approach	was	used.	The	ratio,	〈𝑛HIH2J〉/〈𝑛0'//〉,	was	evaluated	
at	the	same	applied	voltage	as	the	Mott-Gurney	law	(the	voltage	at	which	𝑚 = 2)	(see	fig.	S8).	
Good	agreement	is	found	between	the	mobility	obtained	from	eq.	17	and	the	mobility	obtained	
from	the	numerical	 fits	when	the	average	value	 for	 the	characteristic	energy	and	trap	density	
from	the	simulations,	averaged	over	all	thicknesses	and	temperatures,	was	used	in	eq.	17	(𝑛H =
1.31 ∙ 10X(	cm-3eV-1	and	𝐸^. =	0.044	eV,	respectively).	Similar	to	fitting	with	the	MH	equation,	in	
order	 to	 use	 eq.	 17	 for	 determining	 the	mobility	 and	 trap	 characteristics,	 without	 any	 prior	
knowledge	 of	 either	 the	mobility	 or	 trap	 characteristics,	 a	 thickness	 and	 temperature	 series	
should	be	analysed	to	reach	a	convergence	of	the	parameters	as	shown	in	fig.	6b.	However,	the	
much	improved	accuracy	of	determining	the	band-like	mobility,	Ech	and	nt	using	eq.	17	compared	
to	the	MH	equation	is	shown	in	the	SI	(fig.	S9).	Contrary	to	the	good	agreement	between	eq.	17	
and	the	numerical	calculations,	the	overall	magnitude	of	the	effective	mobility	from	the	modified	
MG	law	is	seen	to	only	approach	the	band-like	mobility	at	300	K.		
Figure	6c	compares	the	band-like	mobility	with	the	effective	mobility	now	corrected	for	both	

trapping	and	a	term	for	injection	limitation,	𝜇¼½ ∙ 〈𝑛HIH2J〉/〈𝑛0'//〉 ∙ expk𝑞𝜙d-e/𝑘`𝑇r.	Interestingly,	
the	temperature	independence	of	this	effective	charge-carrier	mobility	is	now	comparable	to	that	
of	the	band-like	mobility,	however	with	the	overall	magnitude	being	an	order	of	magnitude	too	
high.		
From	 the	 above	 discussion	 it	 is	 evident	 that	 a	 proper	 (non	 ad	 hoc)	 inclusion	 of	 traps	 is	

important	 to	 correctly	 extract	 trap	 characteristics,	 such	 as	 the	 application	 of	 eq.	 17	 or	 the	
numerical	approach.	Furthermore,	proper	inclusion	of	traps	and	injection	limitation	is	crucial	for	
fitting	 to	 the	 entire	 voltage	 range,	 i.e.,	 for	 the	 correct	 determination	 of	 the	 band-like	 charge-
carrier	mobility	 using	 a	 numerical	 drift-diffusion	 simulator,	 since	 the	 probed	 current-voltage	
behaviour	is	affected	by	these	effects	at	higher	voltages,	simultaneously,	in	a	non-trivial	manner.	
 
 
VI.	CONCLUSIONS	
	
By	allowing	 the	 charge-carrier	mobility,	 trap	 characteristics,	 injection	barrier	heights	and	the	
shunt	resistivity	to	vary,	we	have	shown	that	a	numerical	 fit	 can	be	obtained	 to	the	entire	J-V	
curve	 measured	 from	 both	 symmetric	 and	 asymmetric	 single-carrier	 devices	 made	 from	 an	
organic	 semiconductor	 (Spiro-OMeTAD).	 The	 obtained	 charge-carrier	 mobilities	 and	 trap	
densities	for	both	the	symmetric	and	the	asymmetric	devices	agree	within	a	factor	of	less	than	
two,	across	several	device	thicknesses	and	over	a	large	range	of	temperatures.	Moreover,	the	hole	
band-like	mobility	obtained	from	numerical	fitting	was	more	than	an	order	of	magnitude	higher	
(4.56	×	10-3	cm2	V-1	s-1)	than	the	effective	hole	mobility	determined	using	the	Mott-Gurney	law	
(2.30	×	10-4	cm2	V-1	s-1)	at	room	temperature	(300	K)	and	more	than	four	orders	of	magnitude	at	
200	 K.	 We	 further	 show	 that,	 whilst	 simple	 analytical	 equations	 required	 a	 temperature-
dependent	mobility	to	achieve	fits	to	the	experimental	data,	the	use	of	either	an	analytical	model	
that	 accounts	 for	 traps	 –	 such	 as	 the	 novel	 analytical	 model	 presented	 in	 this	 paper	 –	 or	 a	
numerical	 model,	 give	 rise	 to	 a	 temperature-independent	 band-like	 mobility	 whilst	
simultaneously	 yielding	 information	 about	 trap	 characteristics	 and	 injection	 statistics.	 Our	
analysis	and	results	highlight	the	importance	of:	Either	showing,	and	using	a	numerical	model	to	
fit	to,	the	entire	J-V	curve	while	accounting	for	traps,	the	built-in	voltage	and	injection	limitation;	
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or	to	use	a	more	sophisticated	analytical	model	which	can	correctly	account	for	traps,	such	as	the	
model	presented	herein.	
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