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Abstract

In this paper, we propose a novel simulation framework for accurately predicting the mechanical response of highly

compacted triaxial braided composites using meso-scale finite element models. Unit cells with a realistic internal

geometry are generated within an automated simulation work-flow. Local volumetric interpenetrations are removed

from a nominal geometry in a fictitious thermal simulation step. A compaction simulation of a single textile layer is

performed to the desired target fibre volume fraction while implicitly considering multiple plies in different nesting

configurations through periodic boundary conditions. For mechanical simulation, a matrix pocket mesh is created from

a reconstruction of the deformed textile. A novel meshing methodology incorporates branching cohesive yarn-to-yarn

and yarn-to matrix interfaces for modelling delamination. The framework was validated by detailed comparison with

experimental results for three braid architectures. The excellent correlation of the internal geometry and the elastic

properties underlines the framework’s potential for future damage modelling.
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1. Introduction

Braiding combines an automated and reproducible process together with an excellent rate of material deposition for

mass-production of high performance structures [1]. Accurately modelling the mechanical response of 2D braided

composites, however, remains a challenging task due to their textile nature, which includes out-of-plane waviness,

interactions between intertwining bundles and nesting of multiple plies in the through-thickness direction. Numerical

modelling using meso-scale finite-element (FE) unit cell models provides a powerful tool to study the material behaviour

of braided composites. Typically, a representative domain of the internal textile geometry is considered, wherein the

constituent reinforcing yarns are explicitly modelled as solid continua. This approach can be applied to a variety of

problems, ranging from determining dry fabric permeability or draping characteristics to the composite mechanical

response, including the prediction of stress-strain fields, macroscopic mechanical properties, and the investigation of

the non-linear behaviour with damage initiation and development.

The fidelity of unit cell models is largely affected by a realistic representation of the underlying textile geometry.

Geometry pre-processors, such as WiseTex [2] or TexGen [3] provide good results for a variety of textile architectures,

but modelling highly compacted triaxial braided composites with global fibre volume fractions (FVFs) of 55 − 60%
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remains challenging. Here, the non-orthogonal interlacing of three in-plane fibre directions yields a complex internal

geometry. After compacting multiple textile layers, the fabric features severely distorted yarns with multiple contact

zones, locally varying intra-yarn FVF and fibre orientations.

Recently, increased research emphasis has been put on extending established textile modelling strategies [4] to more

realistic geometry models [5]. Hivet and Boisse [6] developed a consistent 3D CAD formulation devoid of interpen-

etrations for the forming simulation of 2D woven fabrics in which contact zones between yarns are represented by

shared geometrical faces. Using a hypoelastic material model for the yarns, the compaction and nesting behaviour of

stacked 2D woven fabrics was investigated by [7]. In addition, Grail et al. [8] developed a mesh distortion algorithm

to remove the resulting mesh inconsistency between orthogonal yarns after forming and investigated the mechanical

performance of the resulting composite unit cell. Other researcher have tried to mimic the dry fabric behaviour by

representing each bundle through several chains of one-dimensional finite elements in contact, thus explicitly rendering

the effect of inter-fibre sliding [9, 10]. While results of the investigated 3D woven geometry agree well with microcom-

puted tomography (µCT) scans, a sophisticated post-processing technique is necessary to reconstruct yarn surfaces

and generate a volumetric mesh for further mechanical analysis. Additionally, the multitude of contacts in the model

is accompanied by a high computational expense and limits the degree of model parallelisation. Green et al. [11]

studied the mechanical response of the above mentioned geometry using FE voxel discretisation and found significant

differences between nominal and deformed geometry. Further studies on voxel modelling of textile composites [12, 13]

concluded that although the elastic properties are in good agreement with a conventional mesh discretisation, the

potential for simulating damage initiation and propagation is limited due to artificial stress concentrations induced

by the staircase-like representation of the geometry. Additionally, the inadequate representation of the yarn inter-

faces impedes the possibility to model delamination in the unit cell. Another approach for obtaining a representative

geometry model is the direct reconstruction of image data. Compared to a nominal geometry model, Naouar et al.

[14] obtained an improved correlation with forming experiments of a single layer of dry woven fabric obtained from

µCT images. Faes et al. [15] created a detailed 2D representative volume element (RVE) model of microscopic images

taken from polished specimen edges to study the stress distribution in multiple nested layers. Considering the high

geometrical characterisation effort for a single localised geometry, these inverse modelling approaches provide only

limited capabilities for predicting the mechanical response of multiple textile architectures. In the presented work, the

authors propose a modelling framework for predicting the mechanical response of triaxial braided composites using

mesoscopic FE unit cells with a realistic internal geometry. The general procedure and the outline of the framework

are derived from a list of key modelling requirements condensed from the previously mentioned literature:

1. Increased computational efficiency or modelling detail by

❼ minimisation of the simulation domain through the use of reduced unit cell (rUCs) models and application

of advanced in-plane periodic boundary conditions (PBCs) [16, 17]

❼ implicit consideration of nesting and stacking effects in a single layer model through out-of-plane PBCs

during an explicit compaction simulation to obtain highly compacted textile architectures

2. Accurate representation of the textile geometry, interface and properties without unsound assumptions by

❼ an interpenetration-free geometry model without over-idealisations [18]

❼ an improved representation of the yarn-to-yarn and yarn-to-matrix interface without the need of introducing

and artificial matrix layer [19–22]
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❼ correct representation of the global FVF through a realistic axial and braid intra-yarn FVF [8, 23, 24]

3. High fidelity in the prediction of the non-linear mechanical response by

❼ the capability to capture typical failure modes encountered in the yarns, in the matrix pockets, and at their

respective interface [23]

❼ a high quality structured hexahedral mesh in the yarns for accurate predictions of stress-strain fields suitable

for the application of 3D continuum damage models [25]

❼ a matrix mesh without severely distorted tetrahedral elements

4. High degree of automation in model generation through

❼ scripting for objectivity and easy accessibility to other users

❼ relying on software packages widely used and available within the research community. Throughout this

work, all models are generated and solved in the unified FE package Abaqus controlled by MATLAB and

the Abaqus Python scripting API [26].

This paper is structured as follows: in Section 2, the meso-scale modelling framework is introduced. The four key steps

implemented in the simulation work-flow are outlined. From an initial idealised geometry model, a reduced unit cell

domain is extracted, it’s periodic boundary conditions are derived, and two subsequent process simulation steps are

addressed, including the elimination of volumetric interpenetrations and the explicit compaction to the desired FVF.

A novel algorithm for the generation of the complex matrix pocket mesh is introduced. In Section 3, the numerical

model is validated against experimental data by comparing internal geometry features and elastic properties for three

braid architectures. Finally, the capabilities and limitations of the modelling approach are discussed, highlighting

possible future improvements.

2. Modelling framework

2.1. Roadmap and data flow

The modelling procedure is schematically shown in Fig. 1. Based on a reduced unit cell (rUC) concept to minimise

computational expense [16], a compacted and interpenetration-free composite geometry is created within a three stage

simulation process. In the first step, a nominal textile geometry is constructed from user-defined input parameters,

such as braiding angle, yarn spacing and cross-sectional shape. As a result of the absence of initial contact between

intertwining fibre bundles at this stage, local volumetric interpenetrations are resolved in a subsequent fictitious thermal

step in which contact is established within the entire unit cell. In the subsequent compaction simulation step to the

desired target FVF, flexible membranes which model the support of adjacent layers are added in through-thickness

direction. By applying different sets of periodic boundary conditions to the latter, the compaction of multiple plies in

different stacking and nesting configurations is implicitly considered at at reduced computational cost. This approach

further enables us to render global FVFs of 55 − 60% through intra-yarn FVFs obtained from experiments for the

axial and braid bundles. Finally, the deformed hexahedral yarn mesh is used in a series of boolean operations to create

a tetrahedral matrix pocket mesh with continuous yarn-to-yarn and yarn-to-matrix cohesive interfaces for modelling

delaminations.

By obtaining the final geometry in a step-by-step approach, as opposed to inversely reconstructing geometry directly

from µCT measurements [18], the overall robustness of the unit cell generation algorithm improves drastically for a
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Figure 1: Roadmap and data flow for generating a realistic unit cell model

broader range of textile geometries. Instead of dealing with all the complexity of a compacted textile at once, the task

is subdivided and accounted for by several simulation steps. While the interpenetration correction step takes care of

any potential overlaps in the initial analytical geometry model, mostly independent of the geometry input by the user,

the compaction step further ensures consistency of both the global target and intra-yarn FVFs. The frameworks high

robustness is a key capability in order to cope with the large manufacturing variability in braided composites, where

braiding angles in between 20◦ and 70◦ are commonly encountered across a typical component [27, 28].

2.2. Idealised geometry

In the step 1 of the framework, a surface mesh of the textile is generated from user-defined input parameters. Aside

from the global braiding angle θ and the geometry of axial and bias bundles, including height, width, spacing and FE

mesh size, their intra-yarn FVFs and the global target FVF are defined. Initially, a constant idealised cross-section

is selected. Axial bundles indicated by the subscript a are assumed to be straight and their surface is described by a

modified sinusoidal function

za = ±
ta (1− ξa)

2
cos

(

y′a π

wa

)na

±
ξa ta
2

, → cross-sectional term (1)
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for which the required geometrical and global input parameters are displayed in Fig. 2, where the coordinate system

xa,b,ya,b,za,b describes the master yarn surface and x′

a,b,y
′

a,b,z
′

a,b refers to the area centroid of a cross-section. The

sign change indicates separate equations for the top and bottom surface. In a textile composite, the cross-sectional

shape of a yarn is the product of the local preforming and compaction history and hence varies along its path. The

sinusoidal term with a shape exponent n enables the generation of an adaptive cross-section capable of mimicking

an arbitrary geometry through progressive morphing along its centre-line. Within an optimisation framework, it can

also be used to minimise initial volumetric interpenetrations. Here, we exploit this geometrical degree of freedom to

capture experimentally determined cross-sectional areas of bundles in addition to their width and height, such that

consistency of FVF, fibre count and diameter are achieved. The effect of different magnitudes of the shape exponent n

on the cross-sectional shape and area A for a typical yarn aspect ratio are highlighted in Fig. 3 (a) and (b), respectively.

For n = 1.0, a nearly lenticular shape is reproduced, while the function closely resembles an ellipse with an exponent

of n = 0.5. As n tends to zero, a rectangular cross-section with rounded corners is generated and the maximum area

is achieved. For subsequent mesh quality purposes, the cross-section is truncated at a predefined side thickness of ξ · t.
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Figure 2: Initial geometry representation and model input data

For both the positively (b+) and negatively (b−) oriented braid yarn surfaces, an adapted formulation of the model

developed for biaxial braids [29] is implemented. The total yarn path is assembled by a straight and an undulated

segment. The latter is constructed by superimposing the cross-sectional term by an additional sinusoidal function

responsible for the waviness of amplitude hu = ta + tb:

ztop,bottomb+,b− =±
tb (1− ξb)

2

∣

∣

∣

∣

cos

(

y′b π

wb

)∣

∣

∣

∣

nb

±
ξb tb
2

→ cross-sectional term

+ hu sin

(

(xb − ωb+,b−)π

Lu (1− ζ)

)

. → undulation term

(2)
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Figure 3: (a) Comparison of cross-sectional yarn shapes (b) Effect of shape exponent n on resultant area

The opposite signs in Equation 2 create the top and bottom master yarn surface. The straight undulation segment is

obtained from:

ztop,bottomb+,b− =±
tb (1− ξb)

2

∣

∣

∣

∣

cos

(

y′b π

wb

)
∣

∣

∣

∣

nb

±
ξb tb
2

→ cross-sectional term

+ hu sign

(

sin

(

xb π

Lu (1− ζ)

))

. → straight term

(3)

Both the positive and negative braid master yarn incorporate a braiding angle dependent localised phase shift given

by

ωb+,b− = ±y′b tan
(π

2
− 2 θ

)

cos

(

xb π

Lu

)2

(4)

into the undulation term, the volumetric shape can be analytically distorted while retaining a constant cross-sectional

area. A key advantage of this approach lies in the significant reduction of mutual braid yarn interpenetrations compared

to a fixed cross-section for braiding angles 6= 45◦, as is exemplified for the non-orthogonal bundle intersections of a

[0/±60] braid in Fig. 4 [29]. Each braid yarn is gradually distorted along its transverse direction by linearly increasing

the phase shift. While the distortion term vanishes periodically at the intersection points of axial and braid yarns

for minimised overlapping, it grows quadratically along the yarn path, until a maximum is reached at half of the

wavelength Lu. Due to the closest proximity of braid yarns at their kinematic intersection point, the highest phase

shift is introduced here.

It is worth mentioning that a pure rotation of cross-sections, as is often performed in woven composites [3], has

shown only limited potential for an application in triaxial braids. In many cases, this procedure may reduce the

interference with one entity on one side of a cross-section while causing a severe overlap on the opposite side. Since

no in-plane waviness is considered in the bundles, the transverse position in each cross-section y′a,b is coincident to its

representation within the master yarn ya,b.

From the analytical surface description, an undulated master yarn is constructed in MATLAB through a series of

blended cross-sections. Each cross-section is discretised symmetrically about its y′ and z′ axis with the user-defined

FE mesh size which will later serve as a blueprint for the structured hexahedral unit cell mesh. Furthermore, several

pieces along the master bundle are extracted and assembled in the desired textile pattern. Unlike in a periodic biaxial

braid, the three interlacing fibre directions in a periodic triaxial braid induce a geometrical interdependency of the
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Figure 4: Effect of shape morphing on volumetric interpenetrations for [0/±60] braid

braiding angle θ, the axial yarn spacing sa and the braid yarn spacing sb for a given textile pattern, independent of

the subsequent unit cell size and type. Out of these three parameters, only two can be chosen arbitrary. By satisfying

the geometrical compatibility equation defined as

sb = sa cos (θ) , (5)

a correct representation of cross-over points within a given braid undulation interval is ensured. Apart from restricting

the yarn width to be equal or smaller than its corresponding spacing, there are no limitations on the geometry. In

the last step, the assembled textile is rendered in 3D space. This allows a direct visual inspection of the geometry, an

early detection of interpenetrations by geometric slicing and, if desired, a quick modification of parameters. Finally,

an arbitrary unit cell shape can be selected for extraction.

2.3. Reduced unit cell domain and mesh generation

In order to minimise computational effort, a rUC for triaxial braided composites is derived on the basis of the

equivalence framework for periodic structures [16] in Fig. 5. This approach allows us to reduce the modelling domain

to a quarter of a smallest translational unit cell by exploiting internal symmetries of the textile topology. The width

and height of the rUC are given by

wrUC =
sa
2

; hrUC =
sb

sin (θ)
. (6)

With the rUC dimensions defined and using spline interpolation along the fibre direction, the surface mesh is automat-

ically converted into a solid CAD geometry. For the transverse direction, a linear interpolation based on the preceding

symmetric discretisation of cross-sections is selected. This methodology enables us to retain the spatial information on

predefined mesh seeds through geometric edges. By automatically creating a native Abaqus/CAE format with Python,

any issues arising from external software import, such as imprecise geometry or unconnected faces are avoided. Hence,
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Figure 5: Reduced unit cell with periodic boundaries

a high robustness of the overall procedure is guaranteed. Working on CAD geometry as opposed to discrete meshes

provides many key benefits, such as granting access to volumetric boolean operations that are particularly useful

for mesoscopic modelling. For an arbitrary unit cell selected by the user, an exact CAD representation is obtained,

independent of the angle of intersection between yarns and the periodic boundaries of the unit cell.

In light of the fact that a structured first-order hexahedral mesh provides an accurate solution at significantly less cost

compared to a second-order tetrahedral mesh and the use of linear tetrahedral elements should be avoided as much as

possible due their overly stiff behaviour [26], an automatic hexahedral meshing algorithm was developed for arbitrary

yarn geometries.

A regular mesh is aligned with the fibre direction, as it offers many key advantages. Firstly, for a subsequent application

of smeared crack models [30], crack bands may easily propagate along the fibre direction after strain localisation.

Secondly, as a result of shape morphing, the fibre undulation varies not only along the yarn path, but also within

each cross-section. Nevertheless, the local orientation tensor can be conveniently calculated on an element by element

basis.

The biggest advantage of the presented approach, however, lies in the resulting inherent mesh periodicity caused

by the boundary cut operation on the symmetric yarn discretisation. Geometric edges representing the transversal

mesh seeds are cropped at the unit cell boundaries in a way that a periodic structure of boundary vertices is created,

independent of the unit cell size or its type of periodicity. These anchor points highlighted in Fig. 6 are coincident with

nodal positions and ensure the periodic nature of each boundary discretisation during the following mesh generation.

The outcome of this initial step is depicted in Fig. 6 for a [0/±30] rUC. Now that all periodic boundaries are fully

defined, the nodal positions inside the unit cell can be established. Depending on their relative position, length, and

the number of periodic seed and target anchor points, each yarn is subdivided into logical meshing zones featuring up

to two periodic boundaries. For single-sided periodic zones, e.g. zone 1 and zone 2, an orthogonal partition originating

from each pair of seed anchor points produces a rectangular mesh pattern. Compatibility with the non-orthogonal

boundary is satisfied by inserting single wedge elements per element row. In Fig. 6, zone 3 and 4 feature two periodic

boundaries and hence must be treated separately. These two boundaries are subdivided into a target and a source
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Figure 6: Meshing procedure and structured hexahedral mesh for [0/±30] and [0/±45] rUC, 40 elements per yarn width, 2 elements per
yarn thickness, ξ = 5%

side, with the latter determined by the minimum anchor point number. For each through-thickness pair of vertices

positioned on the source side, a corresponding pair of target vertices is found, such that the aspect ratio of the mesh

is optimised. By partitioning the yarns through a connection of these four corner points, the periodic boundaries

remain unchanged. Finally, a user defined number of element rows is generated in through-thickness direction by a

mere subdivision that preserves the periodic nature of the boundaries.

At the side edges of the bundles, the predefined thickness of ξ · t allows a compatible run-out of the hexahedral mesh.

Here, the insertion of wedge elements was found to be disadvantageous, as they perform poorly in contact when

large forces are introduced over a sharp edge in the fictitious thermal step. Additionally, the mesh is refined in close

proximity to the side edges for optimised contact performance and element aspect ratio. An ideal choice for solid

meshes with a high width to thickness aspect ratio are special purpose continuum elements with incompatible modes

available in the commercial FE solver Abaqus [26]. In addition to the displacement degrees of freedom, incompatible

deformation modes are added internally to improve the bending behaviour and eliminate parasitic shear locking. A

slight increase in computational expense is nullified by the fact that significantly less elements are required in thickness

direction leading in the consequence to an improved aspect ratio. While the meshing procedure was applied to the

case of triaxial braided composites, it can be easily adapted to treat any kind of textile composite.

The periodic response is ensured by applying periodic displacement boundary conditions. Following the nomenclature
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of [16], they can be written for a deformable periodic body including arbitrary symmetries as

u(A)− γTu(Â) = −〈F〉 TxO
Ê (7)

where u denotes the displacement field of equivalent points A and Â at a periodic boundary. The coordinate trans-

formation matrix T and the translation vector xO
Ê define the tessellation of adjacent sub-domains, γ = ±1 describes

their load reversal factor and 〈F〉 is the volume averaged deformation gradient tensor. Considering the rUC shown

in Fig. 5, the PBCs are implemented by enforcing a series of linear constraint equations between displacements of

equivalent nodes on the previously created periodic boundary mesh. Following the procedure described in [16], a set of

master equations for the in-plane boundaries is derived in Table 1 where 〈·〉 denotes a volume-averaged variable. For

edges and vertices sharing more than one periodic boundary, a system of linearly independent constraint equations is

assembled.

Table 1: Master equations for implementation of in-plane periodic boundary conditions

B1











ux(hrUC/2, y, z)

uy(hrUC/2, y, z)

uz(hrUC/2, y, z)











−











ux(−hrUC/2, y, z)

uy(−hrUC/2, y, z)

uz(−hrUC/2, y, z)











=











〈εx〉 hrUC

〈εxy〉 hrUC

0











B2











ux(−x,−wrUC/2, z)

uy(−x,−wrUC/2, z)
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







−
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
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
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
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uy(−x,wrUC/2,−z)

uz(−x,wrUC/2,−z)











+











ux(x,wrUC/2, z)

uy(x,wrUC/2, z)

uz(x,wrUC/2, z)











=











〈εxy〉 wrUC

〈εy〉 wrUC

0











By exploiting the internal material symmetry at the periodic boundary B4 in Table 1, a symmetric undulation path

about the z axis is implied throughout the subsequent simulation steps. In case additional geometrical features or

defects are to be modelled, such as in-plane waviness, their shape and characteristic length must be comply with

the symmetries at the rUC boundaries. In order to satisfy the admissibility of all sub-domains [16], homogenised

in-plane shear 〈εxy〉 strains and out-of-plane shear 〈εxz〉 strains must be applied separately. Since the rUC can only

be extracted at specific positions of the periodic textile, potential ply shifts in an explicit compaction simulation of

multiple layers are restricted to integer multiples of half of the rUC width and height.

2.4. Interpenetration correction and compaction

With the sole geometric constraint that the yarn width cannot exceed its corresponding spacing, the initial idealised

geometry directly represents the user input data. Although the degree of interpenetrations in the case of non-orthogonal

interlacing can be minimised by using the previously described analytical formulation, there is no guarantee that

any combination of input data will always yield an interpenetration free geometry model. In order to achieve a

high robustness of the presented modelling framework for a large variety of textile geometries, potential volumetric

interpenetrations are resolved by means of a fictitious explicit thermal disturbance step before the textile can be
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compacted to the desired FVF. The procedure is highlighted in Fig. 7. Initially, the rUC is subjected to a decrease

in temperature accompanied by volumetric shrinkage of the yarns up to a point where all parts are distinctively

separated. While the latter are subsequently reset to their initial temperature, they are now capable of interacting

with each other by means of activated contact conditions. Considering the gradual expansion, a smooth transition

into a compatible deformed geometric state is achieved. As this is a purely geometrical procedure of contraction and

subsequent expansion, the constitutive law implemented is fictitious. An isotropic dummy material (E = 20GPa,

ν = 0.45) obtained from numerical sensitivity studies ensures an approximately constant bundle volume due to a

quasi-incompressible material response without deteriorating the stable time increment in non-hybrid solid elements.

Orthotropic coefficients of thermal expansion eliminate axial stretching (α1 = 0, α2 = α3 = 1), and a perfectly-plastic

constitutive law with a von Mises yield criterion (σyield = 250MPa) allows local yielding at critical contact locations,

in particular at the convergence point of axial, positive and negative braid yarn depicted in Fig. 7. Here, they are

tightly interlocked, and this clinching effect can give rise to high localised contact penetrations. Aside from such

critical locations, the yield stress is selected at such a level that most of the deformation remains elastic in order

to avoid localised kinks in the yarns. With the applied strains eliminated in the in-plane PBC implementation, the

rUC volume does not change during the simulation. Still, the periodic boundaries can deform freely, and geometrical

coupling effects during the orthotropic contraction and expansion are averted.

(a) (b) (c)

Figure 7: Resolving interpenetrations at the critical yarn convergence point (a) initial state (b) separation after contraction (c) interlock
after expansion

A key feature of the presented work is the subsequent compaction simulation. Instead of explicitly modelling the

forming process using a finite number of fabric layers in combination with a tool, we rely solely on the application of

out-of-plane PBCs during an explicit compaction simulation of a single textile layer to further minimise computational

effort. Flexible membranes of unit thickness which implicitly simulate the support of adjacent layers by means of PBCs

are introduced on the top and bottom of the rUC. With the equivalence framework introduced previously, the effects of

different nesting conditions such as ply shifting or flipping are studied by means of two stacking configurations shown

in their compacted state in Fig. 8. The corresponding out-of-plane master equations are summarised in Table 2. As

the membranes represent the support of adjacent layers, they comprise the material properties of the fibre bundles.

Considering both the top and bottom cell assembled with a rotation of 180◦about the z axis (flipped layer), axial fibre

bundles of adjacent layers are positioned such that they are capable of closing large initial voids originating from the

variable braid thickness. In this case of structural nesting described by [31], sections devoid of axial bundles are filled

by their adjacent layer’s equivalent. As a consequence, a rUC with locally varying thickness is produced. An identical

nesting case can be obtained by incorporating a translational offset of wrUC for the top and bottom rUC. However, a
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specific set of out-of-plane PBCs may not be chosen arbitrarily. Since rotational and mirror symmetries are exploited

simultaneously in B2 and B4, the flipped top and bottom layers in Fig. 8 must be arranged inversely in order to satisfy

the overall compatibility of the periodic structure. In the second nesting case, the plies are additionally shifted in axial

(x) direction by a magnitude of hrUC/2. In contrast to the first nesting case, the braid bundles are now positioned

directly on top of each other. Hence, regions of high packing densities are supplemented by local resin rich areas in

the textile after compaction.

It is important to note that the purpose of the model at this stage is not to represent a dry fabric. The input parameters

shown in Fig. 2 should be chosen to match the finished composite as closely as possible. Since we implicitly consider the

yarn compaction behaviour by measuring the finished product rather than explicitly simulate the physical constitutive

response of the dry fibre bundles, several localised deformation modes, such as yarn flattening, interactions with the

tool, and the compaction force are not directly captured. Instead, we focus on quickly generating compacted unit cells

for mechanical simulations by means of mimicking global compaction phenomena, such that any artificial scaling of

intra-yarn FVF is avoided, The compaction step’s primary mechanism comprises the shape distortion and repositioning

of yarns due to mutual contact during compaction, such that large resin rich regions are closed and direct contact is

established between individual fibre bundles. Finally, a more realistic geometry model of variable thickness enriched

by a multitude of defects and imperfections is obtained, without the need of characterizing the complex mechanical

behaviour of the dry fibre bundles. Nevertheless, the modular approach of the framework further allows for an

additional implementation of physical compaction phenomena, for example by implementing a transversely-isotropic

hypo-elastic constitutive law for the yarns [32, 33].

During the compaction operation, all yarn volumes V and hence intra-yarn FVFs κ remain approximately constant,

enabling a priori determination of the average compacted ply thickness trUC,c to achieve the global target FVF ϕF,rUC:

trUC,c =
Va κa + Vb κb

4ϕF,rUC hrUC wrUC

=
hrUC Aa κa + 2Lu’ Ab κb

2ϕF,rUC hrUC wrUC

(8)

The yarn volumes Va and Vb within the rUC are directly determined from the actual mesh discretisation, meaning

that the target FVF is achieved independently of the element size. Further mesh refinement in order to obtain FVF

convergence, as is commonly performed in voxel models [12], or a discretisation error due to mismatching geometry

and mesh are eliminated. As the overall layer thickness gradually decreases over time, the global fibre volume fraction

increases up to its target value. For a [0/±45] braid under investigation, the process is visualised using an assembly

of several rUCs in Fig. 10. From the initial state at ϕF,rUC = 0.38, the flat membranes are subjected to a prescribed

displacement. Once interacting with the fabric, mutual deformations occur. Upon further compaction, they tend to

locally accommodate to the underlying geometric shapes, thus increasing the contact area and the resulting compaction

pressure. The final stage features a tightly packed structure of deformed bundles in direct contact. Here, the initially

straight axial yarns exhibit a minor degree of crimp accompanied by a reduction in crimp in the braid yarns.

Considering that the assumption of a periodic stacking during the compaction process neglects a potential influence of

rigid tool boundaries on the internal geometry of the outer layers, its applicability should be verified against the actual

manufacturing process and the ply count of the braided component. In case of a severe impact of the tool on the

yarn geometry, as in the case of laminates with few plies manufactured by resin transfer moulding (RTM), an explicit

representation of the full stack and the tool may be necessary in order to capture their mutual mechanical interactions,
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such as flatting of the surface yarns [34]. For higher numbers of braided layers [35], however, or for vacuum infusion

processes with a single-sided flexible membrane [36, 37], the advantages of drastically reducing computational expense

can outweigh the loss in modelling detail.

Table 2: Out-of-plane PBC master equations

Nesting case 1: top ply: flipped, inverted; bottom ply: flipped

B5











ux(−x,−y, trUC/2)

uy(−x,−y, trUC/2)

uz(−x,−y, trUC/2)











+











ux(x, y, trUC/2)

uy(x, y, trUC/2)

uz(x, y, trUC/2)











=











0

0

〈εz〉 trUC











B6











ux(−x,−y, trUC/2)

uy(−x,−y, trUC/2)

uz(−x,−y, trUC/2)











+











ux(x, y,−trUC/2)

uy(x, y,−trUC/2)

−uz(x, y,−trUC/2)











=











0

0

〈εz〉 trUC











Nesting case 2: top ply: flipped, inverted, shifted; bottom ply: flipped, shifted

B5I











ux(−x+ hrUC/2,−y, trUC/2)

uy(−x+ hrUC/2,−y, trUC/2)

uz(−x+ hrUC/2,−y, trUC/2)











+











ux(x, y, trUC/2)

uy(x, y, trUC/2)

uz(x, y, trUC/2)











=











〈εx〉 hrUC/2

〈εxy〉 hrUC/2

〈εz〉 trUC











B5II











ux(−x− hrUC/2,−y, trUC/2)

uy(−x− hrUC/2,−y, trUC/2)

uz(−x− hrUC/2,−y, trUC/2)











+











ux(x, y, trUC/2)

uy(x, y, trUC/2)

uz(x, y, trUC/2)











=











−〈εx〉 hrUC/2

−〈εxy〉 hrUC/2

〈εz〉 trUC











B6I











ux(−x− hrUC/2,−y, trUC/2)

uy(−x− hrUC/2,−y, trUC/2)

uz(−x− hrUC/2,−y, trUC/2)











+











ux(x, y,−trUC/2)

uy(x, y,−trUC/2)

−uz(x, y,−trUC/2)











=











−〈εx〉 hrUC/2

−〈εxy〉 hrUC/2

〈εz〉 trUC











B6II











ux(−x+ hrUC/2,−y, trUC/2)

uy(−x+ hrUC/2,−y, trUC/2)

uz(−x+ hrUC/2,−y, trUC/2)











+











ux(x, y,−trUC/2)

uy(x, y,−trUC/2)

−uz(x, y,−trUC/2)











=











〈εx〉 hrUC/2

〈εxy〉 hrUC/2

〈εz〉 trUC











2.5. Generation of matrix pocket mesh for mechanical simulation

Now that the geometry of the yarns is defined in its final state, the addition of a matrix pocket mesh enables

us to perform mechanical simulations of the composite unit cell. Particularly due to the non-orthogonal bundle

interlacement and for highly compacted braids with their inherent complexity of the matrix pocket geometry, this

step remains a major challenge in meso-FE modelling. Our approach relies on two basic principles: Firstly, an exact

CAD representation of the matrix pocket geometry which serves as a surrogate for a periodic tetrahedral mesh is

constructed through a series of boolean operations. Secondly, a search algorithm detects regions of mutual bundle

contact and subsequently establishes interfacial cohesive zones. As a result, the meshing methodology allows us to

create a coherent three-dimensional cohesive interface with local branching. There is no need for introducing am

artificial matrix layer in between yarns, and poor tetrahedral element quality is avoided.

The overall procedure is explained in detail in Fig. 11. Initially, the deformed yarn mesh is tessellated in close proximity

of the rUC with respect to its symmetries at the periodic boundaries, such that an assembly of multiple unit cells is

constructed. Using spline interpolation in axial and transverse direction, a solid CAD representation of the textile is

reconstructed based on the deformed nodal coordinates over multiple rUCs, as is shown in Fig. 11 (a) for a [0/±60]

configuration. Owing to the actual mesh discretisation and small interpenetrations due to the previous penalty contact

formulation, a direct boolean operation between two contacting yarns is not adequate. Independent of their mesh size,

such a procedure would generate an ill-conditioned geometry features, including voids, self-intersecting surfaces or
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Figure 8: Out-of-plane PBCs considering nesting cases in unshifted and shifted configuration
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Figure 9: Interdependency of in-plane and out-of-plane PBCs for nesting case 1 satisfying periodic compatibility

very sharp angles that are impractical to mesh [8]. With the definition of a critical contact cut-off thickness tcrit,

the presented algorithm automatically detects three-dimensional contact surfaces for every possible yarn interaction

by performing geometric boolean operations on slightly thickened dummy bundles. For the envelopes of the resulting

contact domains shown in Fig. 12, the distance between the CAD representation of two adjacent bundles is equal to

the predefined cut-off thickness. If we move progressively to the centre of the contact area, the proximity decreases

until both bodies locally interpenetrate each other. In case the geometric proximity between two potential contact

partners exceeds the specified distance, the boolean operation yields a body of zero volume, indicating that no direct

yarn-to-yarn contact is required. Now that the boundaries are defined, their automatic extraction is followed by the

construction of the contact bodies as shown in Fig. 11 (b). Since this process extends over neighbouring unit cells,

the assembled contact surfaces intrude into the simulation domain in such a way that all periodicity requirements are

automatically satisfied at the boundaries. Now, the determination of the matrix pocket geometry is straightforward.

At first, the contact bodies are removed from the rUC volume enclosed by the flexible membranes, then the yarns
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ϕF,rUC = 0.38 ϕF,rUC = 0.45 ϕF,rUC = 0.55

xy
z

Figure 10: Evolution of global fibre volume fraction ϕF,rUC during compaction simulation for nesting case 1

are subtracted from the remainder to obtain the final CAD geometry highlighted in Fig. 11 (c). With the critical

contact regions eliminated, the default meshing algorithm is now capable of generating a high quality solid tetrahedral

mesh. To satisfy the periodicity requirements, a two-dimensional mesh is initially created at predefined seed faces at

the boundaries. By applying the coordinate transformation matrices, this source mesh seed is transformed into its

corresponding target morphology and then copied accordingly. The top and bottom surfaces of the completed mesh

highlighted in Fig. 11 (d) are assembled from the deformed nodal coordinates of the flexible membranes which retain

their periodicity during the compaction process.

For the purpose of modelling delamination between the yarns and the bulk resin, a layer of three-dimensional cohesive

elements is extruded on top of the tetrahedral matrix mesh, much like an interior coating. This thin layer shares

coincident nodes with the tetrahedral matrix elements on one side. Subsequently, the direct yarn-to-yarn cohesive

interface zones are added to the global mesh. After cropping their geometries to the rUC boundaries, these regions

are discretised with cohesive elements separately. However, due to consistent mesh seed sizes, the coordinates of nodes

created at the outer circumference of each yarn-to-yarn contact domain match those of the adjacent yarn-to-matrix

cohesive zone. Along this transition line shown in Fig. 11 (f), a single yarn-to-yarn cohesive interface branches into

two diverging yarn-to-matrix interfaces with underlying tetrahedral elements. Here, both cohesive zones are connected

by merging the outer yarn-to-yarn interface nodes with the respective upper and lower partner nodes of adjacent yarn-

to-matrix cohesive elements, such that a seamless connection is achieved. The resulting smooth interfacial transition

enables us to capture propagation and branching of cohesive cracks. While the cohesive elements share nodes with the

underlying tetrahedral mesh on their inner side, their outer surfaces displayed in Fig. 11 (e) must be coupled to the

yarns in order to ensure displacement continuity across the interface. Due the inherent geometrical incompatibility

of hexahedral and tetrahedral element types and the absence of pyramidal elements in Abaqus (6.14) [26], the mesh

coupling is achieved by means of a tie formulation. As opposed to the approach described in [22], however, no artificial

matrix layer between the yarns is necessary, and the periodic nature of the matrix mesh eliminates any need for an

additional interpolation at the boundaries. For the tie implementation, the solver specific surface-to-surface formulation

guarantees a smooth and accurate stress distribution at all interfaces by enforcing constraints in an integral sense over

a finite region, rather than at discrete nodes as in the traditional node-to-surface approach [26]. The inner nodes of the

cohesive elements are excluded from the PBC definition at the periodic boundaries. Otherwise, over-constraints would

either issue an input error or lead to a significant increase in simulation run time, depending on whether the implicit

or explicit solver is used. Here, periodicity of the nodal displacements is implicitly enforced through the master role

of adjacent yarn nodes in the tie formulation.

The effect of the presented methodology on the interfacial stress distribution is shown in Fig. 13 for an axial yarn

of the [0/±45] braid loaded in transverse direction. Owing to the stiffness discontinuity at the interface transition
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line, where a single cohesive element branches into a stack of tetrahedral matrix elements covered by a thin cohesive

zone on both sides, these regions develop minor stress concentrations compared to their undisturbed surroundings.

However, the overall distribution of the traction components is preserved well. Given the low intensity of the artificial

stress concentrations at the interface junction, it can be concluded that the overall stress distribution in the interface

is captured well by the meshing methodology. Similar to the yarn meshing procedure, this methodology may be

easily adapted to a variety of textile composites, allowing for a more realistic representation of branching interfaces

without the need of introducing a dummy matrix mesh of finite thickness in between contacting yarns. In addition,

the proposed methodology offers several advantages:

❼ since the contact search algorithm reconstructs a CAD geometry based on spline interpolation of the deformed

nodal coordinates, the resulting contact search is less sensitive to the mesh density due to the inherent geometrical

smoothing effect

❼ no modifications or distortions of the yarn mesh are required

❼ by working on CAD geometry, error prone nodal search algorithms are avoided

(a)

rUC domain

(b)
Yarn-to-matrix cohesive interface

(c)

(d) (e) (f)

Yarn-to-yarn cohesive interface Interface transition line

tcrit

rUC domain

Solid matrix mesh

x

z

y

Figure 11: Algorithm for generation of matrix pockets mesh: (a) CAD reconstruction of compacted yarn mesh, (b) determination of direct
yarn-to-yarn direct contact zones, (c) CAD model of matrix pockets, (d) final mesh of matrix pockets, (e) cohesive zones highlighted and
(f) detailed view of a transition zone of the yarn-to-yarn and yarn-to-matrix cohesive mesh

3. Validation and application

With the simulation framework defined, we apply our methodology to predict the elastic properties of triaxial braided

composites. The materials in this study are manufactured from Toho-Tenax HTS40 F13 12K (800 tex) untwisted

yarns for both the axial and braid direction in combination with a Hexcel HexFlow RTM6 epoxy resin. In order to
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Figure 12: Determination of yarn-to-yarn contact regions and extraction of domain cut-off boundaries

demonstrate the framework, various unit cells are generated for braiding angles ranging from 25◦ to 65◦ in increments

of 5◦. For validation purposes, tensile tests of straight-sided specimens with a total of four layers are performed in

accordance with ASTM D3039 [38]. Three braid architectures, with a nominal braiding angle of 30◦, 45◦ and 60◦

are each tested in their longitudinal (x), transverse (y) and braid yarn direction (1F ). Details on the manufacturing

process and the elastic properties are summarised in [37].

Based on a mesh refinement study, an average element seed size of 70µm is selected for all unit cells. Given the

geometrical properties of the bundles under investigation, this discretisation yields approximately 40 hexahedral ele-

ments with incompatible modes over the yarn width and two elements in the thickness direction, with a total of 7036

elements for the [0/±30], 9120 for the [0/±45] and 9114 for the [0/±60] configuration. Depending on the braiding

angle, roughly 15,000 and 20,000 cohesive elements ensure coupling with the matrix pockets that contain in between

40,000 to 50,000 tetrahedral elements. For all unit cells, a bundle side thickness ratio of ξa = ξb = 5% is selected.

3.1. Internal geometry

Ensuring that the unit cell models render a realistic representation of the compacted internal textile geometry is

key for accurate predictions of the mechanical response. A detailed reconstruction of the actual geometry from µCT

measurements enables us to identify key geometrical features and compare them to the model. These parameters

comprise the yarn centre-line, thickness, width, spacing, twist, and the intra-yarn FVF calculated from the cross-

sectional area for both the axial and braid fibre bundles. In addition, we can study the periodic nature of the internal

geometry, evaluate its spatial variability and asses the applicability of a unit cell modelling approach to the problem.

For each textile architecture, samples of 15× 15× 3mm3 were cut from the resin-infused plates in close proximity to

the coupons used for the mechanical tests and scanned with a GE Phoenix/X-Ray Nanotom 180 at a voxel size of

9µm3 at the University of Applied Sciences Upper Austria. Since an automatic segmentation of resin-infused bundles

poses significant challenges [39], a semi-automatic segmentation strategy was developed. Initially, the raw CT data

is imported into a Matlab script and sliced using three planes, with each of them corresponding to a cut orthogonal

to one of the in-plane fibre directions. Within the resulting stacks of CT images, solely the cross-sections normal to
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Figure 13: Effect of the proposed yarn-to-yarn and yarn-to-matrix cohesive meshing methodology on the interfacial stress distribution of
half of an axial yarn of a [0/±45] braid loaded in transverse direction

the cut plane are segmented manually by a predefined number of points that form a closed polygon line at the bundle

perimeter. This procedure is repeated until all cross-sections along each image stack are processed. To minimise

the manual input during this cumbersome procedure, existing points are automatically copied to subsequent images

where only minor adjustments are required. As the data is progressively visualised and saved, changes to any of the

cross-sections can be made at any time via a graphical user interface. A minimum of statistical data is captured along

each yarn path by limiting the segmentation to entities that extend at least over a single undulation interval inside

the measurement volume. In the presented study, each cross-section is manually discretised with 20 measurement

points. The distance between two consecutive cross-sections is 180µm for the braid and 540µm for the axial direction.

In total, the segmentation of the [0/±30] material involves 37900 points, the [0/±45] 43100 points and the [0/±60]

braid 40460 points. Finally, the data set is converted into a 3D CAD geometry using spline interpolation in both

axial and transverse direction for easy inspection of geometrical features and comparison with the unit cell models.

For the generation of the unit cell models at arbitrary braiding angles, we apply a quadratic interpolation function on

the basis of the averaged µCT geometry that is summarised in Table 3. The global FVF measurements ϕF,rUC were

obtained using acid digestion in accordance with ASTM D3171 [40].

Table 3: Averaged µCT geometry used for the generation of the unit cell models

Global Axial yarns Braid yarns

θ ϕF,rUC sa wa ta κa Aa na sb wb tb κb Ab nb

(deg) (%) (µm) (µm) (µm) (%) (mm2) (µm) (µm) (µm) (%) (mm2)
30 56± 0.9 3354± 123 2122± 131 452± 90 66± 6 0.674± 0.029 0.76 3052± 583 2695± 267 326± 59 70± 5 0.660± 0.048 0.58
45 55± 0.8 4232± 118 2340± 157 440± 43 66± 4 0.726± 0.041 0.74 3047± 288 2716± 187 327± 50 70± 6 0.661± 0.054 0.60
60 56± 0.2 6003± 259 2888± 203 350± 45 63± 5 0.742± 0.059 0.63 2799± 233 2767± 175 317± 59 70± 5 0.663± 0.060 0.56

The centre-lines shown in Fig. 14 for the [0/±45] braid are extracted from the geometrical area centroid of consec-

utive cross-sections along the axial and braid fibre undulation path. After segmentation, the individual curves are

superimposed and averaged locally to allow a comparison with the compacted unit cell geometry. For the braid yarns
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displayed in Fig. 14 (a), the periodic nature of the fibre waviness is clearly evident. When following individual bundle

loci, we encounter greater deviations from the experimental average, particularly in close proximity to regions of peak

amplitude. Here, the nesting configuration during compaction plays a key role in the formation of the overall internal

geometry. When braid bundles of equal orientation are positioned on top of each other, the mutual interaction can

flatten their undulation path over a finite contact length. During compaction and subsequent resin infusion, they

merge into a bundle devoid of a visible interface in this region. If we analyse each of the centre-lines separately, we

observe a certain degree of geometric variability induced by manufacturing process chain, much like superimposed high

frequency noise. However, as soon as a critical number of yarn loci is combined in a statistical analysis, the average

path follows a clear periodic trend with a comparable standard deviation bandwidth. If the first nesting case is consid-

ered in the simulations, the average experimental shape is captured very well. Here, the positioning of the braid yarns

in the thickness direction promotes nesting into cavities that form in regions where the bundles progressively thin out

along their width. Due to the lack of a supporting yarn at about half of the distance between the point of maximum

and zero undulation amplitude, the braid yarns are compacted inwards and the yarn path exhibits a slight kink. In

the second nesting case, the centre-lines of the braid yarns are arranged directly on top of each other. Using coincident

geometric input parameters, they develop an undulation plateau with a slightly smaller amplitude at the intersection

with an axial bundle. At this point, the yarn are tightly packed. Hence, large compaction stresses translate into yarn

flattening and hence a higher degree of geometrical defects in the textile architecture.

The experimental findings in Fig. 14 (b) confirm the existence of additional fibre waviness in the axial bundles, although

at a significantly reduced amplitude compared to the bias direction. The individual experimental curves are shifted to

achieve an optimum correlation in their first positive undulation interval. Here, the average undulation path and the

simulations with both nesting cases match extremely well in terms of wavelength and amplitude. As we progressively

move away from the correlation point, fundamental changes in the shape of the centre-lines are accompanied by a

sky-rocketing standard deviation. These findings indicate that the degree of fibre waviness in the axial yarns is driven

by local bending effects dominated by the nesting configuration. The simulated nesting cases were found to have

only minor impact on the yarn path of the unit cell. During the compaction, the initially straight axial bundles are

subjected to local bending from their entangling braid counterparts, independent of the applied out-of-plane boundary

conditions. While we cannot identify a clear periodic trend of axial fibre waviness in the experiments, the unit cell

model captures this geometrical phenomenon in terms of amplitude and wavelength and hence also renders possible

effects on the mechanical response.

In addition to the centre-lines, the textile architecture is characterised by a variety of geometrical parameters. As

exemplarily displayed in Fig. 15 for the braid bundles of the [0/±45] configuration, the yarn width wb, thickness tb,

intra-yarn FVF κb and twist angle αb are analysed along the average experimental undulation path. Assuming an

undamaged 12k bundle and a fibre diameter of 7µm, the intra-yarn FVF is obtained for each cross-section by relating

the total filament area to the total segmented area. Each cross-section and the corresponding yarn thickness are

calculated orthogonal to the local yarn path direction.

When we investigate the evolution of the average braid yarn width wb along its undulation path z′b in Fig. 15 (a), we

discover a periodic increase each time it converges to its peak amplitude. Looking at the distribution of the average

thickness tb in Fig. 15 (b) at the same time, an opposite trend is clearly visible. This change in aspect ratio is further

accompanied by a repeating growth of the intra-yarn FVF in Fig. 15 (c) at coincident positions along the undulation

path. These finding underline the impact of the compaction process on the bundle geometry. In regions where yarns of
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Figure 14: Comparison of experimental and simulated yarn path of the [0/±45] braid for (a) braid yarns (b) axial yarns (see Fig. 16 for

braid yarn cross-sections at positions 1 to 5 )

adjacent plies are in direct contact, their cross-sections are flattened under the applied pressure. In these regions where

the elevated intra-yarn FVF levels are consistent with a tight fibre packing, dry contacting filaments are subjected to

a transverse movement and the bundles are subsequently widened. Recalling that the primary focus of the simulation

framework is to construct a defect enriched geometry model based on average geometrical parameters of the finished

composite, only minor variations of the geometrical parameters are rendered in the unit cell. While the bundle width

is largely unaffected by the compaction simulation and its stacking configuration, the second nesting case produces a

slight variation in the thickness and intra-yarn FVF distribution. Again, with bias bundles of adjacent plies positioned

directly on top of each other, a flattening mechanism similar to the one found in the µCT experiments is introduced.

The distortion of fibre bundles along their undulation path is hard to quantify, especially since the cross-sections

typically do not exhibit uniform twisting. For a more detailed comparison of the experimental and the simulated

topology, we introduce a twist angle α derived from the orientation of the principal axes of the second area moment

tensor defined as:

α =
1

2
arctan

(

2 Iy’z’
Iy’ − Iz’

)

, (9)

where the tensor components Iy’, Iz’ and Iy’z’ with respect to the yarn cross-sectional area centroid are obtained from
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numerical integration and the sign of α follows a right-handed coordinate system. When looking at the distortion of

positively oriented braid yarns in Fig. 15 (d), we notice a periodic response characteristic of their waviness. At the

point of maximum path amplitude, they are located directly on top of their axial counterparts. During the transition

into the downwards undulation segment, the mutual contact induces a gradual distortion in the braid bundles as they

are forced to accommodate to the underlying cross-section. This phenomenon is consistent with the first sinusoidal

peak of the twist angle αb. At the point of maximum out-of-plane curvature, the fibres further pass through the

gap of two neighbouring longitudinal bundles. Owing to the absence of an interacting axial bundle at this point,

the overall distortion is minimised. Although the bundle now continues on the opposite side of the textile, a second

peak is created by the identical kinematics near the successive intertwining region. Further along the centre-line, the

mechanism is continuously repeated, with the exception that the orientation of the twist angle changes sign in the

upwards path segment. The unit cell model captures this phenomenon accurately. Consistent with the higher overall

distortion, the second nesting predicts a sharper shape of the twist angle distribution.

A detailed comparison of the experimental and the simulated yarn cross-sections in both braid directions is shown

in Fig. 16 at different locations along the centre-lines indicated in Fig. 14 (a). Superposition of the cross-sections is

achieved by shifting each area centroid to the origin of the local coordinate system. The first virtual cut 1 is made

halfway between the point of maximum and zero undulation amplitude, where the simulated yarn shapes experience

the largest degree of twisting. While the magnitude and the opposing twist directions in the positive and negative

braid bundles agree well with the µCT measurements, we observe considerable scatter in the latter, further indicating

that their deformation during compaction is sensitive to the local nesting configuration. Moving further along the

centre-line, the second cut 2 investigates the point of maximum undulation amplitude. Here, the braid yarns are

pressed against their axial counterparts as a result of direct contact with bundles from neighbouring layers. While the

unshifted stacking configuration in nesting case 2 produces a flattened top and bottom surface, additional bending is

introduced across the yarn width as a result of the shifted locations of braid bundles through-the-thickness in nesting

case 1. The resultant asymmetric shape correlates well with the characteristic deformation mode of the actual cross-

sections at this location, similar to the mechanism found in woven composites [18]. Contrarily to the previous cases,

we observe mostly undistorted yarn-shapes and a low scatter near the point of zero undulation amplitude 3 , where

the fibres exhibit their maximum crimp angle. As a bundle crosses from one side of the textile to the other, the degree

of interaction with adjacent plies and subsequent deformation are minimised. Position 4 coincides with the first

cut in the upwards undulation segment and repeats the characteristic deformation pattern, although the sign of twist

deformation changes. In the final cross-section 5 slightly before the peak amplitude, the gradual development of the

yarn flattening mechanism is again encountered in opposite direction.

In Fig. 17, the evolution of the average ply thickness trUC,c is outlined as a function of the global FVF ϕF,rUC. At the

beginning of the compaction simulation, all three braid architectures comprise a global FVF of approximately 37%.

During their initial interaction, the bundles reposition freely and fill up large voids while the overall thickness drops

considerately.

Close to the target FVF, the mutual contacts multiply. Due to the inherent growth in compaction resistance, the

slope of the thickness reduction declines consistently. In comparison to the experimental data obtained from calliper

measurements of the plate thickness, the simulated target values agree well. To validate the quasi-incompressible

material behaviour during the compaction simulation, the total change in yarn volume is investigated in Fig. 18. For

configurations involving the first nesting case, a negligible volumetric change is encountered. More pronounced but
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Figure 15: Comparison of experimental and simulated yarn architecture of the [0/±45] braid (a) bundle width wb (b) bundle thickness tb
(c) intra-yarn FVF κb, (d) twist angle αb

still in an acceptable range, the second nesting case induces a total volumetric shrinkage of approximately 0.5%. Here,

the direct contact of two overlapping braid bundles from adjacent plies produces excessive contact pressure and local

distortion.

In order to assess the sensitivity of the compacted geometry and the resulting stress fields with respect to the mesh

density, a mesh refinement study was performed. A total of four unit cells of the same [0/±45] architecture in the first

nesting configuration were created with the properties of each mesh highlighted in Table 4. In addition to varying

the input element seed size lmesh from its nominal value of 70µm (medium) to 45µm (fine) and 105µm (coarse),

the number of elements in the yarn through-thickness direction was doubled for the nominal case. As the meshing

algorithm in the resin pockets adjusts for this modification at the truncated yarn sides, both medium mesh topologies

feature a slightly different discretisation of the matrix pockets. For the side edges of the bundles, a thickness ratio of

ξ = 5% was selected for all unit cells throughout this work.

The effect of the different mesh sizes on the compacted yarn path is investigated in Fig. 19 along a single undulation

interval (a) at the top position and (b) at the side of the braid bundles. We quantify the relative positional error by

comparing the nodal coordinates of each mesh with respect to the finest discretisation. Following the nodal coordinates

at the top position of the bundle along a single undulation interval in Fig. 19 (a), we can identify two characteristic

peaks in the geometrical error, with the larger one coinciding to the location of direct contact with an entangled axial

bundle close to the minimum path locus. Although the identical phenomenon is again encountered at the top of the

undulation path, its severity is dampened by larger distance to the output location. While the shape of the yarn path

deviation is mostly independent of the mesh, the relative error reduces gradually as a function of the mesh refinement.
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Figure 16: Comparison of experimental and simulated cross-sections for positively (b+) and negatively (b−) oriented braid yarns of the

[0/±45] braid at position 1 to 5

A significantly better convergence, however, is achieved by increasing the element count in the yarn thickness direction,

as local deformations at the mutual contact zones can be captured more accurately. The same tendency can be found

at the yarn side locus in Fig. 19 (b). While still having the highest error magnitude, the path predicted by the coarse

mesh changes sign compared to all other configurations near the point of zero undulation amplitude, where axial and

braid yarns interlock. Given the low overall sensitivity of the compacted geometry with respect to the mesh density,

it can be concluded that the compacted textile architecture can be reliably reproduced with the given normal mesh

size of lmesh = 70µm.

Table 4: Mesh statistics of the [0/±45] braid refinement study (ξa = ξb = 5%)

Mesh density Fine Medium Medium Coarse

lmesh (µm) 45 70 70 105
Elements per yarn thickness 4 4 2 2
Elements in yarns (hex) 39512 17328 8664 4064
Elements in yarns (wedge) 1392 912 456 312
Elements in matrix pockets (tet) 118187 41776 40787 17016
Elements (3D cohesive) 44295 16564 16234 8977
Elements total 203386 76580 66141 30369

Nodes in yarns 52410 23665 14199 6927
Nodes in matrix pockets 59339 22649 22175 11796
Nodes total 111749 46314 36374 18723

3.2. Elastic properties

After updating the local fibre orientations for the compacted yarns, elastic properties can be readily obtained through

the application of principal load cases and subsequent homogenisation. The material properties of the linear elastic
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transversely isotropic bundles summarised in Table 5 are calculated from the fibre and matrix properties given in

Table 6 using Chamis’ micromechanical equations [41] at the intra-yarn FVFs κ from Table 3. For a rUC subjected to

a sequence of four successive linear load cases (Ex, Ey, Ez, Gxy) combined in a single simulation, the model is solved

by Abaqus/Implicit (6.14) within seconds on a standard computer.

Table 5: Elastic properties of the transversely isotropic yarns for characteristic intra-yarn FVFs

κ E1 E2 = E3 G12 = G13 ν12 = ν13 ν23
(%) (MPa) (MPa) (MPa)

63 133369 8660 4364 0.322 0.388
66 139583 9087 4705 0.320 0.391
70 147867 9709 5236 0.319 0.395

The unit cell predictions are compared to an analytical model, where the out-of-plane waviness of the braid yarns is

taken into account by averaging their local elasticity tensor Cb(xb) along the idealised yarn path discussed in Section

2.2 [42]. Assuming iso-strain conditions along half of the wavelength Lu, the homogenised elasticity tensor 〈Cb〉 for

the braid bundles is calculated from

〈Cb〉 =
1

Lu

∫ Lu

0

Cb(xb) dxb (10)

For triaxial braided composites, the macroscopic elastic properties are obtained by constructing an equivalent laminate
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Figure 19: Relative yarn path error along a single undulation interval (a) at the top position and (b) at the side of the braid bundles

using classical lamination theory (CLT). The axial yarns, the braid yarns and the pure resin pockets are virtually

separated and each of the constituents is then modelled either with a single unidirectional ply in the respective fibre

direction or represented by an isotropic layer, as is the case for the matrix pockets. The relative ply thicknesses ta/t

and tb/t in the laminate model correspond to the volume fractions of axial and braid yarn content Va/V and Vb/V

Table 6: Elastic properties for fibre and resin [36]

Fibre: Toho-Tenax HTS40 F13 (12K, µF,yarn = 800 tex) Resin: RTM6

E1f E2f G12f ν12f ν23f ρF Em νm
(MPa) (MPa) (MPa) (g/cm3) (MPa)

210000 18000 21800 0.305 0.450 1.76 2890 0.35

25



and vary as a function of the braiding angle θ and the yarn properties. From a 2D unit cell, they are related by:

Va

V
=

ta
t
=

ϕF

κa

(

1 +
2

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

)

Vb

V
=

tb
t

=
ϕF

κb

(

1 +
2

cos(θ)

ρF,a µF,yarn,b

ρF,b µF,yarn,a

)

Vm

V
=

tm
t

= 1−
Va + Vb

V
= 1−

ta + tb
t

,

(11)

where the linear yarn density µF,yarn and the fibre density ρF for the coincident axial and braid yarns are given in

Table 6 and the intra-yarn and global FVFs are taken from Table 3.

For the longitudinal (x), transverse (y) and braid yarn direction (1F ), the predicted elastic moduli are compared to

their experimental equivalent as a function of the braiding angle θ in Fig. 20 (a). Error bars indicate one standard

deviation for a total of six specimen tested. While the properties of the first two principal load directions (x and y) are

directly calculated from homogenisation of the unit cell, the modulus in braid fibre direction (1F ) is obtained by an

additional rotation of the macroscopic in-plane stiffness tensor. Consequently, this orientation implicitly incorporates

deviations of the shear modulus Gxy and the Poisson’s ratio νxy.

Due to the higher degree of overall bundle distortion after compaction, the second nesting case consistently yields the

lower stiffness among the two stacking configurations. However, the magnitude of this knock-down is comparably small,

since the localised defects are smeared over a finite volume during the subsequent homogenisation step. Nonetheless,

the effect on the non-linear response including failure is expected to be significantly larger [43, 44]. For the principal

directions, the unit cell predictions match the experiments exceptionally well, with a maximum relative error of 3.4%

in the case of a [0/±30] braid loaded in x direction. A similar trend is encountered in case the applied load is aligned

with the braid fibre direction 1F , with the exception that the stiffness of the [0/±60] architecture is severely over-

predicted with a relative error of 10.5%. While this is the most pronounced case, the predictions generally exceed the

experimental results. For minimised computational effort, we assume an infinite stack of plies in through-thickness

direction and hence over-estimate their out-of-plane support in comparison to an actual braided laminate [43]. If

we now directly introduce the load in the fibre direction of the heavily undulating braid bundles, local out-of-plane

deformations develop as a result of non-zero bend-extension coupling terms accompanied by a degradation of the

effective modulus E1F.

Despite its relative simplicity, the elastic properties predicted by the analytical model match those of the unit cell

very well. Clearly, the small improvements do not justify the extensive modelling effort and the computational cost

associated with meso-scale unit cells. In case sufficient data on the detailed textile architecture is available, analytical

models are well suited to predict the stiffness of the braided composites [45–47]. However, they do not provide localised

stress-strain fields necessary for subsequent modelling of damage propagation.

Fig. 20 (b) completes the comparison of the elastic properties by a comprehensive summary of the in-plane Poisson’s

ratios. An excessive Poisson’s effect in axial direction is encountered in the [0/±30] material. Here, the discrepancy of

the longitudinal and transverse stiffness is most prominent. As the braiding angle increases, this mismatch becomes less

pronounced, with a tendency towards a balanced Poisson’s effect in the [0/±60] architecture. Up to a braiding angle

of 45◦, experiments and predictions differ by a magnitude comparable to the elastic moduli, with the sole exception of
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Figure 20: Comparison of homogenised experimental and predicted (a) elastic moduli (b) Poisson’s ratios as a function of the braiding
angle θ

the 1F direction. The corresponding jump of the relative error may be attributed to ν converging to a value close to

zero. In the [0/±60] braid, the axial experiments are predicted well by the unit cell model. Contrarily, the remaining

load cases exhibit a relative error up to 15%, possibly originating from a larger mismatch between the unit cell and

the actual internal geometry of the composite. Again, the differences between the unit cell and the stiffness averaging

model predictions are small.

After having successfully demonstrated a minimal sensitivity of the simulated yarn path to the mesh cases under

investigation, the preceding refinement study is extended to the stress fields inside the yarns. Coincident with the

positions in Fig. 19, the stress distribution in the local braid fibre direction σ1b is assessed as a result of the unit

cell being subjected to a homogenised shear stress 〈τxy〉 in a linear analysis. For each mesh, the nominal stress is

calculated at the centre and the side nodal position of the actual yarn path by extrapolation of the closest integration

points. Hence, we benchmark the net effect of mesh refinement along the complete simulation chain, including both

the geometric and actual mesh convergence. Fig. 21 (a) compares the linear stress concentration factor σ1b/ 〈τxy〉 for

different mesh densities along the top path of the braid bundles. Aside from the periodic pattern being represented

well in all configurations, the element count in the yarn through-thickness direction outweighs the effect of global

mesh refinement, particularly with regards to the peak amplitudes. When the bundle thickness is discretised with four

elements, a global mesh refinement leads to a negligible change in the stress distribution compared to the medium

case. Contrarily to the top position, the effect of a denser global mesh is more pronounced along the side of a braid

bundle as shown in Fig. 21 (b). While both medium mesh cases yield comparable peak amplitudes here, the stress

distribution along the yarn path tends to experience less noise and more distinct peaks with increasing refinement, as

local bending effects are reproduced more accurately. Similar to the convergence behaviour during compaction and

considering the additional computational expense of a fine mesh, a global mesh size of of lmesh = 70µm is deemed

sufficient to capture local stresses accurately.
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Figure 21: Effect of mesh density on the stress distribution in fibre direction along a single undulation interval (a) at the top position and
(b) at the side of the braid bundles

4. Conclusion

In this paper, a novel simulation framework for accurate predictions of the the mechanical response of triaxial braided

composites was proposed. Realistic FE unit cell models were generated through an automated bottom-up simulation

work-flow: local volumetric interpenetrations present in the initial stage of the model were resolved in a fictitious

thermal step. Subsequently, a compaction simulation was performed to the desired target fibre volume fraction using

flexible membranes for improved computational efficiency. Special out-of-plane periodic boundary conditions allow an

implicit consideration of the compaction of multiple braid plies in different nesting configurations which enabled us

to capture global FVFs of 55− 60% while using intra-yarn fibre volume fractions obtained from experiments. In the

last step, a tetrahedral matrix pocket mesh was created from a CAD reconstruction of the deformed textile. A novel

meshing methodology was developed to incorporate branching cohesive yarn-to-yarn and yarn-to matrix interfaces

without the need of introducing an artificial matrix mesh of finite thickness. The framework was validated by detailed

comparison with experimental results. First, the unit cell geometry was compared to the detailed reconstruction of

the actual bundle geometry from µCT measurements for three braid architectures, with a nominal braiding angle of

30◦, 45◦ and 60◦. Subsequently, the predictive capability of the approach and its robustness were demonstrated by

successfully generating models in an automatic fashion for braiding angles ranging from 25◦ to 65◦. These models were
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successfully used to predict the elastic properties obtained experimentally. The excellent correlation of experiments

and unit cell predictions underlines the framework’s potential for future damage modelling.
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