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Abstract 

We develop a real-coded constrained genetic algorithm (GA) and assess its performance in 

selected classical optimisation problems. The proposed GA uses a roulette selection method, 

BLX-α crossover operation, non-uniform mutation along with single elitist selection at every 

generation. The GA is then applied, in conjunction with the finite element (FE) method, to 

optimise the damping response of a laminate comprising unidirectional composite laminae and 

viscoelastic damping layers. Modal loss factors are maximised against the constraints of given 

structural stiffness and mass.  
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Fibre reinforced polymers (FRPs) are being increasingly used in automotive and aerospace 

sector due to their superior specific stiffness, strength and damping. These materials can be 

tailored by adjusting volume fractions of the constituents, layer thickness and stacking 

sequence. Recently, the issue of accurate numerical predictions of the stiffness and damping 

properties of the FRPs has been addressed at both ply [1–4] and laminate [5] level. In certain 

applications however, the inherent damping of composites plies is not sufficient and 

viscoelastic damping layers or inserts are used to increase structural damping; this is typically 

done placing a compliant damping layer between relatively stiffer composite plies, to induce 

shear deformation in the soft material, thereby dissipating energy. The poor stiffness of 

damping layers, with density comparable to that of composite plies, may degrade the specific 

structural stiffness of the laminate. 

The effectiveness of damping layers also depends on their thickness and location in a given 

laminate. Several authors have studied the optimal location of viscoelastic layers for maximum 

damping in composite laminates, using analytical or numerical techniques [6–15]. The task can 

be formulated as a constrained optimization problem, where the objective is to maximize the 

damping capacity of a laminate, having certain constraints on mass, stiffness and load-carrying 

capacity [7,15]; single- and multi-objective algorithms have been published (e.g. [11,16]). The 

effectiveness of optimisation algorithms to maximise the damping of structures made from 

laminates also depends on the type of objective function; different objective functions have 

been considered in the literature: maximum modal loss factors or their sums [6,8], minimum 

deflection at resonant frequencies [12], minimum vibrational energy [13], among others. 

Several studies have also explored the use of discontinuous damping surface patches to increase 

the modal damping capacity of the laminate  [8,17]. 

The design space of laminated composite structures has a high number of dimensions of both 

discrete and continuous nature. Classical non-linear programming techniques are unsuited for 

such non-convex search spaces given the fact they are local search methods that have a 

tendency to get stuck in the local extrema. Typically, such problems are better handled by 

techniques belonging to the class of evolutionary algorithms, most popular of which are genetic 

algorithms (GAs). GAs are inspired by the natural evolutionary principles of selection, 

crossover, mutation and evolution; for a comprehensive discussion of GAs the readers are 

referred to [18,19]. The idea is to select the best performing candidate solutions in a certain 

population and then combine their genomic information to possibly create children with better 

performance; GAs are stochastic search-based approaches which makes them efficient over 
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other methods. Several authors have applied GAs to optimize damping in FRP laminates. 

Zheng et al.[13,20] optimized thickness and location of a viscous patch for the case of a simply-

supported beam; Xie et al.[12] minimized structural displacements at resonant frequencies by 

tailoring the thicknesses of the constituent plies. Montemurro et al. [7] performed damping 

optimization of a hybrid laminate consisting of transversely isotropic FRP plies and isotropic 

viscoelastic damping plies. The design variables considered in this study were ply number, 

laminate sequence and ply thickness. More recently, Xu et al.[8] performed multi-objective 

design optimization of damping in a laminate using FE analysis with a modified NSGA-II 

algorithm [21]. Most of the works dealing with optimization of FRP laminates are based on 

binary-coded GAs, which are not efficient in dealing with real-valued design variables [22]. 

Moreover, the inherent material damping due to the fibre composites has been largely ignored 

in all studies. 

In this paper we develop a real-coded GA (i.e. a GA using real number representation for the 

candidate solutions) and test its effectiveness in dealing with non-convex benchmark 

optimization problems, comparing to selected state-of-the-art evolutionary algorithms. The 

algorithm is then employed to maximise the damping of a cantilever beam, with constraints on 

the structural mass and stiffness; the design variables are ply thickness and stacking sequence. 

This is done in conjunction with FE simulations, in which the response of a cantilever beam is 

simulated in detail, including all non-linearities as well as the anisotropic, viscoelastic response 

of all constituent materials.  

The outline of the paper is as follows: in Section 2 we define the optimization problem and 

give details of the proposed real-coded GA. In Section 3 we test the algorithm in selected 

benchmark problems and in Section 4 we apply the proposed GA to the case of layered 

composites with damping layers. 

 

2. Optimisation Algorithm  

2.1 Constrained optimization problem 

A single-objective constrained optimization problem can be formulated as the minimization 

problem 
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The selection of the penalization coefficients 
i

c  and 
j

d  is difficult, as high penalty coefficients 

limit the accuracy in proximity of the constraints while low coefficients results in large number 

of iterations. 
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2.2 Genetic Algorithm 

Encoding of the candidate solutions is essential for an efficient GA search process. 

Traditionally the candidate solutions (chromosomes) are coded using binary representations, 

due to simplicity of implementation. The binary representation has limitations when dealing 

with continuous search spaces, where the size of binary strings can grow in length, resulting in 

storage and manipulation problems [23]. Binary coding also suffers from the “Hamming Cliffs” 

problem [22]. The use of real-coding is more natural for real-valued design variables, i.e. 

continuous search spaces, as it substantially simplifies the algorithm, resulting in higher 

efficiency.  

Genetic algorithms are unconstrained optimization techniques, and constraints are imposed by 

penalty-based methods [7,24] or via multi-objective optimization [11,16]. In this study we use 

a recently proposed penalty-based method, referred to as automatic dynamic penalization 

strategy [25]. 

  

2.3 Description of proposed GA 

In this study we develop a real-coded GA with a ‘roulette’ selection method, BLX-0.5 

crossover operator [26] and non-uniform mutation (NUM) operator proposed by 

Michalewicz [19]. The choice of GA operators are based on findings of Herrera et al. [22], 

where several types of real-coded GA operators were compared, concluding that the BLX-0.5 

and NUM gave the best performance. We briefly describe these operators below. 

 

2.3.1 BLX- crossover operator 

For two parent candidate solutions with n design variables, 
,1 ,2 ,

[ , , ..., ]
i i i i n

x x x x  and 

,1 ,2 ,
[ , , ..., ]

j j j j n
x x x x  selected from a population of size 

N
P  at generation t, 

1 2
[ , , ..., ]

N

t

P
X x x x

, the BLX-  operator generates the k-th component of a new offspring 
z

x  belonging to the 

next generation, i.e. to the population at time 1t  , 1t
X

 . The k-th component of 
z

x  is a uniform 

random scalar in the range 
, , , ,

[m in( , ) , m ax( , ) ]
i k j k i k j k

x x I x x I   , where I defines the 

distance between parent candidates given by 
, , , ,

m ax( , ) m in( , )
i k j k i k j k

I x x x x   and   is a user 

defined parameter. 
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The effectiveness of the BLX-  is in its ability to search in a space domain not necessarily 

bounded by that of the parents; in addition, the GA is self-adaptive, since the search space 

depends on the distance between the parents. The choice of the parameter   is crucial as 

quantitatively defines the search domain. In this study we use 0.5  , based on the findings 

in Herrera et al. [22]. 

For the case of child solutions violating the design variable bounds, the values of the design 

variables are forced to the value of the nearest bound, to ensure that the search stays within the 

desired space. 

 

2.3.2 Non-Uniform Mutation Operator 

The NUM operator, as the BLX-  operator, possesses self-adaptive capabilities; this 

algorithm reduces the range of the allowable mutations with increasing generation number t, 

allowing for larger mutations at small t and fine-tuning towards the end of the optimisation 

problem. This allows for efficient search throughout the allowable search space but it ensures 

that good solutions are not lost at later generations. The operator mutates the k-th component 

of a certain parent 
i
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Here r  and   are random variables with values between 0 and 1, 
N

G  is the maximum number 

of generations. 
,i k

p and 
,i k

q  are the lower and upper bounds of the design variable 
,i k

x as 

defined in Eq.(1). The parameter b determines the degree of non-uniformity, i.e. it controls the 

contraction in the allowable mutation range with increasing generation number, with a higher 

value of b causing a faster reduction of the mutation range. This parameter has been set to 5 

for all cases in this study. 
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2.3.3 Handling of constraints 

For the case when both feasible and infeasible solutions exist, we use the recently proposed 

automatic dynamic penalty (ADP) method [25] for handling constraints, due to its ability to 

automatically select and update the values of variables 
i

c  and 
i

d  featuring in Eq. (3). These 

are obtained, for a generation t, as  
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F IF

best best
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best best
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c t i l
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Here the superscripts F and IF represent feasible and infeasible solutions at a given generation, 

respectively. 
F

best
 and 

IF

best
  represent the minimum value of the objective function for the 

feasible ( )
F

i
x  and infeasible ( )

IF

i
x  solutions, respectively. ( )

IF

i best
G  and ( )

IF

i best
H  are magnitudes 

of the constraint violations for inequality and equality constraints, respectively, evaluated for 

the best-performing infeasible solution ( )
IF

i
x  using Eq.(4). The method chooses the variables 

i
c  and 

i
d such that the penalized objective function of the best-performing infeasible solution 

is equal to that of the best-performing feasible solution. This increases the likelihood of some 

good (but infeasible) solutions to be selected as parents for the next generation [25].  

For the case where all candidate solutions are infeasible, we ignore the values of objective 

function and solely use the information regarding the amount of constraint violation to drive 

the search towards a feasible region. We first normalize and sum the amount of constraint 

violation according to  
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The function ( )
norm i

G x  is a measure of the constraint violation of an infeasible candidate 

solution, with higher values reflecting lower constraint violation. The value of function 

( )
norm i

G x  instead of penalised objective function ( )
p i

f x , is now used to select potential 

candidate solutions for crossover operation using ‘roulette selection’ method. 

A major problem with GAs is that of premature convergence, where the entire population 

consists of duplicates of sub-optimal solutions. To maintain genetic diversity we employ an 

additional step to remove duplicate candidates after every generation; these are substituted by 

randomly generated candidates. We carry forward the best performing feasible solution after 

every generation, to ensure it is not lost during this phase.  

 

3. Solution of benchmark problems 

In this Section we examine the effectiveness of the proposed algorithm in solving classical non-

convex constrained optimisation problems, comparing its performance to that of established 

algorithms.  

 

3.1 Non-convex constrained optimization problems 

We study the performance of the proposed algorithm in the case of a non-convex  [25] objective 

function, namely  

  2 2

1 2 1 2 1 2
( , ) exp sin( ) cos( )f x x ka x x ax ax     (8) 

We minimize the objective function subjected to 3 different non-linear constraints: 

Case 1: 

 
2

1 1 2 1 2
( , ) exp( ) 1 0g x x cx x      (9) 
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2 1 2 1 1 2
( , ) sin sin 0

4 2 2
g x x x x x

  
  



      
         

      

  (10) 

Case 3:   constraints 
1

g  and 
2

g  simultaneously active. 
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Bounds on the design variables are 
1

[0, 4 ]x   and 
2

[0, 2 ]x  .  The values of the constants 

are taken as 1a  , 0.6b  , 0.2k  , 0.012c  , 0.1  , 0.4   and 0.7.   

When comparing different algorithms we fix the total number of function evaluations (NFEs) 

to 20,000 ( 200,
N

P   100
N

G  ), similar to [25,27]. A crossover probability of 0.85 and a 

mutation rate of 0.05 is used in all cases; 30 independent runs are performed using the proposed 

algorithm, and the statistical metrics of the objective function are as shown in Table 1; the 

proposed algorithm is able to find the optimal solutions in every run. As GAs are stochastic in 

nature, they do not necessarily converge around the optimal solution; however our algorithm 

does, as shown by the fact that the best and worst solutions found are very close to each other. 

The rate of convergence of the objective function is plotted against the number of function 

evaluations (NFE) in Figure 1, for the 3 types of constraints. We see that the proposed 

algorithm converges at around 5000 NFEs for all cases. The best solution obtained using the 

proposed algorithm is compared to the solutions provided by 2 different algorithms, namely 

the BIANCA GA [25] and the rank-iMDDE [27], a differential evolution algorithm. The 

comparison is presented in Tables 2, 3 and 4 below, for the 3 different types of constraints 

considered. 

 

Table 1: Statistical metrics of the objective function obtained using proposed algorithm over 30 independent runs for cases 1-

3.  

 Best Worst Mean Std dev 

Case 1 -8.11646195 -8.09050748 -8.1125394 0.00670 

Case 2 -9.50126786 -9.50012748 -9.5011532 0.00024 

Case 3 -7.48572844 -6.85586924 -7.4550397 0.12104 
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Table 2: Comparison of the design variables (
1 2
,x x ) , constraint violation (

1
g )  and objective function ( f ) of the best 

solution obtained using different algorithms for case 1. 

 BIANCA GA [25] Rank-iMDDE [27] Proposed Algorithm 

1
x   10.71119 10.71252 10.71252 

2
x  2.96646 2.96338 2.96338 

1
g  -4.43 x 10-3 -1.128 x 10-11 -5.14974 x 10-9 

f  -8.09933 -8.11646 -8.11646 

 

 

Table 3: Comparison of the design variables (
1 2
,x x ) , constraint violation (

2
g )  and objective function ( f ) of the best 

solution obtained using different algorithms for case 2. 

 BIANCA GA [25] Rank-iMDDE [27] Proposed Algorithm 

1
x   11.27620 11.29429 11.29434 

2
x  2.46284 2.47128 2.4713031 

2
g  -1.0985 x 10-4 -1.7688 x 10-12 -6.467341 x 10-9 

f  -9.49783 -9.50127 -9.5012678 

 

Table 4: Comparison of the design variables (
1 2
,x x ) , constraint violation (

1 2
,g g )  and objective function ( f ) of the best 

solution obtained using different algorithms for case 3.  

 BIANCA GA [25] Rank-iMDDE [27] Proposed Algorithm 

1
x   10.45320 10.47395 10.47395 

2
x  2.71465 2.73013 2.730131 

1
g  -3.8653 x 10-3 -4.38089 x 10-12 -1.12470 x 10-8 

2
g  -3.30729 x 10-3 -1.16759 x 10-12 -6.139986 x 10-9 

f  -7.37696 -7.48573 -7.485728 
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Clearly the proposed algorithm performs better than BIANCA and similarly to the more 

complex rank-iMDDE. Moreover, it is to be noted that the optimal results obtained using the 

proposed algorithm in Tables 2-4 are acquired using only 30 independent runs compared to the 

100 independent runs used for the case of rank-iMDDE algorithm. Since both the proposed 

method and BIANCA use identical ADP techniques, the difference in results must be explained 

by the benefits of real-valued coding and the differences in GA operators and diversity 

mechanisms.  

 

3.2 Benchmark engineering problems 

The proposed GA is now applied to the case of widely studied engineering design problems: i) 

welded beam, ii) spring and iii) pressure vessel; its performance is compared to selected 

evolutionary genetic algorithms. One of these is GAFAT [28], a hybrid GA which uses centre-

based differential crossover, non-uniform mutation (NUM) and Levenberg-Marquardt 

mutation (LMM). We also consider two algorithms for particle swarm optimization: HPSO, a 

hybrid algorithm proposed by He and Wang [29], and CVI-PSO, proposed by Mazhoud et al. 

[30].  For all cases, the maximum NFE is fixed to 100,000 ( 200,
N

P   100
N

G  ), with 

crossover and mutation probabilities of 0.85 and 0.05, respectively. 30 independent runs are 

performed using the proposed algorithm for each engineering problem; the performance of 

other algorithms is obtained from the literature [27,28]. Remarkably, the proposed algorithm 

gave consistent results irrespective of the population size or number of generations used. 

3.2.1 Design of a welded beam 

Details of this problem can be found in [29]. Briefly, the objective is to minimize the overall 

cost of the beam subject to constraints on shear and bending stresses, buckling load, end 

deflection, side constraints as well as box constraints on the design variables. Table 5 

summarises the performance of several algorithms in this optimisation problem. Most 

algorithms agree on the best solution; the proposed algorithm performs better than BIANCA 

and HPSO; GAFAT and rank-iMDDE are significantly better, in terms of standard deviation, 

than all other algorithms, displaying also the fastest convergence rates. 
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Table 5: Comparison of statistical metrics of results obtained by different algorithms for the welded beam problem. 

Algorithm Best Worst Mean Std dev Max_NFEs 

BIANCA [25] 1.725436 1.793233 1.752201 2.30E-02 80,000 

GAFAT [28] 1.724852 1.724852 1.724852 5.80E-16 20,000 

HPSO [29] 1.724852 1.814295 1.74904 4.00E-02 81,000 

CVI-PSO [30] 1.724852 1.727665 1.725124 6.12E-04 25,000 

rank-iMDDE [27] 1.724852 1.724852 1.724852 9.06E-16 19,830 

Proposed 1.724885 1.756508 1.739539 1.68E-02 40,000 

 

 

3.2.2 Design of a tension-compression spring  

The problem is as described in [26, 27] and the aim is to minimize the weight of a 

tension/compression spring subject to constraints on the minimum deflection, shear stress, 

surge frequency, outer diameter and given bounds on the design variables. Table 6 shows that 

the proposed algorithm has the fastest convergence rate and provides a best solution similar to 

those obtained by other hybrid algorithms and better than that found with the ‘pure’ GA 

BIANCA. 

 

Table 6: Comparison of statistical metrics of results obtained by different algorithms for the tension-compression spring 

problem. 

Algorithm Best Worst Mean Std dev Max_NFEs 

BIANCA [25] 0.012671 0.012913 0.012681 5.12E-05 80,000 

GAFAT [28] 0.012665 0.012665 0.012665 3.20E-17 20,000 

HPSO [29] 0.012665 0.012719 0.012707 1.60E-05 81,000 

CVI-PSO [30] 0.012666 0.012843 0.012731 5.58E-05 25,000 

rank-iMDDE 

[27] 
0.012665 0.012668 0.012665 

2.45E-07 
19,565 

Proposed 0.012666 0.012815 0.012705 2.74E-05 20,000 
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3.2.3 Design of a pressure vessel  

The design of a cylindrical pressure vessel with hemispherical heads has to be optimised, to 

minimize the overall cost of production including the cost of materials, forming and welding; 

full details of this problem can be found in [29]. The statistical metrics of the results for this 

problem are as given in Table 7. For this problem all algorithms except BIANCA are able to 

find the best solution. In terms of other statistical metrics, the proposed algorithm performs 

better than BIANCA, HPSO and CVI-PSO. 

  

Table 7: Comparison of statistical metrics of results obtained by different algorithms for the pressure vessel problem. 

Algorithm Best Worst Mean Std dev Max_NFEs 

BIANCA [25] 6059.94 6447.32 6182.00 122.32 80,000 

GAFAT [28] 6059.71 6059.71 6059.71 2.80 x 10-12 30,000 

HPSO [29] 6059.71 6288.68 6099.93 86.20 81,000 

CVI-PSO [30] 6059.71 6820.41 6292.12 288 25,000 

rank-iMDDE 

[27] 
6059.71 6059.71 6059.71 

1.95 x 10-12 
23,465 

Proposed 6059.71 6097.7752 6075.16 16.4132 40,000 

 

The rate of convergence of the objective function normalized by the value of the best solution 

obtained is plotted against the number of function evaluations (NFE) in Figure 2, for the 3 

engineering benchmark problem discussed above. We see that the proposed algorithm 

converges at around 20000 NFEs for all problems. In summary, the proposed algorithm is 

capable of dealing effectively with complex non-convex constrained optimisation problems, as 

well as in classical engineering design optimisation problems. The algorithm performs better 

than BIANCA and provides results similar to the other algorithms. Overall, GAFAT is the best 

performing algorithm, while rank-iMDDE on average requires less NFEs to converge. The 

good performance of GAFAT can be explained by the use of LMM operator, which is a 

gradient-based repair operator. The use of such operator is, however, numerically expensive 

and requires knowledge of gradients of constraints, which limits its realm of applicability. 

In summary, compared to “pure” (non-hybrid) GAs, the proposed algorithm performs better 

than other state-of-the-art algorithms such as BIANCA, giving results that are on par with 
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hybrid algorithms; the proposed algorithm provides a good combination of programming 

simplicity, computational efficiency and quality of results. 

 

4. Laminate Analysis 

The proposed algorithm is now applied to the problem of damping optimization in fibre 

composite laminates with viscoelastic inserts. The use of viscoelastic inserts significantly 

increases the damping of composite laminates but also degrades their stiffness and increases 

mass. The aim of the constrained optimisation is to find an optimal laminate configuration 

which maximizes the sum of the first N modal loss factors of a composite structure, subject to 

constraints on the maximum in-plane and bending stiffness degradation and increase in mass. 

The design variables considered are the ply thickness, ply orientation and the location of 

viscoelastic inserts within the laminate’s stack. Such a problem is highly discrete and non-

convex in nature. 

The structure considered is a slender cantilever, with length and width of 100mm and 25mm 

respectively. We perform the optimization study for two different anisotropic viscoelastic fibre 

composite plies, i.e. HMS carbon/DX210 epoxy and E-glass/SR1500 epoxy; the mechanical 

properties of these composite plies are taken from literature [33,34] and given in Table 8, where 

11 22 12 23
, , ,    are the material loss factors in longitudinal, transverse, axial shear and 

transverse shear mode of vibration, respectively. For both cases, the properties of the damping 

material inserts considered are taken as those of a widely used viscoelastic material (ISD 112, 

[35]). This is modelled in this study as an isotropic, linearly viscoelastic solid with 

70M Pa, 0.3
v v

E    and the material loss factor 0.5
v

  . The densities of laminae and 

viscoelastic plies are taken as 
3

1500kg/m  and 
3

968kg/m , respectively. 
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Table 8: Elastic and damping properties of carbon-epoxy and glass-epoxy lamina. 

 GFRP CFRP 

11
(GPa)E   29.9 172 

22
(GPa)E  5.85 7.17 

12
(GPa)G  2.45 3.76 

23
(GPa)G  2.45 3.76 

12
   0.26 0.29 

11
%  0.35 0.071 

22
%  1.30 0.67 

12
%  1.80 1.12 

23
%  1.80 1.12 

 

4.1 Loading Conditions 

The primary damping mechanism in a hybrid laminate is via shearing or extensional strains of 

the viscoelastic insert, while a minor contribution is due to the inherent material damping of 

the composite laminae. The damping properties of such hybrid laminate structures can be 

quantified using the concept of modal loss factors [36,37], defined as 

 v

i i

ci

s i i

c v

D D

U U






  (11)  

In Eq. (11), 
i

s
  is the modal loss factor corresponding to the i-th mode of vibration of a certain 

structure. D and U represent the dissipated and strain energies, respectively; the subscripts c 

and v refer to composite or viscoelastic plies. The dissipated energies in the case of composite 

and viscoelastic plies are given as  

 
11 11 22 22 12 1211 22 12

1
( ... )

2 c c c c c c

i i i i i i i

c c c c
V

D dV              (12) 

 
1

( : )
2

i i i

v v
V

D dV      (13) 

where 
cij

  and 
v

  represent, respectively, the anisotropic loss factors in the case of fibre 

composites and the isotropic loss factor of viscoelastic inserts. To save computational cost, we 

assume that the damping properties of both composite and viscoelastic plies are independent 
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of frequency; however this dependence can be easily included, if needed, by using an iterative 

modal strain energy method scheme [38] within a FE framework. 

The commercial FE software ABAQUS standard is used to evaluate the modal loss factors 

associated with the first three vibration modes of the cantilever, conducting a natural frequency 

extraction step; we also calculate the stiffness of the laminated cantilever by performing 

additional quasi-static FE simulations. We consider both in-plane and bending stiffness and at 

every iteration we evaluate the in-plane stiffness in directions x and y (x and y define the plane 

of the cantilever, while z is the through-thickness direction), as well as the bending stiffness of 

the cantilever loaded by a transverse end-force. 

In order to accurately capture, in the simulations, the shearing of the compliant viscoelastic 

layers, the laminate is meshed by 3D solid elements with quadratic shape functions (C3D20). 

A mesh convergence study showed that an element size of 5 x 5 mm in the x,y plane and a 

single element per layer in the through-thickness direction, was sufficiently small to give mesh-

independent results. 

 

4.2. Formulation of the optimisation framework 

We now proceed to define the optimization problem. The objective function of this study is to 

maximize the sum of first N modal loss factors, or to minimise the negative of their sum: 

 

1

m in  ( )

s.t.

( )
( ) 0

( )
( ) 0

( )
( ) 0

( )
( ) 0

N

i

i

i

ref

X X i

X Xref

X

ref

Y Y i

Y Yref

Y

ref

F lex Flex i

F lex Flexref

F lex

ref

i

m ass M assref

x

R R x
g x Tol

R

R R x
g x Tol

R

R R x
g x Tol

R

M x M
g x Tol

M

 





 

 
  



 
  





  





 
  





  (14) 

The constraints
X

g , 
Y

g  and 
Flex

g  limit the variation of the values of in-plane and bending 

laminate stiffness, , ,
X Y Flex

R R R , respect to a reference value; similarly, 
mass

g  expresses a 
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constraint on the maximum allowable variation in mass. The ref subscript refers to a reference 

laminate, which for this study is chosen to be a standard quasi-isotropic composite laminate 

with no viscoelastic interlayers. , ,
X Y Flex

Tol Tol Tol  and 
m ass

Tol  quantify the maximum 

allowable change in the stiffness parameters or structural mass, with respect to the reference 

laminate. In this study all tolerances are fixed to 0.05. 

The proposed GA was implemented in the FE environment using the Python 2.7 scripting 

language, as this allows a programming interface with ABAQUS standard. A candidate 

solution laminate
i

x  with n plies was encoded using real variables as follows: 

  1 1 1 2 2 2
[ , , ], [ , , ], ..., [ , , ]

i n n n
x ID t ID t ID t     (15) 

where each ply contains three design variables: a ply ID, which identifies if a given ply is 

composite or viscoelastic ply, a ply thickness t and a laminate orientation   (this is the angle 

formed by the fibre direction and direction x). The ply ID is an integer with value either 0 or 1 

corresponding to a viscoelastic or composite ply. The ply thickness was allowed to vary 

between 0.125 mm and 1.25 mm with discretization steps of 0.125 mm, which correspond to a 

thickness of a typical prepreg composite ply. The ply orientation was allowed to vary between 

-75 to 90 with increments of 15 degrees. A schematic diagram of the composite laminate 

showing the reference coordinate system and design variables are shown in Figure 3.  

When using the crossover and mutation operators, appropriate rounding is carried out for the 

thickness and orientation variables, so they adhere to the prescribed discretization scheme. In 

total, the optimization problem includes 3n design variables, with no assumption on the 

symmetry of the laminate. We apply the proposed algorithm to the two optimisation problems 

described below; in both cases we use a population size of 30 and crossover and mutation rates 

of 0.85 and 0.05, respectively. For the composite beam problem, the maximum number of 

generations is arbitrary. The optimization was conducted until the value of the objective 

function was observed to remain consistent for at least 50 generations, after which convergence 

was assumed. 
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4.3 Results and discussion 

Case I. We consider a symmetric laminate with predefined locations of the viscoelastic inserts, 

such that the ID variable of each ply is fixed and only the thickness t and orientation   of the 

laminae are considered as design variables. Due to the symmetry conditions, the size of the 

optimization problem reduces to finding thicknesses of three plies and the orientation of two 

FRP plies, resulting in a total of 5 design variables. We choose a configuration [C/V/C/V/C], 

where C represents a composite ply (GFRP or CFRP) and V a viscoelastic insert. The rate of 

convergence of the optimal solution for the case of both GFRP and CFRP is as shown in 

Figure 4; we find that the algorithm starts with infeasible solutions and is able to converge at 

around 2500 NFEs for both GFRP and CFRP hybrid laminates. 

The results for the optimal solution and reference laminate for the case of GFRP hybrid 

laminate are shown in  

 

Table 9; the optimal laminate configuration consists of viscoelastic layers of similar thickness 

as the 0° composite plies and a 90° ply of maximum thickness. The proposed algorithm 

efficiently explores regions close to unfeasible domains, given that the constraint on the mass 

is closely met; the stiffness parameters increase, rather than decreasing, by introduction of the 

viscoelastic layers. The three loss factors, corresponding to the first two bending modes and a 

torsional mode, increase by an order of magnitude compared to the reference laminate. For 

comparison, we also include the results obtained for the optimal configuration but without the 

viscoelastic plies. We find that this configuration has on average 5.5% higher in-plane load 

carrying capacity as well as 17.3% higher overall damping compared to the reference 

configuration, with a 16.6 % reduction in mass. However, when compared to the optimal 

solution with viscoelastic inserts, we observe that the flexural load carrying and damping 

performance of the structure are greatly reduced. The reduction in the flexure stiffness can be 

explained by the fact that in absence of the viscoelastic inserts the stiffer composite plies are 

closer to the neutral axis of the beam. Similar results are obtained for the case of CFRP as given 

in Table 10. We observe that for similar vibration modes (two bending and torsional modes), 

the modal loss factors are higher for the case of CFRP compared to those of GFRP. This is due 

to the higher stiffness mismatch between 0° and 90° CFRP plies which induce higher shear 

deformation in the viscoelastic layer. 
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Table 9: Details of the optimal result found using proposed algorithm for GFRP laminate case 1. 

 Reference Configuration Optimal Solution (GFRP) 

Optimal Solution 

without 

viscoelastic plies 

Orientation (°) [0/45/-45/90]s [0/V/90/V/0] [0/90/0] 

Thickness (mm) [0.375/0.375/0.375/0.375] [0.625/0.5/1.25/0.5/0.625] [0.625/1.25/0.625] 

Mass (g) 11.25 11.795 (4.8%) 9.375 (-16.6%) 

Force X direction (N) 10413 11225 (8.1%) 11240.66 (7.9%) 

Force Y direction (N) 174912 180693 (3%) 180456.53 (3.1%) 

Force flexure (N) 3.58 5.436 (52.7%) 2.637 (-26.3%) 

1
  0.0051 0.06704 0.0038 

2
  0.0094 0.18970 0.0159 

3
  0.0057 0.22362 0.0041 

    

Objective function - 0.02028 -0.48034 - 0.0238 

 

Table 10: Details of the optimal result found using proposed algorithm for CFRP laminate case 1. 

 Reference Configuration Optimal Solution (CFRP) 

Optimal Solution 

without viscoelastic 

plies 

Orientation 

(°) 
[0/45/-45/90]s [0/V/90/V/0] [0/90/0] 

Thickness 

(mm) 
[0.375/0.375/0.375/0.375] [0. 5/0.75/1.125/0.75/0.5] [0. 5/1.125/0.5] 

Mass (g) 11.25 11.6 (3.1%) 7.96 (-29.2%) 

Force X 

direction 

(N) 

46147 45093.45 (-2.3%) 45149.60 (-2.3%) 

Force Y 

direction 

(N) 

789204 805436.85 (2.1%) 805340.93 (2.0%) 

Force 

flexure (N) 
18.45 18.95 (2.7%) 8.83 (-52.1%) 

1
  0.00128 0.24371 0.00084 

2
  0.00381 0.22349 0.0085 

3
  0.00191 0.33424 0.0013 
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Objective 

function 
-0.00700 -0.80145 -0.01064 

 

Case II: We now consider a more general problem: we optimise the damping performance of 

a symmetric laminate with a total of 8 plies, with no predefined location of the viscoelastic 

inserts, giving a total of 12 design variables (4 for each ply id, 4 for each ply thickness and 4 

for each ply orientation). Doubling the number of design variables results in a longer 

convergence time, of around 6000 NFEs for both GFRP and CFRP plies, as shown in Figure 5.  

The optimal and reference laminate configurations for the GFRP laminate are shown in Table 

11. The optimal configuration consists of 0° and 90° plies of maximum thickness to satisfy 

the in-plane stiffness requirements in X and Y directions, respectively. The viscoelastic insert 

is located off centre within the laminate to provide maximum dissipation for the three modes 

analysed here. The constraints ,
X Y

g g  and
mass

g  are met closely, with the mass slightly 

increasing, but most stiffness parameters showing a minor improvement. The optimal solution 

without the viscoelastic layers exhibits similar in-plane stiffness performance with a 15% mass 

reduction, albeit with a 23% reduction in the flexural load carrying capacity compared to the 

reference configuration, similar trends as observed for case 1 in Table 9. However, again the 

modal loss factors are an order of magnitude lower than the optimal configuration with the 

viscoelastic layers.  

Table 12 presents the results of the case 2 for CFRP-viscoelastic plies. We notice that the layup 

orientation of the optimal solution is identical to that obtained for the case of GFRP laminate 

in Table 11. However in this case, the optimal solution consists of viscoelastic layer of minimal 

thickness sandwiched between composite plies of near maximum thickness. This is due to the 

higher axial stiffness mismatch between CFRP and viscoelastic plies, where any addition of 

viscoelastic plies strongly affects the stiffness of the laminate.  Again, the capability of the 

algorithm to search very close to infeasible regions is clearly demonstrated. The optimal 

solution shows an order of magnitude increase in modal loss factors, along with minor increase 

in mass and decrease of the in-plane stiffness in direction y. For the case of optimal solution 

without the viscoelastic plies, it is to be noted that for the case of CFRP, unlike GFRP, there is 

a marked increase in both longitudinal in-plane (15.8%) and flexural load carrying capacity 

(20%) compared to the reference configuration, whilst having same mass.  
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Table 11: Details of the optimal result found using proposed algorithm for GFRP laminate case 2. 

 Reference Configuration Optimal Solution (GFRP) 

Optimal Solution 

without 

viscoelastic plies 

Orientation 

(°) 
[0/45/-45/90]s [0/-45/V/90]s [0/-45/90]s 

Thickness 

(mm) 
[0.875/0.875/0.875/0.875]s [1.25/0.5/0.875/1.25]s [1.25/0.5/1.25]s 

Mass (g) 26.25 26.73(1.8%) 22.25 (-15.2%) 

Force X 

direction 

(N) 

24035.15 24408(1.4%) 24769.14 (-3.1%) 

Force Y 

direction 

(N) 

406049.75 399503(-1.8%) 400361.15 (-1.4%) 

Force 

flexure (N) 
44.73 46.44(3.9%) 34.35 (-23.2%) 

1
  0.00536 0.17038 0.00427 

2
  0.00757 0.23750 0.00662 

3
  0.0113 0.01033 0.01383 

    

Objective 

function 
-0.02012 -0.418209 -0.02472 
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Table 12: Details of the optimal result found using proposed algorithm for CFRP laminate case 2. 

 Reference Configuration Optimal Solution (CFRP) 

Optimal Solution 

without 

viscoelastic plies 

Orientation 

(°) 
[0/45/-45/90]s [0/45/V/90]s [0/45/90]s 

Thickness 

(mm) 
[0.875/0.875/0.875/0.875]s [1.25/1.125/0.125/1.125]s [1.25/1.125/1.125]s 

Mass (g) 26.25 26.86(2.32%) 26.25 (0%) 

Force X 

direction 

(N) 

103855 118928.8 (14.5%) 120363.25 (15.8%) 

Force Y 

direction 

(N) 

1813552 1766393 (-2.6%) 
1770846.2 (-

2.35%) 

Force 

flexure (N) 
225 226.51 (0.70%) 270.8 (20.0%) 

1
  0.00176 0.141292 0.00165 

2
  0.00223 0.217772 0.00187 

3
  0.00628 0.013886 0.00711 

    

Objective 

function 
-0.01027 -0.37295 -0.01063 

 

 

5. Conclusions 

In this paper we explored the application of a new real-coded GA to the optimisation of 

damping in a hybrid composite-viscoelastic laminate. The GA uses the BLX-  crossover 

function with non-uniform mutation, with single individual elitist selection and removal of 

duplicate candidates at every generation. The performance of the proposed GA was found 

similar to that of other state-of-the-art evolutionary algorithms that utilize more complex 

selection and crossover operators, for the case of various non-convex mathematical and 

engineering benchmark problems. 
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The laminate problem is formulated as a constrained optimization problem, with the objective 

to maximize modal damping corresponding to the first three vibration modes, with constraints 

on the maximum mass increase and stiffness degradation. The design variables included the 

location of viscoelastic plies, the ply thickness and the stacking sequence. For the two 

cantilever optimisation problems considered in this study, the optimal solutions suggest that to 

maximise damping the laminate will tend to assume a ‘sandwich’ configuration, with stiff, 

thick plies at the upper and lower faces of the cantilever, and a ‘core’ comprising less stiff plies 

(with respect to the main loading direction) sandwiching viscoelastic layers. By this strategy 

the laminate damping is increased by an order of magnitude, at the expenses of minor decreases 

in stiffness and weight-effectiveness. 

It should be noted that it was not possible to compare the damping response of the proposed 

GA to other state-of-the-art metaheuristic algorithms, due to lack of availability of the source 

code of the other algorithms; the code would need rewriting in Python language to allow for 

communication with the ABAQUS FE package employed in this study. The FE simulations 

require substantial computational time and only a single run of the GA was performed for this 

reason, hence the lack of statistical information. It is therefore impossible, presently, to 

conclude on which algorithm performs best in the optimisation of laminate damping; we leave 

the pursuit of the answer to this question to future studies. 
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Figure 1: Convergence of the objective function of the best candidate solution with number of function evaluations for

case 1-3.
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Figure 2: Convergence of the objective function corresponding to the best candidate solution for the case of engineering

benchmark problems.
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Figure 3: Schematic diagram of the fibre composite-viscoelastic sandwich beam optimization problem. 
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Figure 4: Convergence of the objective function corresponding to the best candidate solution for laminate case 1; (a)

GFRP; (b) CFRP.
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Figure 5: Convergence of the objective function corresponding to the best candidate solution for laminate case 2; (a)

GFRP; (b) CFRP.
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