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Abstract 
 

 

The chemistries of aviation fuels are invariably complex due to large 

hydrocarbon molecules. There are also large variations for a given fuel type. 

Furthermore, flow timescales encountered in high performance propulsion devices 

increasingly lead to difficulties associated with kinetically controlled or influenced 

phenomena such as flame stability, extinction and re-light. Current indications also 

suggest that fuel sources will become significantly more diverse in the future and 

may, for example, encompass Fischer-Tropsch and/or bio-derived components. The 

combustion properties of such fuels can vary significantly from those in current use 

and this work outlines a route towards surrogate fuel mechanisms of sufficient 

accuracy and generality to support the development of practical devices.  

A reaction class based route to the derivation of detailed chemical kinetic 

mechanisms for alkyl-substituted aromatics is outlined and applied to the 

cyclopentadiene/indene, benzene/naphthalene, toluene/1-methyl naphthalene 

systems. Work has also been extended to the n-propyl benzene system as well. 

These reaction classes were applied to model the oxidation of the above fuels with 

encouraging results. Important reaction channels during oxidation were identified 

and specifically, the methyl groups on aromatic rings have been identified as 

important in the context of radical scavenging. Furthermore, 1-methyl naphthalene 

may also be used to modulate sooting tendencies in aviation and Diesel surrogates. 

Results obtained from chemical kinetic modelling of cyclopentadiene, toluene, n-

propyl benzene, naphthalene and 1-methyl naphthalene oxidation in shock tubes, 

jet-stirred and plug-flow reactors at various sets of representative stoichiometries 

and temperatures are reported.  
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Chapter 1  

 

Introduction 

 
 

1.1 Background 

 

The increase in global fuel consumption over the last century has resulted in 

major socioeconomic and environmental challenges. Transportation and, to an 

increased extent, aviation, is one of the major fuel consumption sectors. This leads 

to the need for new engines with new operating systems that will comply with the 

environmental and energy saving directives. The new aircraft engines are expected 

to perform with maximum combustion efficiency as well as providing stability and 

low emissions. Aromatic hydrocarbons and, to a much lesser extent, polycyclic 

aromatic hydrocarbons (PAH) are major components of current aviation fuels. 

It is already known that aromatic compounds, apart from being responsible for 

soot and pollutant formation, also have carcinogenic and mutagenic properties [1-3]. 

They also contribute to the detection of aircrafts due to the associated infrared 

signals produced. The aromatic components of aviation fuels can also reduce the life 

cycle of the combustor as it increases the radiative heat transfer to the combustor 

walls [4]. Hence, research needs to be focussed on the energy saving aspect, on 

pollution reduction and on the optimisation of the combustor behaviour through 

good knowledge of the chemistry of aromatic fuel components.  

The term “aviation fuel” generally implies a fuel whose energy can be used 

for propulsive purposes. A typical aviation fuel such as kerosene consists of various 

classes of hydrocarbon compounds, which exhibit different behaviours in respect of 

refining processes and crude oil feedstocks [5]. The chemical composition of typical 

aviation fuels can be found in Figure 1.1. 

An aviation fuel can be determined by operational need and used either for 

commercial or military service.  The fuels were developed to have good combustion 

characteristics combined with good physical properties such as low temperature 
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fluidity. The blends need to consist of storable hydrocarbon compounds. In the 

1940’s, the U.S. Air Force used ‘wide-cut’ fuel, which was available in large 

quantities at that time. Wide-cut fuels were highly volatile and were replaced by 

kerosene fuels in the 1970’s (Jet A, Jet A-1 and JP-8) for safety reasons [6].  

However, the complexity of the jet fuels does not allow direct simulation of 

their combustion behaviour. They contain thousands of chemical compounds and 

their composition also alters with time. Recent scientific advances regarding 

chemical modelling have provided important insight that is complementary to 

experimental studies. Such detailed fuel modelling provides a very important tool in 

understanding and controlling soot growth and predicting the overall behaviour of 

the fuel. It is a necessity to represent fuel mixtures with compositions functionally 

similar to commercial aviation fuels. These mixtures are called surrogates and they 

can be characterized accurately. With such models, it is also feasible to study the 

combustion process in connection with the chemical composition and the fuel 

properties [6]. In addition to that, the use of a surrogate fuel with a controlled 

composition facilitates the development of computational codes for combustor 

design. 

A surrogate aviation fuel can reproduce physical and chemical properties of a 

commercial aviation fuel such as heat capacity, enthalpy, viscosity, rates of reaction 

of specific ignition and oxidation behaviours. Surrogate mixtures can be reproduced 

computationally and experimentally. A physical surrogate is a mixture that can 

reproduce physical properties such as density, heat capacity, volatility and a 

chemical surrogate is a mixture with a chemical class composition that matches the 

one of the real jet fuel and can reproduce chemical properties such as reaction rates, 

ignition and sooting behaviour. A surrogate mixture that has the same chemical and 

physical properties as the real fuel is characterized as a comprehensive surrogate 

and can be expected to match diverse aspects of the real fuel behaviour such the 

evaporation process and the sooting tendency [7]. 

The current work evaluates the use of a reaction class based concept for the 

generation of chemical mechanisms for surrogate fuels. In the past, reaction classes 

for higher aromatics, such as naphthalene and indene, have been defined based on 

similarities with the oxidation of cyclopentadiene and benzene. These were 

subsequently applied to model the oxidation of toluene, 1-methyl naphthalene, 

naphthalene and n-propyl benzene with encouraging results. The current work 
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extends past efforts related to the aforementioned systems. The compounds have 

been identified as important in the context of a range of surrogate fuel compositions 

from gasoline to aviation fuels. Specifically, the methyl groups, or the alkyl 

branches in general, on aromatic rings (e.g. xylenes and tri-methyl benzenes) have 

been identified as important in the context of ignition properties and 1-methyl 

naphthalene may also be used to modulate sooting tendencies in aviation and Diesel 

surrogates. These systems therefore constitute a natural starting point for the 

evaluation of the current approach. 

 

 

 

 

 

 

Figure 1.1 Chemical composition of typical aviation fuels [8] 
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1.2 Types and Chemistries of Aviation Fuels 

 

Aviation fuel is a mixture of hydrocarbons whose size is restricted by 

properties such as the freezing point and distillation. A kerosene type jet fuel 

comprises two major classes; the paraffins and the aromatics. The molecules 

typically feature 7 to 16 carbon atoms. Paraffin compounds are defined as all the 

saturated compounds with a straight chain, branched or cyclic structures and are the 

dominant components of the fuel and comprise around 80% of the total.  Aromatics 

constitute the other major class of chemical compounds. Aromatics promote soot 

formation and are thus potentially responsible for the reduction of the combustor 

life due to the increased radiative transfer to the combustor wall. Hence, large 

concentrations are not desirable and a typical aviation fuel comprises 10-20% of 

aromatic compounds per volume. Aromaticity is defined by the planar ring structure 

of the molecule where the C-C bonds are shared equally with all the atoms around 

the ring and each carbon atom has a p orbital. Although the aromatic molecules 

exhibit high volumetric heating values, they result in low heat release per unit 

weight due to the lower H/C ratios compared to saturated compounds.  

The evaluation of the burning quality of an aviation fuel, which depends on 

the chemical class composition, may be determined via UV spectrophotometric 

analysis of the concentration of the naphthalene compounds and a chromatographic 

analysis of the total aromatics. An example of a chromatograph of a fuel sample is 

shown in Figure 1.2. The development of these chemical analysis methods 

facilitates the measurement and identification of the intermediates and products of 

the oxidation and hence the influence of temperature and pressure effects. 

The composition of the jet fuel is restricted by the boiling point and freezing 

point of the chemical components. As the carbon number increases, the boiling 

point increases when the compounds belong to the same class. But if the compounds 

with the same carbon number belong to different classes, then the boiling point 

increases by going from paraffins to cycloparaffins and then aromatics.  Similarly, 

the freezing point increases with the carbon number with the difference that 

aromatics and normal paraffins freeze at higher temperatures than other 

hydrocarbons due to their shape that facilitates packing into crystalline structure. 
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Another critical factor is fuel density. The energy content per unit weight 

increases from aromatics to cycloparaffins and then paraffins whereas the energy 

content per unit volume increases in the reverse order.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Chromatogram of a fuel sample. a) naphthalene, b) methyl naphthalene, c) ethyl 
naphthalenes, d) C3-naphthalenes, e) diphenylamine, f) C4-naphthalenes, g) phenanthrene,  
h) anthracene, i) methyl anthracene [9] 
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1.3 Mechanism Construction and Status  

 

A detailed chemical mechanism comprises a series of elementary chemical reaction 

steps that involve chemical species that describe oxidation and pyrolytic processes 

associated with thermochemical and transport property data. The construction of 

such a mechanism can start from the simplest hydrogen/oxygen submechanism 

involving common sub-elements of more complex molecules that compose an 

aviation fuel [10]. The scheme can be expanded with the implementation of new 

steps and species with increasing molecular weight and complexity. The 

hierarchical detailed chemical mechanism construction approach is illustrated in 

Figure 1.3.   

 
 

 
Figure 1.3 Hierarchical construction of a detailed chemical mechanism for jet fuels 
 
 

The construction of a chemical mechanism is a very complex task that can be 

simplified with the identification of principal reaction pathways and reaction classes 

combined with major intermediate species that are formed through oxidation or 

pyrolysis of higher hydrocarbon molecules. Some reactions have been studied 

experimentally under combustion conditions and can be implemented directly in the 

relevant mechanism. These reactions can also be utilised as template reaction steps 

for the estimation of relevant chemical routes and reaction rates of higher 
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hydrocarbons by making adjustments based on molecular properties. Moreover, 

when experimental data for reaction rates are not available, other ways of 

determining new steps and reaction rates are through the application of collision 

theory [11], quantum mechanical methods [12] and semi-empirical methods [13].  

Once the model is constructed, it has to be evaluated under as wide  a range of 

conditions as possible, including data from shock tubes, jet-stirred reactors and plug 

flow reactors for a variety of temperatures, pressures and equivalence ratios. 

 Reaction rates that have been determined with the aforementioned methods 

are utilised in the present work. The reaction steps are reversible with the reverse 

rates computed from equilibrium constants. The thermodynamic data utilised in the 

present work were obtained from Burcat and Ruscic [14] and Robinson [15]. The 

detailed chemical mechanism and the thermodynamic data contained in the present 

work are presented in Table A.1 (see Appendix A) and Table B.3 (see Appendix B). 

The enthalpy of formation and entropy computed at 298 K for each specie are 

presented in Table B.2 of Appendix B in combination with the molecular structure 

of each species.  

 

1.4 Mathematical Description of Reactors 

 

The developed detailed mechanism was evaluated for a wide range of 

combustion conditions featuring different devices such as shock tubes, jet-stirred 

reactors and flow reactors. The mathematical description of these reactors is 

presented below. A detailed discussion regarding the governing equations is 

available in the literature [16-19]. 
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1.4.1 Spatially Homogeneous Reactors 

 

Devices such as shock tubes, jet-stirred reactors and plug flow reactors or 

more specifically the princeton turbulent flow reactor utilized for chemical 

modelling in this study are assumed to take into account kinetic and thermodynamic 

data while neglecting heat and transport effects. When spatial transport effects are 

removed, the conservation equations become a set of ordinary differential equations 

for the species concentrations and temperature with time as the single independent 

variable.  

Plug flow reactors are characterized by high flow rates with negligible 

circulation where the complete and rapid mixing between the fuel and the oxidizer 

occurs at the inlet end of the reactor. Combustion typically takes place at 

atmospheric pressure and in a temperature range of 900-1300 K. The governing 

equations for spatially homogenous adiabatic reactors and isobaric flow are shown 

below:  

 

Conservation of Species    ρ dYk

dt
= RkM k    (1.1) 

 

Conservation of Enthalpy    ρ dh

dt
= − hkRkM k

k=1

nsp

∑   (1.2) 

 

Equation of State     P =
ρRT

M
   (1.3) 

 

Mean molecular weight     M = xkM k
k=1

nsp

∑    (1.4) 
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−
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∏ kr
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∏
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
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
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In the above equations, ρ indicates the fluid density, h is the mixture enthalpy, 

hk is the specific enthalpy of the species k, Yk is the mass fraction and Mk the molar 
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mass fraction of species k respectively, R is the universal gas constant, T is the 

temperature of the mixture, M is the mean molecular weight, xk is the mole fraction 

of species k and Rk is the species formation source term. In the species source term 

equation Ξ is the stoichiometric coefficient for species in reaction j, Φ is the molar 

concentration of species i, kf
j and kr

j are the forward and reverse rate constants for 

reaction j and ξ is the concentration dependence for species i in reaction j. 

 Plug flow reactors provide information on species profiles over time and are 

very useful in determining important details of a reaction mechanism. They are 

excellent tools for the examination of combustion phenomena as they examine the 

pure steady state temperature dependent chemistry from the effects that are 

characteristic of flames such as diffusive and radiative heat transfer, turbulence and 

wall quenching that complicate the understanding of the kinetic data [20]. In this 

study, data obtained from the princeton turbulent flow reactor were utilized and 

compared against predictions that were computed under the relevant set of 

conditions. The test section of a princeton turbulent flow reactor is cylindrical, 

wide-diameter (10 cm) quartz tube of 1 meter length that is heater-insulated (see 

Figure 1.4). Through this tube, a dilute mixture of fuel vapor and oxygen flow are 

injected in a hot nitrogen carrier gas. A stainless steel, water-cooled sampling probe 

measures the local reaction temperature and collects gas samples along the 

centerline of the quartz test section and by performing gas chromatography and 

mass spectroscopy the concentrations of species are measured and unknown species 

are also identified when necessary [21, 22]. However, the vapor pressures of some 

oxygenated species are low and are responsible for some condensation effects on 

the sampling probe that lead to significant scatter in the species profiles analysed 

through gas chromatography [22]. According to Shaddix et al. [22] and Butler and 

Glassman [23], the uncertainty in the calibration factors for aliphatic species is 

approximately ±5%, for monocyclic aromatics is ±10% and ±20% for larger 

aromatics. Added to this, ±5% is the uncertainty for the oxygen measurement and 

10% in the nominal equivalence ratio. Moreover, there is also the uncertainty of the 

thermocouple temperature which lies at the range of 10 K. Due to velocity profile 

variabilities there is an uncertainty of ±15% [23].  

Plug flow reactors and shock tubes are computed using a numerical method 

based on the work of Jones and Lindstedt [17]. The equations relevant to shock 
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tubes are identical to those solved by a flow reactor. In a shock tube simulation it is 

assumed that the pressure remains constant after the arrival of the shock wave. 

Shock tube temperatures typically vary from 1000 K to 3000 K and provide 

significant information for high temperature reaction rates. For a plug-flow reactor, 

if the data are reported as a function of distance, the trivial transformation (d/dt) = 

u(d/dx) is used, where u is the flow velocity and x is the distance along the reactor. 

Plug-flow reactors vary spatially but are steady in time, whereas shock tubes are 

considered to be homogeneous in space but varying in time [10].  

 

 

 

Figure 1.4 The princeton turbulent flow reactor [24] 
 
 

Shock tubes were utilized and described in earlier studies of Burcat [25], 

Vasudevan et al. [26], Rao and Skinner [27], Braun-Unkhoff et al. [28], Davidson et 

al. [29]. Shock tubes are considered as extremely simple experimental devices and a 

schematic representation adopted from Tsang and Lifshitz [30] illustrates the 

physical process that occurs in a shock tube and can be seen in Figure 1.5. 

According to Belford and Strehlow [31], the  shock tubes can be used for a wide 
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range of temperatures (500 K to 12.000 K) and smal testing times (10-6 to 10-3 sec). 

The shock tube is considered as a long tube devided in two sections of different 

pressures by a membrane that dissapears instantaneously. This leads to the 

generation of a shock wave to the low pressure section and a temperature increase 

on the test gas due to collisions. The incident shock wave after reflection from the 

end wall, produces a further increase at the temperature of the gas.  The use of the 

shock tube is mostly preferred from kineticists as it is easier to deduce kinetic data, 

rate coefficients at high temperatures and also monitor the molecule or radical 

concentrations during the short reaction time that occurs in a shock tube [32].  

Measurements within the shock tube are performed using atomic resonance 

absorption spectroscopy (ARAS), ring dye laser spectroscopy and laser photolysis. 

In the study of Belford and Strehlow [31], the significance of nonidealities in shock 

tube behaviour was discussed and it was found that this happens due to the 

formation of a boundary layer and its interactions. This is responsible for 

misenterpretation of the measurements. Errors in the reaction temperature can lead 

to erroneous rate constants at a factor of 1.25 uncertainty at room temperature and 

atmospheric chemistry [31, 33]. Uncertainties of the order of ±3% were estimated in 

the study of Vasudevan et al. [26] who measured the concentrations of the OH 

radical under shock tube conditions using ring dye laser. 

  

Figure 1.5 Single pulse shock tube wave diagram and pressure trace. Shock waves are 
discontinuities through the gas. The contact surface separates the driver and the shocked 
gas. The image is adopted from Tsand and Lifshitz [30]. 
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Jet stirred reactors are computed using a numerical method based on the work 

of Jones and Lindstedt [17]. Stirred reactors operate under highly turbulent 

conditions to achieve spatial homogeneity within the reactor. The mixing is 

assumed instantaneous. The mixing region is spatially homogeneous and diffusion 

phenomena can be neglected. Jet stirred reactors generally operate at temperature 

below 1200 K and in a pressure range of 1-20 atm. The governing equations for a 

jet stirred reactor are shown below:  

 

Conservation of Species   
dYk

dt
=

1

τ
Y*

k − Yk( )+
RkM k

ρ
  (1.6) 

 

Conservation of Enthalpy 
dh

dt
=

1

τ
Y*

k h*
k − hk( )

k=1

nsp

∑ −
1

ρ
hkRkM k

k=1

nsp

∑  (1.7) 

 

Nominal Residence Time  τ =
ρVR

m
    (1.8) 

 

In the above equations the superscript * indicates the inlet conditions, τ is the 

nominal residence time, VR is the reactor volume and m is the mass flow rate 

through the reactor. 

Jet stirred reactors were described on previous studies of Dagaut et al. [34] 

and more recent studies of Mati et al. [35]. According to these studies, the reactor is 

made from fused silica sphere of 42 mm diameter with 4 nozzles of 1mm diameter 

for the admission of the reactants. The fuel is diluted with a nitrogen flow in order 

to avoid the pyrolysis defore the injection into the reactor. In order to reduce heat 

release and the temperature gradient, all the reactants are preheated before the 

injection inside the reactor. The fuel vapors and oxygen are diluted by a flow of 

nitrogen  and mixed at the entrance of the injectors. The pressure is constant in time. 

Samples of the reacting mixtures are obtained at steady temperature and residence 

time with a low-pressure fuse-silica sonic probe. Gas chromatography and mass 

spectrometry are utilized for the analysis of the samples. Jet stirred reactors result in 

small uncertainties in the measurements obtained in different experiments. More 

specifically, the measurements performed by Mati et al. [35] in jet stirred reactor, 

show a good repeatability of carbon balance of the range of ±10%. A good 
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repeatability of the measurements and the carbon balance was also achieved in the 

study of Dagaut et al. [36] for the oxidation of n-propyl benzene.  

 

 

 

 

 

Figure 1.6 Jet stirred reactor. Image adopted from Dagaut et al. [34] A, external tube; B, 
convergent cone; C, injectors; D, spherical quartz reactor; E, divergent cone; F, samplling 
sonic probe and thermocouple probe; G, capillary surrounded by the preheating resistor 
[34].   
 
 
 
 
 

1.5 Present Contribution 

 

The current work evaluates the use of a reaction class based concept for the 

generation of chemical mechanisms for surrogate fuels. Reaction classes for higher 

aromatics, such as naphthalene and indene, have been defined based on similarities 

with the oxidation of cyclopentadiene and benzene. The developed mechanisms 

were subsequently applied to model the oxidation of toluene, a-methyl naphthalene 

and n-propyl benzene with encouraging results. The current work extends past 

efforts related to the aforementioned systems. The compounds have been identified 

as important in the context of a range of surrogate fuel compositions from gasoline 

to aviation fuels. Specifically, the methyl groups on aromatic rings (e.g. xylenes and 

tri-methyl benzenes) have been identified as important in the context of radical 

scavenging and a-methyl naphthalene may be used to modulate sooting tendencies 
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in aviation and Diesel surrogates. These systems therefore constitute a natural 

starting point for the evaluation of the current approach. 

 

 

1.6 Thesis Outline 

 
The structure of the thesis reflects the complexity of the aviation fuels by 

developing the fuel components starting from simpler constituents. Chapter 2 

describes basic chemical rate laws and the equations that govern the chemical 

model. Moreover, it is shown that gas phase reactions are grouped into different 

categories depending on radical generation or elimination processes.  

In Chapter 3 the combustion of cyclopentadiene is discussed. Pyrolysis and 

oxidation cases at various fuel mixture equivalence ratios are presented and 

analysed. Intermediate species concentrations are predicted and presented. New 

reaction rates are applied and evaluated. Important reaction steps are identified and 

problematic pathways are also highlighted.  

In Chapter 4 the combustion of toluene is discussed.  Toluene is the simplest 

alkylated benzene compound. The pyrolysis and oxidation of toluene under shock 

tube conditions is presented. Principal paths are identified and reaction rate updates 

are applied. Reaction classes are also identified and constitute the framework for the 

development of larger alkylated aromatic compounds.  

In Chapter 5 the combustion of n-propyl benzene is discussed. An updated 

chemical mechanism based on toluene and propane analogies is tested, analysed and 

presented. The oxidation of n-propyl benzene is performed under jet-stirred reactor 

conditions for low and high pressures and concentration profiles of important 

species are presented. The toluene and propane analogies are evaluated and 

extended reaction classes are identified that can be applied on larger alkyl 

substituted aromatic compounds which form part of real and surrogate fuel 

formulations.  

In Chapter 6 the combustion of naphthalene is discussed. Naphthalene 

represents the first step in the aromatic growth process. A naphthalene model based 

on benzene analogies is further developed, updated and validated under plug flow 
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reactor conditions. Chemical pathways that play significant role in the aromatic 

growth are identified.  

In Chapter 7 the combustion of 1-methyl naphthalene is discussed. 1-Methyl 

naphthalene is the bicyclic analog of toluene and its chemical model is based on 

structural similarities with the latter. The model for the oxidation of 1-methyl 

naphthalene is tested over a range of jet-stirred reactor conditions. A variety of fuel 

mixture equivalence ratios are also tested under plug flow reactor conditions. Main 

decomposition channels are identified and important reaction routes for the 

formation of significant intermediate species are also presented.  

In Chapter 8, the conclusions of the present work are presented, highlighting 

the critical improvements or discrepancies encountered with the current models. 

Suggestions for future work are also made.  
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Chapter 2  

 
 

Chemical Kinetics 

 
 
 
 

When two or more molecules collide and produce one or more new chemical 

species then a chemical reaction has occurred. In order for a chemical reaction to 

occur, an energy that is equal or greater than the energy needed for the breakage of 

bonds and the formation of new bonds is required. The energy differs according to 

the nature of the atoms or molecules and their stereochemical structure. The basic 

laws of chemical kinetics as applied in the current work are discussed briefly below. 

 

 

2.1 Rate Laws and Orders of Reactions 

 
The rate of the reaction depends on a variety of factors such as temperature, 

pressure, concentration of the reactants and products and whether a catalyst is 

present or not. The changes in the rates of reaction due to these factors can provide 

an important insight into what might happen on the molecular level. The definition 

of the rate law for a reaction is the time rate of change in concentration of one of the 

reactants or products [37]. For a general case a chemical reaction described by the 

equation  

 

 →aA + bB + cC + ...  dD + eE + fF + ...,k    (2. 1) 
 

where A, B, C, …indicate the species involved in the reaction, the reaction rate that  

describes the consumption of the species A can be expressed as  
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           = − aA
A B C ....

cbd
k

dt
     (2. 2) 

 

where a, b, c, … are reaction orders with respect to the species A, B, C, … and k is 

the rate coefficient of the reaction. The overall reaction order is defined by the sum 

of all the exponents. In some cases, the concentrations of some of the species are in 

excess and do not change noticeably (e.g. [B] and [C]) during the reaction. Hence, 

an effective rate coefficient can be produced by their concentrations and the rate 

coefficient kexp = k[B] b[C]c and obtain the following simplified equation  

 

 

α     = − exp

A
A

d
k

dt
       (2. 3) 

 

For first order reactions α = 1 and equation (2. 3) yields a first-order 

behaviour  
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= − −exp
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A
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where [A]0 denotes the initial concentration of A and [A]t the concentration at time t.  

For t0 = 0 and exponentiating both sides of equation (2. 4)  

 

 
A t( )  = A 0( )exp −kt( )        (2. 5) 

 

For second order (α = 2) and third order (α = 3)  reactions the equations 

describing the temporal behaviour is shown below  
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A logarithmic plot of the concentrations against time leads to linear 

dependences with a slope -kexp for the first order reactions, similarly a plot of 1/[A] t 
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against time for second order reactions leads to linear dependencies with a slope 

kexp. 

 

2.2 Temperature Dependence of Rate Constants 

 

The temperature dependency constitutes another factor that provides a basis 

for understanding reactions on a molecular level. Rate coefficients for chemical 

reactions often depend strongly and in a nonlinear way on the temperature. 

Arrhenius [38] described this relationship with a formula subsequently called the 

Arrhenius Rate Law, 

 

 
k = Aexp −

Eα

RT






       (2. 8) 

 
 

where A is a temperature independent constant or else called pre-exponential factor 

and Eα is the activation energy. In some cases, a modified temperature dependence 

of the pre-exponential factor, provides a better fit to experimental data of 

computations. 

 

k = ATb exp −
Eα

RT






       (2. 9) 

 

The pre-exponential factor A is proportional to the number of collisions per unit 

volume and shows the fraction of collisions that have enough energy to proceed to 

reaction. The activation energy Eα defines the energy barrier that the reactant 

species need to overcome in order to produce new species (products). It actually 

represents the bond energies in the molecule but it can also be smaller if new bonds 

are formed simultaneously with the breaking of old bonds.  
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2.3 Pressure Dependence of Rate Constants 

 

For some dissociation and recombination reactions it is apparent that there is a 

pressure dependency which shows that these steps are not elementary. The steps 

follow a sequence of reactions that in some cases can be described with the 

Lindemann model [39], which states that a unimolecular decomposition is likely to 

occur when there is enough energy in the molecule to break the bond. So it is 

essential to add energy to the molecule through collisions with other molecules (M). 

The collisions may achieve the required excitation of the molecular vibrations so  

that the molecule can proceed to decomposition or it may deactivate the molecule 

through a second collision. 

 

 →← *a

-a
A + M  A  + M

k

k
    (2. 10) 

 →*A   P (products)uk     (2. 11) 

 

where A* denotes the excited molecule and ka, k-a  and ku are the rate coefficients 

of activation, deactivation and unimolecular reactions respectively. If the rate laws 

are applied to the above reactions 

 

d A* 
dt

= ka A[ ] M[ ]− k−a A*  M[ ]− ku A*      (2. 12) 

d P[ ]
dt

= ku A*          (2. 13) 

 

Since A* is an intermediate in the mechanism it is useful to assume that A* is 

in steady state so the net rate equation of A* production (2. 12) is equal to zero. 

Hence, by solving the rate equations for A* and P the following equation is 

obtained. 

 

         
  

=
+

a

-a

A MP

M
u

u

k kd
dt k k

      (2. 14) 
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Under low-pressure conditions, the concentration of M is very low so the 

production rate becomes second order and takes into account both the species A and 

the collision partner. Under  high-pressure conditions, the concentration of M is 

large so that the production rate becomes first order. 

 

a

P
A M

d
k

dt

        =        (2. 15) 

∞
         = =a

-a

P
A Au

d k k
k

dt k
        (2. 16) 

 

2.4 Thermodynamics and Reaction Kinetics  

 

All reaction in the mechanism are reversible and the equilibrium is dynamic. 

The reaction rates in both forward and reverse directions are equal at equilibrium 

and for a typical reaction (2. 17) the following applies: 

 

A + B = C + D         (2. 17) 

 
The relationships that apply at equilibrium are 
 

     

     
= =

A B
1

C D
f eqf eq

r r eqeq

kr

r k
       (2. 18) 

 

     

     
=

C D

A B
eqf eq

r eqeq

k

k
       (2. 19) 

 

=f
eq

r

k
K

k
        (2. 20) 

 

where rf and rr are the rates of the forward and reverse reactions. The subscript eq 

referes to equilibrium and Keq is the equilibrium constant. Some times it is easier to 
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measure the rate in one direction and then, via the equilibrium constant, calculate 

the value of the reverse rate (2. 22). This may be the case for recombination 

reactions (2. 21) 

 

 A + A = B         (2. 21) 
 

 − =2
2

eqK
k

k
        (2. 22) 

 

In order to calculate the reverse reaction rate, it is necessary to know Keq. The 

equilibrium constant can be converted using Keq=Kp/p
ο(RT)-1, where po is a standard 

pressure, and the standard Gibbs energy change ∆Go  

 

∆Go = −RT ln
K p

po
       (2. 23) 

∆Go = ∆H o − T∆So        (2. 24) 

 

it is obtained that  

 

k−2 = k2RT( )exp
−∆HT

RT

o





exp

∆So
T

R







    (2. 25) 

 

where ∆Ho
T and ∆So

T are the standard enthalpy and entropy of reaction at 

temperature T.  

 

2.5 Radical Reactions 

 

Many gas-phase reactions proceed via a so-called chain mechanism where the 

links of the chain, the elementary reactions, are repeated over and over again. Such 

a mechanism involves free radical carriers, molecules, or atoms with one or more 

unpaired electrons and it consists of at least three steps [37]. The first is the 

initiation step that creates the radicals that carry the chain. This step is generally 

slow and usually involves thermal or photochemical dissociations of a relatively 
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stable reactant to form free radicals. Then, the mechanism proceeds via the chain 

propagation step, where a reactive species reacts with a stable species forming 

another reactive species, the chain branching step, where a reactive species reacts 

with a stable species forming two reactive species, and the termination step where 

the chain is broken by consuming the chain carrying radicals. An example of the 

above steps is shown in Table 2.1 which depicts some of the important H2/O2 

reaction steps. 

 

 

 

 Reaction Reaction Type 

1 H2   +  O2       = 2OH Initiation 

2 OH  +  H2       = H + H2O Chain Propagation 

3 H     +  O2     = OH + O Chain Branching 

4 
H + O2  + M  = HO2 + M 

HO2   + OH  = H2O + O2 
Termination 

      Table 2.1 Reaction steps in the H2/O2 mechanism 
 

 

2.6 Collision Theory 

 

In chemical kinetics it is well known that some reactions occur faster or 

slower than others and some have strong temperature dependencies while some do 

not have any. Hence, it is necessary to understand the physical meaning and 

magnitude of the assigned rate coefficient and its temperature dependence. As 

mentioned earlier, it is possible to estimate reaction rates using the collision theory.  

According to this theory [40], it is assumed that the molecules are hard and 

structureless spheres. There is no interaction between them until they come into 

contact. Their dimensions remain the same even after collision and the closest 

distance equals to the sum of their radii. In order for the reaction to occur, an energy 

barrier which is expressed by an electron rearrangement needs to be overcome. All 

vibrational, translational and rotational motions of the molecules seemed of lesser 
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importance in the first instance and were neglected. In a gas temperature T, the 

molecules (A, B) follow a Maxwell distribution of speed with a mean value of  

(8 /Au k T πµ
1−
2= )         (2. 26) 

 

where µ is the reduced mass , mAmB/(mA + mB) and kA is known as the Boltzmann 

constant.  Hence  

2(8 /AB A B AZ C C d k Tπ πµ
1
2= )        (2. 27) 

 

where ZAB is the collision number or collision frequency and represents the collision 

rate per unit volume for unit concentrations of A and B. Only the molecules that 

have sufficient kinetic energy will react in order to overcome an energy barrier Eo. 

Thus the rate of reaction is expressed by 

 

k = Z exp
−E0

RT







        (2. 28) 

 

where Z = ZAB/CACB the collision frequency factor, Eo is the activation energy, R is 

the Avogadro constant and T is the temperature.  
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Chapter 3     

 

Cyclopentadiene 

 

3.1 Introduction 

 

The study of the chemical kinetics of aromatic hydrocarbons in combustion 

processes has become a main focus of combustion research. Apart from the 

environmental impact caused by soot formation, polyaromatic compounds have a 

biological impact on human health. However, detailed chemical models are often 

tentative. There is a limited amount of elementary reaction rate data in the literature, 

which is mostly focussed on single ring molecules, such as benzene and toluene. It 

is apparent that the benzene submechanism plays a significant role in soot formation 

and soot reduction processes. Benzene oxidizes to the phenoxy radical which 

decomposes to the cyclopentadienyl radical and CO. The cyclopentadienyl radical is 

subject to ring opening and forms a transition point between aromatic and aliphatic 

compounds [23].  

Cyclopentadiene is thus an important intermediate species in combustion of 

single ring aromatics. The potential importance of the cyclopentadienyl radical in 

PAH growth has also been noted due to delocalised reactivity. The contribution of 

the cyclopentadienyl radical to the formation of aromatics has been reported in 

various studies [41-47]. Hence, an adequate knowledge of the cyclopentadienyl 

combustion chemistry is essential for the accurate modelling of the aromatic 

components of the aviation fuels.  

The pyrolysis of cyclopentadiene has been extensively studied behind 

reflected shock waves [23, 48-52], but there is only one oxidation study in a plug 

flow reactor performed by Butler and Glassman [23]. It is generally agreed that the 

cyclopentadiene consumption under pyrolytic conditions begins with CH fission 

leading to the formation of the cyclopentadienyl radical plus a hydrogen atom (832). 
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However, there are significant differences in reaction rates obtained in the different 

studies.  

 

C5H6                       =  C5H5     +  H    (832) 

        

Roy et al. [50] studied the pyrolysis of cyclopentadiene in argon mixtures 

over a pressure range of 0.7 to 5.6 bar and obtained a rate constant of k832= 4.0 x 

1014 exp (-322 kJ mol-1/RT) s-1 for which they concluded that there was no pressure 

dependence. Kern et al. [52] studied cyclopentadiene pyrolysis at reduced pressures 

in the range 100-450 Torr and proposed a barrier of 351 kJ/mol for the CH fission. 

Colket et al. [51] proposed a rate constant of k832= 2 x 1015 exp(-339 kJ mol-1/RT) s-

1 for a range of slightly higher pressures than the study of Roy et al. [50]. Zhong and 

Bozzelli [53] suggested a rate of k832= 5.96 x 1014 exp (-314 kJ mol-1/RT) s-1, which 

was calculated using the Rice-Ramsperger Kassel (QRRK) approach at atmospheric 

pressure and a temperature range of 900-1300K. Comparison of the proposed rate 

constants above against temperature is shown in Figure 3.1. 
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Figure 3.1 Arrhenius plot of the reaction rates proposed for the reaction C5H6  =  C5H5  +  
H. The solid line indicates the rate determination of Zhong and Bozzelli [53], the dashed 
line indicates the rate determination of Roy et al. [50] and the dashed dotted line indicates 
the rate determination of Colket et al. [51]   
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In a recent study, Roy et al. [49] studied the reverse reaction, which involves 

the cyclopentadienyl recombination with a hydrogen atom (-832), behind reflected 

shock waves and a rate constant of k-833=2.6 x 1011 m3 kmol-1 s-1 was obtained at a 

pressure of 2 bar.  Hence, in combination with previous study of the same group, an 

equilibrium constant Kc(T) for reaction (832) was calculated.  

 

C5H5    +   H            =  C5H6         (-832) 

 

Moreover, data for the enthalpy of formation of the C5H5 were obtained. 

Zhong and Bozzelli [53] have also proposed a high-pressure limit rate constant for 

reaction (-832): k-832= 3.2 x 1011 m3 kmol-1 s-1. The rate proposed was tested against 

the data of Lovell et al. [54] at 1 atm and 1100 K and there were discrepancies of 

about a factor of 2 between the model and measurements.  

The H abstraction leading to the formation of the cyclopentadienyl radical and 

molecular hydrogen is another important reaction channel for the decomposition of 

cyclopentadiene. 

 

C5H6    +  H            =  C5H5     +  H2       (826) 

     

Roy et al. [50] studied reaction (826) and obtained a rate constant of k826= 2.8 

x 1010 exp(-9.45 kJ mol-1/RT) m3 kmol-1 s-1.  On the other hand Emdee et al. [55] 

have proposed a rate constant of k3= 2.19 x 105 x T1.77 exp(-125 kJ mol-1/RT) m3 

kmol-1 s-1. Moskaleva and Lin [56] studied the reaction between hydrogen and 

cyclopentadiene at the modified Gaussian-2 level of theory and provided potential 

energy surfaces and reaction rates for the channel. The TST and RRKM calculations 

performed produced a rate constant for reaction channel (826) of k826= 3.03 x 105 

T1.71 exp(-117 kJ mol-1/T) m3 kmol-1 s-1 valid for a temperature range 1000 K ≤ T ≤ 

3000 K. The study showed that the abstraction rate constant does not have any 

pressure dependency, but a positive temperature dependence. Moskaleva and Lin 

[56] also showed that apart from hydrogen abstraction, hydrogen addition to the 

cyclopentadiene ring should also be included.  

The CH fission leading to the cyclopentadienyl radical is followed by C-C 

breakage and the formation of acetylene and the propargyl radical (806). Studies 
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have shown that this reaction is a multi-step process which leads to a stable 

intermediate and then a ring opening producing open chain radicals followed by the 

C-C fission for the formation of the final products [57].  

 

C5H5                      =  C3H3      +   C2H2     (806) 

  

Roy et al. [50] performed computations for reaction channel (806) and 

optimized the geometries of the cyclopentadienyl radical and of all the 

intermediates, the transition states and products at the UHF/6-31G* level. 

According to their study, the cyclic C5H5 decay is initiated by a 1,2-H transfer 

followed by a ring opening and isomerization to a number of straight chain radicals 

that lead to the formation of acetylene and propargyl radical. However, application 

of the proposed rate resulted in an over-prediction of acetylene concentration by a 

factor of three. Hence, they reduced the rate constant by a factor of three and 

achieved a good agreement with measurements.  In addition to this study, 

Moskaleva and Lin [56] estimated the barrier heights of the 1,2 hydrogen transfer in 

the cyclopentadienyl radical (274.88 kJ/mol), ring opening (317.14 kJ/mol) and C-C 

breakage (317.14 kJ/mol), which are in agreement with values proposed by Roy et 

al. [50], which were obtained using a lower level computations [57]. Kern et al. [52] 

also obtained a rate constant for reaction (806) using Rice-Ramsperger-Kassel-

Marcus (RRKM) computations. The 1,2-H migration was identified as the rate-

limiting step with a barrier of 258.98 kJ/mol. The result is in contrast to Roy et al. 

[50] who proposed the ring opening as the rate limiting step.  Kern et al. [52] also 

showed that there is a 10-fold reaction-path-degeneracy that arises from a facile 

pseudorotation in this Jahn-Teller molecule.  

Cyclopentadiene, apart from the unimolecular decomposition leading to the 

formation of acetylene and propargyl radical which contribute to PAH growth, can 

also recombine with itself or its radical leading to the formation of naphthalene or 

indene [42, 58]. There are a number of studies that have exploited this potential 

formation mechanism. Melius et al. [42] studied the recombination of two 

cyclopentadienyl radicals that lead to the formation of naphthalene via a nine step 

mechanism that goes through the formation of hydrofulvalene and involves a three-

membered ring closing and opening of resonance-stabilized radicals. Kislov and 
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Mebel [59] showed that at low temperatures naphthalene was the major product 

whereas at high temperatures fulvalene was the dominant one. Lu et al. [60] 

extended the mechanism of PAH growth of naphthalene formation from 

cyclopentadienyl recombination as proposed by Melius et al. [42] to compounds 

that contain four six-membered rings.  

 Marinov et al. [58] developed a chemical kinetic model for the formation of 

the polyaromatic hydrocarbons and the predicted species concentrations were 

compared against measurements obtained from rich sooting methane and ethane 

flames that were stabilized over a porous burner. They proposed that the 

cyclopentadienyl radical recombines to itself to the formation of naphthalene 

involving two hydrogen atom ejections. In the same study, a rate constant and an 

activation energy barrier was suggested based on the assumption that the rate 

limiting step of the C5H5 recombination is the 34 kJ/mol barrier that accounts for the 

ejection of the first hydrogen atom of the bicyclopentadienyl adduct. However, 

Lindstedt et al. [61] and Lindstedt and Rizos [62] questioned the global reaction rate 

proposed by Marinov et al. [58], as computations that were performed showed that 

the naphthalene levels were 35 times higher than the measurements. Hence, an 

alternative two-step reaction featuring stabilization of C5H5-C5H4 with a a barrier of 

34kJ/mol and the frequency factor of the global step proposed by Marinov et al. 

[58] was proposed [61]. The barier utilized follows the recommendations of Melius 

et al. [42]. Moreover, McEnally and Pfefferle [63] performed experimental work 

with 13C-labeled aromatic compounds and showed that the labelled 

cyclopentadienyl moieties do not contribute to second ring formation.  

The potential role of the cyclopentadienyl moieties in PAH growth was also 

studied by Mulholland and co-workers [64] using experimental analysis in a laminar 

flow reactor and the result suggest that indene, naphthalene and benzene are major 

products of cyclopentadiene pyrolysis. Apart from the cyclopentadienyl radical 

route to naphthalene, recombination has also been proposed as route to other 

aromatics. The importance of such reaction for PAH growth was extensively studied 

by Violi and co-workers [65-67], who proposed a two-step molecule-radical 

addition reaction mechanism followed by rearrangement.  Wang et al. [41] applied 

this molecule radical mechanism in order to produce new pathways for the 

formation of indene and naphthalene during cyclopentadienyl pyrolysis. Four new 

reaction pathways for aromatic growth from cyclopentadiene pyrolysis were 
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proposed leading to naphthalene, indene and benzene via intramolecular addition, 

C-H β-scission and C-C β-scission. Density functional theory calculations were 

performed to calculate transition states, energy barriers for isomerizations, β-

scission and dissociation reactions. Indene was mainly formed by intramolecular 

addition of the cyclopentadiene to cyclopentadienyl via a resonantly stabilised 

cyclopentadiene-cyclopentadienyl dimer.  

Kislov and Mebel [68] also studied indene formation via the combination of 

cyclopentadiene and the cyclopentadienyl radical and showed that at temperatures 

relevant to combustion, indene was found to be the major product (>50%). The 

mechanism suggested, combined with their computed tests, was in agreement with 

experimental data for cyclopentadienyl pyrolysis that showed both naphthalene and 

indene as major products.  

Another reaction route that involves the cyclopentadienyl radical features its 

combination with the methyl radical to the formation of fulvene (C5H4CH2), which 

latter isomerizes to benzene. Moskaleva et al. [69] studied this reaction route and 

showed that the combination of these two radicals produce an intermediate specie 

(C5H5CH3) that proceeds to the formation of C5H4CH3 and hydrogen atom. The 

hydrogen elimination occurs from the ring since the C-H bond is weaker that the 

relative one of the methyl group. The second hydrogen atom elimination comes 

from C5H4CH3 leading to the formation of fulvene. The reaction channel was also 

studied by Melius et al. [42] who underlined the importance of hydrogen migration 

around the cyclopentadienyl moiety in providing resonance-stabilized radicals and 

in further ring formation. These findings are also supported by a more recent study 

of Lindstedt and Rizos [62]. 

 

3.2 Modelling Approach 

 
 

The starting point for the current work stems from previous studies  related to 

the chemistry of aromatics [61, 62] as mentioned above, the oxidation of fine 

carbon based particles [70] and an earlier study by Zhong and Bozzelli [53].  

The developed mechanism was validated under plug flow reactor conditions 

obtained by Butler [20]. Rates were analysed for both fuel lean and rich conditions 
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for temperatures varying from 1100 to 1200 K. The studies identified possible 

reaction channels featuring O, OH, HO2 and O2 though estimates of the rates of 

reaction proved problematic in some cases. Moreover, reaction rates for 

isomerization reactions, or thermal dissociation of oxygenated C5 species were also 

updated using PES determined via DFT and composite quantum mechanical 

computations [15]. Both RRKM/ME and VTST approach were used to derive 

estimates of the rate constants [15]. The rates of consumption and productions were 

also calculated for each species. The thermochemical data were obtained from 

literature sources [71] and when not available, were calculated with quantum 

mechanical methods using Gaussian-03 [15]. The reaction mechanism used here 

consists of 1431 reversible reactions involving 269 species with reverse rates 

computed via equilibrium constants.   

 

C5H5    +  O2              =  C5H5O     +   O   (804) 

C5H5    +  O2              =  C5H5OO    (812) 

C5H5    +  O               =  C4H5(T)   +   CO   (807) 

C5H5    +  O               =  C5H5O     (808) 

C5H5    +  O               =  C5H4O      +  H   (814) 

C5H5    +  OH            =  C4H6(T)    +  CO   (818) 

C5H5    +  OH            =  C5H5O      +  H   (816) 

C5H5    +  OH            =  C5H4OH   +   H   (809) 

C5H5    +  OH            =  C5H5OH     (815) 

C5H5    +  HO2           =  C5H4O      +  H2O   (817) 

C5H5    +  HO2           =  C5H5O      +  OH   (811) 

C5H5                          =  C5H5(L)     (819) 

C5H5(L)                     =  C3H3         +  C2H2   (820) 

C5H6    +  H               =  C5H5         +  H2   (826) 

C5H5O                       =  C4H5(T)    +   CO    (904) 

C5H5O                       =  C5H4O      +  H    (905) 

C5H4OH                    =  C5H4O      +  H    (906) 

C5H5OH                    =  C5H4OH   +  H    (908) 
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C5H5OH                    =  C5H5O      +  H    (908) 

C5H5OO                    =  C5H4O      +  OH   (909) 

C5H5OO                    =  C5H5O      +  O    (910) 

 

Selected comparisons of the reaction rates of critical pathways such as (817) 

and (811) are shown in Figure 3.2 and Figure 3.3. It can be seen that the rate of 

reaction  (811) which was derived using the RRKM/ME theory and VTST by 

Robinson [15] is slower than the one proposed by Zhong and Bozelli [53] for 

temperatures over 1000 K and the rate of reaction (817) is faster than the rate 

proposed by Zhong and Bozelli [53].  
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Figure 3.2 Arrhenius plot of the reaction rates of the critical pathway C5H5 + HO2 = C5H5O 
+ OH. The solid line indicates the rate used here which was derived using RRKM/ME 
theory [15] and the dotted line indicates the previously used rate adopted from Zhong and 
Bozelli [53]. Units are kmol, m3, s, K. 
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Figure 3.3 Arrhenius plot of the reaction rates of the critical pathway C5H5 + HO2 = C5H4O 
+ H2O. The solid line indicates the rate used here which was derived using RRKM/ME 
theory [15] and the dotted line indicates the previously used rate adopted from Zhong and 
Bozelli [53]. Units are kmol, m3, s, K. 
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3.3 Oxidation of Cyclopentadiene 

 
The oxidation of cyclopentadiene was studied under plug flow reactor 

conditions obtained from Butler [20]. Three oxidation cases were computed for 

stoichiometric and rich fuel mixtures at atmospheric pressure utilizing nitrogen as 

the carrier gas. The conditions are presented in Table 3.1. 

 

Table 3.1 Experimental and modelling conditions for cyclopentadiene oxidation in a flow 
reactor. (The experimental time shifts correspond to time shifting performed on modelling 
computations performed by Butler [20]). 

 

 

Major species concentrations are predicted and compared to measurements as 

shown in Figure 3.4 to Figure 3.9. It can be seen that there is reasonably good 

agreement. However, surface chemistry interfering with the gas phase chemistry 

was identified as a problem by Butler [20] and some caution is hence required. 

Moreover, during the experimental studies, measurements showed an initial 

discontinuous drop in the fuel concentration at the first data point that was due to 

the recirculation zone in the diffuser and surface chemistry near the throat of the 

reactor [20]. Because of this, a time shift of the predictions is necessary in order to 

capture more accurately the species profiles.  

  

 

Case Φ 
T init 

(K) 

Initial Fuel 

(ppm) 

Initial Oxygen 

(ppm) 

Modelling 

Time Shift 

(msec) 

Experimental 

Time Shift 

(msec) 

1 1.03 1198 2243 14128 20 36 

2 1.03 1148 1051 6618 50 123 

3 1.61 1153 2070 8363 20 50 
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Figure 3.4 Concentration profiles during cyclopentadiene oxidation in a plug flow reactor 
for Φ = 1.03, P =1 atm, T = 1198 K, initial fuel concentration 2243 ppm (Case 1 – see Table 
3.1). Circles are measurements [20] and the solid line the current simulation 
 
 
 

 
Figure 3.5 Concentration profiles during cyclopentadiene oxidation in a plug flow reactor 
for Φ = 1.03, P =1 atm, T = 1198 K, initial fuel concentration 2243 ppm (Case 1 – see Table 
3.1). Circles are measurements [20] and the solid line the current simulation 



Cyclopentadiene                                                                                                        61 

 

 
 

 
Figure 3.6 Concentration profiles during cyclopentadiene oxidation in a plug flow reactor 
for Φ = 1.03, P =1 atm, T = 1148 K, initial fuel concentration 1050 ppm (Case 2 – see Table 
3.1). Circles are measurements [20] and the solid line the current simulation 
 
 
 

 
 Figure 3.7 Concentration profiles during cyclopentadiene oxidation in a plug flow reactor 
for Φ = 1.03, P =1 atm, T = 1148 K, initial fuel concentration 1050 ppm (Case 2 – see Table 
3.1). Circles are measurements [20] and the solid line the current simulation 
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Figure 3.8 Concentration profiles during cyclopentadiene oxidation in a plug flow reactor 
for Φ = 1.61, P =1 atm, T = 1153 K, initial fuel concentration 2070 ppm (Case 3 – see Table 
3.1). Circles are measurements [20] and the solid line the current simulation 
 
 

 
Figure 3.9 Concentration profiles during cyclopentadiene oxidation in a plug flow reactor 
for Φ = 1.61, P =1 atm, T = 1153 K, initial fuel concentration 2070 ppm (Case 3 – see Table 
3.1). Circles are measurements [20] and the solid line the current simulation 
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3.4 Reaction Rate Analysis for Cyclopentadiene Oxidation  

 
A reaction rate analysis was performed for a stoichiometric fuel mixture with 

Φ = 1.03  at T = 1148 K, P = 1 atm and an initial fuel concentration of 1051 ppm. 

The fuel is consumed via four major channels that involve hydrogen abstraction via 

H , O and OH radicals and thermal decomposition.  

 

C5H6       + H                    =  C5H5       + H2   (826) 

C5H6       + O                    =  C5H5      + OH   (827) 

C5H6      +  OH                 =  C5H5      +  H2O   (828) 

C5H6                                  =   C5H5   +    H      (832) 

 

Reaction (826) is responsible for 35% of the total fuel consumption and is 

assigned with a rate proposed by Robinson [15]. The channel is of major importance 

as small perturbations to the reaction rate causes big differences at the fuel 

consumption profile. Approximately 25% of the fuel decay proceeds via reaction 

(828) that was assigned a rate proposed by Rizos [72]. A rate discussed by Leung 

and Lindstedt [73]  is used for reaction  (827), which consumes a further 10%. 

Reaction (832) is responsible for 12% of the total fuel consumption and was 

assigned a rate proposed by Kern et al. [52]. 

 Approximately 86% of the fuel consumption leads to the cyclopentadienyl 

radical. The consumption of C5H5 follows two major routes as shown in Figure 

3.10. The C5H5 recombination pathway leading to C10H9F (813)  is responsible for 

33% of the consumption and was assigned a rate proposed by Lindstedt et al. [61]. 

The second major consumption channel (33%) occurs via thermal decomposition of 

the cyclopentadienyl radical via C-C scission leading to acetylene and the propargyl 

radical (806). The channel is of significant importance and affects the temporal 

evolution of the acetylene concentration profile. A rate of Kern et al. [52] was also 

evaluated, but found to lead to an overproduction of acetylene by 50%. Hence an 

adjustment by a factor of 2 was applied leading to more reasonable acetylene 

profiles.  



64                                                                                                               Chapter 3 

 

 

 

 

 

 

 

 

 

Figure 3.10 Major cyclopentadiene consumption pathways in a plug flow reactor for  Φ = 
1.03, T = 1148 K, initial fuel concentration of 1051 ppm. 
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The oxidation channels featuring HO2 attack leading to the formation of C5H4O 

(817) and C5H5O (811) are each responsible for 8% of the C5H5 consumption.  

 

C5H5       + C5H5           =  C10H9F     +    H   (813) 

C5H5                             =  C3H3         +    C2H2   (806) 

C5H5       + HO2           =  C5H4O      +    H2O   (817) 

C5H5       + HO2           =  C5H5O      +    OH   (811) 

 

The C10H9F is a precursor to naphthalene, which subsequently is formed via 

hydrogen thermal dissociation (1308). Naphthalene decomposes through two major 

reaction channels that involve hydrogen abstraction (1283) via OH (49%) and 

oxygen addition (1281) forming C10H7O (39%) that utilize rates adopted from the 

kinetics of benzene and adjusted according to molecular weight differences.  

 

C10H9F                          =  C10H8      +    H   (1308) 

C10H8      + OH             =  C10H7      +    H2O   (1283) 

C10H8      + O                =  C10H7O   +    H   (1281) 

 

 Indene is formed predominantly (48%) through acetylene recombination with 

the benzyl radical (1059). The rate assigned to this channel was adopted from 

Colket et al. [74]. An additional 44% of the indene formation comes from the 

recombination of cyclopentadiene and cyclopentadienyl radical (831) with the 

simultaneous abstraction of a methyl radical.  The reaction channels was studied 

extensively by Wang et al. [41], who proposed possible intermediate routes for the 

naphthalene and indene formation via C5H6 and C5H5 recombination.  

 In this study it is assumed that the recombination of these two species does 

not stabilize to the formation of the CPD-CPDyl intermediate but to a bridged 

intermediate specie with the radical on the bridged atom. The highest energy barrier 

(177.11 kJ/mol) that occurs from the conversion of this bridged specie to the final 

indene molecule through other intermediate routes, as discussed by Wang et al. 

[41], is used as the activation energy of the global step (see Figure 3.11).  
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C7H7       + C2H2               =  C9H8       + H   (1059) 

C5H5       + C5H6               =  C9H8       + CH3    (831) 

 

Indene decomposes solely to the indenyl radical via three major reaction 

routes. Reaction (1237) is responsible for 59% of the indene consumption, (1222) 

for 21% and (1240) 12% respectively. Reactions rates utilized for these three 

indenyl consumption routes are adopted from suggestions of Potter [75] based on 

the kinetics of cyclopentadiene with reaction rates proposed by Lindstedt and Rizos 

[62] and Rizos [72].  

 

C9H8       + H                    =  C9H7       + H2   (1237) 

C9H7       + H                    =  C9H8    (1222) 

C9H8       + OH                 =  C9H7       + H2O   (1240) 

 

 Approximately 63% of the total indenyl radical comes from indene and 23% 

is produced via CO expulsion of the C10H7O, which is one of the major products of 

the naphthalene decay. The indenyl radical is the precursor of phenylacetylene via 

the formation of C9H7O. The indenyl radical oxidizes to C9H7O (83%) via HO2 

reaction. The reaction rate utilized for this channel was obtained from Lindstedt et 

al. [70]. The C9H7O decomposes to C8H7 (100%) via CO thermal expulsion 

followed by hydrogen thermal dissociation of the C8H7 to the formation of 

phenylacetylene.  

 

C9H7       + HO2                 =  C9H7O   + OH   (1228) 

C9H7O                               =  C8H7       + CO   (1263) 

C8H7                                  =  C8H6       + H   (1187) 

 

Phenylacetylene is consumed via four major reaction pathways that 

predominantly feature oxygen attacks. The displacement of the chain via oxygen 

attack is responsible for 33% of the phenylacetylene consumption (1163) and the 

step features a rate suggested by Lindstedt et al. [61]. The second major channel 
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(22%) involves hydrogen abstraction via OH (1154). A rate adopted by Frenklach et 

al. [76] was assigned to this channel. 

Moreover, reactions (1162) and (1151) involve hydrogen abstraction/oxygen 

addition and consume 12% and 11% of styrene, respectively. Rates applied to these 

channels were adopted from Potter [75].  

 

C8H6       + O                 =  C6H5           +    C2HO  (1163) 

C8H6       + OH              =  C8H5           +   H2O  (1154) 

C8H6       + O                 =  C8H5O        +   H   (1162) 

C8H6       + O                 =  C6H5C2O    +   H   (1151) 

 

 

 

 

Figure 3.11 Major indene formation channels in a turbulent flow reactor for Φ = 1.03, P = 1 
atm, T = 1148 K and cyclopentadiene concentration of 1051 ppm. 
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Toluene is formed from the benzyl radical, with the formation of benzyl 

radical controlled via one major reaction. The recombination of the 

cyclopentadienyl radical with acetylene is responsible for 84% of the total benzyl 

radical pool. The rate for the channel was adopted from Colket and Seery [77].  

 

C5H5   +   C2H2            =    C7H7       (805) 

C7H8                             =   C7H7    +   H    (1078) 

 

Approximately 22% of toluene leads to the formation of benzene through a 

chain displacement reaction via hydrogen. However, benzene is predominantly 

formed (94%) through isomerisation reaction from fulvene (980). The isomerization 

of C6H6(F) to benzene is assigned a rate proposed by Marinov et al. [78]. Fulvene is 

mostly produced via isomerization reactions from C6H6(S) (43%) and C6H6(B) 

(26%) and via thermal hydrogen dissociation (26%) from C5H4CH3.  The methyl 

cyclopentadienyl radical is formed via recombination of the methyl radical with 

C5H5 (93%) and was assigned a rate adopted from suggestions of Lindstedt et al. 

[61].  

Acetylene is predominantly formed (77%) by the thermal decomposition of 

the cyclopentadienyl radical. 

  

C5H5                            =   C2H2   + C3H3      (806) 

 

A reaction rate analysis was also performed for a fuel rich mixture with Φ = 

1.61 at T = 1153 K, P = 1 atm and initial fuel concentration of 2070 ppm. The fuel 

consumption follows the same routes as in the stoichiometric case. However, the 

impact of reaction (826) increases by 4% and the impact of reactions (828) and  

(837) reduces by 4-5% compared to the stoichiometric case.  

 

C5H6       + H                    =  C5H5       + H2   (826) 

C5H6       + OH                 =  C5H5       + H2O   (828) 

C5H7                                  =  C5H6       + H   (837) 
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The cyclopentadienyl radical follows two major consumption under fuel rich 

conditions, as was the case for the stoichiometric conditions.  In the latter case, 38% 

of the C5H5 recombines with itself leading to C10H9F and 26% thermally 

decomposes acetylene and the propargyl radical. The reactions featuring HO2 attack 

and leading to formation of C5H5O and C5H4O perform similarly to the 

stoichiometric case and found to be responsible for 8% of total cyclopentadienyl 

consumption.  

The naphthalene, indene , styrene,  toluene, butadiene and acetylene formation 

and consumption routes follow the same behaviour as in stoichiometric mixtures 

with a perturbation of order 4-6% for each of the steps.  

Apart from the rate analysis performed for a temperature range of 1149 – 

1153 K, a test was also performed for a stoichiometric fuel mixture oxidation (Case 

1 - Table 3.1) at the temperature of T = 1198 K in order to identify important 

pathways of the fuel decomposition. Reactions (826) and (828) are found to be 

dominant contributing 33% and 27% to the fuel consumption. Moreover, reaction 

(827) is  responsible for 12% of the total fuel consumption at higher temperatures.  

 

C5H6       + H                    =  C5H5       + H2   (826) 

C5H6       + OH                 =  C5H5       + H2O   (828) 

C5H6       + O                    =  C5H5       + OH   (827) 

 

 Moreover, it should be highlighted that once the cyclopentadienyl radical is 

formed, its consumption is controlled by two dominant reaction channels that are 

identical to the C5H5 consumption route for rich mixtures, with the difference that 

the role of these reactions (813) and (806) is now reversed. The impact of reaction 

(806) increases  from 32% at stoichiometric fuel mixtures and T = 1149 K and 26% 

for rich mixtures of the same temperature, to 34% for stoichiometric mixtures at a 

temperature of T = 1198 K. Whereas the contribution of the cyclopentadienyl 

recombination reaction falls from 38% for rich mixtures or 33% at stoichiometric 

mixtures of T = 1150 K, to 24% at stoichiometric mixtures and higher temperatures. 

Accordingly, the more the temperature increases, the more the thermal 

decomposition of the C5H5 dominates consumption.   
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C5H5       + C5H5           =  C10H9F     +    H   (813) 

C5H5                             =  C3H3         +    C2H2   (806) 

 

The increased impact of the thermal decomposition route of the C5H5, is 

responsible for the excessive propargyl radical and acetylene. The propargyl radical 

pool follows a recombination route that produces benzene. Hence, as expected, the 

benzene concentration is increased by 62% at the temperature of T = 1198 K 

compared to the T = 1150 K cases (see Figure 3.4 and Figure 3.6) . Moreover, the 

concentration of benzene is affected by the increased contribution of reaction (801) 

leading to C5H4CH3, which is the precursor to fulvene.   

 

C5H5       + CH3              =  C5H4CH3    +   H   (801) 

 

The formation and consumption routes of the rest intermediate species such as 

indene, phenylacetylene, toluene follow the same behaviour as in lower 

temperatures.  

 

3.5 Pyrolysis of  Cyclopentadiene  

 
The pyrolysis of cyclopentadiene was studied under plug flow reactor 

conditions corresponding to the experimental studies of Butler [20]. Five pyrolysis 

cases were computed and concentrations of the reactants and intermediate species 

were compared to measurements of Butler [20]. The evolution of the species 

concentrations over time are presented in Figure 3.12 to Figure 3.20. The 

concentration of the fuel varies from 1000 to 3000 ppm and the temperature varies 

from 1100 to 1200 K (see Table 3.2). Due to the absence of oxygen, the 

consumption is slower and especially the fuel profile follows an approximately 

linear trend.  
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Table 3.2 Experimental and modelling conditions for cyclopentadiene pyrolysis in a flow 
reactor 
 
 

It must be highlighted that the computations performed for the 

cyclopentadiene pyrolysis utilising the current chemical model caused 

overproduction of acetylene and benzene and showed corresponding discrepancies 

due to the impact of reaction (806). More specifically, the rate of Kern et al. [52] 

used in the oxidation cases was responsible for a 133% increase of the computed 

acetylene concentrations and 200% increase of the benzene concentration as 

compared to the rate proposed by Robinson [15]. Hence, for the pyrolysis cases 

only, a modification to the rate of reaction  (806) was applied and the rate suggested 

by Robinson [15] was adopted.  

 

C5H5                             =  C3H3         +    C2H2   (806) 

 

As can be seen from the comparisons between the predicted species 

concentration profiles and the measurements obtained by Butler [20] there is a 

reasonably good agreement. The model captures the fuel profile very well indicating 

that the initiation reactions are satisfactory. The acetylene profiles show an 

overprediction that applies to all the tested cases at the temperature range of T = 

1100 – 1150 K. Good agreement is obtained for the benzene and naphthalene 

species showing that the steps leading to their formation and consumption are also 

well represented  

 

 

Case 
T init 

(K) 

Initial Fuel 

(ppm) 

  1 1147 2083 

2 1148 1044 

3 1147 3081 

4 1106 2094 

5 1202 2077 
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Figure 3.12 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1147 K, initial fuel concentration 2083 ppm (Case 1 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
 

 
 
Figure 3.13 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1147 K, initial fuel concentration 2083 ppm (Case 1 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
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Figure 3.14 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1148 K, initial fuel concentration 1044 ppm (Case 2 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
 
 

 
Figure 3.15 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1148 K, initial fuel concentration 1044 ppm (Case 2 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
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Figure 3.16 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1147 K, initial fuel concentration 3081 ppm (Case 3 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
 
 

 
 
Figure 3.17 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1147 K, initial fuel concentration 3081 ppm (Case 3 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
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Figure 3.18 Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1106 K, initial fuel concentration 2094 ppm (Case 4 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
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Figure 3.19  Concentration profiles during cyclopentadiene pyrolysis in a plug flow reactor 
at P = 1 atm, T = 1202 K, initial fuel concentration 2077 ppm (Case 5 – see Table 3.2). 
Circles are measurements [20] and the solid line the current simulation 
 
 

 
 
Figure 3.20 Concentration profiles during cyclopentadiene pyrolysis a plug flow reactor at 
P = 1 atm, T = 1202 K, initial fuel concentration 2077 ppm (Case 5 – see Table 3.2). Circles 
are measurements [20] and the solid line the current simulation 
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3.6 Reaction Rate Analysis for Cyclopentadiene Pyrolysis  

 
A reaction rate analysis was performed for the thermal decomposition of 

cyclopentadiene at atmospheric pressure, a temperature of T = 1147 K and initial 

fuel concentration of 2083 ppm. The consumption is slower due to the absence of 

oxygen and the decomposition is controlled by the generation of radicals such as H, 

CH3. The fuel decomposes via one major channel (74%) that involves hydrogen 

abstraction via H atom attack leading to the formation of cyclopentadiene and 

molecular hydrogen (826). An additional 15% of the C5H6 decomposes via thermal 

dissociation producing a hydrogen atom (832).  

 

C5H6       + H                    =  C5H5       + H2   (826) 

C5H6                                 =  C5H5       + H   (832) 

 

The cyclopentadienyl radical recombines with itself (82%) leading to the 

formation of C10H9F. Reaction (806) is responsible for not more than 9% of the 

total consumption of C5H5.  

 

C5H5       + C5H5           =  C10H9F     +    H   (813) 

C5H5                             =  C3H3         +    C2H2   (806) 

 

The C10H9F lead to the naphthalene formation via reaction (1308). 

Naphthalene forms naphthyl radical via hydrogen abstraction (-1275) that is 

responsible for 86% of the total naphthalene consumption.  

 

C10H9F                          =  C10H8      +    H   (1308) 

C10H7      + H2              =  C10H8      +    H    (1275) 

 

 Indene is formed predominantly via recombination of C5H5 and C5H6 (831) 

with simultaneous methyl radical abstraction (72%). This is in contrast to the 

oxidation case, where indene is formed approximately 60% via acetylene addition to 
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the benzyl radical (1059) and only 30% by C5H6 and C5H5 recombination. During 

pyrolysis, the acetylene addition to the benzyl radical (1059) accounts for no more 

than 10% of the total indene formation. An additional 18% of indene is produced 

via hydrogen recombination with the indenyl radical (1222).  

 

C5H5       + C5H6             =  C9H8       + CH3   (831) 

C9H7       + H                    =  C9H8    (1222) 

C7H7       + C2H2               =  C9H8       + H   (1059) 

 

Styrene was not observed experimentaly during pyrolysis. Phenyl acetylene is 

predominantly formed via C6H5. Approximately 53% of C8H6 is formed via 

acetylene recombination with the phenyl radical (937) that was assigned a rate from 

Richter et al. [79]. An additional 22% is formed via acetylene recombination with 

C6H4 (937), which is produced 100% via hydrogen abstraction with H attack from 

phenyl radical. A rate proposed by Potter [75] was applied to reaction (1160).  

 

C6H5       + C2H2            =  C8H6       +    H   (937) 

C8H6                               =  C6H4       +    C2H2   (1160) 

 

Toluene is another important intermediate species. It is produced via the 

benzyl radical (100%), which is formed (95%) via acetylene recombination with the 

cyclopentadienyl radical. 

 Benzene is produced via isomerization (980) from fulvene, with the latter 

produced via three major reaction channels. The channels involve hydrogen thermal 

dissociation from C5H4CH3 (987) (31%) and isomerization reactions via C6H6(B) 

(970) (23%) and C6H6(S) (985) (40%). The latter species stem from propargyl 

radical recombination.  

 

C6H6(B)                          =  C6H6(F)    (970) 

C6H6(S)                          =  C6H6(F)    (985) 

C5H4CH3                        =  C6H6(F)    +    H   (987) 

C6H6(F)    + M               =  C6H6        +    M   (980) 
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The propargyl radical is responsible for 42% of the C3H4(P) formation via 

reaction (363) that utilizes a rate proposed by Leung and Lindstedt [73]. Moreover, 

57% of C3H4(P) is formed via a sequence of reactions through C3H5(A) → C3H4(A) 

→ C3H4(P). The C3H5(A) radical is essentially (98%) produced by reaction (389) 

and approximately 90% of C3H4(P) decomposes to the methyl radical and acetylene.  

 

C3H4(P)    +   M              =  C3H4(A)    +    M   (362) 

C3H4(P)    +   M              =  C3H3         +    H    + M  (363) 

C3H5(A)    +  C2H2          =  C5H6          +    H   (389)  

 

Reaction (389) is responsible for 41% of the total acetylene formation, which 

highlights one more time the significant role of this step in the C5H6 thermal 

decomposition and production of major species. The dominant acetylene formation 

channel is via thermal decomposition of the cyclopentadienyl radical (54%). 

  

 

C3H5(A)    +  C2H2       =  C5H6          +    H   (389)  

C5H5                             =  C3H3          +    C2H2  (806) 

 

The impact of reaction (389) is significant for the formation of ethylene 

through C3H6 (95%)  via the reaction route shown below.  

 

C3H5(A)    +  C2H2       =  C5H6          +    H   (389)  

C3H5(A)    + H             =  C3H6     (385) 

C3H6       + H                =  C2H4          + CH3   (432) 

 

A reaction rate analysis was also performed for the thermal decomposition of 

C5H6 at the higher temperatures of 1202 K, where the fuel follows the same two 

decomposition pathways as at 1147 K, but the thermal dissociation channels 

increase in importance relative to abstraction or recombination reactions. Hence, the 

thermal C-H scission of C5H6 increases from 15% to 25% of the total fuel 
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consumption and the abstraction reactions via atomic hydrogen reduce from 74% to 

62%. The C5H5 decomposition is controlled via a second channel that involves the 

thermal C-C rupture leading to the production of C2H2 and C3H3 (16%), in 

combination with the C5H5 recombination leading to the formation of C10H9F 

(72%).  

The formation route to indene is interesting. As the temperature rises, the 

impact of the different indene formation channels changes substantially. At 1202 K 

three reaction steps control the formation of indene. The hydrogen recombination 

(1222) with the indenyl radical constitutes the major indene formation channel by 

42%, compared to 18% at lower temperatures. The recombination of 

cyclopentadiene with cyclopentadienyl radical shows a reduction to 36%, while the 

step is the dominant indene formation channel (72%) at 1147 K. On the other hand, 

reaction (1059), which involves the recombination of acetylene with the benzyl 

radical, shows an increase from 10% to 23% at higher temperatures.  

 

C9H7       + H                =  C9H8                        (1222)  

C5H5       + C5H6           =  C9H8       + CH3   (831) 

C7H7       + C2H2           =  C9H8       + H   (1059) 

 

The formation of major intermediate species follow the same behaviour as at 

lower temperatures. 

 

 

3.7   Conclusions 

 
The objective of this chapter was to reveal important pathways that proceed 

through cyclopentadiene and to highlight the importance of the cyclopentadienyl 

radical in the growth of higher aromatics. Three cases for the oxidation of 

cyclopentadiene in nitrogen bath were studied stoichiometric and rich mixtures with 

fuel concentrations varying from 1051 – 2243 ppm in a temperature range of 1148 – 

1198 K. Moreover, five pyrolyses cases were also studied for the same range of fuel 

concentrations and for a temperature range of 1147 - 1202 K. The computed levels 
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that describe the evolution of the reactants and intermediate species were compared 

against measurements obtained by Butler [20]. 

Due to catalytic effects from the surface chemistry that occurred in the reactor 

during the oxidation experiments, a steep initial drop in the fuel concentration was 

apparent and a time shift to the computations performed here was necessary. From 

the computations performed, it is shown that species such as naphthalene, toluene, 

benzene and acetylene reached the end of the reactor in high and detectable 

concentrations, a fact that shows that these species are hard to oxidize and play 

important role in soot growth. Cyclopentadiene converts to the cyclopentadienyl 

radical via hydrogen abstraction reaction by H, OH, O radicals. The formed 

cyclopentadienyl radical subsequently follows two competing major consumption 

pathways that involve its recombination leading to the formation of C10H9F and the 

thermal decomposition to the formation of acetylene and the propargyl radical. As 

the temperature rises, the thermal decomposition of C5H5 becomes dominant. In rich 

mixtures and low temperatures around 1147 K, the recombination channel becomes 

dominant over  the thermal decomposition channel. Two more C5H5 decomposition 

channels appear to play a significant role during the oxidation of stoichiometric 

mixtures at low temperatures. The channels involve the cyclopentadienyl oxidation 

via HO2 attack, leading to the formation of C5 oxygenated species such as C5H5O 

and C5H4O. It was predicted that as the temperature rises, the concentration of 

acetylene and benzene rises due to the increased impact of C5H5 thermal 

decomposition leading to the production of C2H2 and C3H3. The latter specie is 

associated with benzene formation. The cyclopentadienyl radical is precursor to 

naphthalene and at low temperatures high concentrations of C10H8 are predicted.  

The modelling studies of the pyrolysis of cyclopentadiene show a reasonably 

good agreement. However, errors in prediction of some of the intermediate species 

are obvious. Due to the absence of oxygen, the fuel concentration profile follows a 

smooth linear trend compared to the initial drop in the fuel concentration for the 

oxidation cases. The model that was utilised in the simulation of the oxidation cases 

was responsible for the excessive species concentration predictions during 

pyrolysis. For this reason, a modification was applied to the reaction rate of the 

cyclopentadienyl thermal decomposition (806) and a slower rate proposed by 

Robinson [15] was utilised. This lead to improved agreement between the 

predictions and the measurements for benzene and naphthalene and for the fuel 
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concentration profile. The excellent concentration predictions of benzene, that is 

mostly controlled by the production of the propargyl radical, and the excellent 

computed naphthalene concentration predictions show that the rate adjustment of 

the C5H5 thermal decomposition is well justified. However, the persistent 

overprediction of acetylene suggests that the acetylene concentrations and 

decomposition route is not controlled only by the thermal decomposition of the 

cyclopentadienyl radical. The hydrogen attack to the cyclopentadiene (-389) that 

leads to C-C rupture and produces C3H5(A) and C2H2 plays a very important role 

under pyrolytic conditions. The reaction rate utilized for this channel was adopted 

from Rizos [72].   

 

C5H5                            =  C3H3         +    C2H2   (806) 

C3H5(A)    +  C2H2      =  C5H6          +    H   (389)  

 

Toluene is also somewhat overpedicted and this is due to excessive C7H7 

overproduction via acetylene recombination reaction with the cyclopentadienyl 

radical (805). The rate applied to this channel was adopted by suggestions of Colket 

and Seery [77]. This channel is also the main acetylene consumption channel and 

contributes 82% under pyrolysis and 50% under oxidation conditions.  The 

acetylene and toluene concentrations also depend on reaction (1059) that constitutes 

one of the major consumption paths for these species respectively.  

 

C5H5         +   C2H2     =  C7H7        (805) 

 

The acetylene recombination channel with the benzyl radical (1059) is one of 

the major indene production channels and contributes up to 60% under oxidation 

conditions and 20% during pyrolysis depending on the temperature applied. The 

second important indene production channel is the C5H6 recombination with C5H5 

(831) here utilizing the rate of Wang et al. [41]. The channel is also the main 

production channel for the methyl radical leading to methane production. Methane, 

as well as indene, are underpredicted a fact that shows that revised kinetics should 

be considered.  
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C7H7         +   C2H2     =  C9H8         +    H   (1059) 

C5H5         +   C2H2     =  C7H7        (805) 

C5H5         +   C5H6     =  C9H8          +    CH3   (831) 

 

These five channels (806), (389), (805),(1059) and (831) that are highlighted 

are in need of further investigation.  
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Chapter 4  

 

Toluene 

 

4.1 Introduction 

 

The ability to predict the combustion and growth of monosubstituted single 

ring or polycyclic aromatics is of key importance for aviation fuels for 

environmental reasons. Alkylated benzenes are also a significant hydrocarbon class 

in gasoline and diesel fuels, hence the knowledge of the combustion chemistry of 

these hydrocarbons in necessary. Toluene is the simplest alkylated benzene and its 

chemistry constitutes the framework for the development of mechanisms describing 

other alkylated benzenes. It is also important due to its ability to promote soot 

formation. 

There has been much previous work on model development for toluene, as 

well as experimental studies on toluene oxidation and thermal decomposition. 

Emdee et al. [55] developed a model for high temperature toluene oxidation 

utilizing previous benzene and toluene schemes and validated it with flow reactor 

experiments at temperatures from 1100 to 1200 K at atmospheric pressure. Klotz et 

al. [80] updated the Emdee et al. [55] model and validated it against toluene-butane 

fuel blends. Dagaut et al. [81] developed a model that describes toluene oxidation 

and validated it against jet-stirred reactor at a temperature range of 1000 – 1375 K 

and equivalence ratios of  from 0.5 - 1.5. Lindstedt and Maurice [82] developed a 

comprehensive toluene mechanism and validated it against experimental data from 

plug flow reactors, shock tubes, counterflow diffusion flames and premixed flames. 

Moreover, Sivaramakrishnan et al. [83] developed a detailed chemical model based 

on an earlier literature model for toluene oxidation and validated it against shock 

tube experimental data at temperature in the region 1200 - 1500 K over a wide 

pressure range (25 – 610 bar) and for stoichiometries of Φ = 1 and Φ = 5.  
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A number of experimental studies reported in the literature describe the 

toluene oxidation or thermal decomposition. Ignition delay times in argon mixtures 

were measured by Burcat et al. [25] for toluene concentration of 0.5 to 1.5 % , 4.48 

to 13.45 % oxygen, temperature in the range of  1339 - 1797 K and with reflected 

shock pressures of 1.95 to 8.85 atm. More recent studies on toluene oxidation were 

performed by Vasudevan et al. [26] and Davidson and co-workers [29]. Vasudevan 

et al. [26] measured ignition delay times and OH radical concentrations in 

toluene/O2/Ar mixtures behind reflected shock waves at high temperatures (1400 - 

2000 K) and low pressures (1 - 4 atm) for equivalence ratios of 0.5 - 1.875 with 

toluene concentrations of 0.025 - 0.5%. The measured toluene ignition delay times 

were compared with the models of Pitz et al. [84], Dagaut et al. [81] and Lindstedt 

and Maurice [82]. At low to moderate temperatures, the data agrees with the model 

of Dagaut et al. [81] and Pitz et al. [84] whereas at higher temperatures the model 

by Dagaut et al. [81] shows a better agreement with measurements. The 

measurements of ignition delay times against fuel concentration shows that the 

ignition time falls as the fuel concentration increases and this trend is also supported 

by Burcat et al. [25]. The Lindstedt and Maurice [82] model captures the trend of 

the experimental model but with lower ignition delay times. The Pitz et al. [84] and 

Dagaut et al. [81] models can predict the ignition delays at low fuel concentrations 

but show a significant disagreement at high fuel concentrations.  

Davidson et al. [29] measured OH concentrations and ignition delay times in a 

shock tube for toluene/air at of low temperatures (855 - 1269 K) and high pressures 

(14 - 59 atm) for equivalence ratios of 0.5 and 1 in synthetic air. Their ignition 

delays were validated against the models of Pitz et al. [84] and Dagaut et al. [81]. 

The model of Dagaut et al. [81] predicts ten times longer ignition delays than the 

experiments of Davidson et al. [29] and the model of Pitz et al. [84] predicts 

ignition delay times two times longer that the measurements. However, for Φ = 0.5 

the model of Pitz et al. [84] captures the data very well. 

The toluene initiation reactions have been the target of several studies. 

Pamidimukkala et al. [85] performed shock tube studies with time-of-flight mass 

spectrometry and laser schlieren densitometry for a temperature range of 1550 - 

2000 K and pressures of 0.2 - 0.5 atm. Their study supports the dominance of C-C 

scission in toluene dissociation leading to the production of methyl and phenyl 
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radicals (1079) against the C-H scission leading to the benzyl radical and the 

hydrogen atom (1078). A rate constant was also suggested.  

 

C7H8                  1079k→    C7H7    +   H   (1078) 

C7H8                  1080k→   C6H5    +   CH3    (1079) 

 

In addition, it was suggested that the stability of the benzyl radical leads to a 

partial equilibrium, whereas the unstable phenyl radical makes reaction (1079) 

irreversible and hence a major route in the thermal dissociation of toluene. Colket 

and Seery [77] performed shock tube studies for temperature range of 1100 - 2700 

K and suggested that (1079) always controls the distribution of products from 

toluene dissociation.  

Rao and Skinner [27] monitored the formation of hydrogen atoms under 

pyrolytic conditions behind shock waves in argon mixtures at a total pressure of 0.4 

atm and for a temperature range of 1450 - 1790 K. Rate constants for the two major 

toluene dissociation channels were proposed and it was concluded that the hydrogen 

abstraction reaction (1078) is the only important initiation step. The study was also 

supported by Muller-Markgraf and Troe [86], who studied the benzyl radical 

absorption during its decay behind shock waves. Added to this, Brouwer et al. [87], 

utilising UV spectroscopy to study the toluene thermal decomposition, highlighted 

the dominance of the hydrogen abstraction dissociation channel with a branching 

ratio of k1078 / k1079 = 10.  

Braun-Unkhoff [28] monitored the formation of the hydrogen atom during 

thermal decomposition in the temperature range of 1300-1800 K, pressures of 1.5 - 

7.8 bar in argon mixtures and highlighted the importance of CH3 formation (1079) 

for the product distribution. The results also suggested that the hydrogen abstraction 

from toluene leading to the formation of benzyl radical is important. 

 Rate constants were proposed in the above studies for the two dissociation 

channels. For the C-H bond scission, Rao and Skinner [27] assigned an energy 

barrier of 360 kJ/mole, Braun-Unkhoff et al. [28] assigned a value of 374 kJ/mole 

and Brouwer et al. [87] a value of 369 kJ/mole. Later shock tube studies by Hippler 

and Troe [88] revised the C-H bond scission dissociation channel and assigned a 
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new rate with a barrier of 360 kJ/mole over a temperature range of 1200-1500 K and 

a value of 356 kJ/mole in a flow system over a temperature range of 913-1143 K.  

Eng et al. [89] investigated the thermal decomposition of toluene at 

temperatures in the range 1350 - 1900 K and for pressures from 0.1 to 2.0 bar. It 

was suggested that toluene dissociation proceeds mainly via (1078) for which a rate 

constant was determined based on H-atom detection via calibrated atomic resonance 

absorption spectroscopy. The reaction showed no pressure dependence at lower 

temperatures, whereas at the highest temperature a slight pressure dependence was 

observed. Moreover, Eng et al. [89] defined a branching ratio k1078 / (k1078 + k1079)  

for toluene decomposition that is affected by temperature and pressure.  

A more recent study of the thermal decomposition of toluene was performed 

by Oehlschlaeger et al. [90], who investigated the contribution of the two 

dissociation channels in shock wave experiments over a temperature range of 1400 - 

1780 K and at a pressure of 1.5 bar. The benzyl radical absorption at 266 nm was 

monitored during toluene decomposition in argon mixtures and the rates for the two 

channels were determined. Moreover, it was suggested that the branching ratio k1078 

/ (k1078 + k1079) between the two channels varied from 0.8 at 1450 K to 0.6 at 1800 

K. The findings were compared to previous studies and it was found that the overall 

decomposition rate agrees with a deviation of less than 30% from the results of 

Braun-Unkhoff et al. [28] and Eng et al. [89] and, hence, is faster than the values 

proposed by Pamidimukkala et al. [85] and Rao and Skinner [27]. The branching 

ratio is in good agreement with Eng et al. [89], but in disagreement with 

Pamidimukkala et al. [85] and Braun-Unkhoff et al. [28]. Moreover, the H-atom 

measurements performed in the study of Braun-Unkhoff et al. [28] are in agreement 

with the findings of Eng et al. [89].  

In the present study, the comprehensively validated detailed mechanism 

developed by Lindstedt and Maurice [82], with subsequent developments by Potter 

[75], was used as a starting point for the re-evaluation of the toluene chemistry in 

light of recent studies. The toluene sub-mechanism features 103 elementary 

reactions and 23 species. Further analysis was performed and improvements were 

made by considering new reaction steps and species. A full listing can be found in 

Table A.1 and the heats of formation can be found in Table B.1.  
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4.2 Modelling Approach and Mechanism Updates 

 

The complete mechanism was validated and analysed against data and 

conditions corresponding to i) shock tube data for toluene pyrolysis [28] and ii) 

shock tube data for toluene oxidation [25, 26]. The rates of toluene pyrolysis were 

analysed at conditions corresponding to shock tube experiments of Braun-Unkhoff 

et al. [28]. Moreover, the toluene sub-mechanism was analysed at conditions 

corresponding to toluene oxidation in argon mixtures behind reflected shock waves 

of Vasudevan et al. [26] and Burcat et al. [25]. The validation and analysis of the 

current model was performed in order to analyse the principal reaction paths and to 

evaluate new reaction steps and reaction rate updates.  

All the elementary reaction steps are assumed reversible with the reverse rates 

computed via chemical equilibrium. The thermodynamic data was obtained from 

literature sources [71] and, when not available, were calculated via quantum 

mechanical methods using Gaussian-03 by Robinson [15].  

The following decomposition pathways were updated using the  reaction rates 

determined by Oehlschlaeger et al. [90]. 

 

C7H8               =  C7H7  +   H     (1078) 

C7H8               =  C6H5  +  CH3     (1079) 

C7H7                   =  C7H6  +  H     (1068) 

C7H8   +   H       =  C7H7  +  H2     (1080) 

C7H8   +   H       =  C6H6  +  CH3     (1081) 

C7H8   +   CH3   =  C7H7  +  CH4     (1089) 

 

Another addition involves the thermal decomposition of the benzylperoxy 

radical (1131). The reaction rate was adjusted to the reverse rate of the 

corresponding dissociation reaction of the phenylperoxy radical (1006) from 

DiNaro et al. [91]. 

 

C7H7OO             =   C7H7O  +  O     (1131) 

C6H5OO             =   C6H5O  +  O     (-1006) 
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Reaction (1131) was tested under the shock tube conditions of Davidson et al. 

[29] and was found to play a significant role in the evaluation of the OH profile and 

reduced the ignition delay time by approximately 22% as compared to the starting 

mechanism. However, the current model still fails to capture the low temperature  

(< 1269 K) ignition data. In the current study the following reaction path was also 

considered.  

 

C7H7  +  O2     =    C7H7OO      (1061) 

C7H7OO         =    C7H6OOH      (R1) 

C7H6OOH      =    C7H6O  +  OH     (R2) 

 

Reaction (R1) was found to be the rate-limiting step of the three-step reaction 

sequence. Due to lack of accurate pathway information, the global step given by 

reaction (1130) was added to the scheme with a rate and barrier based on 

suggestions of Hunter et al. [92] with the relative isomerization C2H5OO = 

C2H4OOH as a reference for estimation purposes.  

 

C7H7OO          =   C7H6O   +   OH      (1130) 

 

The three-step reaction pathway (1061, R1, R2) follows the study of Zellner 

and Ewig [93], Walch [94] and Clothier et al. [95] for the arguably related sequence 

(R3,R5,R6 or R3, R4) 

 

CH3  +  O2       =     CH3OO     (R3) 

CH3OO            =     CH3O   +   O    (R4) 

CH3OO            =     CH2OOH     (R5) 

CH2OOH         =    CH2O     +  OH    (R6) 

 

The reaction of methyl with molecular oxygen producing the methylperoxy 

radical leads either, via decomposition, to the methoxy radical and atomic oxygen 

(R4) or, via isomerization, to CH2OOH (R5). The later step is potentially important 
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pathway under radical depleted conditions e.g. during ignition. The activation 

energy for the transition state (R4) is found to be 243 kJ/mole whereas the 

activation energy for the transition state (R5) is only 160 kJ/mole. Hence the 

production of CH2O + OH occurs with smaller activation barrier and dominates 

over (R4) at temperatures below 2800 K. The two different channels for the CH3OO 

decomposition come from different electronic states. The species can exist either in 

the X 3Σg- ground state (R4), where the closest 2p orbital of the oxygen is double 

occupied from the electrons and 1,3-hydrogen migration is not possible, or in the 

1∆g state (R5) where the same 2p orbital of the oxygen is singly occupied and 

hydrogen migration is favourable [94]. A schematic representation of the the ground 

and excited state of the oxygen atom on the benzylperoxy radical is shown in Figure 

4.1.  

According to Clothier et al. [95] the activation energy of reactions (R3-R4) is 

calculated to be approximately 121 kJ/mol less that the value estimated by Zellner 

and Ewig [93]. It is obvious that the above analogy is in need of refinement and that 

the current rates are subject to uncertainties. However, the pathway increases in 

significance under lower temperature conditions and further work is desirable. 

 

 

Figure 4.1 Schematic representation of electronic states of the two benzoperoxy radicals.  
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Another reaction step (805) that plays a significant role in both toluene 

pyrolysis and oxidation processes was added with a rate adopted from Colket and 

Seery [77].  A rate from Muller-Markgraf and Troe [86] was also tested for the 

reverse reaction. However, it was found to lead to an increase in ignition delays of 

approximately 20% and was not utilized here.  

 

C5H5      +     C2H2   =        C7H7          (805)    

 

 
 

4.3 Thermal Decomposition 

 
 

The thermal decomposition of toluene in shock tubes was studied at 

conditions corresponding to experiments performed by Braun-Unkhoff et al. [28] in 

order to evaluate the branching ratio of the main toluene decomposition reaction 

channels and to monitor the temporal evolution of the hydrogen radical. Braun-

Unkhoff et al. [28] studied the thermal decomposition in argon mixtures and 

measured H profiles at fuel concentrations of 2 - 19.3 ppm, temperatures of 1515 - 

1655 K and pressures of 1.89 - 1.93 bar (Table 4.1). Moreover, an attempt was 

made to model the experimental profiles by utilising a ten-step reaction scheme to 

which adjustments had to be made in order to achieve the appropriate fit to the 

profiles.  The analysis in this study is similar to that by Lindstedt and Maurice [82] 

and was performed to assess the consistency with the revised principal reaction 

paths mention in Section 4.2.  

 

 C7H8 (ppm) T [K] P [bar] 

1 2.0 1515 1.85 

2 2.8 1655 1.89 

3 3.0 1585 1.93 

4 19.3 1555 1.92 

Table 4.1 Experimental and modelling conditions for toluene thermal decomposition 
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The computed hydrogen profiles for all the experimental conditions (Table 4.1) are 

shown in Figure 4.2 to Figure 4.5. The modelled hydrogen profiles are reasonably 

well captured and show that the adopted branching ratio from Oehlschlaeger et al. 

[90] is satisfactory.  

 

 

 

 

 

 

 

 

 

Figure 4.2  Hydrogen radical concentration against time for toluene thermal decomposition 
with an initial fuel concentration of 2.0 ppm, T = 1515 K and P = 1.85 bar. The solid line 
indicates the current computations and the circles indicate the experimental data from 
Braun-Unkhoff et al. [28]. 
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Figure 4.3 Hydrogen radical concentration against time for toluene thermal decomposition 
with an initial fuel concentration of 2.8 ppm, T = 1655 K and P = 1.89 bar. The solid line 
indicates the current computations and the circles indicate the experimental data from 
Braun-Unkhoff et al. [28]. 
 
 

 
 
Figure 4.4 Hydrogen radical concentration against time for toluene thermal decomposition 
with an initial fuel concentration of 3.0 ppm, T = 1585 K and P = 1.93 bar. The solid line 
indicates the current computations and the circles indicate the experimental data from 
Braun-Unkhoff et al. [28]. 
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Figure 4.5 Hydrogen radical concentration against time for toluene thermal decomposition 
with an initial fuel concentration of 19.3 ppm, T = 1555 K and P = 1.92 bar. The solid line 
indicates the current computations and the circles indicate the experimental data from 
Braun-Unkhoff et al. [28]. 
 
 
 
 
 

4.4 Time Resolved OH Concentrations during Oxidation 

 
 

The data used to validate the toluene mechanism under oxidation conditions at 

high temperatures was obtained from Vasudevan et al. [26], who monitored the time 

resolved OH radical concentration profiles in toluene/O2/Ar mixtures in shock 

tubes.  Vasudevan et al. [26] measured OH concentration profiles over a wide range 

of conditions. The study provides unique time-resolved data of a complementary 

nature to the pyrolysis experiments discussed above. In the present work, 

computations were performed corresponding to data with a temperature of 1689 K 

and pressure of 1.79 atm (Φ = 1, 0.1% C7H8, 0.9% O2, 99% Ar). The computed 

profile is shown in Figure 4.6 along with the experimental data of Vasudevan et al. 

[26]. 
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Figure 4.6 Time resolved OH radical concentrations obtained in Toluene/Oxygen/Argon 
mixtures in a shock tube with Φ = 1 (0.1% toluene, 0.9% oxygen), T = 1689 K and P = 1.79 
atm. The circles indicate the measurements from Vasudevan et al. [26] and the solid line 
indicates the current simulation.  

 

 
There is excellent agreement between the measurements and the current 

toluene model. The OH profile can be divided in three regions; the first shows the 

rapid increase in the OH concentration due to toluene decomposition, the second 

where OH rises, indicating the presence and impact of the chain branching reactions 

and the third where the OH production is close to zero [26].  

A sensitivity analysis was also performed and the current model shows that 

the OH profile is sensitive to the chain branching reaction: O + H2 → OH + H. The 

rate of Sun et al. [96] adopted from Baulch et al. [97] was tested to this reaction 

step with the current scheme (Figure 4.7) and the current toluene model fails to 

capture the OH slope and delays the onset of ignition approximately 17% compared 

to the rate of Li et al. [98] adopted from Sutherland et al. [99]. A further analysis 

has been presented by Gkagkas and Lindstedt [100]. It was also shown that the 

reaction step is responsible for 12% of the OH radical production. In addition, the 

chain branching step H + O2 → OH + O is significant. The step is responsible for 

67% of the OH production and has been studied extensively in the past [101-103]. 
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Moreover, the added reaction (805) plays significant role in the OH evolution 

as shown in Figure 4.7. The absence of this reaction step causes a delay in the OH 

ignition by 20%.  

 
C5H5 + C2H2 = C7H7        (805) 

 
 
Another sample of a OH concentration profile versus time is shown in Figure 

4.8 for a stoichimetric 250 ppm toluene mixture at T = 1648 K and P = 2.03 atm.  

 
 

 
 
 
 
 

 
Figure 4.7 Sensitivity analysis of time resolved OH radical concentrations obtained in 
Toluene/Oxygen/Argon mixtures in shock tube with Φ = 1 (0.1% toluene, 0.9% oxygen), T 
= 1689 K and P = 1.79 atm. The circles indicate the measurements from Vasudevan et al. 
[26], the solid line indicates the current model, the dashed line indicates the current model 
with the rate of Sun et al. [96] for the reaction O + H2 → OH + H and the dashed dotted 
line indicates the current model in the absence of the C5H5 + C2H2 → C7H7 reaction.  
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Figure 4.8 Time resolved OH radical concentrations obtained in Toluene/Oxygen/Argon 
mixtures in a shock tube with Φ = 1 (0.025% toluene, 0.225% oxygen), T = 1648 K and P = 
2.03 atm. The circles indicate the measurements form Vasudevan et al. [26] and the solid 
line indicates the current simulation.  
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4.5 Ignition Delay Times  

 
 

Ignition delay times were measured by Vasudevan et al. [26] in toluene/O2/Ar 

mixtures for a temperature range 1510 – 1818 K with Φ = 1 (0.1% toluene, 0.9% 

oxygen, 99% argon) and a pressure of 1 atm. Vasudevan et al. [26] defined the 

ignition delay time as the time needed for the OH radical concentration to reach 

50% of the peak value by setting as zero the time of the arrival of the reflected 

shock.  

Ignition delay times were also measured by Vasudevan et al. [26] for different 

fuel mole fractions varying from 2x10-4 – 2x10-2 with Φ = 1, at a temperature of 

1600 K and a pressure of 1 atm. Variations of the ignition delay times with 

temperature and fuel concentrations are presented in Figure 4.9 and Figure 4.10. 

Experimental data by Burcat et al. [25] are also shown in Figure 4.10 for higher fuel 

concentrations. As is evident in Figure 4.9, the current toluene model agrees well 

with the measurements and at higher temperatures follows the experimental data 

closely.  

The fuel concentration dependence on ignition delay times for the two 

experimental data sets (see Figure 4.10) shows that the ignition time falls as the fuel 

concentration increases. The model arguably performs well. 

 Ignition delay times were also measured by Burcat et al. [25] for 

toluene/oxygen/argon mixtures for a temperature range of 1379 – 1785 K, pressures 

of 1.96 – 2.81 atm for a stoichiometric mixture (0.497% C7H8, 4.48% O2, 95.023% 

Ar). The comparison between the model and the experimental data is shown in 

Figure 4.11.  
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Figure 4.9 Ignition delay times of toluene with Φ = 1 (0.1% toluene, 0.9% oxygen, 99% 
argon) and P = 1 atm. Symbols indicate measurements from Vasudevan et al. [26] and the 
solid line indicates the current computations.  
 
 
 
 

 
 
Figure 4.10 Ignition delay times for toluene mole fractions of  2x10-4 – 1x10-2 with Φ = 1 
(toluene/oxygen/argon), T = 1600 K and P = 1 atm. The solid squares indicate the 
measurements from Vasudevan et al. [26], the open circles indicate experimental data from 
Burcat et al. [25] and the solid line indicates the current computations.  
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Figure 4.11 Ignition delay times for toluene obtained in a shock tube with Φ = 1 (0.497% 
C7H8, 4.48% O2, 95.023% Ar) and P = 2.28 atm. The circles indicate experimental data 
from Burcat et al. [25] and the solid line indicates the current computations.  
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4.6 Thermal Decomposition Paths 

 
A reaction rate analysis was performed for the toluene thermal decomposition 

in shock tubes at the experimental conditions of Braun-Unkhoff et al. [28], as 

discussed above, and the major reaction pathways were determined.  

For the case of a toluene concentration of 2 ppm at 1515 K and 1.85 bar, the 

toluene decomposition is controlled by two major reaction channels. The C-H 

fission to the formation of benzyl radical and atomic hydrogen (1078) is responsible 

for 67% of the fuel decomposition. The reaction channel that proceeds via C-C 

scission to the formation of phenyl and methyl radical, accounts for 27% of the 

toluene decomposition. Rates determined by Oehlschlaeger et al. [90] were applied 

to these channels.  

 

C7H8         1078k→      C7H7   +   H    (1078) 

C7H8         1079k→      C6H5   +   CH3     (1079) 

 

The current findings highlight the dominance of reaction (1078) in agreement 

with studies of Muller-Markgraf and Troe [86], Brouwer et al. [87], Rao and 

Skinner [27] and Hippler [88]. There is, however, a disagreement with 

Pamidimukkala et al. [85] who proposed reaction (1079) as the main decomposition 

channel. As shown in the work by Oehlschlaeger et al. [90], the overall 

decomposition rate agrees with Braun-Unkhoff [28], Eng et al. [89] and Luther et 

al. [104] with a deviation of less than 30%. Recommendations of Pamidimukkala et 

al. [85] and Rao and Skinner [27] are significantly slower.  

The benzyl radical decomposes (90%) via reaction (805) featuring the rate of 

Colket and Seery [77] leading to the cyclopentadienyl radical and acetylene. 

 

C5H5   +   C2H2      =     C7H7       (805) 

  

The cyclopentadienyl radical leads to the formation of the propargyl radical 

and acetylene (60%) or isomerizes to the linear form of C5H5(L) (38%) .  
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C5H5          =         C3H3  +   C2H2     (806) 

C5H5          =         C5H5(L)      (819) 

 

Both decomposition channels (806) and (819) were assigned rate constants 

computed from potential energy surfaces using variable transition state theory and 

Rice-Ramsperger-Kassel-Marcus/master equation approaches [15]. A faster rate of 

Kern et al. [52] was also tested but lead to overproduction of the hydrogen atom by 

20%. 

 The other main product of the toluene thermal decomposition, the phenyl 

radical, undergoes isomerization to the linear C6H5(B) or undergoes hydrogen 

fission reactions that follow a route from C6H5 → C6H4 → C6H4L → C6H3 → C6H2 

and both channels lead to the formation of acetylene via 1,3-butadiyne. A schematic 

representation of the toluene thermal decomposition for 2.0 ppm of fuel at 1515 K 

and 1.85 bar is shown in Figure 4.12.  

The temporal evolution of the hydrogen radical is controlled predominantly 

by reaction (1078), which accounts for 92% of the production.  

 

C7H8                                      =     C7H7   + H   (1078) 

 

The concentration of the hydrogen radical is also sensitive to reactions (1080),   

(928), (929) and (1081) which are responsible for 27%, 23%, 12% and 11% of the 

consumption respectively. The rates for reactions (1080) and (1081) were adopted 

from Oehlschlaeger et al. [90]. The rate for the hydrogen assisted hydrogen 

abstraction reaction (928) was adopted from Leung and Lindstedt [73]. The benzene 

formation reaction via hydrogen addition to the phenyl radical (929) was assigned a 

rate proposed by Baulch et al.  [101].  

 

C7H8       + H                        =  C7H7       + H2       (1080) 

C6H5       + H                        =  C6H4       + H2   (928) 

C6H5       + H                        =  C6H6       (929) 

C7H8       + H                        =  C6H6       + CH3    (1081) 
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The impact of reaction (1080) on the hydrogen profile was also noted by Braun-

Unkhoff et al. [28], who considered it in the context of a bringing agreement 

between their measured and computed hydrogen profiles. The rates proposed by 

Braun-Unkhoff et al. [28] and Baulch et al. [101] were tested for reaction (1080),  

but caused an increase of the hydrogen concentration ~20% compared to the rate 

proposed by Oehlschlaeger et al. [90] 
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Figure 4.12 Predicted toluene thermal decomposition pathways corresponding to the study 
of Braun-Unkhoff et al. [28] with an initial fuel concentration of 2.0 ppm, T = 1515 K and 
P = 1.85 bar.  
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4.7 Oxidation Paths 

 

The reaction paths for toluene oxidation under shock tube conditions were 

analysed at the conditions of Vasudevan et al. [26], who measured the temporal 

evolution of the OH radical for a stoichiometric mixture of 0.1% toluene and 0.9% 

oxygen in argon mixture at 1689 K and 1.79 atm.  

The overall toluene decomposition is mainly controlled by four reactions as 

discussed above. These include the two main thermal decomposition pathways 

leading to the formation of benzyl (1078) and the phenyl radical (1079) which are 

each responsible for 18% of the fuel consumption and two hydrogen assisted 

hydrogen abstraction reactions (1080) and (1081) leading to the formation of benzyl 

(29%) and phenyl radicals (10%) respectively. The rates of these four steps were 

adopted from Oehlschlaeger et al. [90].   

 

C7H8                                  =  C7H7       + H   (1078) 

C7H8                                  =  C6H5       + CH3   (1079) 

C7H8       + H                    =  C7H7       + H2   (1080) 

C7H8       + H                    =  C6H6       + CH3    (1081) 

 

According to the temporal evolution of the OH radical concentration, the fuel 

decomposition follows three stages. The first region where initiation reactions occur 

and the fuel is decomposed, the second region where ignition occurs due to chain 

branching reactions and the third region with zero net OH production. These regions 

for the specific test case considered, are separated for times up to 100 µs, 250 µs and 

800 µs.  Hence, the contribution of each decomposition step varies with time.  

Although reaction (1078) plays a significant role in the overall fuel consumption, it 

is predicted that it is responsible for 20% of the fuel decomposition in the first stage, 

with no impact on the subsequent stages of the fuel oxidation process. Reaction 

(1079) is responsible for 19%, 12% and 14% of the fuel decomposition over the 

three stages.  

The contribution of reaction (1080) to the fuel consumption increases over 

time from 27% in the first region to 45% in the second and third regions 
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respectively. The reaction consumes the reactive H radical and leads to the 

formation of the less reactive benzyl radical and molecular hydrogen. It must be 

noted that reactions that consume reactive radicals during fuel oxidation, can be 

inhibit ignition. However, as it is shown above under fuel pyrolysis conditions, this 

reaction step is necessary for the consumption of the hydrogen radical. Reaction 

(1081) follows an increasing impact on the fuel consumption as the time passes 

from 9% at the first stage to 15% up to the end of the fuel decomposition.  

The benzyl radical produced from reactions (1078) and (1080), undergoes 

thermal dissociation that leads to the production of the cyclopentadienyl radical and 

acetylene via reaction (805) which accounts for 80% of the benzyl consumption. 

The rate of Colket and Seery [77] was applied to this step. 

 

C5H5       + C2H2                     =  C7H7    (805) 

 

Benzene is mostly produced (50%) via reaction (1081) and consumed (38%) 

via reaction (959) for which a rate from Leung and Lindstedt [73] was adopted. A 

rate of Leung and Lindstedt was also assigned to reaction (956) which is responsible 

for 30% of the benzene consumption. The production of the phenoxy radical and the 

hydrogen atom via oxygen attack on benzene is responsible for 28% of the 

consumption of the latter with a rate adopted from DiNaro et al. [91]. 

 

C7H8       + H                        =  C6H6       + CH3   (1081) 

C6H6       + OH                     =  C6H5       +  H2O         (959)                 

C6H6       + H                        =  C6H5       +  H2  (956) 

C6H6       + O                        =  C6H5O    +  H   (957) 

 

The phenyl radical is initially produced (75%) from the thermal 

decomposition of toluene via reaction (1079). As time passes and most of the fuel is 

consumed, secondary reactions occur and the phenyl radical pool is produced via 

reactions (958) and  (956) that were assigned rates from Leung and Lindstedt [73]. 

The contribution of reaction (958) to the phenyl production remains the same up to 

800 µs (47%), but reaction (956) is responsible for between 38% and 48 % of the 

production.  
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C7H8                                  =  C6H5       + CH3   (1079) 

C6H6       + OH                 =  C6H5       + H2O    (958) 

C6H6       + H                    =  C6H5       + H2   (956) 

 

The consumption of the phenyl radical proceeds mainly (54%) via reaction 

(934) featuring molecular oxygen attack on the phenyl radical leading to the 

phenoxy radical and an oxygen atom. A rate from Frank et al. [105] was adopted for 

this step. In addition, a hydrogen atom is abstracted from the ring (18%) via 

hydrogen attack (928) that leads to the production of C6H4 and molecular hydrogen. 

The rate assigned to reaction (928) was obtained from Leung and Lindstedt [73]. 

Approximately 12% of the phenyl radical consumption occurs via reaction (935) 

which involves molecular oxygen addition to the phenyl radical leading to the 

formation of the phenyl peroxy radical.  

 

C6H5       + O2                       =  C6H5O      + O  (934) 

C6H5       + H                        =  C6H4       + H2   (928) 

C6H5       + O2                       =  C6H5OO   (935) 

 

The phenoxy radical is mainly produced (58%) from reaction (934) and then 

decomposed (83%) to cyclopentadienyl and carbon monoxide (994) and 15% of its 

concentration is responsible for the formation of phenol (995). The rate for the 

carbon monoxide abstraction was adopted from Leung and Lindstedt [73] and the 

rate for the phenol formation was adopted from DiNaro et al. [91]. 

 

 

C6H5O                                 =  C5H5       + CO   (994) 

C6H5O      + H                    =  C6H5OH    (995) 

 

The consumption of C6H4 follows the reaction route C6H4 → C6H4L → C6H3 

→ C6H2 → C4H2 → C4H2O → C2H2 to end up forming acetylene. The 

phenylperoxy radical decays via two thermal pathways (1006, 1010) and leads to 
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the formation of reactive radicals which are responsible for 68% and 22% of the 

consumption. Both decomposition steps were assigned the rates of DiNaro et al. 

[91]. The p-benzoquinone that is formed via (1010) is decomposed to acetylene via 

the formation of C6H3O3 and C5H5O. 

  

C6H5OO                                =  C6H5O      + O  (1006) 

C6H5OO                                =  C6H4O2     + H  (1010) 

 

The cyclopentadienyl radical, which is produced via benzyl radical 

decomposition or via the phenyl radical degradation route, is decomposed via four 

main reaction pathways. Approximately 30% is thermally decomposed leading to 

the formation of acetylene and the propargyl radical and 29% reacts with the oxygen 

atom leading to carbon monoxide and C4H5(T). Moreover, 15% isomerizes to a 

linear structure and 13% recombines with hydrogen forming cyclopentadiene. Rates 

for reactions (806), (807) and (819) were calculated by Robinson [15] from 

potential energy surfaces determined using variable transition state theory and Rice-

Ramsperger-Kassel-Marcus/master equation approaches. A rate from Kern et al. 

[52] was applied to the hydrogen recombination reaction (832).  

 

C5H5                                   =  C3H3       + C2H2  (806) 

C5H5       + O                     =  C4H5(T)    + CO   (807) 

C5H5                                  =  C5H5(L)    (819) 

C5H6                                  =  C5H5       + H   (832) 

 

 
 

4.8  Conclusions 

 
 

In the current chapter a detailed chemical reaction analysis of the toluene 

chemistry was presented for a reasonably wide range of conditions. The chemical 

sub-model was evaluated under shock tube conditions and analyzed for both 
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pyrolysis and oxidation cases. New reaction rates were evaluated their impact was 

analysed. 

 The H atom profiles show generally good agreement with measurements 

under pyrolytic conditions. Under oxidation conditions and at high temperatures, the 

current toluene chemistry captures the temporal evolution of the OH radical in 

excellent agreement with the measurements. The major toluene consumption 

pathways were identified by performing reaction path analysis. Ignition delay times 

for stoichiometric toluene mixtures were also computed and showed good 

agreement with the experimental data sets of Vasudevan et al. (2005) and Burcat et 

al. (1986).  

The results are encouraging and suggest that the current reaction class based 

approach can be applied also to other methyl substituted aromatic fuel compounds 

that form part of real and surrogate fuel formulations.  
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Chapter 5  

 

N-Propyl Benzene 

 

5.1  Introduction  

 
 

 Previous studies of the oxidation of n-alkyl benzenes have highlighted that 

after the side chain removal, the fuels follow the same oxidation route as that of 

benzene. Benzene has been studied extensively, but can not represent more complex 

aromatic fuels that are present in commercial blends. N-propyl benzene is 

potentially a good candidate representing the mono alkylated and mono cyclic 

aromatic component of fuels such as gasoline, diesel and kerosene [36]. The current 

work was focused on determining the process of the side chain removal and the 

steps that characterize it. Three routes were found (i) homolysis – direct cleavage of 

the side chain followed by the oxidation of the remaining radical, (ii) displacement 

of the alkyl side chain by a radical species and (iii) abstraction of a hydrogen atom 

from the alkyl group [106-109]. 

Due to the analogy between the alkyl benzenes and alkanes regarding atomic 

hydrogen abstraction by another radical, reactions were proposed for the n-propyl 

benzene chemistry based on the propane chemistry. Moreover, this analogy between 

alkanes and normal alkyl benzenes can be used to the understanding and the 

prediction of the behaviour of n-propyl benzene. 

 

Abstraction route 
 

N-propyl benzene has three primary, two secondary and two benzylic 

hydrogen atoms. According to the hydrogen carbon bonding rules, the benzylic 

bond is the weakest as compared to the primary and secondary, thus it is easier to 

abstract a hydrogen atom from the benzyl carbon atom. The benzylic bond strength 
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is 368 kJ/mol, the secondary and primary are 397 kJ/mol and 410 kJ/mol 

respectively. Moreover, the benzylic C-H bond strength is less than the C-H bonds 

of the other two sites due to the resonance of the resulting benzyl radical. From the 

bond strengths, it is easy to say that the benzylic hydrogen atom abstraction is the 

dominant abstraction reaction [108, 109].  

Alkyl benzenes are characterized by resonance which is responsible for the 

promotion of the benzylic hydrogen abstraction. However, it is not possible for any 

other oxidation to occur to the benzylic radical as it is stereochemically hindered 

[110]. The radical species that play the role of the abstractor are predominantly H, O 

and OH. For the benzylic hydrogen abstraction, the reactions that occur are the 

following: 

 

C6H5-CH2-CH2-CH3  +  X ↔  C6H5-êH-CH2-CH3  + XH    (5.1) 

C6H5-êH-CH2-CH3           ↔  C6H5-CH=CH2  +  CH3   (5.2) 

 

where X = H, O and OH 

 

The resulting benzylic radical will undergo a beta scission to form styrene and 

the methyl radical (5.1) - (5.2). Hence, the early appearance of styrene shows that 

the above step is quite significant for the fuel breakdown route. Styrene can be 

further decomposed to C6H5CHêH, benzene or react with oxygen leading to the 

formation of oxygenated species [108]. 

 

C6H5-CH=CH2  + X    ↔   C6H5-CH=CH  +   XH    (5.3)  

C6H5-CH=CH             ↔   C6H5-C≡CH     +  H   (5.4) 

C6H5-CH=CH2  +  H  ↔   C6H6  + CH=CH2    (5.5) 

C6H5-CH=CH2  +  O  ↔   C6H5-CH2-CHO    (5.6) 

C6H5-CH2-CHO          ↔   C6H5-CH2         +  HCO   (5.7) 

 
The primary hydrogen abstraction is as follows: 

 
C6H5-CH2-CH2-CH3 +  X  ↔  C6H5-CH2-CH2-êH2  + XH  (5.8) 

C6H5-CH2-CH2-êH2  ↔  C6H5-êH2  +  CH2=CH2  (5.9) 
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The resulting benzyl radical has three possible routes for its further oxidation; 

(i) toluene formation via hydrogen addition, (ii) benzaldehyde formation via oxygen 

addition or (iii) alkyl radical recombination to the benzyl side producing alkyl 

benzene with a prolonged chain. The alkyl radical for the latter case could be 

species such as CH3, C2H5 and C3H7. Ethylene appears in large quantities in 

experimental studies of n-propyl benzene oxidation showing that the primary 

hydrogen atom abstraction is a significant path for the fuel oxidation [109]. 

Since significant quantities of products from primary and benzylic hydrogen 

abstraction are measured, it is expected that secondary hydrogen abstractions occur 

due to the fact that the secondary hydrogen carbon bond strength is between the two 

other cases.  

 

C6H5-CH2-CH2-CH3  +  X  ↔   C6H5-CH2-êH-CH3 + HX (5.10) 

C6H5-CH2-êH-CH3            ↔  C6H5-CH=CH-CH3  +  H (5.11) 

C6H5-CH2-êH-CH3            ↔ C6H5  +  CH2=CH-CH3 (5.12) 

C6H5-CH2-êH-CH3            ↔  C6H5-CH(êH2)-CH3  (5.13) 

C6H5-CH(êH2)-CH3             ↔  C6H5-CH=CH2  +  CH3 (5.14) 

 
Apart from the two products of reactions (5.11) - (5.12), isomerization (5.13) 

or phenyl shift (5.14) may also occur. Hydrogen shift from the benzylic to the 

secondary carbon atom is possible, producing tha α-phenyl propyl radical, the 

product of benzyl hydrogen abstraction; the oxidation of the latter leads to styrene.  

Instead of a hydrogen shift, it is also possible for the phenyl group to be transferred 

to the beta-carbon atom (5.14) [111]. The product of the phenyl shift (5.14) will 

lead to styrene production. 

 
Displacement of the alkyl group 

 
The displacement of the propyl group by a radical species (e.s. a hydrogen 

atom) produces benzene and the propyl radical. The detection of propylene in the 

products suggests strong evidence that the displacement reaction occurs. 

 

 C6H5-CH2-CH2-CH3  +  H  ↔  C6H6  +  C3H7   (5.15) 
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Homolysis  

 
The homolysis reaction route involves carbon-carbon cleavage. There are 

three possible routes for this.  

 

C6H5-CH2-CH2-CH3  ↔  C6H5  + êH2-CH2-CH3  (5.16) 

C6H5-CH2-CH2-CH3  ↔  C6H5-êH2  +  êH2-CH3  (5.17) 

C6H5-CH2-CH2-CH3  ↔  C6H5-CH2-êH2  +CH3  (5.18) 

 
The homolysis route is known to have large activation energies, hence it will 

only be an important path at high temperatures. The benzylic C-C bond is weaker 

than the other two in the chain and its breakage is expected to occur faster. 

In this study, the oxidation steps of n-propyl benzene were analysed and the 

fuel breakdown was predicted for two different pressures and different 

stoichiometries. The chemical reaction model was derived from analogies with 

propane and toluene chemistries. The rates adopted for the reactions steps were also 

based on the kinetics of propane and toluene and validation was performed with 

data obtained in jet stirred and shock tube reactors. 

 

5.2 Modelling Approach 

 

The updated n-propyl benzene reaction mechanism used here consists of 1683 

reversible reactions involving 269 species. The reverse rates were computed via 

equilibrium constants. The rates of consumption and production were also 

calculated for each species. The thermochemical data are obtained from literature 

sources [71] and, when not available, were calculated with quantum mechanical 

methods using Gaussian-03 [15].  
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5.3 Oxidation at Atmospheric Pressure 

 
 

The oxidation of n-propyl benzene was studied under Jet Stirred Reactor 

(JSR) conditions at atmospheric pressure and validated utilizing measurements 

obtained by Dagaut et al. [36]. Three different stoichiometries (Φ = 0.5, 1.0 and 1.5) 

were analyzed for a temperature range of 900 – 1250 K (Table 5.1). Concentration 

profiles of all major species were computed at a mean residence time of τ = 70 ms 

and significant pathways for the fuel breakdown were identified. Comparisons 

between the simulations and experimental data sets from Dagaut et al. [36] are 

shown in Figure 5.1 to Figure 5.9. 

 
Φ P(atm) T (K) XO2 XC9H12 
0.5 1.0 900-1200 0.024 0.001 
1.0 1.0 950-1250 0.012 0.001 
1.5 1.0 950-1250 0.008 0.001 

 
Table 5.1 Experimental and modelling conditions for the oxidation of n-propyl benzene in a 
jet-stirred reactor at P = 1 atm. The species concentrations correspond to mole fractions 

 

 

 The overall species evolution profiles as a function of temperature are well 

reproduced by the current n-propyl benzene chemistry. The major species that were 

measured by Dagaut et al. [36] apart from O2, CO and CO2, were ethyl benzene 

(C8H10), styrene (C8H8), toluene (C7H8), benzene (C6H6), acetylene (C2H2), ethylene 

(C2H4), methane (CH4) and formaldehyde (CH2O). The fuel decay is very well 

captured for all the three tested equivalence ratios and as the stoichiometry increases 

a better agreement between the model and the measurements is achieved for all the 

intermediate major species. The agreement between the predictions and the 

measurements of the fuel decay shows that the n-propyl benzene submechanism is 

adequate. 
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Figure 5.1 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 0.5, P = 1 atm, T = 900 - 1200 K. The circles are 
measurements [36] and the solid line the current simulation. 
 

 
 
Figure 5.2 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 0.5, P =1 atm, T = 900 - 1200 K. The circles are 
measurements [36] and the solid line the current simulation. 
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Figure 5.3 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 0.5, P =1 atm, T = 900 - 1200 K. The circles are 
measurements [36] and the solid line the current simulation. 
 

 
Figure 5.4 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 1.0, P = 1 atm, T = 950 - 1250 K. The circles are 
measurements [36]  and the solid line the current simulation. 
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Figure 5.5 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 1.0, P = 1 atm, T = 950 - 1250 K. The circles are 
measurements [36]  and the solid line the current simulation. 
 
 
 

 
Figure 5.6 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 1.0, P = 1 atm, T = 950 - 1250 K. The circles are 
measurements [36]  and the solid line the current simulation. 
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Figure 5.7 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 1.5, P =1 atm, T = 950 - 1250 K. The circles are 
measurements [36] and the solid line the current simulation. 
 

 
Figure 5.8 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 1.5, P =1 atm, T = 950 - 1250 K. The circles are 
measurements [36] and the solid line the current simulation. 
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Figure 5.9 Concentration profiles of intermediate species during n-propyl benzene oxidation 
in a jet-stirred reactor with Φ = 1.5, P =1 atm, T = 950 - 1250 K. The circles are 
measurements [36] and the solid line the current simulation. 
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5.4  Rate Analysis for Fuel Oxidation at Atmospheric Pressure 

 
 

A reaction rate analysis was performed for a fuel rich mixture (Φ = 1.5) tested 

under oxidation conditions in jet-stirred reactor at a temperature of 1050 K and at  

atmospheric pressure. 

Computations show that the fuel decomposes predominantly (35%) by 

homolytic fission at the secondary carbon atom of the branch leading to the 

formation of benzyl and ethyl radicals. An additional 10% of the fuel is consumed 

via hydrogen abstraction reaction with hydrogen atom attack on the ‘benzylic’ 

(primary) carbon atom of the branch forming 1-propyl benzyl radical (1600). The 

kinetics of reaction (1634) was estimated according to the approach of Dean [13]. 

The same approach was applied to the C-C homolytic steps that occur either at the 

primary or at the tertiary carbon atom to estimate their kinetics. The rate utilized for 

reaction (1600) was based on suggestions of Dagaut et al. [36]. 

 Approximately 23% of the total fuel consumption leads to the formation of 

the 1-propyl benzyl radical via hydrogen atom abstraction with H, O and OH 

radicals. The primary homolytic reaction which occurs via C-C scission leading to 

the phenyl and propyl radicals corresponds to 8% of the total fuel consumption with 

a rate assigned based on the approach of Dean [13]. Approximately 16% of the total 

fuel concentration is decomposed via hydrogen abstraction reactions leading to the 

formation of the 2-propyl benzyl radical in comparison to 8% of the fuel that leads 

to 3-propyl benzyl radical (Figure 5.10). 

 

C9H12                                 =   C7H7        +  C2H5  (1634) 

C9H12      + H                     =   1C9H11    +   H2   (1600) 

 

The 1-propyl benzyl radical decomposes (100%) to styrene via methyl radical 

abstraction with a rate adopted by Dagaut et al. [36]. The step also constitutes the 

major styrene formation pathway. Once styrene was formed, five major routes were 

detected that contribute to its decay. Reaction (1196) was assigned a rate proposed 

by Maurice [112]  and contributes 21% to the consumption of styrene. The formed 

C8H7(P) recycles back to styrene (78%).  The formation of the benzyl radical and 
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CHO (1198) constitutes the second major consumption pathway (18%) with a 

reaction rate suggested by Potter [75].  

 

C8H8       + OH               =  C8H7(P)    + H2O   (1196) 

C8H8       + O                  =  C7H7         + CHO   (1198) 

 

Reactions (953), (920) and (1199) make approximately equal contributions to the 

styrene consumption at 13, 12 and 10% respectively.  

 

C6H6       + C2H3             =  C8H8         + H   (953) 

C6H5       + C2H4             =  C8H8         + H   (920) 

C8H8       + O                  =  C6H5         + CH3CO  (1199) 

 

The major product of the fuel decay, the benzyl radical, recombines with a 

hydrogen atom leading to the formation of toluene and contributes (35%) to the 

total rate of formation. The recombination step is the major toluene formation 

channel (90%) and was assigned a rate from Oehlschlaeger et al. [90]. 

Approximately 34% of the benzyl radical reacts with the methyl radical and forms 

ethyl benzene with rate proposed by Lindstedt et al. [61]. The reaction step 

represents the major ethyl benzene formation channel (97%). Moreover, 20% of the 

benzyl radical recombines leading to C14H14 with a reaction rate obtained from 

Oehlschlaeger et al. [90]. The major benzyl consumption steps are shown in Figure 

5.11. 

Ethyl benzene is consumed via two major steps. The displacement of the ethyl 

branch via a hydrogen atom is responsible for 50% of the ethyl benzene 

consumption. The second major channel occurs via hydrogen atom abstraction to 

the formation of ethylbenzyl radical (34%) which essentially recycles back to ethyl 

benzene (95%).  

 

C8H10      + H                        =  C6H6       + C2H5  (1207) 

C8H10      + H                        =  C8H9       + H2   (1206) 
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 Benzene is decomposed via oxygen atom addition and hydrogen abstraction 

(957) leading to C6H5O  (58%) with a rate adopted from DiNaro et al. [91] and 34% 

to the phenyl radical via OH attack (959) with a rate of Leung et al. [73]. Oxygen 

addition to the phenyl radical leads to the production of C6H5O (57%) and C6H5OO 

(42%). The latter products are responsible for cyclopentadienyl radical production 

by 70% and 25% respectively.  

 

C6H6       + O                        =  C6H5O      + H   (957) 

C6H6       + OH                     =  C6H5        +  H2O  (959) 

 

As mentioned above, the major fuel consumption pathway produces benzyl 

and ethyl radicals and also constitutes the major ethyl radical formation step (96%). 

The ethyl radical is consumed via hydrogen abstraction (95%) leading to the 

formation of ethylene (76%).  

Acetylene is another important specie produced during propyl benzene 

oxidation. The main channel is via the thermal decomposition of the 

cyclopentadienyl radical (41%), which features an adjusted reaction rate proposed 

by Kern et al. [52].  An additional 28% of the acetylene production occurs via 

methyl abstraction from the C3H5(S) that is formed through the following reaction 

route C9H12 ↔ 2C9H11 ↔ C3H6 ↔ C3H5(S) ↔ C2H2.  

Methane is formed via reaction routes directly linked to the fuel and involves 

hydrogen abstraction via methyl radical attack. The hydrogen abstraction reactions 

lead to the formation of 1C9H11 and 3C9H11 with each of these contributing 20% to 

the methane production. It must be noted that the relative methane production 

channel that produces 2C9H11 is responsible for not more than 3% of the methane 

production. The rates assigned to the following reactions are based on the kinetics 

of propane suggested by Tsang [113]. 

 

C9H12      + CH3                      =  1C9H11     + CH4  (1610) 

C9H12      + CH3                      =  3C9H11     + CH4  (1613) 

C9H12      + CH3                      =  2C9H11     + CH4  (1614) 
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Figure 5.10 Major n-propyl benzene decomposition routes for Φ = 1.5, T = 1050 K and P = 
1 atm in a jet-stirred reactor  
 
 
 

 
Figure 5.11 Benzyl radical consumption paths for Φ = 1.5, T = 1050 K and P = 1 atm in a 
jet-stirred reactor  
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Figure 5.12 N-Propyl benzene oxidation for Φ = 1.5, T = 1050 K and P = 1 atm in a jet 
stirred reactor  
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5.5 Oxidation at High Pressures 

 
 
 The oxidation of n-propyl benzene was also studied under Jet Stirred Reactor 

(JSR) conditions at a pressure of 10 atm and validated utilizing measurements 

obtained by Dagaut et al. [114]. The stoichiometries tested were 0.5, 1.0, 1.5 and 

2.0 for a temperature range of 900 – 1200 K. Concentrations of the major species 

are predicted at a residence time of τ = 0.5 sec. The conditions tested are 

summarized in Table 5.2. Comparisons between the simulations and experimental 

data sets from Dagaut et al. [114] are shown in Figure 5.13 to Figure 5.24. 

 

 
Φ P(atm) T (K) XO2 XC9H12 
0.5 10.0 900-1200 0.024 0.001 
1.0 10.0 900-1200 0.012 0.001 
1.5 10.0 900-1200 0.008 0.001 
2.0 10.0 900-1200 0.006 0.001 

 
Table 5.2 Experimental and modelling conditions for the oxidation of n-propyl benzene in a 
jet-stirred reactor at P = 10 atm. The species concentrations correspond to mole fractions 
 

 

The computed species profiles for all the equivalence ratios are reasonably 

well reproduced when compared to the measurements. Predictions in this study are 

shown on a normal scale compared to the logarithmic variant often used in other 

studies in order to highlight both agreement and discrepancies in the fuel decay and 

species formation at high pressures. The n-propyl benzene submechanism that 

involves the thermal scission at either of the three carbon atoms of the branch plays 

a pivotal role in the evolution of the rest of the major species. The reaction rates 

applied to these three steps were initially based on the propane chemistry and found 

to result in slow ignition and underpreduction of the species concentrations. Hence, 

an adjustment according to that of the Dean [13] theory was applied to the channels 

and was shown to perform better and arguably to satisfactory predictions.  
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Figure 5.13 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
 

 
 
Figure 5.14 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
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Figure 5.15 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines current computations. 
 
 
 

 
Figure 5.16 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 1.0, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 



128                                                                                                              Chapter 5 

 

 

 
Figure 5.17 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 1.0, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
 
 
 

 
 
Figure 5.18 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 1.0, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
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Figure 5.19 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 1.5, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
 

 
 
Figure 5.20 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 1.5, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
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Figure 5.21 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 1.5, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
 
 

 
 
Figure 5.22 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 2.0, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
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Figure 5.23 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 2.0, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
 
 

 
 
Figure 5.24 Concentration profiles of intermediate species during n-propyl benzene 
oxidation in a jet-stirred reactor with Φ = 2.0, P = 10 atm, T = 900 - 1200 K. The circles are 
measurements [114] and the solid lines the current computations. 
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5.6  Rate Analysis for Fuel Oxidations at High Pressures 

 
 

A reaction rate analysis was performed for a fuel rich mixture (Φ = 1.5) that 

was tested under oxidation conditions in a jet-stirred reactor at a temperature of 

1050 K and at a pressure of 10 atm. 

The fuel is decomposed through the same reaction steps as at low pressures.  

The C-C scission proceeds through a homolytic reaction (25%) that leads to the 

formation of benzyl and ethyl radicals (1634) plays a significant role. However, the 

impact of the step is reduced as compared to the contribution of 35% at low 

pressures. The other two major products of the fuel consumption, 1C9H11 (23%) and 

2C9H11 (16%), are produced through hydrogen abstraction reactions. However, at 

high pressures the dominant fuel consumption channel that leads to the formation of 

1C9H11 (1602) occurs via OH attack (15%) compared to the hydrogen atom attack 

which is favoured at atmospheric pressures. The same applies to the formation of 

the 2C9H11 radical (1605), which is mostly produced via OH attack which is 

rensponsible for 12% of the total fuel breakdown.  

 

C9H12                                 =   C7H7        +   C2H5  (1634) 

C9H12   +    OH                 =   1C9H11     +   H2O  (1602) 

C9H12   +   OH                  =   2C9H11 +   H2O  (1605) 

 

 The 1C9H11 decomposition follows the same route as at lower pressures by 

producing C8H8 (100%). Styrene is further decomposed via three reaction channels 

(1196, 1197, 1198). Reaction (1196) shows an increased impact as the pressure 

increases. At the 10 atm the step contributes 35% compared to 21% for the low 

pressure. Reaction (1197) also plays a significant role in the styrene consumption 

(15%), and the impact is increased  by a factor of 2 compared to the low pressure 

case.  A rate suggested by Maurice [112] was tested but caused toluene and phenyl 

acetylene overproduction as it was found to be faster than that proposed by Rizos 

[72] by a factor of 2. The rate proposed by Rizos [72] was also tested and found to 

produce satisfactory results that improve the profiles of C8H8, C7H8 and C8H6. The 

atomic oxygen attack on styrene leading to C-C scission and production of benzyl 
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and formyl radical shows a reduction to 11% as compared to 19% at atmospheric 

pressures.  

 

C8H8       + OH                 =  C8H7(P)    +    H2O  (1196) 

C8H8       + OH                 =  C7H7         +   CH2O  (1197) 

C8H8       + O                    =  C7H7         +  CHO  (1198) 

 

The benzyl radical, which is one of the major products (1634) follows a 

different route at higher pressures. Although it is decomposed via three major 

pathways, only two of these are identical at low and high pressures. Moreover, the 

impact of the two identical consumption routes is also different. More specifically, 

the benzyl radical reacts with the methyl radical leading to the formation of ethyl 

benzene (1063) contributing 20%, as compared to 34% at atmospheric pressures. A 

big difference is also noted for the hydrogen recombination reaction with C7H7 

leading to the formation of toluene (1078), which is responsible for only 13% of the 

benzyl radical consumption compared to 35% at atmospheric pressure. A major 

difference at 10 atm is that the benzyl radical does not recombine with itself to the 

formation of C14H14, as at 1 atm, but it is being oxidized to C7H7O via HO2 via 

reaction (1064), which contributes up to 47% to the benzyl radical consumption. 

The rate assigned to reaction (1064) follows the suggestions by Rizos [72] and is 

based on suggestions of Ellis et al.[115].  

 

C7H7       +   CH3              =    C8H10    (1063) 

C7H7       +   HO2              =   C7H7O      +  OH  (1064) 

C7H8                                  =   C7H7         +    H  (1078) 

 

 Ethyl benzene is consumed (29%) to C8H9, and subsequently recycles back. 

The rate assigned to (1206) was adopted from Maurice [112]. An additional 43% of 

C8H10 reacts with atomic hydrogen leading to C6H6 and C2H5 in a similar manner to 

the lower pressure case. The rate used for reaction (1207) was adopted from 

Robaugh et al. [116]. 
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C8H10      + H                        =  C6H6       + C2H5  (1207) 

C8H10      + H                        =  C8H9       + H2   (1206) 

 

Benzene is predominantly formed (30%) from the thermal decomposition of 

C7H7O, which is produced (90%) from the benzyl radical and 16% from the primary 

C-C scission of propyl benzene via hydrogen attack. Whereas, at low pressures 

benzene is formed by the primary C-C scission of the fuel (65%). Benzene is 

oxidized via two major reaction routes, the impact of which is reversed compared to 

the low pressure case. Reaction (957) is responsible for 34% of the benzene 

oxidation versus 59% and reaction (959) is responsible for 56% of the consumption 

versus 33% at atmospheric pressure. 

 

 

C6H6       + O                        =  C6H5O      + H   (957) 

C6H6       + OH                     =  C6H5        +  H2O  (959) 

 

As mentioned above, ethyl benzene is responsible for the production of the 

ethyl radical which leads to the formation of ethylene (60%). Acetylene is formed 

(56%) from C4H4. At low pressures, acetylene is produced via thermal 

decomposition of C3H5(S) (27%) and C5H5 (41%). Hence, at high pressures 

acetylene follows a different formation route.  

The production of methane is also interesting. At high pressures, methane is 

produced via three major channels (80, 81, 106) that do not directly involve the fuel. 

  

CH3        +  HO2                  =  CH4        +   O2   (80) 

CH4        +  H                      =  CH3        +   H2   (81) 

CH2O     +  CH3                  =  CHO        + CH4  (106) 
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Figure 5.25 Benzyl radical consumption paths for Φ = 1.5, T = 1050 K and P = 10 atm in a 
jet-stirred reactor  
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Figure 5.26 N-propyl benzene oxidation for Φ = 1.5, T = 1050 K and P = 10 atm in a jet-
stirred reactor  
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5.7 N-Propyl benzene Ignition Delay Times 

 
 

Ignition delay times for n-propyl benzene were computed and validated 

against measurements obtained by Eberius et al. [117] as shown in Figure 5.27. The 

data were obtained in n-propyl benzene/O2/Ar mixtures for a temperature range of 

1400 – 1760 K, a pressure range of 5 atm and stoichiometries from 0.8 – 1.142. The 

ignition delay time was defined by Eberius et al. [117] as the time needed for the 

CH-emission signal to reach its peak value. Low dilution conditions were 

responsible for difficulties in evaluating the measured data by Eberius et al. [117] 

due to the change in density during the progress of reaction. Hence, a series of 

experiments for fuel/O2 mixtures diluted in Argon were used.  The set of conditions 

computed are shown in Table 5.3.  

 

 

             [C9H12 ](ppm)    [O2] (ppm)     [Ar] (ppm)          Φ         P (atm)      T (K) 
1 537 8057 991406 0.800 5 1437 
2 545 8057 991398 0.812 5 1416 
3 537 8057 991406 0.800 5 1569 
4 545 6289 993166 1.040 5 1468 
5 544 6289 993167 1.038 5 1631 
6 541 6289 993170 1.032 5 1549 
7 598 6284 993118 1.142 5 1558 
8 536 6284 993180 1.024 5 1555 
9 542 6284 993174 1.035 5 1478 
10 536 6284 993180 1.024 5 1759 
11 538 6295 993167 1.026 5 1448 
12 537 6295 993168 1.024 5 1606 
13 553 6295 993152 1.054 5 1550 

Table 5.3 Experimental and modelling conditions for n-propyl benzene ignition delay times 
in a shock tube   
 
 

 As can be seen in Figure 5.27 the current n-propyl benzyl chemical model 

provides very satisfactory predictions of the ignition delay times at intermediate 

temperatures.  
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Figure 5.27 Ignition delay times of n-propyl benzene at P = 5 atm, 0.71 <  Φ < 1.18. The 
circles are the measurements [117] and the solid line is the current simulation  
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5.8  Rate Analysis for Auto-ignition of N-Propyl benzene  

 
A reaction rate analysis was performed at 1148 K (Case 11 - Table 5.2) and 

major reaction channels for the fuel breakdown were identified corresponding to 

Figure 5.28. The fuel is solely decomposed via thermal breakdown to phenyl (46%) 

and benzyl (51%) radicals. The rates assigned to the thermal decomposition steps 

(1633) and (1634) were based on the approach of Dean [13]. 

  

C9H12                                 =  C6H5       +   C3H7(N)  (1633) 

C9H12                                 =  C7H7       +   C2H5  (1634) 

 

The benzyl radical is predominantly (65%) consumed via hydrogen 

recombination to toluene. Under jet stirred reactor conditions the formation of 

toluene is responsible for 35% of the benzyl radical consumption. Most of the 

toluene (47%) recycles back to benzyl radical via hydrogen abstraction reactions 

with H (1080) and OH radical attack (1083), while 14% produces benzene via C-C 

scission (1081) and 12% is oxidized to OC7H7 (1091). The rate assigned to reaction 

(1080) was adopted from Oehlschlaeger et al. [90] and the second benzyl radical 

formation channel (1083) used a rate proposed by Baulch et al. [101]. The rate 

proposed by Oehlschlaeger et al. [90] was used for reaction (1081) while the 

toluene oxidation channel (1091) was assigned a rate suggested by Hoffman et al. 

[118]. 

 

C7H8       + H                        =  C7H7       +  H2  (1080) 

C7H8       + OH                     =  C7H7       +  H2O  (1083) 

C7H8       + H                        =  C6H6       +  CH3
  (1081) 

C7H8       + O                        =  OC7H7    +   H   (1091) 

 

Most of the benzene is consumed via hydrogen abstraction with H (21%) and 

OH (42%) radicals leading to the phenyl radical. An additional 32% of the former is 

oxidized to phenoxy via reaction with atomic oxygen. The phenyl radical constitutes 

the second major direct product from the fuel consumption. However, the 
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production comes predominantly  from the decomposition of benzene. Once the 

phenyl radical is formed, 71% is oxidised to C6H5O (934) and 22% to C6H5OO  

(935) respectively. 

 

C6H5       + O2                       =  C6H5O      + O   (934) 

C6H5       + O2                       =  C6H5OO      (935) 

 

The phenoxy radical is further decomposed to cyclopentadienyl radical (80%), 

which subsequently is thermally decomposed (73%) to the propargyl radical and 

acetylene. Approximately 34% of C6H5OO, is converted to C6H5O and the 

dominant consumption channel of C6H5OO leads to C6H4O2 formation. The latter 

goes through the sequence of reaction steps illustrated in Figure 5.28 that lead to the 

formation of acetylene.  
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Figure 5.28 Reaction pathways for the oxidation of n-propyl benzene in a shock tube at T = 
1448 K, Φ = 1.026 and P = 5.06 bar 
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5.9 Conclusions  

 
 

In the present chapter, a detailed chemical mechanism for n-propyl benzene 

oxidation featuring 1683 reversible reactions and 269 species was proposed and 

validated under oxidation conditions in jet-stirred reactors and shock tubes. New 

reaction rates were evaluated and further updates applied. The validation was 

performed via comparisons with ignition delay times and measured species 

concentrations obtained by Eberius et al. [117], Dagaut et al. [36] and Dagaut [114].  

The n-propyl benzene chemistry was partly developed based on chemical 

structure similarities with toluene and propane for reactions occurring at the n-

propyl benzene branch. Extensive comparisons between computed results and the 

measurements for a pressure range of 1 ≤ P (atm) ≤ 10, temperatures of 900 ≤ T (K) 

≤ 1250 and for various stoichiometries between 0.5 ≤ Φ ≤ 2.0 illustrate the ability of 

the model to predict the oxidation of  n-propyl benzene. 

 Important reaction paths were identified, including the generation of 

styrene. The significance of the thermal breakdown of the fuel at the primary and 

secondary carbon atom was also noted as small rate changes could lead to large 

discrepancies in the intermediate species concentrations. On the other hand, under 

shock tube conditions it was shown that the hydrogen abstraction reactions do not 

play any significant role. The only reaction steps that initiate the fuel breakdown 

and can affect the evolution of the rest of the intermediate species are the thermal 

decomposition channels that occur via C-C rupture to the primary and secondary 

carbon atom. The dominant homolytic reaction step in both jet stirred and shock 

tube reactors is predicted to lead to benzyl radical formation.  

The prediction and measurement of large early concentrations of specific 

species such as styrene, ethyl benzene or toluene is a clear indication that 

abstraction and homolytic reactions occur at the beginning of the fuel oxidation and 

promote the fuel decay.    

The results presented here are encouraging and suggest that the current 

reaction class based approach can be applied also to other alkyl substituted aromatic 

fuel compounds that form part of real and surrogate fuel formulations. It must also 

be noted that as the chain increases in length, new categories of reaction steps are 
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likely to occur such as radical isomerisations, cyclic transition states and group 

shifts along the chain that should be taken into account.  
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Chapter 6  

 

Naphthalene  

 

6.1  Introduction 

 
 

One of the central subjects of research in the area of combustion is the 

formation of polycyclic aromatic hydrocarbons. Many studies in the literature have 

addressed the formation and growth of the aromatic compounds, which act as 

precursors to soot. The control and prediction of the combustion of aromatics is of 

high importance for both environmental and health reasons as PAHs are associated 

with tumorigenic effects. Hence, the ability to reproduce the chemical properties of 

of aromatic hydrocarbon fuels is highly required. 

The formation of benzene has received particular attention and has been 

subject to a number of studies [45, 73, 119-122]. A number of growth mechanisms, 

specifically reaction routes that proceed via acetylene addition to alkadienyl radicals 

have been reported in the literature [45, 47, 123]. Moreover, Marinov et al. [58] and 

Castaldi et al. [124] suggested that naphthalene is produced by the recombination of 

two cyclopentadienyl radicals releasing two hydrogen atoms. The cyclopentadienyl 

recombination leading to naphthalene formation was also studied by Melius et al. 

[42] and Dean [125]. Moreover, Marinov et al. [126] and Richter et al. [127] 

highlighted the role of cyclopentadienyl radical in premixed flames. A recent study 

of Lindstedt et al. [61] proposed a two-step mechanism involving the 

cyclopentadienyl route with energy barriers that are in accordance with Melius et al. 

[42]. 

The naphthalene formation and oxidation pathways are presented in this study 

and compared with plug flow reactor data obtained by Shaddix [24]. 
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6.2 Modelling Approach  

 

The derived reaction mechanism for naphthalene oxidation was based on the 

reactions steps and reaction classes derived from the oxidation of benzene and 

cyclopentadiene with parameters adjusted according to molecular size and reactive 

site differences [70].   

The studies by Lindstedt et al. [61] Maurice [112]and Potter [75] identified 

the importance of the linkages between aromatic C5 and C6 structures and the key 

role of the indene/indenyl system. In particular, the oxidation of indenyl was found 

to exert a strong influence on the overall oxidation kinetics of larger aromatic 

species such as naphthalene and 1-methyl naphthalene and on the subsequent 

product distribution of single ring aromatics. The studies identified possible reaction 

channels featuring molecular oxygen (1232, 1233, 1234) though estimates of the 

rates of reaction proved problematic [75]. In the current study, the aforementioned 

channels were considered along with HO2 channels (1228, 1229). For this set of 

reactions, DFT and composite quantum mechanical methods were used to calculate 

the PES. Both RRKM/ME theory and VTST were used to derive estimates of the 

rate constants [70].  

 

 

C9H7  +  O2        =  C6H5O   +   C3H2O    (1233) 

C9H7  +  O2       =  C7H7      +  CO    +    CO   (1232) 

C9H7  +  O2      =  C7H6O    +  C2HO    (1234) 

C9H7  +  HO2   =  C9H7O    +  OH    (1228) 

C9H7  +  HO2   =  C9H6O    +  H2     (1229) 

 

The reaction mechanism used here consists of 1431 reversible reactions and 

269 species. The reverse rates were computed via chemical equilibrium.  The rates 

of consumption and productions were also calculated for each species. The 

thermochemical data was obtained from literature sources [71] and when not 

available were calculated with quantum mechanical methods using Gaussian-03 by 

Robinson [15].  
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6.3 Oxidation of Naphthalene and Reaction Analysis 

 

The naphthalene mechanism was validated under plug flow reactor conditions 

and compared with measurements by Shaddix [24]. The computations correspond to 

conditions of Φ = 1.1, T = 1197 K and P = 1 atm. An offset of 32 ms in the temporal 

evolution of the experimental data was also reported by Shaddix [24]. Predictions of 

reactants and major species are presented in Figure 6.1 to Figure 6.3.  

A reaction rate analysis was performed in order to identify major channels 

during the oxidation of naphthalene. The measured naphthalene concentrations 

show considerable scatter with the trend in reasonable agreement with 

computations. The fuel is decomposed via two major channels that involve H 

abstraction with the OH radical (49%) and O addition to the ring forming the 

naphthoxy radical (44%). The rate assigned to reaction (1283) was based on the 

reaction rate of the hydrogen atom abstraction from the benzene ring as discussed 

by Leung and Lindstedt [73]. Relative adjustments according to the benzene 

chemistry were applied to reaction (1281) based on a rate proposed by DiNaro et al. 

[91]. 

 

C10H8      + OH                  =  C10H7        +   H2O  (1283) 

C10H8      +  O                    =  C10H7O     +    H  (1281) 

 

 The naphthyl radical is further decomposed (67%) to naphthoxy (1272), 

which is the other major product of the fuel decay, with a rate assigned based on the 

kinetics of benzene as proposed by Frank et al. [105].  

 

C10H7  +  O2        =   C10H7O   +  O    (1272) 

  

 The naphthoxy radical decomposes thermally via one major pathway leading 

to the formation of the indenyl radical and CO. The rate assigned to reaction (1326) 

was based on suggestions of Potter [75] and adjusted from benzene kinetics. The 

reaction is also the major indenyl radical production channel (69%).  

 

C10H7O   =   C9H7   +   CO     (1326) 
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The indenyl radical is consumed via three major pathways. Most (33%) 

recombines with the hydrogen atom to indene (1222) with a reaction rate assigned 

based on suggestions of Potter [75]. The second route (19%) involves CO 

abstraction via oxygen attack leading to the formation of C8H7 (1224). The rate 

assigned to this channel was based on suggestions of Maurice [112]. A further 17% 

of the indenyl concentration reacts with HO2 forming the naphthoxy radical (1228) 

with a rate proposed by Lindstedt et al. [70] as mentioned in Section 6.2.  

 

C9H7       + H            =  C9H8     (1222) 

C9H7       + O            =  C8H7         +   CO   (1224) 

C9H7       + HO2        =  C9H7O      +   OH   (1228) 

 

Indene is solely formed via the indenyl radical with hydrogen addition via 

reactions with H2, OH and H2O. Once it is formed, it recycles back to the indenyl 

radical. 

The C8H7 radical decomposes (100%) to phenyl acetylene with a rate adopted 

from Wang and Frenklach [119]. A schematic representation of the naphthalene and 

indene oxidation channels is shown in Figure 6.4.  

 

C8H7                         =    C8H6        +   H   (1187) 
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Figure 6.1 Concentration profiles of major species during naphthalene oxidation in a plug 
flow reactor for Φ = 1.1, T = 1197 and P = 1 atm. The solid lines indicate the current 
computations and the circles indicate the measurements [24].   

 

 

 

Figure 6.2 Concentration profiles of major species during naphthalene oxidation in a plug 
flow reactor for Φ = 1.1, T = 1197 and P = 1 atm. The solid lines indicate the current 
computations and the circles indicate the measurements [24].   
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Figure 6.3 Concentration profiles of major species during naphthalene oxidation in a plug 
flow reactor for Φ = 1.1, T = 1197 and P = 1 atm. The solid lines indicate the current 
computations and the circles indicate the measurements [24].   
 
 

 

 

 

 

 

 

Figure 6.4 Naphthalene and indene oxidation pathways 
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Reaction (1187) is also the major phenyl acetylene formation channel (75%). 

Phenyl acetylene is oxidised via the five major reaction routes shown below.  

 

C8H6       + O                =      C6H5           +    C2HO  (1163) 

C8H6       + OH              =      C8H5          +     H2O  (1154) 

C8H6       + O                 =     C8H5O        +     H  (1162) 

C8H6       + O                 =     C6H5O        +     C2H  (1171) 

C8H6       + O                 =     C6H5C2O    +      H  (1151) 

  

 The major phenyl acetylene consumption channel (33%) occurs via oxygen 

attack that removes the side chain via C-C cleavage (1163). The rate assigned to 

reaction (1163) was adopted from suggestions of Lindstedt et al. [61]. The second 

major consumption channel (1154) occurs via H abstraction by OH attack, which is 

responsible for 19% of C8H6 consumption and utilizes a rate recommended by 

Frenklach and Wang [119]. Reactions (1162), (1171) and (1151) are responsible for 

11%, 11% and 10% of the phenyl acetylene consumption respectively. 

Toluene is formed via the benzyl radical, which is formed via three major 

pathways. The oxidation of the indenyl radical with molecular oxygen (1232) 

constitutes the dominant formation channel for the benzyl radical. The rate assigned 

to reaction (1232) was calculated through DFT and composite quantum mechanical 

methods were used to calculated the PES with RRKM/ME theory and VTST used to 

derive an estimate of the rate constant [70]. Approximately 20% of the benzyl 

radical is formed via C8H8 oxidation with OH (1197). The rate assigned to reaction 

(1197) was adopted from Maurice [112]. A further 11% of benzyl radical is formed 

via reaction (1059) with a rate adopted from Colket et al. [74]. 

 

C9H7       + O2            =  C7H7       + CO         + CO  (1232) 

C8H8       + OH          =  C7H7       + CH2O   (1197) 

C7H7       + C2H2        =  C9H8       + H    (1059) 

 

Benzene is formed (32%) through hydrogen assisted isomerization (980) and 

(24%) from benzaldehyde via oxygen addition and CO2 abstraction (1101). Benzene 
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is a precursor to the cyclopentadienyl radical from which cyclopentadiene is formed 

(92%). Benzene is consumed (47%) to the phenyl radical via H abstraction via OH 

attack and (40%) to phenoxy radical via O addition and hydrogen abstraction. The 

phenyl radical is predominantly consumed (66%) to the phenoxy radical.  

 

C6H6(F)    + M             =  C6H6       + M   (980) 

C7H6O      + O             =  C6H6       + CO2   (1101) 

 

 The phenoxy radical is responsible (77%) for cyclopentadienyl radical 

production via CO thermal abstraction (994) with a rate proposed by Leung and 

Lindstedt [73]. The cyclopentadienyl radical recombines with the H atom (92%) to 

the cyclopentadiene  (832) with a rate adopted from Kern et al. [52].  

 

C6H5O                        =  C5H5       + CO   (994) 

C5H6                           =   C5H5       + H    (832) 

 

 Acetylene is also formed (44%) via the thermal breakdown of C5H5 that leads 

to C2H2 and C3H3. The rate used for reaction (806) was proposed by Kern et al. [52] 

and was reduced by a factor of 2 due to acetylene overproduction. The evolution of 

C2H4 is also affected by C5H5 via reaction channels that include C2H2 and C2H2O.  

 

C5H5                          =   C2H2    +   C3H3      (806) 

 

Vinyl acetylene production is initially controlled by phenyl acetylene 

consumption through C8H5O, which thermally decomposed to C7H5 leading to C4H4 

via C5H4O. A rate by Ristori et al. [128] was assigned to reaction (900), which is 

responsible for 94% of the C4H4 production.  

 

C5H4O                      =     C4H4   +  CO    (900) 

 

 

 

 



152                                                                                                            Chapter 6 

 

 

6.4 Conclusions  

 
 

In the present chapter, a detailed chemical sub-mechanism of naphthalene was 

developed and evaluated. Computations were performed under PFR conditions and 

concentration profiles for reactants and major intermediate species were obtained. 

Reaction rate estimates for the C9H7 + O2/HO2 were computed  from Potential 

Energy Surfaces using the Rice-Ramsperger-Kassel-Marcus/Master Equation 

(RRKM/ME) approach and Variable Transition State Theory (VTST) by Lindstedt 

et al. [70] and the resulting mechanism was evaluated against the species profiles 

obtained from Shaddix [24].  

It was shown that the naphthalene oxidation is controlled by two major 

channels that involve H abstraction via OH radical and O addition to the ring. Most 

of its structure and oxidation process is assumed to follow similar behaviour to the 

benzene chemistry. From the comparison between the computations and the 

measurements is shown that the main oxidation channels are well represented and 

that the C9H7 + O2/HO2 reactions have an important role in determining the product 

distribution of single ring aromatics. Accurate thermodynamic data computed in our 

group were also utilized for the C10 species.  

Experimental data of measurements of intermediate species concentration 

profiles over a wider range of conditions are essential in order to refine the current 

predictive methods.  
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Chapter 7  

 

1-Methyl naphthalene 

 

7.1 Introduction 

 

While extensive work has been performed on the development of chemical 

mechanisms for major oxidative pathways of aliphatic hydrocarbons and simple 

aromatic compounds such as benzene and toluene, very few studies on the 

combustion of polycyclic aromatic fuels have been reported in the literature. In this 

study, a mechanism for 1-methyl naphthalene is developed on the basis of reaction 

classes determined with toluene as a reference fuel. The choice is natural since 1-

methyl naphthalene is the corresponding bicyclic analog.  

Shaddix et al. [21, 22, 24] studied the oxidation of 1-methyl naphthalene in a 

plug flow reactor and obtained species profiles under atmospheric pressure 

conditions for a temperature range of 1165 – 1200 K and for equivalence ratios of 

0.6, 1.0 and 1.6. The study arguably contains the first reported species profiles for 

the oxidation of a polycyclic hydrocarbon fuel. Based on the obtained profiles, a 

chemical mechanism for 1-methyl naphthalene was proposed. Elevated pressure (P 

= 13 atm) ignition delay times were measured by Pfahl et al. [129] under shock tube 

conditions for a temperature range of 840 – 1300 K.  A more recent study on 1-

methyl naphthalene was performed by Mati et al. [35], who studied the oxidation 

under jet stirred reactior conditions for a temperature range of 800 < T < 1421 K, a 

pressure range of 1 < P < 13 atm and equivalence ratios of 0.5 < Φ < 1.5. Major 

species concentration profiles were obtained by on-line GC-MS and off-line GC-

TCD-FID and GC-MS analyses. New data covering a wide range of conditions were 

provided and a kinetic model was proposed and validated.  

Important reactions pathways were identified in the above studies. More 

specifically, Shaddix et al. [22] highlighted the fuel consumption paths that occur 

via i) abstractions of the benzylic hydrogen atom by H/O radicals or molecular 
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oxygen, ii) homolysis from C–H fission forming the 1-naphthyl methyl radical, iii) 

displacement of the methyl group by the hydrogen atom leading to the formation of 

naphthalene and iv) addition of an oxygen atom leading to the formation of 1-

methyl-4-naphthol or 1-methyl naphthoxy radical.  

In this study, the oxidation of 1-methyl naphthalene is studied under jet stirred 

reactor conditions and compared against data from Mati et al. [35] and Shaddix [24] 

featuring concentrations profiles for various species.  

 

7.2  Modelling Approach  

   
 The starting point is the detailed scheme for 1-methyl naphthalene derived by 

Potter [75] on the basis of the chemistry of toluene. Modifications and updates were 

applied as appropriate. The reaction steps and reaction rates were analysed at 

conditions corresponding to the JSR experiments of Mati et al. [35] and plug flow 

reactor conditions of Shaddix [24] and Shaddix et al. [21, 22].  

The reaction mechanism used here consists of 1431 reversible reactions 

involving 269 species. The reverse rates were computed using chemical 

equilibrium. The rates of consumption and production were also calculated for each 

species. The thermochemical data were obtained from literature sources [71] and 

when not available, were calculated with quantum mechanical methods using 

Gaussian-03 [15].  

 

7.3  Oxidation in Jet-Stirred Reactors 

 
 
The 1-methyl naphthalene mechanism was initially validated under jet-stirred 

reactor conditions using species data from Mati et al. [35].  The measurements were 

aimed at clarifying the decomposition channels of the fuel. Three different 

stoichiometries were tested at atmospheric pressure over a temperature range of 

1090–1450 K and at a fixed residence time τ of 0.1 s. The conditions are listed in 

Table 7.1 and the species profiles for all stoichiometries are shown in Figure 7.1 to 

Figure 7.12. 
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Φ P (atm) T (K) XO2 XC11H10 

0.5 1.0 1097-1290 0.0270 0.001 

1.0 1.0 1094-1400 0.0135 0.001 

1.5 1.0 1147-1440 0.0090 0.001 

Table 7.1 Experimental and modelling conditions for the oxidation of 1-methyl naphthalene 
in a jet-stirred reactor. The species concentrations correspond to mole fractions. 
 
 

According to the measurements, the major species detected, besides CO and 

CO2, were formaldehyde, methane, acetylene, ethylene, cyclopentadiene, benzene, 

toluene, styrene, naphthalene, indene and ethane. As can be seen from Figure 7.1 to 

Figure 7.12, the current 1-methyl naphthalene model reproduces the experimental 

data well as compared to other studies [35, 130]. It is shown that the fuel 

consumption is in excellent agreement with measurements for all the three 

stoichiometries. The prediction of intermediate species shows that the associated 

decomposition pathways are also well represented.  
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Figure 7.1 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 1 atm and T = 1097 - 1290 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
 
 

 
Figure 7.2 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 1 atm and T = 1097 - 1290 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
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Figure 7.3 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 1 atm and T = 1097 - 1290 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
 

 
Figure 7.4 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in a jet-stirred reactor with Φ = 0.5, P = 1 atm and T = 1097 - 1290 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
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Figure 7.5 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ =1.0, P =1 atm and T = 1094 - 1400 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
 

 
Figure 7.6 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ =1.0, P =1 atm and T = 1094 - 1400 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
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Figure 7.7 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ =1.0, P =1 atm and T = 1094 - 1400 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
 

 
 
Figure 7.8 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ =1.0, P =1 atm and T = 1094 - 1400 K. Circles are 
experimental data [35] and the solid lines the current simulations.  
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Figure 7.9 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ = 1.5, P = 1 atm and T = 1147 - 1440 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
 

 
Figure 7.10 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ = 1.5, P = 1 atm and T = 1147 - 1440 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
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Figure 7.11 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ = 1.5, P = 1 atm and T = 1147 - 1440 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
 

 
Figure 7.12 Concentration profiles of intermediate species during 1-methyl naphthalene 
oxidation in jet-stirred reactor. Φ = 1.5, P = 1 atm and T = 1147 - 1440 K. Circles are 
experimental data [35] and the solid lines the current simulations. 
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7.4  Fuel Lean Mixtures 

 
A reaction rate analysis was performed for a fuel lean mixture (Φ = 0.5) at a 

temperature of 1206 K at atmospheric pressure. 

The computations show the major fuel decomposition pathways to occur via 

hydrogen abstraction by OH attack and oxygen addition. The rates assigned to the 

reactions were adopted from Potter [75] and determined on the basis of the toluene 

chemistry. The OH attack on the methyl branch (1360) is responsible for 31% of the 

fuel consumption, whereas the hydrogen abstraction from the ring (1357) is 

responsible for 19%. The oxygen addition to the branch (1372) accounts for 12% of 

the 1-methyl naphthalene consumption, whereas the oxygen addition to the ring 

(1373) accounts for 23%.   

 

C11H10  +    OH            =  C11H9     +   H2O   (1360) 

C11H10  +    OH           =   C11H9P  +   H2O   (1357) 

C11H10  +    O              =   C11H9O  +   H    (1372) 

C11H10  +    O              =  OC11H9   +   H   (1373) 

 
 The fuel is formed from the 1-methylnaphthyl radical (82%) (-1358). The 

reaction rate was adopted by Potter [75] and was based on the toluene kinetics as 

proposed by Maurice [112]. The formation from HOC11H9 (1369) also makes a 

contribution (17%) via OH replacement. The HOC11H9 is formed by the OC11H9 

radical (100%) with the addition of atomic hydrogen to the oxygenated radical 

(1396). The OC11H9 radical is formed from 1-methyl naphthalene by the 

replacement of a hydrogen atom on the ring (1373) with an oxygen atom (52%) 

with a  rate that stems from the kinetics of toluene proposed by Hoffman et al. [118] 

and from oxygen addition to the 1-methyl-4-naphthyl radical (C11H9P) via 

molecular oxygen attack (1350) (32%) that was assigned a rate based on the toluene 

kinetics proposed by Maurice [112]. The reaction rates were adopted from Potter 

[75]. The major 1-methyl naphthalene decomposition and formation pathways are 

shown in Figure 7.13 and Figure 7.14.  
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C11H10                          =  C11H9         +  H   (1358) 

C11H10     +   OH         =  HOC11H9    +  H   (1369) 

OC11H9   +   H            =  HOC11H9    (1396) 

C11H10     +  O             =  OC11H9       +  H     (1373) 

C11H9P    +  O2           =  OC11H9        + O     (1350) 

 

 Naphthalene is formed via thermal decomposition of the C11H9O radical 

(1387) (65%), which is formed from oxygen attack on 1-methyl naphthalene (1372) 

(Figure 7.15). 

 

C11H10     + O             =  C11H9O   +   H    (1372) 

C11H9O                       =  C10H8      +   CHO    (1387) 

 

Once naphthalene is formed, hydrogen abstraction via OH radical attack 

(1283), leading to the formation of the naphthyl radical contributes 49% to 

consumption of the former. Moreover, 43% of the naphthalene forms 

naphthaldehyde (1281) by oxygen addition and hydrogen abstraction. The 

naphthalene decomposition channels were assigned rates based on the 

corresponding benzene decomposition channels. The naphthaldeyde thermally 

decomposes by CO abstraction leading to the formation of the indenyl radical and 

indene.  

 

C10H8      + O             =  C10H7O     +  H     (1281) 

C10H8      + OH           =  C10H7       +   H2O   (1283) 

 

 The formation of indene occurs (98%) from the indenyl radical. The indenyl 

radical is oxidized in a sequence of reaction steps initiated by the formation of the 

OC11H9 radical. The latter thermally decomposes via CO expulsion from the ring 

leading to the formation of C9H6CH3. The latter species recombines with a 

hydrogen atom leading to the formation of C9H7CH3, which thermally decomposes 

to indenyl and methyl (50%). The rates of these last two steps were assigned from 

suggestions proposed by Laskin and Lifshitz [131]. In addition to this reaction 
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sequence, the indenyl radical, as mentioned above, is formed by the thermal 

decomposition of the naphthaldehyde (16%). A more direct link to the fuel is 

provided by the indenyl radical and acetylene formation from the 1-methylnaphthyl 

radical (1347) (12%). The reverse reaction step was also tested with a rate relative 

to the benzyl radical formation channel proposed by Colket and Seery [77], but 

found to lead to excessive acetylene and indene concentrations. By contrast, the use 

of the 1-methyl naphthtyl radical thermal decomposition channel (1347) with a rate 

relative to the benzyl radical thermal decomposition proposed by Braun-Unkhoff 

[28] leads to excellent agreement between computed and measured concentration 

profiles for both acetylene and indene. A schematic representation of the indene 

formation channels is shown in Figure 7.16. 

 

C11H9              =   C9H7       +    C2H2     (1347) 

 

The further oxidation of the indenyl radical by HO2 is responsible for C9H7O 

formation (1228). Density Functional Theory and composite quantum mechanical 

methods were used to calculate the potential energy surfaces for this oxidation 

channel. Both RRKM/ME theory and VTST were used to derive an estimate of the 

rate constant [70]. The species is a precursor to phenyl acetylene (C8H6) through 

C8H7. A rate proposed by Pitch [130] was adopted for the CO abstraction from 

C9H7O (1263). The thermal decomposition of C8H7 is responsible for 71% of the 

phenyl acetylene formation (1187) with a rate based on suggestions of Wang and 

Frenklach [119]. 

 

C9H7    +   HO2    =     C9H7O   +    OH    (1228) 

C9H7O        =     C8H7      +     CO    (1263) 

C8H7        =     C8H6      +      H    (1187) 
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Figure 7.13 Major 1-methyl naphthalene decomposition pathways.  
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Figure 7.14 Major 1-methyl naphthalene formation pathways. 
 
 
 
 
 
 

 

Figure 7.15 Naphthalene formation pathways 
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Figure 7.16 Major indene formation pathways 
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Computations show that another important indenyl oxidation step is via 

molecular oxygen which is responsible for 50% of the benzyl radical via (1232). 

Lindstedt et al. [70] used Density Functional Theory and composite quantum 

mechanical methods to calculate the potential energy surfaces for the channel and 

RRKM/ME and VTST approach to derive an estimate of the rate constant. The 

benzyl radical leads  (97%) to toluene. The rate determined by Oehlschlaeger et al. 

[90] is used for reaction (1078). 

 

C9H7    +     O2       =        C7H7    +    CO     +     CO  (1232) 

C7H8                       =        C7H7    +   H      (1078) 

 

Benzene is mostly formed (35%) from fulvene via isomerization (980) 

assigned a rate proposed by Marinov et al. [78]. Fulvene is produced (100%) by the 

methyl cyclo pentadienyl radical after thermal decomposition (987) and assigned a 

rate proposed by Lindstedt and Rizos [62]. In addition to the fulvene reaction 

sequence, 25% of benzene is formed from benzaldehyde. A rate proposed by Potter 

[75] was used for reaction (1101). 

 

C5H4CH3                 =      C6H6(F)    +     H   (987)  

C6H6(F)    + M        =      C6H6         +     M   (980) 

C7H6O      + O         =      C6H6         +     CO2    (1101) 

  

Benzene is consumed by reactions leading to phenyl (42%) and phenoxy 

(48%) radicals. The phenyl radical also predominantly (65%) leads to phenoxy 

which in turn leads to the formation of the cyclopentadienyl radical (80%) by CO 

expulsion. The cyclopentadienyl radical follows two major decomposition routes; 

28% thermally decomposes to acetylene and the propargyl radical and 25% 

recombines with hydrogen leading to cyclopentadiene. 

Cyclopentadiene is predominantly (90%) produced by the recombination of 

the cyclopentadienyl radical with atomic hydrogen. A rate proposed by Kern et al. 

[52] was applied to this channel. Kern et al. [52] proposed that the cyclopentadienyl 

dissociation occurs after a 1,2 H-atom shift that controls the rate of the reaction.  

Cyclopentadiene then recycles back to cyclopentadienyl radical. 
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C5H6   =    C5H5    +    H    (832) 

  

 Acetylene is formed via two major thermal decomposition channels. The 

dominant (39%) is the thermal decomposition of the 1-methyl naphthyl radical that 

forms acetylene and the indenyl radical (1347) and the second major channel is 

(21%) via the thermal breakdown of cyclo pentadienyl radical (806). The rate of 

Kern et al. [52] was applied to reaction channel (806) but found to produce 

excessive acetylene concentrations, hence an adjustment was made by reducing the 

rate by 50%.  

 

C11H9                         =  C9H7       + C2H2    (1347) 

C5H5                          =  C3H3       + C2H2   (806) 

 

 

7.5  Fuel Rich Mixtures 

 

A reaction rate analysis was performed for a fuel rich mixture (Φ = 1.5) under 

jet-stirred reactor conditions at a temperature of 1240 K and at atmospheric 

pressure. 

The fuel decomposes via four major oxidation channels. The hydrogen 

abstraction via OH attack on the methyl branch (1360) contributes 21% and the 

hydrogen abstraction from the ring (1357) is responsible for 14%. It is evident that 

in fuel rich mixtures the impact (21%) of reaction (1360) is reduced compared to 

lean mixtures (31%).  The oxygen addition reactions either to the branch (10%) or 

to the ring (20%) make similar contribution to the fuel lean case. 

 

C11H10  +    OH           =  C11H9     +   H2O   (1360) 

C11H10  +    OH           =   C11H9P  +   H2O   (1357) 

C11H10  +    O              =   C11H9O  +   H    (1372) 

C11H10  +    O              =  OC11H9   +   H   (1373) 
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 The 1-methyl naphthyl radical recombines (90%) with the hydrogen atom leading 

to the formation of 1-methyl naphthalene.  

Naphthalene is formed from the thermal breakdown of C11H9O leading to 

naphthalene and CHO (48%). The impact is reduced from 65% for the same 

reaction in lean mixtures. The isomerization channel from C9H6CH2 contributes 

28% compared to only 8% of the C10H8 formation in lean mixtures. Reaction (1292) 

was assigned a rate proposed by Laskin and Lifshitz [131]. 

 

C11H9O                          =  C10H8      +   CHO    (1387) 

C9H6CH2                       =  C10H8     (1292) 

 

Two major species, naphthaldehyde and the naphthyl radical, which leads to 

naphthaldehyde, are produced from naphthalene decomposition. The subsequent 

consumption of naphthaldehyde leads to the indenyl radical (20%). The indenyl 

radical pool is also formed by the thermal decomposition of C9H7CH3 (-1221) 

which accounts for 31% of the formation as compared to 50% in lean mixtures. The 

1-methyl naphthyl radical consumption leading to the formation of acetylene and 

indenyl radical is responsible for 28% of the formation compared to 12% in fuel 

lean mixtures.  

 

C9H7CH3                       =  C9H7       +     CH3      (-1221) 

C11H9                            =  C9H7       +     C2H2   (1347) 

 

The further oxidation of the indenyl radical leads to the formation of phenyl 

acetylene via the formation of C9H6O and C9H7O. Phenyl acetylene is formed 50% 

via C9H6O through CO (1257) expulsion and 50% via C8H7 formed from C9H7O. 

The dominant path for C9H6O formation is via reaction (1225) with a reaction rate 

based on a suggestion by Potter [75]. The subsequent decomposition to phenyl 

acetylene (1257), was assigned a rate proposed by Maurice [112]. The contribution 

of reaction (1187) reduced to 50%, compared to the 71% in lean mixtures, and 

reaction (1257) is equally important. 

 

C9H7    +    O             =     C9H6O   +     H   (1225)   
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C9H7    +   HO2          =     C9H7O   +    OH   (1228) 

C9H7O              =     C8H7      +    CO   (1263) 

C9H6O                        =    C8H6         +    CO   (1257) 

C8H7              =     C8H6      +    H   (1187) 

 

The molecular oxygen oxidation of indenyl radical is responsible for 60% of 

the production of the benzyl radical, which recombines with atomic hydrogen 

leading to toluene (98%). 

 

 C9H7    +     O2      =        C7H7    +    CO     +     CO  (1232) 

 C7H8                     =        C7H7    +   H      (1078) 

  

 Benzene is formed through a sequence of reactions that initiate from toluene 

→ OC7H7 → C5H4CH3 → C6H6(F) → C6H6. The isomerization that converts 

fulvene to benzene is responsible for 45% of the formation, compared to 35% in 

lean mixtures. Once benzene is formed, it follows a decomposition route through 

the phenoxy (41%) and phenyl (38%) radicals. The phenyl radical is oxidized to 

phenoxy and also leads to the formation of the cyclopentadienyl radical via thermal 

CO expulsion (994).  The rate proposed by Leung and Lindstedt [73] was used for 

reaction (994).  

 

C6H5O                      =    C5H5       +   CO   (994) 

C5H6   =    C5H5       +    H   (832) 

 

Cyclopentadiene recycles back to the cyclopentadienyl radical, which is one 

of the main reactants for the formation of acetylene via the thermal decomposition 

to acetylene and the propargyl radical (806). Moreover, it is quite interesting to note 

that the thermal decomposition of the 1-methylnaphthyl radical (C11H9) to the 

indenyl radical and acetylene (1347) contributes 60% of the acetylene production 

compared to 39% in fuel lean mixtures.  

 

C11H9                         =  C9H7       + C2H2    (1347) 



172                                                                                                             Chapter 7 

 

C5H5                          =  C3H3       + C2H2   (806) 

 

 

7.6 Oxidation in Turbulent Flow Reactors 

 

 Shaddix [24] performed gas-phase sampling to study the oxidation of 1-

methyl naphthalene in the Princeton turbulent flow reactor and obtained 

concentration profiles for major species at atmospheric pressure and at a 

temperature of approximately 1170 K. Major fuel consumption routes and reaction 

classes were identified. In the current study, computations were performed 

corresponding to the experimental conditions for stoichiometric and fuel rich 

mixtures as shown in Table 7.2. 

 

Φ T (K) P (atm) [O2] (ppm) [C11H10] (ppm) 

1.0 1169 1.0 14850 1100 

1.5 1166 1.0 9900 1100 

1.5 1198 1.0 9900 1100 

Table 7.2 Experimental and modelling conditions for the oxidation of 1-methyl napthalene 
in a turbulent flow reactor. 

  

In Figure 7.17 to Figure 7.28, it can be seen that only partial conversion of CO 

to CO2 occurs. The fuel profile is again well reproduced, suggesting that the 1-

methyl naphthalene sub-mechanism is adequate. Moreover, naphthalene and indene, 

which are two of the major initial products of the fuel decomposition process, are 

very well reproduced for all the three test cases leading to good agreement between 

computations and measurements for the next direct products such as phenyl 

acetylene, styrene and toluene. The profiles of aliphatic hydrocarbons such as 

acetylene, ethane and methane are also well predicted implying that the reaction 

channels leading to lower hydrocarbons are well represented. The large measured 

concentrations of acetylene agree with the computations and are an indication of the 

sooting tendency of 1-methyl naphthalene.  
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Figure 7.17 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.0, P = 1 atm, T = 1169 K). Circles indicate measurements [24] and 
solid lines the current computations. 

 

 

Figure 7.18 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.0, P = 1 atm, T = 1169 K). Circles indicate measurements [24] and 
solid lines the current computations. 
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Figure 7.19 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.0, P = 1 atm, T = 1169 K). Circles indicate measurements [24] and 
solid lines the current computations. 
 

 
Figure 7.20 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.0, P = 1 atm, T = 1169 K). Circles indicate measurements [24] and 
solid lines the current computations. 
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Figure 7.21 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1166 K). Circles indicate measurements [24] and 
solid lines the current computations. 
 

 
Figure 7.22 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1166 K). Circles indicate measurements [24] and 
solid lines the current computations. 
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Figure 7.23 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1166 K). Circles indicate measurements [24] and 
solid lines the current computations. 
 

 
Figure 7.24 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1166 K). Circles indicate measurements [24] and 
solid lines the current computations. 
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Figure 7.25 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1198 K). Circles indicate measurements [24] and 
solid lines the current computations. 
 

 
Figure 7.26 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1198 K). Circles indicate measurements [24] and 
solid lines the current computations. 
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Figure 7.27 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1198 K). Circles indicate measurements [24] and 
solid lines the current computations. 
 

 
Figure 7.28 Concentration profiles of major species during 1-methyl naphthalene oxidation 
in a flow reactor (Φ = 1.5, P = 1 atm, T = 1198 K). Circles indicate measurements [24] and 
solid lines the current computations. 
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7.7 Further Analysis of Reaction Paths  

 
Computations and rate analyses were performed at atmospheric pressure for 

both stoichiometric and rich fuel mixtures under plug flow reactor conditions. 

Significant oxidation pathways were identified for the initial fuel decay and the 

formation and decomposition of important intermediate species. Stoichiometric and 

rich mixtures show similar behaviour and there are no qualitative changes in either 

the species growth or the mechanisms under the current conditions. Consequently, a 

rate analysis is only presented for the stoichiometric case.  

The 1-methyl naphthalene fuel decomposition is mainly controlled by 

hydrogen atom abstraction reactions either from the ring (1357) 15% or from the 

methyl branch (1360) 25%. Oxygen addition reactions also take place and account 

for 22% of the fuel decay by replacing a hydrogen atom from the ring and 12% by 

replacing a ‘benzylic’ hydrogen. The direct removal of the methyl group, either via 

a pyrolytic reaction or displacement via H attack, is found to be a minor route that 

does not exceed 6% of the total fuel consumption. 

 

C11H10  +    OH            =  C11H9     +   H2O   (1360) 

C11H10  +    OH           =   C11H9P  +   H2O   (1357) 

C11H10  +    O              =   C11H9O  +   H    (1372) 

C11H10  +    O              =  OC11H9   +   H   (1373) 

  
The 1-methyl naphthyl radical which is formed by the ‘benzylic’ hydrogen 

removal from 1-methyl naphthalene forms C11H10 via H recombination contributing 

36% to the C11H9 consumption. The second major C11H9 decomposition channel is 

via thermal decomposition leading to the formation of the indenyl radical and 

acetylene (30%). Approximately 11% of C11H9 forms C11H9O via oxygen addition. 

Reaction rates applied to reactions (1358) and (1343) were based on the relevant 

kinetics of benzene as proposed by Potter [75]. 

 

C11H10                           =  C11H9      +      H    (1358) 

C11H9                            =  C9H7       +     C2H2   (1347) 
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C11H9      + O2              =  C11H9O   +     O    (1343) 

  

 The decomposition of C11H9O leads essentially (98%) to the formation of 

naphthalene via reaction (1387), which contributes 66% of the total formation of 

naphthalene. Naphthalene is also formed from the isomerization of C9H6CH2 (11%), 

which is formed after a sequence of reactions that initiate from OC11H9, a major 

initial product. Added to this, the C11H9P radical, which is produced from one of the 

four major fuel oxidation pathways also leads to the formation of OC11H9. The 

OC11H9 radical leads (95%) to the formation of C9H6CH3 via CO expulsion. 

Approximately 43% of C9H6CH3 converts to C9H6CH2 via thermal decomposition 

and subsequently leads to C10H8.  

 

C11H9O                         =  C10H8      +     CHO   (1387) 

C9H6CH2                      =  C10H8      (1292) 

 

 Naphthalene decomposes via two major channels to C10H7 (44%) and C10H7O 

(46%). The C10H7 radical is predominantly oxidized to C10H7O (65%). Following 

CO expulsion, C10H7O breaks down to the indenyl radical  (1326) and contributes 

12% of the total indenyl formation. A major (45%) indenyl formation pathway is 

via thermal decomposition of the C9H7CH3 (1347) to C9H7 and CH3 radicals     

(1221).The thermal decay of the 1-methyl naphthyl radical leads to C9H7 and C2H2 

and plays an important (28%) role in the formation of the indenyl radical. The 

formation channels of C9H7 are of key importance in the oxidation chain and also 

leads to indene via (1222).  

 

C9H7       + CH3             =  C9H7CH3    (1221) 

C11H9                             =  C9H7       +     C2H2   (1347) 

C10H7O                          =  C9H7       +     CO   (1326) 

C9H7       + H                 =  C9H8     (1222) 

 

 Further oxidation of C9H7 produces C8H7(P) and approximately 42% leads to 

styrene via reactions (1188) and (1194), which are responsible for 60% and 28% 
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respectively. The reaction rates applied to these channels were adopted from 

Maurice [112]. 

 

C8H7(P)    + H                =  C8H8     (1188) 

C8H8       + H                  =  C8H7(P)    + H2   (1194) 

 

 Approximately 65% of the styrene leads to the benzyl radical and 

formaldehyde via OH attack, but this channel constitutes only 9% of the total benzyl 

formation. The major benzyl radical formation channel is reaction (1232) (83%). 

The benzyl radical recombines with hydrogen (37%) leading to toluene. The 

channel is solely responsible for the toluene formation.  

 

C9H7       + O2             =  C7H7       + CO         + CO   (1232) 

C7H8                       =        C7H7    +   H      (1078) 

 

 Phenyl acetylene is produced via a reaction sequence through the indenyl 

radical C9H7 → C9H7O → C8H7 → C8H6. The dominant consumption pathway of 

C8H6 (36%) leads to the formation of the phenyl radical and C2HO. As mentioned 

earlier, the phenyl radical is an important intermediate specie for the formation of 

cyclo pentadienyl radical which occurs from the conversion of C6H5 to C6H5O 

(65%) via molecular oxygen attack. The phenoxy radical leads (98%) to C5H5. The 

channel is also the dominant C5H5 formation pathway (87%). The cyclopentadienyl 

radical recombines with CH3 leading to the formation of C5H4CH3 which is 

converted to fulvene via hydrogen abstraction and subsequently to benzene via 

isomerization.  

 

C6H6(F)    +      M = C6H6 + M   (980) 

 

The cyclopentadienyl radical recombines (24%) with atomic hydrogen to the 

formation of cyclopentadiene which is the main formation channel for C5H6 (95%).  

The predominant consumption step for C5H5 (41%) is through thermal 

decomposition to acetylene and the propargyl radical. However, this step constitutes 

a secondary formation channel for acetylene (14%). The dominant C2H2 formation 
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step is via thermal decomposition of the C11H9 radical to indenyl and acetylene 

(70%).  

Methane is produced from direct fuel consumption pathways that occur via 

hydrogen abstraction via methyl radicals either from the branch (1365) of 1-methyl 

naphthalene (62%), which is the dominant formation channel, or (22%) from the 

ring (1370).  

 

C11H10     + CH3              =  C11H9      + CH4   (1365) 

C11H10     + CH3              =  CH4        + C11H9P  (1370) 

 

The major methyl radical formation channel is the thermal decomposition of 

C9H7CH3 (73%). 
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Figure 7.29 Major 1-methyl naphthalene decomposition pathways under plug flow reactor 
conditions 
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7.8 Conclusions 

 
 

In the present work, a detailed chemical sub-mechanism for 1-methyl 

naphthalene was developed and validated under oxidation conditions in jet-stirred 

and flow reactors. A reaction rate analysis has shown that the ‘benzylic’ hydrogen 

abstraction is the dominant fuel decomposition process. The contribution of this 

channel reduces as the equivalence ratio increases. The second main fuel decay path 

is predicted to occur via oxygen atom addition to the bicyclic ring, which 

contributes 20-23% of the fuel consumption. Hydrogen abstraction from the ring via 

OH attack is less favoured. 

The removal of the methyl group, either by replacement or via thermal 

decomposition, is a minor process contributing approximately 3% to the fuel 

breakdown. Once the 1-methylnaphthyl radical is formed, the proposed thermal 

decomposition channel leading to the indenyl radical and acetylene is important and 

affects the growth and evolution of major intermediate species such as indene, 

styrene, phenyl acetylene, toluene benzene, cyclopentadiene and acetylene. The rate 

from Braun-Unhoff et al. [28] was adjusted to the 1-methyl naphthalene from 

toluene and resulted in good agreement for species concentrations in both reactors 

and for all the tested equivalence ratios.  

The level of agreement obtained between the computed concentrations and 

measurements for the naphthalene and indene species also implies that the accuracy 

of the fuel decay paths that involve oxygen addition to the fuel and lead to the 

formation of C11H9O and OC11H9 is adequate. The further decomposition of the 

oxygenated species leads to the formation of C10H8 and significant amounts of 

C9H7. The branching ratios between abstraction and addition pathways are also 

important for 1-methyl naphthalene combustion at intermediate temperatures.  

This current study presents a detailed chemical mechanism that captures the 

fuel profile decay and the growth of the rest of the major intermediate species in 

both jet-stirred and flow reactor conditions.  
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Conclusions and Future Work 

8.1 Conclusions 

 
The main objective of the present work has been the development, update and 

validation of detailed gas phase chemical kinetic mechanisms for aromatic 

components of aviation fuels and surrogates. A broad range of reactors and 

conditions has been used for the computational validation of the fuels and a reaction 

class based approach was used for the generation of the chemical mechanisms. The 

mechanisms feature molecules up to C11 that involve aliphatic compounds and a 

submechanism of mono-substituted and polyaromatic hydrocarbons. The starting 

point for this work was the development and validation of a mechanism for 

cyclopentadiene, which constitutes a major intermediate component in the 

combustion of single-ring aromatics such as benzene. The work was extended to 

two singe-ring aromatics, toluene and n-propyl benzene, and to two-ring aromatics, 

naphthalene and 1-methyl naphthalene.  

Cyclopentadiene is responsible for the production of the cyclopentadienyl 

radical that has high sooting tendencies, hence a detailed analysis of the 

cyclopentadienyl mechanism was performed. The oxidation of C5H6 was studied 

under plug flow reactor conditions and concentration profiles were computed and 

compared with measurements of Butler [20]. Reaction rates for channels featuring 

O, HO2 and OH were also updated and validated. A variety of cases varying from 

stoichiometric to fuel rich at atmospheric pressure were tested and reaction rate 

analyses were performed for representative cases. The pyrolysis of cyclopentadiene 

was also studied for a variety of fuel concentrations. The detection of high 

concentrations of species such as naphthalene, toluene, benzene and acetylene 

suggest pathways leading to PAH. During oxidation conditions, cyclopentadiene is 

mainly consumed via hydrogen abstraction reactions by H, OH, O radicals leading 
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to C5H5. Naphthalene is a a two ring aromatic compound that plays a significant 

role in aromatic growth and is formed via C5H5 through C10H9F formation. 

Temperature perturbations affect the fuel consumption pathways and promote soot 

formation. Especially when the temperature rises, thermal decomposition pathways 

start to play significant role in the evolution of species such as C5H5 leading to 

acetylene and propargyl radical. Both the latter species were shown to facilitate soot 

growth. The prediction of excessive concentrations of all the intermediate species 

during pyrolytic studies lead to the replacement of the reaction rate of the C5H5 

thermal decomposition channel to acetylene and propargyl radical with a rate 

proposed by Robinson [15]. The modification was responsible for the refinement of 

the predicted species concentrations. However, some species still showed 

overprediction tendencies and a reaction rate analysis was performed and important 

pathways affecting the evolution of these species were identified. The pathways are 

mostly acetylene recombination reactions with C3H3, C3H5(A), C5H5 and C7H7, as 

well as, recombination of cyclopentadiene with the cyclopentadienyl radical leading 

to formation of indene.  

The combustion of toluene was further validated and analysed under shock 

tube conditions. Tests involved pyrolytic and oxidation conditions, similar to those 

obtained by Braun-Unkhoff et al. [28], Vasudevan et al. [26] and Burcat et al. [25]. 

Reaction rates were updated and new reaction pathways were added to the starting 

mechanism. Hydrogen atom profiles were calculated under pyrolytic conditions and 

managed to capture the measured profiles of Braun-Unkhoff et al. [28] reasonably 

well. The result that the branching ratio of the toluene thermal decomposition to 

benzyl radical or phenyl and methyl radicals utilised in this study is arguably 

correct. Time resolved OH profile was also computed under shock tube conditions 

and compared against experimental data of Vasudevan et al. [26]. Sensitivity 

analysis that was performed identified the chain branching reaction O + H2 ↔ OH + 

H as an important pathway to the determination of the OH concentration. A rate of 

Li et al. [98], adopted from Sutherland et al. [99], applied to the scheme was found 

responsible for the current excellent prediction of the slope of the OH profile as 

compared to the measurements. A rate of Sun et al. [96] adopted from Baulch et al. 

[97] was also tested to the current mechanism and was found problematic causing 

delays to the ignition. The step that involves acetylene recombination with the 

cyclopentadienyl radical was identified as significant for the accurate prediction of 
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the OH profile. The absence of this step is responsible for delay in the ignition by 

20%. Toluene ignition delay times were also computed and showed excellent 

agreement with experimental data obtained from Vasudevan et al. [26] and Burcat 

et al. [25]. A reaction rate analysis was performed for both pyrolytic and oxidation 

conditions and important pathways were identified. The analyses highlight the 

toluene thermal decomposition to the benzyl radical and phenyl and methyl radicals, 

as well as hydrogen assisted reactions leading to the production of the benzyl 

radical and benzene. The results suggest that the reaction class based approached 

can also be applied to other methyl-substituted aromatic fuel components that form 

part of real and surrogate fuel formulations.  

N-propyl benzene follows the behaviour of benzene, toluene and propane. The 

mechanism was validated under jet-stirred reactor conditions for both low and high 

pressures for a wide range of stoichiometries and against ignition delay times. 

Reaction rates were updated and a rate analysis performed highlights the importance 

of the hydrogen abstraction reactions, which generate styrenes and promote the fuel 

consumption. The thermal breakdown of the n-propyl benzene chain to the primary 

and secondary site is significant and small rate changes can cause big discrepancies 

in the intermediate species concentrations. Large early concentrations of styrene, 

ethyl benzene and toluene is a clear indication that homolytic  reactions occur and 

promote the fuel decay. The results presented in this work are very encouraging and 

suggest that the reaction class based approached can be applied to other alkyl 

substituted aromatic fuel components. However, as the chain increases in length, 

new categories of reaction steps such as radical isomerisations, cyclic transition 

states and group shifts along the chain are likely to occur and should be taken into 

account.  

The mechanism was expanded to two-ring aromatic compounds such as 

naphthalene and tested under plug flow reactor conditions at atmospheric pressure 

and compared to measurements obtained by Shaddix [24]. Reaction rates for the 

C9H7 + O2/HO2 were obtained by Lindstedt et al. [70] and a reaction rate analysis 

performed in this work showed that the aforementioned channels play a significant 

role to the product distribution of single ring aromatics. Moreover, it was shown 

that hydrogen abstraction reaction via OH and oxygen addition to the ring constitute 

major fuel consumption pathways. However, due to limited availability of 

experimental data in the literature only a single test case was analysed in this work. 
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Hence, measurements of wider range of conditions are essential for the further 

refinements.   

The 1-methyl naphthalene submechanism is based on the toluene chemistry 

due to structural similarities. Reaction rates were updated and reaction steps were 

proposed to the scheme. Validation was performed under plug flow and jet stirred 

reactor conditions at atmospheric pressure for a variety of stoichiometries. Results 

were compared against measurements obtained by Shaddix and co-workers [21, 24] 

and Mati et al. [35]. A reaction rate analysis was performed for both plug flow and 

jet stirred reactor conditions and showed that the fuel decomposes via OH hydrogen 

abstraction from the chain and the ring and oxygen addition to both the chain and 

the ring. However, the attack on the chain side dominates the consumption of the 

fuel. The proposed thermal decomposition of the 1-methylnaphthyl radical to the 

indenyl radical and acetylene, was shown to constitute major channel for the 

evolution of the produced intermediate species. Moreover, the reaction sequence of 

C9H7 + O2/HO2 is also important for the distribution of single-ring aromatics. The 

good agreement between the computations and the measurements for the current 1-

methyl naphthalene in encouraging. 

 

 

8.2 Suggestions for Future Work 

 

The present work has identified some significant aspects of the chemical 

kinetic modelling of the studied fuel components that will need further 

investigation. A summary of the suggestions for future work is outlined below.  

1. The chemical kinetic analysis of the fuels studied here has revealed 

that pathways that involve acetylene recombination with radicals 

such as C3H3, C3H4(A), C5H5, C7H7 and C11H9 play a significant role 

in the evolution of intermediate species. There is need for further 

refinement of the reaction rates of the relevant reaction steps in order 

to minimize concentration discrepancies as compared to 

measurements.  

2. The present toluene chemistry manages to capture the high 

temperature regimes very well. However, uncertainties in the low 
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temperature reaction suggest potential problems under such 

conditions. 

3. The present oxidation mechanism for naphthalene highlights some 

key reaction steps that occur under oxidation conditions. The model 

may need further refinement in order to capture the behaviour of the 

fuel under wider range of conditions. Hence, measurements for a 

variety of stoichiometries tested under wider pressure and 

temperature conditions are essential in order to reduce uncertainties 

in the concentrations of intermediate species.  

4. The present 1-methyl naphthalene chemical scheme manages to 

simulate the behaviour of fuel oxidation in good agreement with the 

measurements under atmospheric pressure. Further work is essential 

for refinement of the model at higher pressures.  

5. The current refinement of the models can provide insight of 

relevance to the aviation industry and the next step should target 

systematic reductions leading to more acceptable computational costs 

for practical applications to the current combustor configurations.  
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Appendix A  

Reaction Mechanisms 

 
The detailed chemical reaction mechanism that was developed and utilized in 

the present work is shown in Table A.1. Reaction rates are expressed in the form:  

 

k = ATn exp(−Ea /RT)    (A.1) 

 

where A = frequency factor, (kmol/m3)(1-m)/s, m is the order of the reaction 

           n = temperature dependence exponent 

           Eα = activation energy, kJ/mole 

           R = ideal gas constant, 8.314 kJ/K/kmol 

           T = temperature, K 

Unimolecular and recombination reactions generally exhibit complex pressure 

dependence. Troe [12] proposed a generalised expression for the fall-off behaviour 

of such reactions:  

 

k =
kok∞ [M ]

ko[M ] + k∞

F      (A.2) 

 

where k∞ is the high pressure limit rate constant, ko is the low pressure limit, [M] is 

the concentration of the third body collision partner and F is the broadening factor 

which is defined as :  

 

logF =
logFc

1+ log ko[ M] / k∞( )/N{ }2    (A.3) 

 

where     N = 0.75 – 1.27logFc     (A.4) 

 

and Fc is a temperature dependent parameter specifically defined for a particular 

reaction. The reaction mechanism follows. 
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TABLE A.1 

Elementary reactions 

(units are kmole, m3, s, K and kJ/mole) 

 
No Reaction A n Ea Ref 

1 H  +  O2      =   OH       +  O  3.5500E+12 -0.41 69.50 [98] 

2 O  +  H2      =   OH       +  H 5.1200E+01 2.67 26.30 [98] 

3 OH +  H2     =   H2O      +  H 1.0000E+05 1.60 13.80 [73] 

4 OH +  OH   =  H2O      +  O 3.5700E+01 2.40 -8.84 [73] 

5 O2   +  H     =  HO2 
α,1                                      k∞ = 

                                                                       k0 =             
4.6500E+09 
2.6500E+13 

0.40 
-1.30 

0.00 
0.00 

[96] 

6 O2    +  H    =  HO2 
b,2                                     k∞ = 

                                                                       k0 = 
4.6500E+09 
3.6300E+13 

0.40 
-1.00 

0.00 
0.00 

[96] 

7 O2    +  H    =  HO2 
c,3                                      k∞ = 

                                                                       k0 = 
4.6500E+09 
6.8900E+12 

0.40 
-1.20 

0.00 
0.00 

[96] 

8 O2    +  H     =  HO2 
d,3                                     k∞ = 

                                                                       k0 = 
4.6500E+09 
6.8900E+12 

0.40 
-1.20 

0.00 
0.00 

[96] 

9 HO2   +  H     =  OH       +  OH 6.0000E+10 0.00 1.23 [96] 

10 HO2   +  H     =  H2        +   O2 1.6600E+10 0.00 3.43 [73] 

11 HO2   +  OH  =  H2O      +  O2 2.8900E+10 0.00 -2.08 [73] 

12 HO2   +  H     =  H2O      +  O 3.0000E+10 0.00 7.20 [73] 

13 HO2   +  O     =  OH       +  O2 3.1900E+10 0.00 0.00 [73] 

14 HO2   +  HO2 =  H2O2     +  O2 1.8600E+09 0.00 6.44 [73] 

15 H2O2  +  H     =  H2O      +  OH 1.0000E+10 0.00 15.00 [73] 

16 H2O2  +  H     =  HO2       +  H2 4.8200E+10 0.00 33.27 [73] 

17 H2O2  +  O     =  HO2      +  OH 6.6000E+08 0.00 16.60 [73] 

18 H2O2  +  OH   =  H2O     +  HO2 1.7500E+09 0.00 1.33 [132] 

19 H2O2               =  OH      +  OH e,4                   k∞ = 
                                                                       k0 =                     

2.9500E+14 
1.2000E+14 

0.00 
0.00 

202.64 
190.37 

[98] 

20 H    +  H    + M      =  H2  + M f 6.5300E+11 -1.00 0.00 [73] 

21 H    +  H    + M      =  H2   + M g 9.2000E+10 -0.60 0.00 [73] 

22 H    +  H    + M      =  H2  + M h 6.0000E+13 -1.25 0.00 [73] 

23 H    +  H    + M      =  H2   + M i 5.4900E+14 -2.00 0.00 [73] 

24 H    +  OH  + M      =  H2O + M j 2.2000E+16 -2.00 0.00 [73] 

25 O    +  O    + M      =  O2      + M k 1.0000E+11 -1.00 0.00 [73] 

26 C1   +  OH              =  CO   +  H 5.0000E+10 0.00 0.00 [133] 

27 C1   +  O2               =  CO    +  O 1.2000E+11 0.00 16.71 [134] 

28 C1      +  C1    + M =  C2  + M 1.8000E+15 -1.60 0.00 [135] 

29 CH    +  M            =  C1  +  H + M 1.0000E+11 0.00 267.65 [136] 
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30 CH    +  H            =  C1   +  H2 3.0000E+10 0.00 0.00 [72] 

31 CH    +  O            =  CO +  H 4.0000E+10 0.00 0.00 [73] 

32 CH    +  OH         =  C1    +  H2O 4.0000E+04 2.00 12.55 [133] 

33 CH    +  OH         =  CHO   +  H 3.0000E+10 0.00 0.00 [73] 

34 CH    +  O2           =  CHO   +  O 7.5000E+10 0.00 0.00 [133] 

35 CH    +  H2O        =  CH2OH 5.7300E+09 0.00 -3.15 [133] 

36 CH    +  CO2        =  CO      +  CHO 3.4000E+09 0.00 2.90 [73] 

37 CH2(S)   + M       =  CH2(T) + M l 1.0000E+10 0.00 0.00 [73] 

38 CH2(S)  +  H       =  CH       +  H2 7.0000E+10 0.00 0.00 [73] 

39 CH2(S)  +  O      =  CO       +  H      + H 1.5000E+10 0.00 0.00 [73] 

40 CH2(S)  +  O      =  CO       +  H2  1.5000E+10 0.00 0.00 [73] 

41 CH2(S)  +  OH    =  CH2O   +  H 3.0000E+10 0.00 0.00 [73] 

42 CH2(S)  +  H2      =  CH3      +  H 7.2300E+10 0.00 0.00 [73] 

43 CH2(S)  +  O2     =  CO       +  OH   + H 3.0000E+10 0.00 0.00 [73] 

44 CH2(S)  +  CO2   =  CH2O   +  CO 3.0000E+09 0.00 0.00 [73] 

45 CH2(T)   + M       =  C1        +  H2     + M  1.1148E+11 0.00 233.70 [136] 

46 CH2(T)  +  H       =  CH      +  H2 1.1000E+11 0.00 0.00 [137] 

47 CH2(T)  +  O      =   CO      +  H   + H 4.8800E+10 0.00 0.00 [138] 

48 CH2(T)  +  O      =   CO      +  H2 3.2500E+10 0.00 0.00 [138] 

49 CH2(T)  +  OH   =   CH       +  H2O 1.1300E+04 2.00 12.56 [73] 

50 CH2(T)  +  OH   =   CH2O   +  H 2.5000E+10 0.00 0.00 [73] 

51 CH2(T)  +  C1     =   C2H      +  H 5.0000E+10 0.00 0.00 [133] 

52 CH2(T)  +  CH   =  C2H2      +  H 4.0000E+10 0.00 0.00 [73] 

53 CH2(T)  +  CH2(T)  =  C2H2  +  H    + H 1.2000E+11 0.00 3.32 [73] 

54 CH2(T)  +  H2         =  CH3   +  H 3.0000E+06 0.00 0.00 [73] 

55 CH2(T)  +  O2         =  CO    +  H   + OH 1.6400E+18 -3.30 12.00 [139] 

56 CH2(T)  +  O2         =  CO    +  H2O 2.2400E+19 -3.30 12.00 [139] 

57 CH2(T)  +  O2         =  CO2   +  H   + H 3.2850E+18 -3.30 12.00 [139] 

58 CH2(T)  +  O2         =  CO2   +  H2 2.6300E+18 -3.30 12.00 [139] 

59 CH2(T)  +  O2         =  CH2O     +  O 3.2850E+18 -3.30 12.00 [139] 

60 CH2(T)  +  CO       =  C2H2O 6.0300E+05 0.00 0.00 [72] 

61 CH2(T)  +  CO2      =  CH2O     +  CO 1.1000E+08 0.00 4.18 [73] 

62 CH3      +   M         =  CH2(S)   +  H + M 1.9000E+13 0.00 382.44 [73] 

63 CH3     +  H            =  CH4 
m,4                          k∞ = 

                                                                       k0 = 
2.1000E+11 
6.3000E+17 

0.00 
-1.80 

0.00 
0.00 

[73] 

64 CH3     +  O           =  CH2O    +  H 8.4300E+10 0.00 0.00 [73] 
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65 CH3     +  OH        =  CH2(S)  +  H2O 4.0000E+10 0.00 10.47 [73] 

66 CH3     +  OH        =  CH2O    +  H2 1.0240E+09 0.00 0.00 [73] 

67 CH3      +  OH        =  CH2OH +  H 1.5000E+11 0.00 34.46 [73] 

68 CH3     +  OH        =  CH3O    +  H 5.7400E+09 -0.23 58.28 [73] 

69 CH3      +  OH        =  CH3OH 5                       k∞ = 
                                                                       k0 = 

6.0000E+10 
1.5950E+18 

0.00 
-8.20 

0.00 
0.00 

[140] 

70 CH3     +  HO2       =  CH3O   +  OH 1.8000E+10 0.00 0.00 [101] 

71 CH3     +  C1          =  C2H2     +  H 5.0000E+10 0.00 0.00 [133] 

72 CH3     +  CH        =  C2H3     +  H 3.0000E+10 0.00 0.00 [73] 

73 CH3     +  CH2(S)  =  C2H4     +  H 1.8000E+10 0.00 0.00 [73] 

74 CH3     +  CH2(T)   =  C2H4     +  H 4.0000E+10 0.00 0.00 [101] 

75 CH3     +  CH3        =  C2H5     +  H 5.0000E+09 0.10 44.36 [101] 

76 CH3     +  CH3        =  C2H6 
6                           k∞ = 

                                                                       k0 =             
3.6000E+10 
1.2750E+35 

0.00 
-7.00 

0.00 
11.55 

[73] 

77 CH3     +  O2           =  CH2O     +  OH 1.8500E+09 0.00 85.01 [141] 

78 CH3     +  O2          =  CH3O     +  O 1.3200E+11 0.00 131.36 [73] 

79 CH3     +  O2          =  CH3OO 6                       k∞ = 
                                                                       k0 =             

2.0600E+06 
5.3100E+19 

1.10 
-3.30 

0.00 
0.00 

[132] 

80 CH3     +  HO2        =  CH4     +  O2 3.6000E+09 0.00 0.00 [142] 

81 CH4     +  H            =  CH3     +  H2 3.8600E+03 2.11 32.42 [143] 

82 CH4     +  O            =  CH3     +  OH 9.0330E+05 1.56 35.55 [101] 

83 CH4     +  OH         =  CH3      +  H2O 1.5600E+04 1.83 11.60 [101] 

84 CH4     +  HO2        =  CH3     +  H2O2 9.0330E+09 0.00 103.09 [73] 

85 CH4     +  CH         =  C2H4     +  H 6.0000E+10 0.00 0.00 [73] 

86 CH4     +  CH2(S)   =  CH3     +  CH3 4.2700E+10 0.00 0.00 [73] 

87 CO      +  O  + M   =  CO2     +  M n 3.0000E+08 0.00 12.55 [96] 

88 CO      +  OH         =  CO2    +  H 1.0000E+10 0.00 66.92 [96] 

89 CO      +  OH         =  CO2    +  H 9.0000E+08 0.00 19.12 [96] 

90 CO      +  OH         =  CO2    +  H 1.0100E+08 0.00 0.249 [96] 

91 CO      +  HO2        =  CO2    +  OH 1.1500E+02 0.00 73.40 [96] 

92 CO      +  O2           =  CO2    +  O 2.5000E+09 0.00 200.00 [73] 

93 CHO   +  M           =   CO     +  H + M o 1.8600E+14 -1.00 71.13 [73] 

94 CHO   +  H           =  CO       +  H2 1.1100E+11 0.00 0.00 [96] 

95 CHO   +  O           =  CO       +  OH 3.0000E+10 0.00 0.00 [73] 

96 CHO   +  O           =  CO2      +  H 3.0000E+10 0.00 0.00 [73] 

97 CHO   +  OH        =  CO       +  H2O 1.0000E+11 0.00 0.00 [73] 

98 CHO   +  CH3        =  CO       +  CH4 1.2000E+11 0.00 0.00 [73] 

99 CHO  +  O2      =  CO      +  HO2 1.2000E+07 0.81 -3.04 [144] 
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100 CH2O +  M       =  CHO    +  H   + M 1.2600E+13 0.00 326.00 [73] 

101 CH2O  +  H      =  CHO      +  H2 1.2600E+05 1.62 9.06 [140] 

102 CH2O  +  O      =  CHO      +  OH 4.1500E+08 0.57 11.56 [73] 

103 CH2O  +  OH   =  CHO      +  H2O 3.4300E+06 1.18 -1.87 [101] 

104 CH2O  +  HO2  =  CHO      +  H2O2 2.0000E+09 0.00 48.97 [73] 

105 CH2O  +  CH   =  C2H2O    +  H 9.4600E+10 0.00 -2.16 [73] 

106 CH2O  +  CH3  =  CHO      +  CH4 4.0900E+09 0.00 37.00 [73] 

107 CH2O  +  O2    =  CHO      +  HO2 6.0000E+10 0.00 170.00 [73] 

108 CH2OH +  M   =  CH2O     +  H    + M 4.4000E+12 0.00 125.52 [145] 

109 CH2OH +  H    =  CH2O     +  H2 3.0000E+10 0.00 0.00 [73] 

110 CH2OH +  O    =  CH2O     +  OH  4.2200E+10 0.00 0.00 [73] 

  111 CH2OH +  OH =  CH2O     +  H2O 2.4000E+10 0.00 0.00 [73] 

112 CH2OH +  O2  =  CH2O     +  HO2 4.5600E-09 5.94 -18.99 [73] 

113 CH3O     + M   =   CH2O    +   H   + M 5.4500E+10 0.00 56.50 [73] 

114 CH3O     + M   =  CH2OH  +  M p 3.0100E+08 0.00 17.04 [73] 

115 CH3O    +  H   =  CH2O     +  H2 2.0000E+10 0.00 0.00 [73] 

116 CH3O    +  O   =  CH2O     +  OH 6.0000E+09 0.00 0.00 [73] 

117 CH3O    +  OH  =  CH2O   +  H2O 1.8000E+10 0.00 0.00 [73] 

118 CH3O    +  O2   =  CH2O    +  HO2 6.6000E+07 0.00 10.88 [73] 

119 CH3OH  +  M   =  CH2(S)  +  H2O  + M 7.0000E+12 0.00 277.99 [73] 

120 CH3OH  +  M   =  CH2OH  +  H     + M 2.0000E+14 0.00 315.89 [73] 

121 CH3OH   +  H  =  CH2OH    +  H2 1.4400E+10 0.00 25.50 [146] 

122 CH3OH   +  H  =  CH3O     +  H2 4.0000E+09 0.00 25.50 [73] 

123 CH3OH   +  O  =  CH2OH    +  OH 3.8800E+02 2.50 12.90 [73] 

124 CH3OH   +  O  =  CH3O     +  OH 1.0000E+10 0.00 19.59 [73] 

125 CH3OH   +  OH  =  CH2OH    +  H2O 3.0000E+01 2.65 -3.70 [73] 

126 CH3OH   +  OH  =  CH3O     +  H2O 5.3000E+00 2.65 -3.70 [73] 

127 CH3OH   +  CH3  =  CH2OH    +  CH4 3.1900E-02 3.20 30.00 [73] 

128 CH3OH   +  O2    =  CH2OH    +  HO2 2.0500E+10 0.00 188.00 [147] 

129 CH3OH   +  HO2 =  CH2OH    +  H2O2 3.9800E+10 0.00 81.22 [146] 

130 CH3OO   +  CH4 =  CH3OOH   +  CH3 3.0000E+09 0.00 95.00 [148] 

131 CH3OO   +  CH2O =  CH3OOH   +  CHO 3.0000E+09 0.00 52.00 [72] 

132 CH3OO   +  HO2    =  CH3OOH   +  O2 2.4700E+08 0.00 -6.56 [149] 

133 CH3OO  +  CH3OO = CH3O + CH3O + O2 5.4800E+07 0.00 -3.49 [140] 

134 CH3OO  +  CH3   =  CH3O +  CH3O 1.0000E+10 0.00 0.00 [72] 
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135 CH3OO  +  C2H6  =  CH3OOH   +  C2H5 3.0000E+08 0.00 62.50 [150] 

136 CH3OOH      =  CH3O  +  OH 6.0000E+14 0.00 177.09 [148] 

137 C2       +  O   =  CO      +  C1 3.6100E+11 0.00 0.00 [151] 

138 C2       +  O2   =  CO      +  CO 8.9700E+09 0.00 4.10 [152] 

139 C2H     + O    =  CO      +  CH 1.0000E+10 0.00 0.00 [73] 

140 C2H     + OH =  C2HO   +  H 2.0000E+10 0.00 0.00 [73] 

141 C2H     + H2   =  C2H2    +  H 5.6700E+07 0.90 8.34 [73] 

142 C2H     + O2   =  CO      +  CO   + H 9.0400E+09 0.00 -1.91 [73] 

143 C2H     +  H2O  =  C2H2O    +  H 1.1400E+10 0.00 1.66 [73] 

144 C2H     +  H      =  C2           +  H2 3.6100E+10 0.00 118.25 [73] 

145 C2H     +  C2H  =  C2H2       +  C2 1.8100E+09 0.00 0.00 [150] 

146 C2H     +  CH3                =  C3H3     +  H 2.4100E+10 0.00 0.00 [73] 

147 C2H     +  C2H                =  C4H      +  H 1.0000E+11 0.00 0.00 [73] 

148  C2H2    +  M      =  C2H        +  H + M 4.2000E+13 0.00 448.00 [73] 

149 C2H2    + M       =  H2C2       +  M q 2.5000E+12 -0.64 207.95 [153] 

150 C2H2    +  O      =  CO         +  CH2(T) 1.2500E+04 2.00 7.94 [154] 

151 C2H2    +  O      =  C2HO     +  H 9.0400E+09 0 19.00 [150] 

152 C2H2    +  OH   =  C2H        +  H2O 3.3700E+04 2.00 58.57 [73] 

153 C2H2    +  OH   =  C2H2O    +  H  3.7500E+03 1.70 4.18 [133] 

154 C2H2    +  HO2  =  C2H2O    +  OH 6.0000E+06 0.00 33.52 [150] 

155 C2H2    +  O2     =  C2H        +  HO2 1.2000E+10 0.00 311.70 [73] 

156 C2H2    +  CH                 =  C3H      +   H2 3.1500E+10 0.00 -0.51 [133] 

157 C2H2    +  CH                 =  C3H2     +   H 1.7850E+11 0.00 -0.51 [133] 

158 C2H2    +  CH2(S)        =  C3H3     +   H 8.0000E+10 0.00 0.00 [133] 

159 C2H2    +  CH2(S)        =  C3H4(B) 8.0000E+10 0.00 0.00 [133] 

160 C2H2    +  CH2(T)        =  C3H4(B) 1.2000E+10 0.00 27.70 [73] 

161 C2H2    +  CH3             =  C3H4(A)  +  H 9.6800E+10 0.00 117.13 [8] 

162 C2H2    +  CH3             =  C3H5(S) 1.6100E+37 -8.58 85.06 [155] 

163 C2H2    +  CH3             =  C3H5(A) 2.6800E+50 -12.82 150.00 [156] 

164 C2H2     +   CH3          =  C2H      +  CH4 1.8100E+08 0.00 72.33 [150] 

165 C2H2    +  C2H2            =  C4H3(N)  +  H 1.0000E+09 0.00 276.14 [73] 

166 C2H2    +  C2H2            =  C4H3(I)   +  H 2.0000E+09 0.00 268.00 [73] 

167 C2H2    +  C2H             =  C4H2       +  H 1.2000E+11 0.00 0,00 [73] 

168 H2C2    +  O2     =  CH2(T)   +  CO2 5.0000E+10 0.00 0.00 [153] 

169 H2C2    +  O       =  CH2(T)   +  CO  3.0000E+10 0.00 0.00 [153] 
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170 H2C2    +  OH    =  CH2(T)   +  CHO 2.0000E+10 0.00 0.00 [153] 

171 H2C2    +  O2      =  CHO      + CHO 1.0000E+10 0.00 0.00 [72] 

172 C2H3                  =  C2H2      +  H r,7                 k∞ = 
                                                                       k0 = 

2.0000E+14 
4.1600E+38 

0.00 
-7.50 

166.28 
190.40 

[101] 

173 C2H3    +  H       =  C2H2     +  H2 3.0000E+10 0.00 0.00 [101] 

174 C2H3    +  O       =  C2H2O  +  H 3.0000E+10 0.00 0.00 [73] 

175 C2H3    +  OH    =  C2H2     +  H2O 2.0000E+10 0.00 0.00 [73] 

176 C2H3    +  HO2   =  CH3CO +  OH 3.0000E+10 0.00 0.00 [150] 

177 C2H3    +  CH     =  C2H2     +  CH2(T) 5.0000E+10 0.00 0.00 [73] 

178 C2H3    +  C2H   =  C2H2     +  C2H2 3.0000E+10 0.00 0.00 [73] 

179 C2H3    +  O2     =  CH2O    +  CHO 1.6400E+18 -2.78 1.06 [157] 

180 C2H3    +  O2     =  C2H2      +  HO2 1.6600E+11 -0.83 10.62 [136] 

181 C2H3    +  O2     =  CH2CHO  +  O 2.5000E+09 0.06 3.97 [136] 

182 C2H3    +  O2     =  CH3CO    +  O 1.5000E+08 0.00 -1.00 [133] 

183 C2H3    +  C2H             =  C4H4 1.0000E+11 0.00 0.00 [158] 

184 C2H3    +  C2H2            =  C4H4     +  H 4.6800E+09 0.00 21.70 [133] 

185 C2H3    +  C2H3             =  C4H6(T) 1.0000E+10 0.00 0.00 [73] 

186 C2H3    +  CH               =  C3H2      +  H2 3.1500E+10 0.00 -0.51 [72] 

187 C2H3    +  CH               =  C3H3      +  H 1.7885E+11 0.00 -0.51 [72] 

188 C2H3    +  CH2(S)         =  C3H3      +  H2 8.0000E+10 0.00 0.00 [72] 

189 C2H3    +  CH2(S)         =  C3H4(B)  +  H 8.0000E+10 0.00 0.00 [72] 

190 C2H3    +  CH2(T)         =  C3H4(B)  +  H 1.2000E+10 0.00 27.70 [72] 

191 C2H4     +  M      =  C2H3        +  H + M 2.6000E+14 0.00 404.00 [73] 

192 C2H4    +  H       =  C2H3     +  H2 5.0700E+04 1.93 54.19 [159] 

193 C2H4    +  H      =  C2H5 
l,7                               k∞ = 

                                                                       k0 = 
3.9700E+06 
4.7140E+12 

1.28 
0.00 

5.40 
3.16 

[140] 

194 C2H4    +  O      =  CHO         + CH3 8.1000E+03 1.88 0.76 [136] 

195 C2H4    +  O      =  CH2CHO   + H 4.7000E+03 1.88 0.76 [140] 

196 C2H4    +  O      =  C2H2O      +  H2 6.7500E+02 1.88 0.76 [136] 

197 C2H4    +  OH   =  C2H3         +  H2O 2.0500E+10 0.00 24.86 [101] 

198 C2H4    +  HO2  =  C2H3         +  H2O2 1.1200E+10 0.00 127.30 [160] 

199 C2H4    +  HO2  =  CH3CHO  +  OH 6.0300E+06 0.00 33.25 [150] 

200 C2H4   +  HO2 =  C2H4O  + OH 2.2300E+09 0.00 71.90 [101] 

201 C2H4   +  O2    =  C2H3    +  HO2 4.2200E+10 0.00 241.11 [150] 

202 C2H4   +  C2H4 = C2H3    +  C2H5 5.0100E+11 0.00 271.00 [161] 

203 C2H4    +  CH2(S)          =  C3H6 6.6000E+10 0.00 0.00 [73] 

204 C2H4    +  CH2(T)         =  C3H6 1.8000E+07 0.00 0.00 [73] 
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205 C2H4    +  CH               =  C3H3      +  H2 3.1500E+10 0.00 -0.51 [72] 

206 C2H4    +  CH               =  C3H4(B)  +  H 1.7850E+11 0.00 -0.51 [72] 

207 C2H4    +  CH2(S)         =  C3H4(B)  +  H2 8.0000E+10 0.00 0.00 [72] 

208 C2H4    +  CH2(S)         =  C3H5(B)  +  H 8.0000E+10 0.00 0.00 [72] 

209 C2H4    +  CH2(T)         =  C3H5(B)  +  H 1.2000E+10 0.00 27.70 [72] 

210 C2H4    +  C2H             =  C4H4       +  H 1.2100E+10 0.00 0.00 [150] 

211 C2H5   +  H      =  C2H4   +  H2 4.5000E+10 0.00 0.00 [162] 

212 C2H5   +  O      =  CH2O  + CH3 6.6000E+10 0.00 0.00 [73] 

213 C2H5   +  O      =  C2H4    + OH 3.0600E+10 0.00 0.00 [162] 

214 C2H5   +  O      =  CH3CHO   +  H 6.6000E+10 0.00 0.00 [133] 

215 C2H5   +  O2    =   CH3CHO   +  OH 1.9462E+09 -0.47 32.47 [163] 

216 C2H5   +  O2    =   C2H4    +    HO2 1.0200E+17 -2.97 36.13 [163] 

217 C2H5   +  O2    =   C2H4O   +  OH 1.9390E+17 -3.08 36.13 [163] 

218 C2H5   +  O2    =   C2H4OOH 8.8400E+34 -9.33 42.48 [163] 

219 C2H5   +  O2    =   C2H5OO 9.4200E+33 -8.01 25.50 [163] 

220 C2H5    +  C2H5            =  C4H10(N) 1.7200E+14 -1.66 4.59 [164] 

221 C2H6               =   C2H5     +  H s,8                   k∞ = 
                                                                       k0 = 

8.8500E+20 
4.9000E+39 

-1.23 
-6.43 

427.70 
448.40 

[73] 

222 C2H6   +  H    =  C2H5     +  H2 1.4450E+06 1.50 31.00 [73] 

223 C2H6  +  O    =  C2H5     +  OH 1.0000E+06 1.50 24.30 [73] 

224 C2H6  +  OH =  C2H5     +  H2O 7.2260E+03 2.00 3.61 [73] 

225 C2H6  +  CH2(S) =  C2H5     +  CH3 1.1400E+11 0.00 0.00 [73] 

226 C2H6  +  O2        =  C2H5     +  HO2 6.0230E+10 0.00 216.99 [101] 

227 C2H6  +  HO2     =  C2H5     +  H2O2 1.3200E+10 0.00 85.63 [101] 

228 C2H6  +  CH3     =  C2H5     +  CH4 1.5000E-10 6.00 25.26 [101] 

229 C2O   +  H         =  CO       +  CH 5.0000E+10 0.00 0.00 [73] 

230 C2O   +  O         =  CO       +  CO 5.0000E+10 0.00 0.00 [73] 

231 C2O   +  OH      =  CO       +  CO       + H 2.0000E+10 0.00 0.00 [73] 

232 C2O   +  O2        =  CO       +  CO       + O 2.0000E+10 0.00 0.00 [73] 

233 C2HO +  H        =  CH2(S)   +  CO 1.0000E+11 0.00 0.00 [73] 

234 C2HO +  O       =  CO       +  CO       + H 9.6350E+10 0.00 0.00 [73] 

235 C2HO +  OH    =  C2O      +  H2O 3.0000E+10 0.00 0.00 [73] 

236 C2HO  +  CH  =  C2H2     +  CO 5.0000E+10 0.00 0.00 [73] 

237 C2HO  +  CH2(T)  =  C2H3   +  CO 3.0000E+10 0.00 0.00 [73] 

238 C2HO  +  C2HO    =  C2H2   +  CO    + CO 1.0000E+10 0.00 0.00 [73] 

239 C2HO  +  O2         =  CO     +  CO    +  OH 1.9092E+08 -0.02 4.28 [165] 
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240 C2HO   +  O2        =  CO2    +  CO    + H 4.7800E+09 -0.14 4.81 [165] 

241 C2HO   +  C2H2              =  C3H3     +  CO 1.0000E+08 0.00 12.60 [73] 

242 C2H2O  +  H         =  CO      +  CH3 1.1100E+04 2.00 8.36 [166] 

243 C2H2O   +  H        =  C2HO   +  H2 1.8000E+11 0.00 35.98 [166] 

244 C2H2O   +  O       =  CO2     +  CH2(T) 2.0000E+10 0.00 9.60 [167] 

245 C2H2O   +  O       =  C2HO   +  OH 2.0000E+04 2.00 41.68 [136] 

246 C2H2O   +  OH    =  CH2OH  +  CO 1.0200E+10 0.00 0.00 [101] 

247 C2H2O   +  CH2(S)  =  C2H4   +  CO 1.2600E+11 0.00 0.00 [168] 

248 C2H2O   +  CH3       =  C2H5   +  CO 9.0000E+07 0.00 0.00 [133] 

249 C2H2O   +  CH3        =  C2HO   +  CH4 7.5000E+09 0.00 54.39 [133] 

250 C2H2O  +  OH      =  C2HO     +  H2O 1.0000E+04 2.00 12.56 [136] 

251 CHCH2O             =  CH3CO 8.5000E+14 0.00 58.60 [160] 

252 CHCH2O             =  CH2CHO 1.0000E+14 0.00 58.60 [160] 

253 CH2CHO             =  CH3CO 1.0000E+13 0.00 184.10 [136] 

254 CH2CHO             =  C2H2O +  H 1.5800E+13 0.00 196.65 [136] 

255 CH2CHO  + OH  =  C2H2O  + H2O 1.0000E+10 0.00 0.00 [136] 

256 CH2CHO  + O     =  C2H2O  + OH 1.0000E+11 0.00 0.00 [136] 

257 CH2CHO  + O2    =  CH2O   + CO   + OH 1.8100E+07 0.00 0.00 [101] 

258 CH2CHO  + CH3  = C2H6     +    CO 6.1000E+09 0.00 0.00 [136] 

259 CH3CHO    + M   =  CHO    + CH3    + M  7.0800E+15 0.00 342.15 [101] 

260 CH3CHO   +  H   =  CH3CO  +  H2 2.1000E+06 1.16 10.09 [133] 

261 CH3CHO   +  O   =  CH3CO  +  OH 5.0000E+09 0.00 7.50 [167] 

262 CH3CHO   +  OH =  CH3CO  +  H2O 2.3000E+07 0.73 -4.66 [133] 

263 CH3CHO   +  HO2  =  CH3CO  +  H2O2 3.0000E+09 0.00 49.87 [101] 

264 CH3CHO   +  CH2(T)  =  CH3CO   +  CH3 2.5000E+09 0.00 15.89 [133] 

265  CH3CHO   +  CH3   =  CH3CO   +  CH4 2.0000E-09 5.64 10.31 [101] 

266 CH3CHO   +  O2     =  CH3CO    +  HO2 4.0000E+10 0.00 164.19 [133] 

 
267 

 
CH3CO                   =  CH3           +  CO           k∞ = 
                                                                       k0 = 

 
 2.8000E+13 
6.0300E+12 

 
   0.00 

0.00 

 
  71.75 
58.86 

 
[136] 

268 CH3CO   + H    =  C2H2O  +  H2 1.1500E+10 0.00 0.00 [72] 

269 CH3CO   + H    =  CH3      +  CHO 2.1500E+10 0.00 0.00 [72] 

270 CH3CO   + OH =  C2H2O  +  H2O 1.2100E+10 0.00 0.00 [150] 

271 CH3CO   + O   =  CH3      +  CO2 1.5400E+11 0.00 0.00 [72] 

272 CH3CO   + O   =  C2H2O   + OH 3.8600E+10 0.00 0.00 [72] 

273 CH3CO   + CH3 =  C2H6    +  CO 5.0000E+10 0.00 0.00 [133] 
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274 C2H4O              =  CH3      +  CHO 3.4000E+13 0.00 241.90 [160] 

275 C2H4O              =  CH3CHO 5.8400E+11 0.00 219.10 [160] 

276 C2H4O   +  H    =  CHCH2O   +  H2 7.9000E+10 0.00 41.00 [160] 

277 C2H4O   +  OH =  CHCH2O   +  H2O 1.7800E+10 0.00 15.10 [160] 

278 C2H4O   +  HO2  =  CHCH2O   +  H2O2 1.1200E+10 0.00 127.30 [160] 

279 C2H4O   +   HO2 =  CH3   +  CO  + H2O2 4.0000E+09 0.00 71.20 [101] 

280 C2H4O   +  CH3   =  CHCH2O   +  CH4 1.0700E+09 0.00 49.50 [160] 

281 C2H4O + CH3O    =  CHCH2O   + CH3OH 1.2000E+08 0.00 28.30 [160] 

282 C2H4O + CH3OO =  CHCH2O  +CH3OOH 1.1200E+10 0.00 127.30 [160] 

283 C2H4OOH          =  C2H4O  +  OH 1.4900E+41 -9.51 94.46 [163] 

284 C2H4OOH          =  C2H4     +  HO2 6.5800E+41 -9.70 96.28 [163] 

285 C2H4OOH          =  C2H4    +  HO2 5.6500E+41 -10.9 110.78 [163] 

286 C2H4OOH          =  CH3CHO  +   OH 3.1000E+37 -10.1 119.55 [163] 

287 C2H5O                =  CH2O       +  CH3 1.0000E+15 0.00 90.40 [160] 

288 C2H5O                =  CH3CHO   +  H  2.5100E+14 0.00 97.90 [160] 

289 C2H5O  +  O2  =  CH3CHO   +  HO2 6.0300E+07 0.00 6.90 [160] 

290 C2H5OO         =  C2H4OOH 4.5540E+51 -13.30 184.53 [163] 

291 C2H5OO         =  C2H4    +    HO2 6.4630E+30 -6.06 146.98 [163] 

292 C2H5OO         =  C2H4    +    HO2 4.4700E+42 -10.10 128.07 [163] 

293 C2H5OO         =  C2H4O +  OH 3.0150E+42 -10.00 188.65 [163] 

294 C2H5OO         =  CH3CHO  + OH 2.1340E+41 -9.81 192.03 [163] 

295 C2H5OO  +  HO2  =  C2H5OOH  +  O2 1.6300E+08 0.00 -8.31 [160] 

296 C2H5OO  +  CH2O =  C2H5OOH  +  CHO 2.0000E+09 0.00 48.80 [160] 

297 C2H5OO  +  CH4   =  C2H5OOH  +  CH3 1.1200E+10 0.00 103.20 [160] 

298 C2H5OO  +  C2H4  =  C2H4O    +  C2H5O 2.8200E+09 0.00 71.60 [160] 

299 C2H5OO  +  C2H4  =  C2H5OOH  +  C2H3 1.1200E+10 0.00 127.30 [160] 

300 C2H5OO  +  C2H6  =  C2H5OOH  +  C2H5 1.7000E+10 0.00 85.60 [160] 

301 C2H5OO + C2H4O = CHCH2O+ C2H5OOH  1.1200E+10 0.00 127.30 [160] 

302 C2H5OOH             =  C2H5O    +  OH 4.0000E+15 0.00 179.60 [160] 

303 C2H5OOH + CH2OH =  C2H5OO  +CH3OH 3.0160E+06 0.00 10.80 [160] 

304 C3H     +  O              =  C2H     +   CO 6.8000E+10 0.00 0.00 [73] 

305 C3H     +  OH           =  C2H2    +   CO 6.8000E+10 0.00 0.00 [73] 

306 C3H     +  O2             =  C2H     +   CO2 9.0400E+09 0.00 -1.91 [72] 

307 C3H     +  H2O          =  C3H2O   +   H 1.1500E+10 0.00 1.66 [133] 

308 C3H     +  CH            =  C4H     +   H 7.0000E+10 0.00 0.00 [133] 
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309 C3H     +  CH2(S)      =  C4H2    +   H 8.0000E+10 0.00 0.00 [133] 

310 C3H     +  CH2(T)      =  C4H2    +   H 8.0000E+10 0.00 0.00 [133] 

311 C3H     +  CH3           =  C4H3(I) +   H 4.0000E+10 0.00 0.00 [133] 

312 C3H2                         =  C3H2L 1.0000E+13 0.00 272.00 [133] 

313 C3H2    +  H               =  C3H     +   H2 1.0000E+11 0.00 0.00 [133] 

314 C3H2    +  H2O           =  C3H2O   +   H2 5.7300E+09 0.00 -3.16 [133] 

315 C3H2    +  CH3           =  C4H4    +   H 4.0000E+10 0.00 0.00 [133] 

316 C3H2    +  CH2(S)      =  C4H3(I) +   H 8.0000E+10 0.00 0.00 [133] 

317 C3H2    +  CH            =  C4H2    +   H 7.0000E+10 0.00 0.00 [133] 

318 C3H2    +  O              =  C2H     +   CO  +     H 1.4000E+11 0.00 0.00 [133] 

319 C3H2    +  OH           =  C3H     +   H2O 6.0000E+10 0.00 0.00 [133] 

320 C3H2    +  O2            =  C2H2    +   CO2 2.0000E+09 0.00 0.00 [73] 

321 C3H2    +  O2            =  C3H2O   +   O 2.0000E+09 0.00 0.00 [72] 

322 C3H2    +  CH2(T)      =  C4H3(I) +   H 8.0000E+10 0.00 0.00 [133] 

323 C3H2L   +  H             =  C3H     +   H2 1.0000E+11 0.00 0.00 [133] 

324 C3H2L   +  OH           =  C3H     +   H2O 2.0000E+10 0.00 0.00 [133] 

325 C3H3    +  C3H2          =  C6H4L   +   H 1.0000E+10 0.00 0.00 [73] 

326 C3H3    +  C3H3         =  C6H6(A) 1.0000E+10 0.00 0.00 [73] 

327 C3H3    +  C3H3        =  C6H6(B) 1.0000E+10 0.00 0.00 [73] 

328 C3H3    +  C3H3          =  C6H6(S) 1.0000E+10 0.00 0.00 [73] 

329 C3H3    +  C3H4(A)     =  C6H7(L) 3.0000E+08 0.00 12.56 [169] 

330 C3H3    +  CH            =  C4H3(N) +   H 7.0000E+10 0.00 0.00 [73] 

331 C3H3    +  CH            =  C4H3(I) +   H 7.0000E+10 0.00 0.00 [73] 

332 C3H3    +  CH2(T)       =  C4H4    +   H 8.0000E+10 0.00 0.00 [73] 

333 C3H3    +  CH2(S)       =  C4H4    +   H 8.0000E+10 0.00 0.00 [133] 

334 C3H3    +  H             =  C3H2L   +   H2 1.0000E+10 0.00 9.00 [133] 

335 C3H3    +  O             =  C3H2O   +   H 2.5000E+10 0.00 0.00 [72] 

336 C3H3    +  OH          =  C3H2O   +   H2 4.0000E+09 0.00 0.00 [72] 

337 C3H3    +  O2            =  C2H2O   +   CHO 3.0000E+07 0.00 12.00 [73] 

338 C3H3    +  H2O          =  C3H4O   +   H 1.1500E+10 0.00 100.66 [72] 

339 C3H3     +   C3H3         =  C6H5     +  H 4.0000E+09 0.00 0.00 [131] 

340 C3H4(A) +  H            =  C3H5(T) 8.5000E+09 0.00 8.37 [73] 

341 C3H4(A) +  H            =  C3H5(A) 1.5200E+56 -13.54 112.83 [156] 

342 C3H4(A) +  H            =  C3H3   +    H2 1.0000E+09 0.00 6.28 [145] 

343 C3H4(A) +  O            =  C2H3   +    CHO 1.1000E-05 4.61 -17.80 [73] 



226                                                                                                         Appendix A 

 

No Reaction A n Ea Ref 

344 C3H4(A) +  OH         =  C2H2O  +    CH3 3.1200E+09 0.00 -1.66 [73] 

 
345 

 
C3H4(A) +  OH         =  C3H3   +    H2O 

 
1.0000E+09 

 
0.00 

 
6.27 

 
[73] 

346 C3H4(A) +  O2           =  C3H3   +    HO2 4.0000E+10 0.00 257.50 [73] 

347 C3H4(A) +  CH3         =  C3H3   +    CH4 2.0000E+09 0.00 32.20 [73] 

348 C3H4(A) +  C2H         =  C3H3   +    C2H2 1.0000E+10 0.00 0.00 [73] 

349 C3H4(A) +  C3H4(A)   =  C3H5(A) +   C3H3 5.0000E+11 0.00 270.88 [73] 

350 C3H4(A) +  M        =  C3H3   +    H      +    M 2.0000E+15 0.00 334.71 [73] 

351 C3H4(A) +  CH          =  C4H4   +    H 2.7700E+11 0.00 0.00 [133] 

352 C3H4(A) +  CH2(S)  =  C4H6(B) 1.6000E+11 0.00 0.00 [133] 

353 C3H4(A) +  CH2(T)  =  C4H6(B) 1.6000E+10 0.00 0.00 [133] 

354 C3H4(B)                   =  C3H4(A) 1.5130E+14 0.00 211.00 [73] 

355 C3H4(B)                   =  C3H4(P) 7.0800E+13 0.00 182.96 [73] 

356 C3H4(P) +  H           =  C3H5(T) 6.5000E+09 0.00 8.37 [73] 

357 C3H4(P) +  H           =  C3H5(S) 5.8000E+09 0.00 12.98 [73] 

358 C3H4(P) +  H            =  C3H3   +    H2 1.0000E+09 0.00 6.28 [145] 

359 C3H4(P) +  O            =  C2H2O  +    CH2(T) 6.4000E+09 0.00 8.41 [73] 

360 C3H4(P) +  CH2(S)   =  C4H6(B) 1.6000E+11 0.00 0.00 [73] 

361 C3H4(P)                    =  C3H4(A) 5.1500E+60 -13.93 381.48 [156] 

362 C3H4(P)  +  M           =  C3H4(A) +   M 6.2700E+14 -0.91 42.19 [156] 

363 C3H4(P)  +  M           =  C3H3    +   H      +    M 4.7000E+15 0.00 334.17 [73] 

364 C3H4(P) +  O             =  C2H3    +   CHO 3.2000E+09 0.00 8.41 [73] 

365 C3H4(P) +  O             =  C2HO    +   CH3 6.3000E+09 0.00 8.41 [73] 

366 C3H4(P) +  OH           =  C2H4    +   CHO 5.0000E-07 4.50 -4.19 [73] 

367 C3H4(P) +  OH          =  C3H3    +   H2O 3.0000E+00 3.00 0.84 [170] 

368 C3H4(P) +  O2          =  C2HO    +   CH2(T)   + OH 6.1500E+04 1.50 126.00 [72] 

369 C3H4(P) +  O2            =  C3H3    +   HO2 5.0000E+09 0.00 231.00 [73] 

370 C3H4(P) +  CH           =  C4H4    +   H 2.7700E+11 0.00 0.00 [133] 

371 C3H4(P) +  CH2(T)     =  C4H6(B) 1.6000E+10 0.00 0.00 [133] 

372 C3H4(P) +  CH3          =  C3H3    +   CH4 2.0000E+09 0.00 32.20 [145] 

373 C3H4(P) +  C2H          =  C3H3    +   C2H2 1.0000E+10 0.00 0.00 [73] 

374 C3H4(P)  +   H             =  CH3      +  C2H2 1.0000E+11 0.00 16.62 [171] 

375 C3H5(A) +  H            =  C3H4(A) +   H2 1.8100E+10 0.00 0.00 [172] 

376 C3H5(A) +  O            =  C3H4O   +   H 6.0000E+09 0.00 0.00 [172] 

377 C3H5(A) +  O2           =  C3H4(A) +   HO2 1.2100E+09 0.00 56.70 [172] 

378 C3H5(A) +  O2           =  C3H4O   +   OH 8.4200E+05 0.00 -9.62 [133] 
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379 C3H5(A) +  O2           =  CH3CO   +   CH2O 1.1900E+12 -1.01 84.27 [156] 

380 C3H5(A) +  CH3         =  C3H4(A) +   CH4 3.0000E+09 -0.32 -0.55 [73] 

381 C3H5(A) +  HO2         =  OH      +   C2H3  +  CH2O 6.6000E+09 0.00 0.00 [156] 

382 C3H5(A) +  C2H3       =  C2H4    +   C3H4(A) 2.4100E+09 0.00 0.00 [73] 

383 C3H5(A) +  C2H5       =  C2H6    +   C3H4(A) 9.6000E+08 0.00 -0.55 [73] 

384 C3H5(A) +  C3H5(A)  =  C3H4(A) +   C3H6 8.4000E+07 0.00 -1.09 [73] 

385 C3H5(A) +  H            =  C3H6 
9                         k∞ = 

                                                                       k0 = 
2.0000E+11 
1.3300E+54 

0.00 
-12.00 

0.00 
24.87 

[156] 

386 C3H5(A) +  OH    =  C2H2     +   CH2O   + H2 1.5000E+10 0.00 0.00 [172] 

387 C3H5(A) +  HO2       =  C3H5O   +   OH 4.4500E+09 0.00 0.00 [72] 

388 C3H5(A) +  C2H4      =  C5H8    +   H 1.2046E+07 0.00 48.02 [172] 

389 C3H5(A) +  C2H2      =  C5H6    +   H 4.0000E+10 0.00 90.00 [72] 

390 C3H5(A) +  C6H4     =  C9H8     +   H 2.0000E+10 0.00 90.00 [72] 

391 C3H5(S) +  H            =  C3H4(A) +   H2 1.8000E+10 0.00 0.00 [136] 

392 C3H5(S) +  O           =  C2H2O   +   CH3 1.8000E+11 0.00 0.00 [73] 

393 C3H5(S) +  O2         =  C3H4O   +   OH 2.1700E+09 0.00 0.00 [133] 

394 C3H5(S) +  CH3       =  C3H4(A) +   CH4 1.0000E+08 0.00 0.00 [73] 

395 C3H5(S) +  C2H3      =  C2H4     +   C3H4(A) 1.0000E+08 0.00 0.00 [73] 

396 C3H5(S) +  C2H5      =  C2H6     +   C3H4(A) 1.0000E+08 0.00 0.00 [73] 

397 C3H5(S) +  O2          =  CH3CO   +   CH2O 2.1700E+09 0.00 0.00 [133] 

398 C3H5(T) +  O2           =  CH3CO   +   CH2O 2.1700E+09 0.00 0.00 [133] 

399 C3H5(T) +  O2         =  C3H4O   +   OH 2.1700E+09 0.00 0.00 [133] 

400 C3H5(T) +  H           =  C3H4(A) +   H2 1.8100E+10 0.00 0.00 [156] 

401 C3H5(T) +  O         =  C2HO    +   CH3   +     H 1.8000E+11 0.00 0.00 [73] 

402 C3H5(T) +  CH3       =  C3H4(A) +   CH4 1.0000E+08 0.00 0.00 [73] 

403 C3H5(T) +  C2H3     =  C2H4    +   C3H4(A) 1.0000E+08 0.00 0.00 [73] 

404 C3H5(T) +  C2H3      =  C5H8(I) 2.5000E+10 0.00 0.00 [173] 

405 C3H5(T) +  C2H5      =  C2H6    +   C3H4(A) 1.0000E+08 0.00 0.00 [73] 

406 C3H5(B)                   =  C3H5(A) 1.0000E+10 0.00 0.00 [136] 

407 C3H5(B) +  H            =  C3H4(B) +   H2 1.0000E+11 0.00 0.00 [136] 

408 C3H5(B) +  OH         =  C3H4(B) +   H2O 2.0000E+10 0.00 0.00 [136] 

409 C3H5(B) +  O            =  C3H4(B) +   OH 3.6700E+10 0.00 0.00 [136] 

410 C3H5(B) +  O            =  C2H4    +   CHO 1.1000E+11 0.00 0.00 [136] 

411 C3H6    +  OH           =  CH3CHO  +   CH3 3.4600E+08 0.00 0.00 [174] 

412 C3H6    +  HO2         =  C3H5(A) +   H2O2 9.6400E+00 2.60 58.20 [156] 

413 C3H6                        =  C2H3    +   CH3 
10            k∞ = 

                                                                       k0 = 
1.1000E+21 
2.0000E+11 

-1.20 
0.00 

408.84 
0.00 

[73] 



228                                                                                                         Appendix A 

 

No Reaction A n Ea Ref 

414 C3H6                          =  C3H5(S) +   H 7.5900E+14 0.00 424.12 [73] 

415 C3H6                          =  C3H5(T) +   H 1.4500E+15 0.00 410.56 [73] 

416 C3H6   +   H               =  C3H5(A) +   H2 1.7200E+02 2.50 10.42 [172] 

417 C3H6   +   H               =  C3H5(S) +   H2 4.1000E+02 2.50 40.98 [172] 

418 C3H6   +   H                =  C3H5(T) +   H2 8.0360E+02 2.50 51.39 [172] 

419 C3H6   +   O                =  C2H5    +   CHO 5.2170E+04 1.57 -2.63 [73] 

420 C3H6   +   O                =  C2H4    +   CH2O 3.4840E+04 1.57 -2.63 [73] 

421 C3H6   +   O               =  CH3     +   CH3    +    CO 6.9600E+04 1.57 -2.63 [73] 

422 C3H6   +   OH             =  C3H5(A) +   H2O 3.1000E+03 2.00 -1.25 [156] 

423 C3H6   +   OH             =  C3H5(S) +   H2O 4.1000E+09 0.00 28.87 [73] 

424 C3H6   +   OH             =  C3H5(T) +   H2O 4.1000E+09 0.00 28.87 [73] 

425 C3H6   +   O2              =  C3H5(A) +   HO2 1.9500E+09 0.00 163.28 [73] 

426 C3H6   +   O2              =  C3H5(S) +   HO2 2.0000E+10 0.00 199.29 [73] 

427 C3H6   +   O2              =  C3H5(T) +   HO2 2.0000E+10 0.00 184.22 [73] 

428 C3H6   +   CH3            =  C3H5(A) +   CH4 2.2100E-03 3.50 23.74 [73] 

429 C3H6   +   CH3            =  C3H5(S) +   CH4 8.4200E-04 3.50 48.77 [73] 

430 C3H6   +   CH3            =  C3H5(T) +   CH4 1.3510E-03 3.50 53.60 [73] 

431 C3H6   +   C2H5          =  C3H5(A) +   C2H6 2.2200E-03 3.50 27.77 [73] 

432 C3H6   +   H                =  C2H4    +   CH3 2.6000E+05 1.50 8.36 [175] 

433 C3H6   +   HO2           =  C3H6O   +   OH 1.2900E+09 0.00 62.38 [133] 

434 C3H6   +   OH            =  C3H6OH 2.7500E+09 0.00 -4.35 [133] 

435 C3H6   +   H               =  C3H7(N) 7.2300E+09 0.00 12.14 [73] 

436 C3H6(B)                     =  C3H6 8.0400E+14 0.00 267.50 [136] 

437 C3H6(B) +  H             =  C3H5(B) +   H2 1.6200E+11 0.00 49.00 [136] 

438 C3H6(B) +  OH           =  C3H5(B) +   H2O 7.0400E+04 1.50 4.33 [136] 

439 C3H6(B) +  O             =  C2H6    +   CO 6.3000E+05 1.45 -3.59 [136] 

440 C3H7(N) +  H             =  C3H6     +  H2 1.8100E+09 0.00 0.00 [113] 

441 C3H7(N) +  OH           =  C3H6    +   H2O 2.4100E+10 0.00 0.00 [113] 

442 C3H7(N) +  O              =  PC3H6O  +   H 8.3000E+10 0.00 0.00 [136] 

443 C3H7(N) +  O          =  CH2O    +   C2H5 1.4000E+10 0.00 0.00 [136] 

444 C3H7(N) +  O2         =  C3H7OO(N) 1.0000E+09 0.00 0.00 [176] 

445 C3H7(N) +  H          =  C3H8 2.0000E+10 0.00 0.00 [73] 

446 C3H7(N) +  O2         =  C3H6   +    HO2 1.0000E+09 0.00 20.91 [73] 

447 C3H7(N)          =  C2H4   +    CH3 
11

                         k∞ = 
                                                                       k0 = 

1.2300E+13 
5.4000E+46 

-0.10 
-12.00 

126.37 
149.65 

[177] 

448 C3H7(I) +  H               =  C3H8 2.0000E+10 0.00 0.00 [73] 
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449 C3H7(I) +  O2             =  C3H6   +    HO2 1.0000E+09 0.00 12.50 [73] 

450 C3H7(I)                       =  C2H4   +    CH3 2.0000E+10 0.00 123.50 [73] 

451 C3H7(I)                       =  C3H6   +    H 7           k∞ = 
                                                                       k0 =             

8.7600E+07 
2.6100E+14 

1.76 
0.00 

148.57 
118.06 

[178] 

452 C3H7(I) +  O2            =  C3H7OO(I) 6.6200E+09 0.00 0.00 [72] 

453 C3H7(I) +  OH            =  C3H6    +   H2O 2.4100E+10 0.00 0.00 [113] 

454 C3H7(I) +  H               =  C3H6    +   H2 3.6100E+09 0.00 0.00 [113] 

455 C3H7(I) +  O               =  AC3H6O  +   H 4.8200E+10 0.00 0.00 [113] 

456 C3H7(I) +  O              =  CH3CHO  +   CH3 4.8200E+10 0.00 0.00 [113] 

457 C3H8    +  O2             =  C3H7(I)     +   HO2 3.9700E+10 0.00 199.54 [113] 

458 C3H8    +  O2             =  C3H7(N)   +   HO2 3.9700E+10 0.00 212.84 [113] 

459 C3H8                          =  C2H5       +   CH3 
12   k∞ = 

                                                                       k0 = 
1.1000E+17 
7.8220E+15 

0.00 
0.00 

353.00 
217.19 

[73] 

460 C3H8   +   H                  =  C3H7(N) +   H2 1.3000E+11 0.00 40.60 [73] 

461 C3H8   +   H                  =  C3H7(I)  +   H2 1.0000E+11 0.00 34.90 [73] 

462 C3H8   +   O                  =  C3H7(N) +   OH 3.0000E+10 0.00 24.10 [73] 

463 C3H8   +   O                  =  C3H7(I)  +   OH 2.6000E+10 0.00 18.70 [73] 

464 C3H8   +   OH               =  C3H7(N) +   H2O 5.7500E+05 1.40 3.55 [73] 

465 C3H8   +   OH               =  C3H7(I)   +   H2O 4.7800E+05 1.40 3.55 [73] 

466 C3H8   +   CH3              =  C3H7(N) +   CH4 9.0300E-04 3.65 29.9 [113] 

467 C3H8   +   CH3              =  C3H7(I)   +   CH4 1.5055E-03 3.46 22.9 [113] 

468 C3H2O                         =  C2H2     +   CO 8.5100E+14 0.00 297.00 [73] 

469 C3H2O   +  O               =  CHO     +  C2HO 1.0000E+10 0.00 0.00 [73] 

470 C3H2O   +  OH             =  CHO     +  C2H2O 1.0000E+10 0.00 0.00 [73] 

471 C3H3O                         =  C2H3     +  CO 1.0000E+12 0.00 138.27 [133] 

472 C3H3O   +  H               =  C3H2O   +  H2 6.0000E+10 0.00 0.00 [133] 

473 C3H3O   +  O               =  C3H2O   +  OH 7.8300E+10 0.00 0.00 [133] 

474 C3H4O                         =  C2H3     +  CHO 1.0000E+14 0.00 422.00 [133] 

475 C3H4O   +  H               =  C3H3O   +  H2 3.9800E+10 0.00 17.58 [133] 

476 C3H4O   +  O               =  C3H3O   +  OH 5.0000E+09 0.00 7.50 [133] 

477 C3H4O   +  OH             =  C3H3O   +  H2O 1.0000E+10 0.00 0.00 [133] 

478 C3H4O   +  HO2           =  C3H3O   +  H2O2 1.6900E+09 0.00 44.80 [133] 

479 C3H5O                         =  C2H2O   +  CH3 1.5100E+14 0.00 250.62 [133] 

480 C3H5O                         =  C2H4      +  CHO 2.4500E+14 0.00 244.76 [133] 

481 C3H5O                         =  C2H3      +  CH2O 3.2400E+13 0.00 246.00 [133] 

482 C3H5O                         =  PC3H5O 1.8400E+14 0.00 244.76 [133] 

483 C3H5O                         =  TC3H5O 1.8400E+14 0.00 244.76 [133] 
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484 PC3H5O                      =  C2H2O   +  CH3 8.0000E+13 0.00 125.52 [133] 

485 TC3H5O                       =  C2H4    +  CHO 8.0000E+13 0.00 83.68 [133] 

486 TC3H5O  +  O2             =  C3H4O   +  HO2 1.7300E+08 0.00 7.32 [133] 

487 AC3H5O                        =  C2H2O   +  CH3 8.0000E+13 0.00 108.78 [133] 

488 C3H6O                          =  C3H5O   +  H 8.0000E+14 0.00 383.92 [133] 

489 C3H6O                          =  CH3CO   +  CH3 8.0000E+15 0.00 384.92 [133] 

490 C3H6O   +  H                 =  C3H5O   +  H2 5.0000E+09 0.00 6.27 [133] 

491 C3H6O   +  OH               =  C3H5O   +  H2O 2.0000E+10 0.00 12.80 [133] 

492 C3H6O   +  O                 =  C3H5O   +  OH 3.0000E+10 0.00 21.75 [133] 

493 C3H6O                           =  AC3H6O 1.0100E+14 0.00 250.62 [133] 

494 C3H6O                           =  PC3H6O 1.8400E+14 0.00 244.76 [133] 

495 C3H6O   +  HO2             =  C3H5O   +  H2O2 3.2400E+08 0.00 62.34 [133] 

496 AC3H6O  +  M               =  CH3CO   +  CH3  + M 2.4800E+16 0.00 340.57 [133] 

497 AC3H6O  +  H                =  AC3H5O  +  H2 2.0000E+11 0.00 37.65 [133] 

498 AC3H6O  +  OH             =  AC3H5O  +  H2O 1.0200E+09 0.00 4.98 [133] 

499 AC3H6O  +  O               =  AC3H5O  +  OH 1.0000E+10 0.00 24.94 [133] 

500 AC3H6O  +  CH3           =  AC3H5O  +  CH4 5.0000E+09 0.00 33.47 [133] 

501 PC3H6O  +  M               =  C2H5      +  CHO   + M 7.2500E+16 0.00 344.76 [133] 

502 PC3H6O  +  M               =  CH3CO   +  CH3   + M 4.7800E+16 0.00 351.46 [133] 

503 PC3H6O  +  H               =  PC3H5O  +  H2 1.0000E+11 0.00 37.65 [133] 

504 PC3H6O  +  H               =  TC3H5O  +  H2 1.0000E+11 0.00 37.65 [133] 

505 PC3H6O  +  O               =  PC3H5O  +  OH 5.6800E+09 0.00 6.45 [133] 

506 PC3H6O  +  O                =  TC3H5O  +  OH 5.6800E+09 0.00 6.45 [133] 

507 PC3H6O  +  OH             =  PC3H5O  +  H2O 1.2100E+10 0.00 0.00 [133] 

508 PC3H6O  +  OH             =  TC3H5O  +  H2O 1.2100E+10 0.00 0.00 [133] 

509 PC3H6O  +  CH3            =  PC3H5O  +  CH4 5.0000E+09 0.00 33.47 [133] 

510 PC3H6O  +  CH3   =  TC3H5O  +  CH4 5.0000E+09 0.00 33.47 [133] 

511 C3H6OH               =  C2H5       +  CH2O 1.4100E+09 0.00 72.00 [133] 

512 C3H6OH              =  CH3CHO  +  CH3 1.0000E+09 0.00 72.00 [133] 

513 C3H6OH + O2 =  CH3CHO + CH2O  +   OH 1.0000E+09 0.00 -4.60 [133] 

514 C3H6OOH           =  C3H6O       +  OH 3.9800E+15 0.00 179.91 [179] 

515 C3H7O(N) + O2   =  C3H6O       +  HO2 3.1600E+08 0.00 16.73 [180] 

516 C3H7O(N) + O2   =  PC3H6O    +  HO2 3.1600E+08 0.00 16.73 [180] 

517 C3H7O(N)           =  C2H5         +  CH2O 3.9800E+14 0.00 71.96 [180] 

518 C3H7O(I) + O2     =  PC3H6O        +  HO2 3.1600E+08 0.00 16.73 [180] 
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519 C3H7O(I) + O2     =  AC3H6O        +  HO2 3.1600E+08 0.00 16.73 [180] 

520 C3H7O(I)             =  CH3CHO      +  CH3 3.9800E+14 0.00 71.96 [180] 

521 C3H7OO(I)          =  CH3CHO      +  CH3O 1.0000E+13 0.00 104.60 [180] 

522 C3H7OO(I) + C3H8 = C3H7OOH(I) + C3H7(I) 1.0000E+09 0.00 71.54 [180] 

523 C3H7OO(I) + C3H8 = C3H7OOH(I) + C3H7(N) 1.0000E+09 0.00 81.16 [180] 

524 C3H7OO(I) + CH3CHO  =  C3H7OOH(I) +CH3CO 1.0000E+09 0.00 37.65 [180] 

525 C3H7OO(N)               =  C3H6OOH 1.2500E+12 0.00 158.99 [180] 

526 C3H7OO(N) + C3H8   =  C3H7OOH(N)   + C3H7(N) 1.0000E+09 0.00 81.16 [180] 

527 C3H7OO(N) + C3H8   =  C3H7OOH(N)   +  C3H7(I) 1.0000E+09 0.00 71.54 [180] 

528 C3H7OO(N) + CH3CHO = C3H7OOH(N) +CH3CO 1.0000E+09 0.00 37.65 [180] 

529 C3H7OOH(N)           =  C3H7O(N)       +  OH 3.9800E+15 0.00 179.91 [180] 

530 C3H7OOH(I)             =  C3H7O(I)        +  OH 3.9800E+15 0.00 179.91 [180] 

531 C4H   +    C2H2         =  C6H2    +   H 1.2000E+11 0.00 0.00 [73] 

532 C4H   +    C4H2         =  C8H2    +   H 1.2000E+11 0.00 0.00 [73] 

533 C4H   +    H2            =  C4H2    +   H 4.0740E+02 2.40 0.84 [73] 

534 C4H2                        =  C4H     +   H  7.8000E+14 0.00 502.40 [73] 

535 C4H2  +    O              =  C3H2    +   CO 9.0000E+08 0.00 0.00 [73] 

536 C4H2  +    OH           =  C4H2O   +   H  6.6900E+09 0.00 -1.71 [73] 

537 C4H2  +    C2H          =  C6H2    +   H  1.2000E+11 0.00 0.00 [73] 

538 C4H2  +    C4H2        =  C8H2    +   H   +    H  1.5000E+11 0.00 234.50 [73] 

539 C4H2  +    C2H2         =  C6H2    +   H   +    H 1.5000E+11 0.00 234.50 [73] 

540 C4H2  +    CH2(S)     =  C5H3(L) +   H  3.0000E+10 0.00 0.00 [73] 

541 C4H2  +    CH2(T)     =  C5H3(L) +   H   7.0000E+10 0.00 0.00 [73] 

542 C4H2  +    CH           =  C5H2    +   H  8.0000E+10 0.00 0.00 [133] 

543 C4H3(N)                   =  C4H2    +   H               k∞ = 
                                                                       k0 = 

1.0000E+14 
1.0000E+10 

0.00 
0.00 

150.72 
125.50 

[73] 

544 C4H3(N) +  H           =   C4H2    +   H2  8.1300E+10 0.00 0.00 [73] 

545 C4H3(N) +  OH        =   C4H2    +   H2O 3.0000E+10 0.00 0.00 [73] 

546 C4H3(N) +  C2H2     =   C6H5(B)  4.1200E+03 1.65 10.46 [73] 

547 C4H3(N) +  CH       =   C5H3(L) +   H  1.6000E+11 0.00 0.00 [133] 

548 C4H3(N) +  CH2(S)   =  C5H4(L) +   H  1.6000E+11 0.00 0.00 [133] 

 
549 

 
C4H3(N) +  CH2(T)   =   C5H4(L) +   H  

 
1.6000E+11 

 
0.00 

 
0.00 

 
[133] 

550 C4H3(I) +  CH          =   C5H3(L) +   H  1.6000E+11 0.00 0.00 [133] 

551 C4H3(I) +  CH2(T)    =  C5H4(L) +   H  1.6000E+11 0.00 0.00 [133] 

552 C4H3(I) +  CH2(S)   =   C5H4(L) +   H  1.6000E+11 0.00 0.00 [133] 

553 C4H3(I)                   =   C4H3(N) 1.5000E+13 0.00 284.45 [73] 
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554 C4H3(I)                   =   C4H2    +   H                k∞ = 
                                                                       k0 = 

1.0000E+14 
1.0000E+11 

0.00 
0.00 

150.62 
125.50 

[73] 

555 C4H3(I) +  H           =  C4H2     +   H2 8.1300E+10 0.00 0.00 [73] 

556 C4H3(I) +  O           =  C4H2    +   OH  2.0000E+10 0.00 0.00 [73] 

557 C4H3(I) +  OH        =  C4H2     +   H2O  3.0000E+10 0.00 0.00 [73] 

558 C4H3(I) +  O2         =  C4H2     +   HO2  1.0000E+09 0.00 12.55 [73] 

559 C4H4    +  CH2(S)  =  C5H6   7.0000E+10 0.00 0.00 [133] 

560 C4H4    +  CH2(T)   =  C5H6  7.0000E+10 0.00 0.00 [133] 

561 C4H4    +  C2H3      =  C6H6     +   H  1.9000E+09 0.00 10.50 [136] 

562 C4H4    +  CH         =  C5H5  8.0000E+10 0.00 0.00 [133] 

563 C4H4    +  CH3        =  C5H7(I)  2.5000E+10 0.00 0.00 [173] 

564 C4H4                     =  C4H3(I)    +   H  8.6300E+09 0.00 246.86 [73] 

565 C4H4    +  H           =  C4H3(N)  +   H2 2.0000E+04 2.00 25.17 [73] 

566 C4H4    +  O          =  C3H4(A)   +   CO 2.9500E+09 0.00 0.00 [181] 

567 C4H4 +  OH =  C4H3(N)  +   H2O  1.0000E+04 2.00 12.60 [73] 

568 C4H4    +  C2H      =  C4H3(I)  +   C2H2  3.9800E+10 0.00 0.00 [73] 

569 C4H5(S)                =  C4H4      +   H                 k∞ =  
                                                                       k0                                                      

1.0000E+14 
2.0000E+12 

0.00 
0.00 

209.20 
175.73 

[73] 

570 C4H5(S)  +  H      =  C4H4      +   H2  1.0000E+11 0.00 0.00 [73] 

571 C4H5(S) +  OH    =  C4H4      +   H2O  2.0000E+04 2.00 4.18 [73] 

572 C4H5(S)              =  C4H5(T)  1.5000E+13 0.00 283.45 [73] 

573 C4H5(S) +  O2    =  C3H3O   +   CH2O 4.1500E+07 0.00 10.50 [133] 

574 C4H5(S) +  O     =  C2H2O   +   C2H3  1.8070E+11 0.00 0.00 [133] 

575 C4H5(T)             =  C4H4      +   H                    k∞ = 
                                                                       k0 = 

1.0000E+14 
1.0000E+11 

0.00 
0.00 

154.90 
125.50 

[73] 

576 C4H5(T)            =  C2H3      +   C2H2  1.0000E+14 0.00 183.75 [13] 

577 C4H5(T) +  O2   =  YC4H5O  +   O  3.0000E+08 0.29 0.04 [182] 

578  C4H5(T) +  H    =  C4H4      +   H2  1.0000E+11 0.00 0.00 [73] 

579 C4H5(T) +  OH   =  C4H4      +   H2O  2.0000E+04 2.00 4.18 [73] 

580 C4H5(T) +  O2    =  CH3CO  +   C2H2O  2.0000E+09 0.00 0.00 [136] 

581 C4H5(T) +  O2     =  C3H4O   +   CHO  5.0000E+08 0.00 0.00 [133] 

582 C4H5(T) +  O      =  C3H4(A) +   CHO   1.8070E+11 0.00 0.00 [133] 

583 C4H5(T) +  O2    =  C4H4O    +   OH   5.0000E+08 0.00 0.00 [133] 

584 C4H5(T)  +  O2   =  C4H4      + HO2 1.0000E+10 0.00 0.00 [72] 

585 C4H5(T) +  HO2  =  C3H4(A)  +  CHO    +  OH 8.9100E+09 0.00 0.00 [133] 

586 C4H5(T) +  C3H4(A)   =  C7H8      +  H   2.0000E+08 0.00 15.48 [183] 

587 C4H5(T) +  C3H4(P)   =  C7H8      +  H   3.1600E+08 0.00 15.48 [184] 

588 C4H5(T) +  C4H2       =  C8H6       +  H 1.0000E+10 0.00 0.00 [72] 
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589 C4H5(T) +  C2H2       =  C6H7(L)  1.7250E+03 1.79 9.37 [73] 

590 C4H5(T) +  C4H4       =  C8H8     +  H 3.1600E+08 0.00 2.51 [184] 

591 C4H5(I)  +  O2           =  C4H4     +  HO2  1.0000E+09 0.00 0.00 [72] 

592 C4H5(I)  +  O2           =  CH3CO +  C2H2O 4.1500E+07 0.00 10.50 [133] 

593 C4H5(I)  +  O            =  C2H2O   +  C2H3  1.8070E+11 0.00 0.00 [133] 

594 C4H5(I)                     =  C4H5(T)        1.5000E+13 0.00 283.45 [73] 

595 C4H5(I)                     =  C4H4      +  H               k∞ = 
                                                                       k0 = 

1.0000E+14 
2.0000E+12 

0.00 
0.00 

209.34 
175.73 

[73] 

596 C4H5(I)  +  H            =  C4H4      +  H2  1.0000E+11 0.00 0.00 [73] 

597 C4H5(I)  +  OH         =  C4H4       +  H2O  2.0000E+04 2.00 4.18 [73] 

598 C4H6(T) +  C2H3      =  C6H8       +  H  5.6000E+08 0.00 6.90 [133] 

599 C4H6(T)                   =  C4H5(I)   +  H 4.4000E+15 0.00 397.92 [73] 

600 C4H6(T) +  H           =  C4H5(T)   +  H2 6.3000E+07 0.70 25.10 [73] 

601 C4H6(T) +  H           =  C2H4        +  C2H3 2.0000E+10 0.00 20.92 [185] 

602 C4H6(T) +  OH         =  C4H5(T)   +  H2O  2.0000E+04 2.00 20.93 [120] 

603 C4H6(T) +  O2          =  C4H5(T)   +  HO2  4.0000E+10 0.00 242.00 [73] 

604 C4H6(T) +  C2H3       =  C4H5(T)   +  C2H4  6.3100E+10 0.00 60.70 [73] 

605 C4H6(T) +  C3H3      =  C4H5(T)    +  C3H4(A)  2.0000E+09 0.00 75.31 [72] 

606 C4H6(T) +  C3H3      =  C4H5(T)   +  C3H4(P) 1.0000E+10 0.00 75.31 [133] 

607 C4H6(T) +  H           =  C3H4(A)   +  CH3  6.0000E+09 0.00 29.71 [133] 

608 C4H6(T) +  OH        =  C3H5(A)   +  CH2O 2.8100E+09 0.00 -3.66 [133] 

609 C4H6(T) +  OH        =  C3H4O     +  CH3  2.8100E+09 0.00 -3.66 [133] 

610 C4H6(T) +  OH        =  CH3CO    +  C2H4 2.8100E+09 0.00 -3.66 [133] 

611 C4H6(T) +  O          =  C2H2O     +  C2H4 1.0000E+09 0.00 0.00 [72] 

612 C4H6(T) +  O          =  C3H4(P)   +  CH2O 1.0000E+09 0.00 0.00 [72] 

613 C4H6(T) +  HO2      =  C3H4O     +  CH2O    +   H 1.3000E+09 0.00 62.60 [133] 

614 C4H6(T) +  O          =  C4H5(T)   +  OH  2.2700E+12 -0.48 29.42 [186] 

615 C4H6(T)                  =  C4H5(T)   +  H  7.0000E+14 0.00 397.46 [185] 

616 C4H6(T)   + O2        =  C4H5(I)    +  HO2  1.4000E+09 0.00 211.85 [186] 

617 C4H6(T)   + O         =  C4H5(I)    +  OH   4.5300E+12 -0.47 29.42 [186] 

618 C4H6(T)   + OH      =  C4H5(I)    +  H2O 3.1000E+03 2.00 1.80 [182] 

619 C4H6(T)   + H        =  C4H5(I)     +  H2  6.6500E+02 2.53 38.68 [119] 

620 C4H6(T)   + O        =  XC4H5O   +  H  1.5000E+05 1.45 -3.60 [182] 

621 C4H6(T)                 =  C4H6(M)  2.1000E+13 0.00 304.29 [147] 

622 C4H6(T)                 =  C4H6(S) 2.1877E+75 -17.56 484.45 [147] 

623 C4H6(T)                 =  C4H6(B) 2.1878E+11 -17.56 484.46 [147] 
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624 C4H6(S)                 =  C4H6(M)  7.0000E+12 0.00 263.72 [147] 

625 C4H6(S)                 =  C3H3      +  CH3 2.0000E+11 0.00 248.95 [133] 

626 C4H6(S)                 =  C4H5(I)  +   H   4.2000E+15 0.00 387.10 [73] 

627 C4H6(S) +  H         =  C2H3      +  C2H4  4.0000E+08 0.00 0.00 [73] 

628 C4H6(S) +  H         =  C4H5(S)   +  H2  1.0000E+11 0.00 60.71 [73] 

629 C4H6(S) +  OH      =  C4H5(S)   +  H2O  1.6200E+10 0.00 0.00 [73] 

630 C4H6(S) +  CH3     =  C4H5(S)   +  CH4  7.0000E+10 0.00 25.00 [73] 

631 C4H6(S) +  C3H3    =  C4H5(S)   +  C3H4(A) 1.0000E+10 0.00 25.00 [133] 

632 C4H6(S) +  C3H3    =  C4H5(S)   +  C3H4(P) 1.0000E+10 0.00 25.00 [133] 

633 C4H6(S) +  H        =  C3H4(A)    +  CH3   6.0000E+09 0.00 8.78 [133] 

634 C4H6(S) +  O        =  C3H3O     +  CH3   3.5800E+09 0.00 0.00 [133] 

635 C4H6(B)                =  C4H6(S)  3.0000E+13 0.00 183.00 [73] 

636 C4H6(B)                =  C4H6(M)  5.2500E+12 0.00 158.00 [73] 

637 C4H6(B)                =  C2H4       +  C2H2  1.4000E+15 0.00 301.79 [147] 

638 C4H6(M) +   H       =  C3H4(P)  +  CH3   6.5000E+01 2.50 4.18 [133] 

639 C4H6(M) +   O       =  C3H6      +  CO   6.0000E+10 0.00 7.48 [133] 

640 C4H6(F)                 =  C4H6(S)  2.5000E+13 0.00 271.96 [133] 

641 C4H6(F) +   H        =  C3H4(A)  +  CH3  1.3000E+02 2.50 4.18 [133] 

642 C4H6(F) +   H        =  C2H5       +  C2H2  6.5000E+01 2.50 4.18 [133] 

643 C4H6(F)                 =  C3H3       +  CH3  3.0000E+13 0.00 317.14 [133] 

644 C4H6(F) +   O        =  C3H6       +  CO   2.0000E+10 0.00 6.94 [133] 

645 C4H7(N) +   O2       =  C4H6(T)   +  HO2 1.0000E+08 0.00 0.00 [187] 

646 C4H7(N)                 =  C2H4       +  C2H3  5.0000E+13 0.00 159.10 [186] 

647 C4H7(N)  +  H        =  C4H6(T)  +  H2  3.1600E+09 0.00 0.00 [72] 

648 C4H7(N)                 =  C4H6(T)  +  H  2.4800E+53 -12.30 217.57 [186] 

649 C4H7(N)  +  OH     =  C4H6(T)  +  H2O  4.0000E+10 0.00 0.00 [72] 

650 C4H7(N)  +  O        =  C4H6(T)  +  OH   4.0000E+10 0.00 0.00 [72] 

651 C4H7(N)  +  H        =  C4H8(N) t,13                    k∞ = 
                                                                       k0 = 

3.6000E+10 
3.0100E+42 

0.00 
-9.32 

0.00 
24.41 

[131] 

652 C4H7(I)  +  HO2         =  C4H7O(X)  +  OH  4.5000E+09 0.00 0.00 [173] 

653 C4H7(I)  +  CH3OO   =  C4H7O(X)  +  CH3O  2.0000E+09 0.00 -5.02 [173] 

654 C4H7(I)                     =  C3H4(A)     +  CH3 2.0000E+13 0.00 209.52 [188] 

655 C4H7(I)  +  CH3        =  C5H10(A)   7.0000E+09 0.00 0.00 [173] 

656 C4H7(I)  +  C4H7(I)    =  C3H4(A)     +  C5H10(A) 5.0000E+07 0.00 26.35 [173] 

657 C4H7(S)  +  H           =  C4H6(S)     +  H2   3.1600E+09 0.00 0.00 [186] 

658 C4H7(S)  +  OH        =  C4H6(S)     +  H2O 4.0000E+10 0.00 0.00 [186] 
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659 C4H7(S)  +  O    =  C4H6(S)     +  OH  4.0000E+10 0.00 0.00 [186] 

660 C4H8(I)  +  CH3        =  C5H11(T)  1.7000E+08 0.00 267.77 [173] 

661 C4H8(I)  +  CH3       =  C5H10(B)    +  H  1.5500E+04 1.86 59.33 [173] 

662 C4H8(I)                     =  C3H5(T)      +  CH3  3.3000E+21 -1.20 408.86 [173] 

663 C4H8(I)                     =  C4H7(I)       +  H  1.0600E+47 -9.30 437.44 [173] 

664 C4H8(I)  +  O2           =  C4H7(I)       +  HO2 1.4400E+10 0.00 161.21 [173] 

665 C4H8(I)  +  HO2         =  C4H7(I)       +  H2O2  3.0000E+08 0.00 59.37 [173] 

 
666 

 
C4H8(I)  +  HO2        =  C4H8O(X)  +  OH   

 
1.0200E+09 

 
0.00 

 
62.60 

 
[173] 

667 C4H8(I)  +  OH          =  C4H7(I)      +  H2O  6.0000E+03 2.00 -0.25 [173] 

668 C4H8(I)  +  OH          =  C4H8OH(I) 3.4000E+20 -3.58 8.71 [173] 

669 C4H8(I)  +  O            =  C4H7(I)       +  OH  3.0000E+05 1.28 -4.51 [173] 

670 C4H8(I)  +  O            =  C3H7(I)       +  CHO 5.0000E+05 1.28 -4.51 [173] 

671 C4H8(I)  +  O             =  C4H8O(X) 1.0000E+05 1.28 -4.51 [173] 

672 C4H8(I)  +  H             =  C4H7(I)        +  H2  1.7200E+11 0.00 33.47 [173] 

673 C4H8(I)  +  H             =  C3H6           +  CH3  1.7200E+10 0.00 15.06 [173] 

674 C4H8(I)  +  CH3         =  C4H7(I)       +  CH4  4.4200E-03 3.50 18.49 [173] 

675 C4H8(I)  +  CHO        =  C4H7(I)       +  CH2O 3.3000E+08 0.00 25.98 [173] 

676 C4H8(I)  +  C2H3        =  C4H7(I)       +  C2H4 1.0000E+10 0.00 54.39 [173] 

677 C4H8(I)  +  C3H5(A)   =  C4H7(I)      +  C3H6 7.9400E+08 0.00 85.77 [173] 

678 C4H8(I)  +  C3H5(S)   =  C4H7(I)      +  C3H6 7.9400E+08 0.00 85.77 [173] 

679 C4H8(I)  +  C3H5(T)    =  C4H7(I)      +  C3H6 7.9400E+08 0.00 85.77 [173] 

680 C4H8(I)  +  CH3OO    =  C4H8O(X)  +  CH3O  4.0000E+08 0.00 50.20 [173] 

681 C4H8(N)  +  O2         =  C4H7(N)     +  HO2 1.4400E+10 0.00 250.21 [72] 

682 C4H8(N)  +  HO2        =  C4H7(N)    +  H2O2  3.0000E+08 0.00 148.34 [72] 

683 C4H8(N)                    =  C3H5(A)     +  CH3 1.0000E+16 0.00 305.42 [13] 

684 C4H8(N)  +  OH         =  C4H7(N)    +  H2O  6.0000E+03 2.00 -0.25 [72] 

685 C4H8(N)  +  O            =  C4H7(N)   +  OH  3.0000E+05 1.28 -4.51 [72] 

686 C4H8(N)  +  O            =  C3H7(N)   +  CHO 5.0000E+05 1.28 -4.51 [72] 

687 C4H8(N)  +  H            =  C4H7(N)   +  H2  1.7200E+11 0.00 88.47 [72] 

688 C4H8(N)  +  H            =  C3H6        +  CH3  1.7200E+10 0.00 32.06 [72] 

689 C4H8(N)  +  CH3         =  C4H7(N)   +  CH4  4.4200E-03 3.50 73.49 [72] 

690 C4H8(N)  +  CHO       =  C4H7(N)   +  CH2O 3.3000E+08 0.00 80.98 [72] 

691 C4H8(N)  +  C2H3        =  C4H7(N)   +  C2H4  1.0000E+10 0.00 109.92 [72] 

692 C4H8(N)  +  C3H5(A)   =  C4H7(N)   +  C3H6  7.9400E+08 0.00 140.77 [72] 

693 C4H8(N)  +  C3H5(S)   =  C4H7(N)   +  C3H6  7.9400E+08 0.00 140.77 [72] 
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694 C4H8(N)  +  C3H5(T)   =  C4H7(N)   +  C3H6  7.9400E+80 0.00 140.77 [72] 

695 C4H8(S)  +  O2           =  C4H7(S)   +  HO2   1.4400E+10 0.00 250.21 [72] 

696 C4H8(S)  +  HO2        =  C4H7(S)    +  H2O2 3.0000E+08 0.00 148.37 [72] 

697 C4H8(S)                     =  C4H7(S)   +  H  3.9800E+15 0.00 356.05 [13] 

698 C4H8(S)                     =  C3H5(S)   +  CH3  3.1600E+17 0.00 415.45 [13] 

699 C4H8(S)  +  OH         =  C4H7(S)   +  H2O 6.0000E+03 2.00 -0.25 [72] 

700 C4H8(S)  +  O            =  C4H7(S)   +  OH  3.0000E+05 1.28 -4.51 [72] 

701 C4H8(S)  +  O            =  C3H7(I)    +  CHO  5.0000E+05 1.28 -4.51 [72] 

702 C4H8(S)  +  H            =  C4H7(S)   +  H2       1.7200E+11 0.00 88.47 [72] 

703 C4H8(S)  +  H            =  C3H6        +  CH3   1.7200E+10 0.00 32.06 [72] 

704 C4H8(S)  +  CH3        =  C4H7(S)   +  CH4   4.4200E-03 3.50 73.49 [72] 

705 C4H8(S)  +  CHO      =  C4H7(S)   +  CH2O  3.3000E+08 0.00 80.98 [72] 

706 C4H8(S)  +  C2H3       =  C4H7(S)   +  C2H4   1.0000E+10 0.00 109.92 [72] 

707 C4H8(S)  +  C3H5(A)  =  C4H7(S)   +  C3H6   7.9400E+08 0.00 140.77 [72] 

708 C4H8(S)  +  C3H5(S)  =  C4H7(S)   +  C3H6 7.9400E+08 0.00 140.77 [72] 

709 C4H8(S)  +  C3H5(T)  =  C4H7(S)   +  C3H6   7.9400E+08 0.00 140.77 [72] 

710 C4H9(S)                    =  C3H6        +  CH3 
14    k∞ = 

                                                                       k0 = 
2.6700E+10 
2.3000E+60 

1.06 
-14.30 

129.47 
153.80 

[189] 

711 C4H9(S)                    =  C4H8(S)   +  H 3.1600E+12 0.00 154.38 [13] 

712 C4H9(S)                    =  C4H8(N)   +  H  1.5800E+13 0.00 165.67 [13] 

713 C4H9(S)  +  O2          =  C4H8(N)   +  HO2  5.1100E+07 0.00 0.00 [190] 

714 C4H9(S)  +  O2          =  C4H8(S)   +  HO2  7.8000E+07 0.00 0.00 [190] 

715 C4H9(S)  +  OH        =  C4H8(N)   +  H2O  1.8000E+10 0.00 0.00 [72] 

716 C4H9(S)  +  OH        =  C4H8(S)   +  H2O 1.8000E+10 0.00 0.00 [72] 

717 C4H9(S)  +  H           =  C4H8(N)   +  H2 5.4000E+09 0.00 0.00 [72] 

718 C4H9(S)  +  H           =  C4H8(S)   +  H2 5.4000E+09 0.00 0.00 [72] 

719 C4H9(S)  +  O           =  C4H8(N)   +  OH 4.1600E+11 0.00 0.00 [72] 

720 C4H9(S)  +  O           =  C4H8(S)   +  OH  4.1600E+11 0.00 0.00 [72] 

721 C4H9(S)  +  CH3       =  C4H8(N)   +  CH4 1.2600E+10 0.00 -2.49 [72] 

722 C4H9(S)  +  CH3        =  C4H8(S)   +  CH4 1.2600E+10 0.00 -2.49 [72] 

723 C4H9(I)                     =  C3H6        +  CH3 2.0000E+13 0.00 125.31 [72] 

724 C4H9(I)                     =  C4H8(I)     +  H  1.9100E+29 -5.24 166.34 [72] 

725 C4H9(I)  +  O2           =  C4H8(I)     +  HO2 2.4000E+07 0.00 0.00 [72] 

726 C4H9(I)  +  HO2    =  C3H7(I)     +  CH2O  +  OH  2.4100E+10 0.00 0.00 [72] 

727 C4H9(T)                    =  C4H8(I)     +  H  2.9000E+51 -11.53 220.16 [173] 

728 C4H9(T) + CH3OO =  AC3H6O   +  CH3  +  CH3O  1.3000E+10 0.00 0.00 [147] 
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729 C4H9(T)                   =  C3H6        +  CH3 3.0000E+14 0.00 193.71 [173] 

730 C4H9(T)  +  O2          =  C4H8(I)    +  HO2  4.8000E+08 0.00 0.00 [173] 

731 C4H9(T)  +  HO2       =  AC3H6O   +  CH3  +  OH  1.8000E+10 0.00 0.00 [173] 

732 C4H9(T)  +  OH        =  C4H8(I)     +  H2O  1.8000E+10 0.00 0.00 [173] 

733 C4H9(T)  +  H           =  C4H8(I)     +  H2  5.4000E+09 0.00 0.00 [173] 

734 C4H9(T)  +  O           =  C4H8(I)     +  OH   4.1600E+11 0.00 0.00 [173] 

735 C4H9(T)  +  O           =  AC3H6O   +  CH3  1.0400E+11 0.00 0.00 [173] 

736 C4H9(T)  +  CH3       =  C4H8(I)     +  CH4 1.2600E+10 0.00 -2.49 [173] 

737 C4H9(N)  +  OH       =  C4H8(N)    +  H2O 1.8000E+10 0.00 0.00 [72] 

738 C4H9(N)                  =  C3H6          +  CH3  1.2600E+12 0.00 113.38 [191] 

739 C4H9(N)                  =  C4H8(N)    +  H  1.0000E+14 0.00 160.24 [13] 

740 C4H9(N)  +  O2        =  C4H8(N)    +  HO2 2.7000E+08 0.00 0.00 [190] 

741 C4H9(N)  +  H          =  C4H8(N)   +  H2  5.4000E+09 0.00 0.00 [72] 

742 C4H9(N)  +  O          =  C4H8(N)   +  OH  4.1600E+11 0.00 0.00 [72] 

743 C4H9(N)  +  CH3       =  C4H8(N)   +  CH4  1.2600E+10 0.00 -2.49 [72] 

744 C4H10(I)                   =  C3H7(I)     +  CH3  1.1000E+26 -2.61 377.98 [192] 

745 C4H10(I) +  H           =  C4H9(I)     +  H2   1.8100E+03 2.54 28.26 [192] 

746 C4H10(I) +  H           =  C4H9(T)    +  H2 6.0200E+02 2.40 10.80 [192] 

747 C4H10(I) +  OH         =  C4H9(I)    +  H2O 2.2900E+05 1.53 3.24 [192] 

748 C4H10(I) +  OH         =  C4H9(T)   +  H2O 5.7300E+07 0.51 0.26 [192] 

749 C4H10(I) +  O            =  C4H9(I)    +  OH  4.2800E+02 2.50 15.24 [192] 

750 C4H10(I) +  O            =  C4H9(T)   +  OH    1.5600E+02 2.50 4.65 [192] 

751 C4H10(I) +  HO2       =  C4H9(I)  +  H2O2  3.0100E+01 2.55 64.85 [192] 

752 C4H10(I) +  HO2      =  C4H9(T)   +  H2O2  3.6100E+00 2.55 44.06 [192] 

753 C4H10(N)                =  C4H9(N)   +  H  1.5800E+16 0.00 410.00 [13] 

754 C4H10(N)                =  C4H9(S)   +  H  1.0000E+16 0.00 397.46 [13] 

755 C4H10(N)                =  C3H7(N)   +  CH3  1.0000E+17 0.00 354.37 [13] 

756 C4H10(N) +  H        =  C4H9(N)   +  H2   5.6200E+04 2.00 32.21 [193] 

757 C4H10(N) +  H        =  C4H9(S)   +  H2  2.0000E+11 0.00 34.90 [194] 

758 C4H10(N) +  OH     =  C4H9(N)   +  H2O 4.1300E+04 1.73 3.15 [194] 

759 C4H10(N) +  OH     =  C4H9(S)   +  H2O 2.5700E+06 1.25 2.92 [2] 

760 C4H10(N) +  O        =  C4H9(N)   +  OH   3.0000E+10 0.00 24.00 [194] 

761 C4H10(N) +  O        =  C4H9(S)   +  OH   5.2000E+10 0.00 18.60 [194] 

762 C4H10(N) +  HO2    =  C4H9(N)   +  H2O2      1.1200E+10 0.00 81.16 [193] 

763 C4H10(N) +  HO2     =  C4H9(S)   +  H2O2       5.0000E+08 0.00 43.92 [195] 
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764 C4H10(N) +  O2       =  C4H9(N)   +  HO2    2.5100E+10 0.00 205.00 [126] 

765 C4H10(N) +  O2       =  C4H9(S)   +  HO2  3.9800E+10 0.00 199.00 [126] 

766 C4H2O    +  OH      =  C2H2      +  CO   +  CO  + H 1.0000E+12 0.00 0.00 [73] 

767 C4H4O                   =  C3H4(P)   +  CO 1.7800E+15 0.00 324.25 [133] 

768 C4H4O                  =  C2H2O     +  C2H2  5.0100E+14 0.00 324.25 [133] 

769 XC4H5O                =  C3H5(S)   +  CO  1.0000E+14 0.00 125.60 [182] 

770 YC4H5O                =  C3H5(A)   +  CO  1.0000E+14 0.00 104.67 [182] 

771 AC4H6O                 =  BC4H6O  1.3500E+14 0.00 211.70 [133] 

772 AC4H6O                 =  CH3CO     +  C2H3 1.0000E+16 0.00 284.51 [133] 

773 BC4H6O                 =  C3H6      +  CO  1.0900E+16 0.00 305.43 [73] 

774 BC4H6O                 =  C4H5(T)   +  OH  5.3000E+12 0.00 203.05 [72] 

775 BC4H6O                 =  C4H4O     +  H2  5.3000E+13 0.00 203.05 [75] 

776 C4H7O(M) +  M      =  C3H7(I)   +  CO   +  M  8.6400E+12 0.00 60.25 [173] 

777 C4H8O(X)               =  C4H8O(M)  4.0000E+13 0.00 239.32 [173] 

778 C4H8O(X)               =  C3H7(I)   +  CHO  6.0000E+13 0.00 239.32 [173] 

779 C4H8O(M)              =  C3H7(I)   +  CHO    2.4400E+16 0.00 351.99 [173] 

780 C4H8O(M) +  O2      =  C4H7O(M)  +  HO2      3.0100E+10 0.00 163.79 [173] 

781 C4H8O(M) +  HO2   =  C4H7O(M) +  H2O2 3.0100E+09 0.00 49.88 [173] 

782 C4H8O(M) +  OH    =  C4H7O(M) +  H2O 3.3700E+09 0.00 -2.57 [173] 

783 C4H8O(M) +  O      =  C4H7O(M) +  OH 5.0000E+09 0.00 7.49 [173] 

784 C4H8O(M) +  H      =  C4H7O(M) +  H2  4.0000E+10 0.00 17.60 [173] 

785 C4H8OH(I) + O2     =  O2C4H9O   3.2500E+23 -4.68 17.96 [173] 

786 O2C4H9O               =  AC3H6O  +   CH2O +  OH 1.0000E+16 0.00 104.60 [173] 

787 C5H     +  O           =  C4H        +   CO  6.8000E+10 0.00 0.00 [133] 

788 C5H     +  OH        =  C4H2       +   CO  6.8000E+10 0.00 0.00 [133] 

789 C5H     +  O2          =  C3H       +   CO   +  CO 3.2900E+18 -3.30 12.00 [133] 

790 C5H2    +  H           =  C5H        +   H2 1.0000E+11 0.00 0.00 [133] 

791 C5H2    +  OH         =  C4H2      +   CHO 1.0000E+10 0.00 0.00 [133] 

792 C5H3(L) +  H          =  C5H4(L)  1.0000E+10 0.00 0.00 [73] 

793 C5H3(L) +  H          =  C5H2       +   H2  1.0000E+10 0.00 0.00 [73] 

794 C5H3(L) +  O          =  C4H3(I)   +   CO 1.0000E+11 0.00 0.00 [73] 

795 C5H3(L) +  CH2(S)  =  C6H4L    +   H 7.0000E+10 0.00 0.00 [133] 

796 C5H3(L) +  CH2(T)  =  C6H4L    +   H  7.0000E+10 0.00 0.00 [133] 

797 C5H3(L) +  OH       =  C5H2      +   H2O 1.0000E+10 0.00 0.00 [73] 

798 C5H4(L) +  H          =  C5H3(L)  +   H2  1.0000E+10 0.00 0.00 [73] 
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799 C5H4(L) +  CH       =  C6H4L    +   H  8.0000E+10 0.00 0.00 [133] 

800 C5H4(L) +  OH       =  C5H3(L) +   H2O  1.0000E+10 0.00 83.68 [73] 

801 C5H5    +  CH3       =  C5H4CH3 +   H  2.0000E+10 0.00 26.00 [62] 

802 C5H5    +  C3H5(A)  =  C8H9(F) +   H 2.0000E+10 0.00 42.30 [72] 

803 C5H5    +  C5H5      =  C10H10K 1.0000E+10 0.00 0.00 [112] 

804 C5H5    +  O2          =  C5H5O   +   O 9.5100E+01 1.80 218.53 [15] 

805 C5H5   +   C2H2       =  C7H7   3.7200E+08 0.00 34.72 [91] 

806 C5H5                       =  C3H3      +   C2H2  3.1500E+13 0.075 260.66 Adj.[52] 

807 C5H5    +  O             =  C4H5(T) +   CO 2.1260E+53 -12.56 89.96 [15] 

808 C5H5    +  O             =  C5H5O 2.1260E+53 -12.56 89.96 [15] 

809 C5H5    +  OH          =  C5H4OH  +   H   2.2370E+60 -14.75 102.01 [15] 

810 C5H5    +  C10H7OH  =  C5H6    +   C10H7O  2.6700E+11 0.00 105.62 [75] 

811 C5H5    +  HO2         =  C5H5O   +   OH   6.2480E+62 -16.16 82.82 [15] 

812 C5H5    +  O2            =  C5H5OO  2.2580E+09 -1.52 5.07 [15] 

813 C5H5    +  C5H5        =  C10H9F   +  H  2.0000E+10 0.00 34.00 [61] 

814 C5H5    +  O             =  C5H4O    +  H   2.1260E+53 -12.56 89.96 [15] 

815 C5H5    +  OH          =  C5H5OH    2.2370E+60 -14.75 102.01 [15] 

816 C5H5    +  OH          =  C5H5O    +  H 1.3250E+45 -9.27 517.43 [15] 

817 C5H5    +  HO2         =  C5H4O    +  H2O 6.2480E+62 -16.16 82.82 [15] 

818 C5H5    +  OH          =  C4H6(T)  +  CO  2.2370E+60 -14.75 102.02 [15] 

819 C5H5                       =  C5H5(L)  1.0740E+38 -7.49 307.55 [15] 

820 C5H5(L)                   =  C3H3     +  C2H2  3.3140E+42 -9.46 148.23 [15] 

821 C5H5(L) +  H           =  C5H4(L)  +  H2  1.0000E+10 0.00 0.00 [73] 

822 C5H5(L) +  O           =  C4H5(I)  +  CO  1.0000E+11 0.00 0.00 [73] 

823 C5H5(L) +  OH        =  C5H4(L)  +  H2O   1.0000E+10 0.00 0.00 [73] 

824 C5H5(L) +  O2         =  C2H3     +  C2HO    +  CHO 1.0000E+09 0.00 155.00 [73] 

825 C5H5(L) +  H           =  C5H6(L) 1.0000E+10 0.00 0.00 [73] 

826 C5H6    +  H            =  C5H5     +  H2    3.4970E+04 18.56 18.74 [15] 

827 C5H6    +  O            =  C5H5     +  OH  1.8100E+10 0.00 12.87 [73] 

828 C5H6    +  OH         =  C5H5     +  H2O   1.1430E+06 1.18 -1.87 [72] 

829 C5H6    +  HO2         =  C5H5     +  H2O2  2.0000E+09 0.00 48.78 [73] 

830 C5H6                       =  C5H6(L)   1.0000E+14 0.00 235.00 [73] 

831 C5H6   +  C5H5         =   C9H8   +   CH3 3.0000E+13 0.00 177.10 [41] 

832 C5H6                       =  C5H5     +  H 15               1.0000E+19 -0.65 368.19 [52] 

833 C5H6     +   CH3       =  C5H5     +  CH4 1.0000E+10 0.00 58.57 [131] 
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834 C5H6(L) +  H           =  C5H5(L)  +  H2  1.0000E+09 0.00 0.00 [73] 

835 C5H6(L) +  O           =  C3H2O    +  C2H3    +    H  2.0000E+10 0.00 126.00 [73] 

836 C5H6(L) +  OH         =  C5H5(L)  +  H2O    1.0000E+10 0.00 0.00 [73] 

837 C5H7                       =  C5H6     +  H 3.1600E+15 0.00 185.40 [62] 

838 C5H7    +  H            =  C5H6     +  H2  3.6000E+09 0.00 0.00 [196] 

839 C5H7    +  OH         =  C5H6     +  H2O 2.4000E+10 0.00 0.00 [196] 

840 C5H7    +  O           =  C5H6     +  OH  1.0000E+10 0.00 0.00 [196] 

841 C5H7    +  O2          =  C5H6     +  HO2  1.3000E+08 0.00 0.00 Present 
Work 

842 C5H7                      =  C3H4(A)  +  C2H3 3.1600E+14 0.00 327.00 [128] 

843 C5H7     +  O2         =  C3H4O    +  CH2CHO  4.0000E+07 0.00 20.92 [128] 

844 C5H7     +  HO2       =  C5H6     +  H2O2 2.6500E+09 0.00 0.00 [128] 

845 C5H8     +  O           =  C5H7     +  OH  2.7800E+08 0.00 10.49 [128] 

846 C5H8     +  O2          =  C5H7     +  HO2  1.2800E+08 0.00 104.60 [128] 

847 C5H8     +  HO2       =  C5H7     +  H2O2  1.6000E+08 0.00 71.37 [128] 

848 C5H8     +  O           =  C3H4O    +  C2H4  5.6000E+09 0.00 -1.79 [197] 

849 C5H8     +  H           =  C5H7     +  H2   2.8000E+09 0.00 9.45 [62] 

850 C5H8     +  OH        =  C5H7     +  H2O  3.4300E+06 1.18 -1.87 [62] 

851 C5H8(I)  +  HO2      =  C5H7(I)  +  H2O2 2.0000E+02 2.60 58.19 [173] 

852 C5H8(I)  +  OH       =  C5H7(I)  +  H2O  2.0000E+04 2.00 20.92 [173] 

853 C5H9(A)                 =  C5H8(I)  +  H  1.2000E+08 2.50 188.28 [173] 

854 C5H9(A)  +  O2       =  C5H8(I)  +  HO2 1.0000E+08 0.00 154.80 [173] 

855 C5H9(A)  +  HO2     =  C5H8(I)  +  H2O2   1.0000E+09 0.00 0.00 [173] 

856 C5H9(A)  +  OH      =  C5H8(I)  +  H2O      1.8000E+10 0.00 0.00 [173] 

857 C5H9(A)  +  O        =  C5H8(I)  +  OH     1.8000E+10 0.00 0.00 [173] 

858 C5H9(A)  +  H         =  C5H8(I)  +  H2  3.6000E+09 0.00 0.00 [173] 

859 C5H9(A)  +  CH3     =  C5H8(I)  +  CH4 1.0000E+10 0.00 0.00 [173] 

860 C5H9(A)  +  C4H7(I) =  C5H8(I)  +  C4H8(I) 4.0000E+10 0.00 0.00 [173] 

861 C5H9(B)                  =  C5H8(I)  +  H 1.2000E+08 2.50 188.28 [173] 

862 C5H9(B)  +  O2        =  C5H8(I)  +  HO2  1.0000E+08 0.00 154.80 [173] 

863 C5H9(B)  +  HO2     =  C5H8(I)  +  H2O2 1.0000E+09 0.00 0.00 [173] 

864 C5H9(B)  +  OH      =  C5H8(I)  +  H2O  1.8000E+10 0.00 0.00 [173] 

865 C5H9(B)  +  O         =  C5H8(I)  +  OH  1.8000E+10 0.00 0.00 [173] 

866 C5H9(B)  +  H         =  C5H8(I)  +  H2  3.6000E+09 0.00 0.00 [173] 

867 C5H9(B)  +  CH3      =  C5H8(I)  +  CH4 1.0000E+10 0.00 0.00 [173] 

868 C5H9(B)  +  C4H7(I) =  C5H8(I)  +  C4H8(I) 4.0000E+10 0.00 0.00 [173] 
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869 C5H10(A) +  H        =  C3H6     +  C2H5   1.7000E+09 0.00 12.13 [173] 

870 C5H10(A) +  CH3    =  C2H4     +  C2H4  +  C2H5 1.7000E+08 0.00 30.96 [173] 

871 C5H10(A)               =  C5H10(B)  3.5000E+12 0.00 251.04 [173] 

872 C5H10(A)               =  C3H5(T)  +  C2H5  3.3000E+21 -1.20 408.86 [173] 

873 C5H10(A)               =  C5H9(A)  +  H  4.0700E+18 -1.00 407.31 [173] 

874 C5H10(A) +  O2      =  C5H9(A)  +  HO2  4.0000E+09 0.00 167.36 [173] 

875 C5H10(A) +  HO2   =  C5H9(A)  +  H2O2 1.0000E+08 0.00 71.37 [173] 

876 C5H10(A) +  OH    =  C5H9(A)  +  H2O 6.2700E+03 2.00 -2.27 [173] 

877 C5H10(A) +  O       =  C5H9(A)  +  OH 1.3000E+09 0.00 18.82 [173] 

878 C5H10(A) +  H       =  C5H9(A)  +  H2  1.9500E+10 0.00 18.59 [173] 

879 C5H10(A) +  CH3   =  C5H9(A)  +  CH4  1.0000E+08 0.00 30.54 [173] 

880 C5H10(B)               =  C5H9(A)  +  H  2.1300E+47 -9.30 437.44 [173] 

881 C5H10(B)               =  C5H9(B)  +  H    1.0600E+47 -9.30 437.44 [173] 

882 C5H10(B) +  O2      =  C5H9(A)  +  HO2  4.8000E+09 0.00 161.21 [173] 

883 C5H10(B) +  O2      =  C5H9(B)  +  HO2  2.4000E+09 0.00 161.21 [173] 

884 C5H10(B) +  HO2    =  C5H9(A)  +  H2O2  3.0000E+08 0.00 59.37 [173] 

885 C5H10(B) +  HO2    =  C5H9(B)  +  H2O2 1.5000E+08 0.00 59.37 [173] 

886 C5H10(B) +  OH     =  C5H9(A)  +  H2O  9.0000E+03 2.00 -0.25 [173] 

887 C5H10(B) +  OH     =  C5H9(B)  +  H2O  3.0000E+03 2.00 -0.25 [173] 

888 C5H10(B) +  OH     =  C2H4O    +  C3H7(I)  2.0000E+07 0.00 16.37 [173] 

889 C5H10(B) +  O        =  C5H9(A)  +  OH  3.5000E+08 0.70 24.61 [173] 

890 C5H10(B) +  O        =  C5H9(B)  +  OH   1.7500E+08 0.70 24.61 [173] 

891 C5H10(B) +  O        =  C2H4O    +  C3H6   7.2300E+02 2.34 -4.39 [173] 

892 C5H10(B) +  H        =  C5H9(A)  +  H2   1.2900E+10 0.00 18.59 [173] 

893 C5H10(B) +  H        =  C5H9(B)  +  H2   6.4500E+09 0.00 18.59 [173] 

894 C5H10(B) +  CH3     =  C5H9(A)  +  CH4      3.2000E+08 0.00 36.81 [173] 

895 C5H10(B) +  CH3     =  C5H9(B)  +  CH4   1.6000E+08 0.00 36.81 [173] 

896 C5H11(T)                 =  C5H10(A) +  H  1.6000E+13 0.00 150.62 [173] 

897 C5H11(T)                 =  C5H10(B) +  H   5.3000E+12 0.00 138.07 [173] 

898 C5H11(T) +  O2        =  C5H10(A) +  HO2   2.0000E+09 0.00 20.92 [173] 

899 C5H11(T) +  O2        =  C5H10(B) +  HO2  4.0000E+08 0.00 20.92 [173] 

900 C5H4O                    =  C4H4      +  CO   2.5000E+11 0.00 221.90 Adj. [128] 

901 C5H4O    +  O         =  C4H4       +  CO2  1.0000E+10 0.00 8.37 [91] 

902 C5H4O    +  H         =  C4H5(T)  +  CO  9.4730E+10 0.00 23.40 [75] 

903 C5H4O                    =  C3H2O    +  C2H2   1.0000E+15 0.00 326.57 [72] 
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904 C5H5O                    =  C4H5(T)  +  CO  6.5420E+60 -14.09 281.43 [15] 

905 C5H5O                    =  C5H4O    +  H  7.5040E+13 -1.45 25.81 [15] 

906 C5H4OH                 =  C5H4O    +  H  2.2880E+63 -15.10 245.37 [15] 

907 C5H5OH                 =  C5H4OH   +  H  4.7250E+56 -12.18 402.90 [15] 

908 C5H5OH                 =  C5H5O    +  H 1.7580E+43 -7.84 509.36 [15] 

909 C5H5OO                 =  C5H4O    +  OH   1.3200E+51 -11.54 221.57 [15] 

910 C5H5OO                 =  C5H5O    +  O  6.6940E+61 -14.02 344.67 [15] 

911 C6H2   +    C2H       =  C8H2    +   H  1.2000E+11 0.00 0.00 [73] 

912 C6H2   +    C2H2      =  C8H2    +   H   +    H  1.5000E+11 0.00 234.50 [73] 

913 C6H3   +    H            =  C6H2    +   H2 1.0000E+11 0.00 0.00 [73] 

914 C6H3   +    O           =  C6H2    +   OH  2.0000E+10 0.00 0.00 [73] 

915 C6H3   +    OH         =  C6H2    +   H2O  2.0000E+10 0.00 0.00 [73] 

916 C6H4                       =  C6H4L   1.0000E+12 0.00 138.07 [73] 

917 C6H4L  +    H           =  C6H3    +   H2   1.0000E+11 0.00 0.00 [73] 

918 C6H4L  +    O          =  C6H3    +   OH  2.0000E+10 0.00 0.00 [73] 

919 C6H4L  +    OH       =  C6H3    +   H2O 2.0000E+10 0.00 0.00 [73] 

920 C6H5    +   C2H4      =  C8H8    +   H  2.5100E+09 0.00 25.93 [198] 

921 C6H5    +   C4H3(N)    =  C10H8J  1.0000E+10 0.00 0.00 [61] 

922 C6H5    +   C4H5(T)    =  C10H9M  +   H 1.0000E+10 0.00 0.00 [61] 

923 C6H5    +   C3H3         =  C9H8(S)    1.0000E+10 0.00 0.00 [61] 

924 C6H5    +   C3H3         =  C9H8(T)      1.0000E+10 0.00 0.00 [61] 

925 C6H5    +   C3H4(A)    =  C9H9(I)  1.0000E+10 0.00 0.00 [61] 

926 C6H5                         =  C6H5(B)    4.0000E+13 0.00 303.40 [73] 

927 C6H5                         =  C6H4    +   H    3.0000E+13 0.00 372.36 [73] 

928 C6H5   +    H             =  C6H4    +   H2  1.5000E+11 0.00 0.00 [73] 

929 C6H5   +    H             =  C6H6    7.8300E+10 0.00 0.00 [101] 

930 C6H5   +    O             =  C6H4    +   OH   2.0000E+10 0.00 0.00 [73] 

931 C6H5   +    OH          =  C6H4    +   H2O  2.0000E+10 0.00 0.00 [73] 

932 C6H5   +    HO2         =  C6H5O   +   OH  5.0000E+10 0.00 4.18 [73] 

933 C6H5   +    C2H3         =  C8H8     5.0000E+09 0.00 0.00 [112] 

934 C6H5   +    O2            =  C6H5O   +   O   2.6000E+10 0.00 25.61 [105] 

935 C6H5   +    O2            =  C6H5OO   3.0800E+09 -0.15 0.66 [75] 

936 C6H5   +    C2H2        =  C8H7   2.6000E+09 0.00 42.30 [61] 

937 C6H5   +    C2H2        =  C8H6    +   H 1.8000E+13 -0.62 73.00 [79] 

938 C6H5   +    C4H4        =  C10H9B  2.8000E+10 0.00 42.30 [61] 
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939 C6H5   +    C6H5       =  C12H10  3.1600E+09 0.00 0.00 [112] 

940 C6H5   +    C4H4        =  C10H8G  +   H   2.8000E+09 0.00 42.30 [61] 

941 C6H5   +    C4H4        =  C10H8J  +   H    2.8000E+09 0.00 42.30 [61] 

942 C6H5   +    C3H5(A)    =  C9H9(I) +   H    1.0000E+10 0.00 0.00 [61] 

943 C6H5(A)                    =  C6H4L   +   H      6.0000E+11 0.00 188.00 [73] 

944 C6H5(A) +   H           =  C6H4L   +   H2   1.0000E+11 0.00 0.00 [73] 

945 C6H5(A) +   O           =  C6H4L   +   OH  2.0000E+10 0.00 0.00 [73] 

946 C6H5(A) +   OH        =  C6H4L   +   H2O  2.0000E+10 0.00 0.00 [73] 

947 C6H5(B)                    =  C6H4L   +   H   2.5900E+58 -13.8 208.00 [73] 

948 C6H5(B) +   H           =  C6H4L   +   H2  1.0000E+11 0.00 0.00 [73] 

949 C6H5(B) +   O           =  C6H4L   +   OH   2.0000E+10 0.00 0.00 [73] 

950 C6H5(B) +   OH         =  C6H4L   +   H2O   2.0000E+10 0.00 0.00 [73] 

951 C6H5(B)                    =  C6H5(A)    1.0000E+11 0.00 0.00 [73] 

952 C6H5(B)                    =  C4H3(I) +   C2H2    5.0000E+14 0.00 159.00 [73] 

953 C6H6    +   C2H3         =  C8H8    +   H 7.4900E+08 0.00 26.77 [61] 

954 C6H6    +   C6H5         =  C12H10  +   H  2.0000E+09 0.00 16.72 [112] 

955 C6H6    +   CH2(S)     =  C7H7    +   H  4.0000E+10 0.00 36.33 [72] 

956 C6H6    +   H              =  C6H5    +   H2 2.5000E+11 0.00 66.94 [73] 

957 C6H6    +   O              =  C6H5O   +   H 2.4000E+10 0.00 19.53 [91] 

958 C6H6    +   O              =  C6H5    +   OH  2.0000E+10 0.00 61.52 [73] 

959 C6H6    +   OH           =  C6H5    +   H2O  1.6300E+05 1.42 6.10 [73] 

960 C6H6    +   OH           =  C6H5OH  +   H    1.3200E+10 0.00 44.31 [73] 

961 C6H6    +   H             =  C6H7   4.0000E+10 0.00 18.04 [73] 

962 C6H6    +   O2            =  C6H5    +   HO2  6.3000E+10 0.00 251.04 [73] 

963 C6H6    +   HO2         =  C6H5    +   H2O2  1.5200E+08 0.00 71.40 [128] 

964 C6H6    +   CH3         =  C6H5    +   CH4  4.3650E-07 5.00 51.49 [73] 

965 C6H6(A)                    =  C6H6(S)  5.4000E+11 0.00 149.66 [73] 

966 C6H6(A)                     =  C6H5(A) +   H  1.4000E+15 0.00 326.60 [73] 

967 C6H6(A) +   H            =  C6H5(A) +   H2  1.0000E+11 0.00 0.00 [73] 

968 C6H6(A) +   O            =  C6H5(A) +   OH 2.0000E+10 0.00 0.00 [73] 

969 C6H6(A) +   OH         =  C6H5(A) +   H2O 2.0000E+10 0.00 0.00 [73] 

970 C6H6(B)                     =  C6H6(F)  5.0000E+11 0.00 144.00 [73] 

971 C6H6(B)                     =  C6H6(D) 1.0000E+12 0.00 224.00 [73] 

972 C6H6(B)                     =  C6H5(A) +   H  7.0000E+14 0.00 326.60 [73] 

973 C6H6(B) +   H            =  C6H5(A) +   H2  1.0000E+11 0.00 0.00 [73] 
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974 C6H6(B) +   O            =  C6H5(A) +   OH   2.0000E+10 0.00 0.00 [73] 

975 C6H6(B) +   OH         =  C6H5(A) +   H2O 2.0000E+10 0.00 0.00 [73] 

976 C6H6(D)                    =  C6H6  5.0000E+11 0.00 200.00 [73] 

977 C6H6(D) +   H           =  C6H5(B) +   H2     1.0000E+11 0.00 46.00 [73] 

978 C6H6(D) +   O           =  C6H5(B) +   OH 2.0000E+10 0.00 0.00 [73] 

979 C6H6(D) +   OH        =  C6H5(B) +   H2O 2.0000E+10 0.00 12.60 [73] 

980 C6H6(F) +   M          =  C6H6    +   M   3.0000E+09 0.500 8.37 [78] 

981 C6H6(F)                   =  C6H6(D)  1.0000E+13 0.00 342.00 [73] 

982 C6H6(F)                   =  C6H6 7.5800E+13 0.00 309.00 [73] 

983 C6H6(M)                   =  C6H6(F) 4.2600E+13 0.00 206.00 [73] 

984 C6H6(S)                   =  C6H6(M)  5.0000E+11 0.00 92.00 [73] 

985 C6H6(S)                   =  C6H6(F) 5.0000E+11 0.00 132.40 [73] 

986 C6H7                        =  C6H7(L) 3.0000E+14 0.00 209.20 [73] 

987 C5H4CH3                 =  C6H6(F) +   H  1.0000E+14 0.00 217.00 [62] 

988 C6H8                       =  C6H6    +   H2  1.0000E+06 0.00 0.00 [133] 

989 C6H8                       =  C6H7    +   H    5.0100E+15 0.00 303.74 [133] 

990 C5H5CH3                 =  CH3     +   C5H5  1.5200E+84 -20.29 437.22 [199]  

991 C5H5CH3  +  CH3     =  CH4     +   H     +  C6H6  4.4200E-03 3.50 23.76 [199] 

992 C6H5O    +  O          =  C6H4O2  +   H  3.0000E+10 0.00 0.00 [91] 

993 C6H5O    +  OH       =  C6H5OOH   1.0000E+09 0.00 0.00 [91] 

994 C6H5O                    =  C5H5    +   CO  4.5000E+11 0.00 126.68 [73] 

995 C6H5O   +   H        =    C6H5OH  2.5000E+11 0.00 0.00 [91] 

996 C6H5O    +  HO2     =  C6H5OH  +   O2 1.2500E+10 0.00 0.00 [75] 

997 C6H3O2   +  H      =  C2H2    +   C2H2 + CO + CO 1.0000E+11 0.00 0.00 [91] 

998 C6H3O2   +  O      =  C2H2    +   C2HO + CO + CO  1.0000E+11 0.00 0.00 [91] 

999 C6H3O3               =  C2H2    +   C2HO + CO + CO 1.0000E+12 0.00 209.00 [91] 

1000 C6H4O2                   =  C5H4O   +   CO        3.7000E+11 0.00 247.00 [91] 

1001 C6H4O2   +  H         =  C5H5O   +   CO    2.5000E+10 0.00 19.67 [91] 

1002 C6H4O2   +  H         =  C6H3O2  +   H2 2.0000E+09 0.00 33.90 [91] 

1003 C6H4O2   +  OH      =  C6H3O2  +   H2O  1.0000E+03 2.00 16.74 [91] 

1004 C6H4O2   +  O         =  C6H3O3  +   H  1.5000E+10 0.00 18.96 [91] 

1005 C6H4O2   +  O         =  C6H3O2  +   OH  1.4000E+10 0.00 61.55 [91] 

1006 C6H5OO                 =  C6H5O   +   O  4.2700E+15 -0.70 138.27 [91] 

1007 C6H5OO   +  H       =  C6H5OOH 2.5000E+11 0.00 0.00 [91] 

1008 C6H5OO   +  C6H5OH   =  C6H5OOH +   C6H5O     3.1600E+08 0.00 29.14 [91] 
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1009 C6H5OO   +  HO2          =  C6H5OOH +   O2  1.8700E+09 0.00 6.44 [91] 

1010 C6H5OO                       =  C6H4O2     +   H    4.0000E+08 0.00 0.00 [91] 

1011 C6H5OO                       =  C5H5         +   CO2  1.6000E+08 0.00 0.00 [91] 

1012 C6H5OH  +   C5H5         =  C6H5O     +   C5H6  2.6700E+11 0.00 105.59 [54] 

1013 C6H5OH  +   H              =  C6H5O     +   H2   1.1500E+11 0.00 51.92 [200] 

1014 C6H5OH  +   O              =  C6H5O     +   OH  2.8100E+10 0.00 30.78 [200] 

1015 C6H5OH  +   OH            =  C6H5O    +   H2O  6.0000E+09 0.00 0.00 [128] 

1016 C6H5OH  +   C7H7         =  C6H5O     +   C7H8  1.0500E+08 0.00 39.76 [55] 

1017 C6H5OH                        =  C5H6        +   CO    1.0000E+12 0.00 254.00 [171] 

1018 C6H5OH  +   HO2          =  C6H5O     +   H2O2   3.0000E+10 0.00 62.76 [91] 

1019 C7H5    +   OH               =  C5H4O     +   C2H2  2.0000E+10 0.00 0.00 [75] 

1020 C7H5    +   O                 =  C5H4O     +   C2H  2.0000E+10 0.00 0.00 [75] 

1021 C7H5    +   O2                =  C5H4O     +   C2HO  1.0800E+05 1.50 125.94 [75] 

1022 C7H5    +   O                 =  C5H4(L)   +   C2HO 2.0000E+10 0.00 0.00 [75] 

1023 C7H6    +   H                 =  C5H5        +   C2H2 2.0000E+10 0.00 20.00 [201] 

1024 C7H6    +   H                 =  C4H4        +   C3H3  6.0000E+10 0.00 61.92 [201] 

1025 C7H6    +   H                 =  C7H5         +   H2 2.8000E+10 0.00 9.45 [75] 

1026 C7H6    +   O                 =  C7H5        +   OH  1.8100E+10 0.00 12.87 [75] 

1027 C7H6    +   OH               =  C7H5       +   H2O  1.1433E+06 1.18 -1.87 [75] 

1028 C7H6    +   HO2              =  C7H5       +   H2O2  2.0000E+09 0.00 48.78 [75] 

1029 C7H6    +   O                 =  C6H6(F)   +   CO    1.5550E+03 2.09 6.53 [75] 

1030 C7H6    +   O                 =  C5H5        +   C2HO  2.3320E+03 2.09 6.53 [75] 

1031 C7H6                           =  C5H4(L)  +  C2H2 1.0000E+14 0.00 294.00 Est.(1160) 

1032 C6H5C   +   O               =  C6H5         +   CO  1.5800E+10 0.00 0.00 [75] 

1033 C6H5C   +   O2              =  C6H5CO   +   O     2.9700E+10 0.00 0.00 [75] 

1034 C6H5C   +   CH4           =  C8H8         +   H  2.3700E+10 0.00 0.00 [75] 

1035 C6H5C   +   CH3            =  C8H7        +   H  1.8900E+10 0.00 0.00 [75] 

1036 C6H5C   +   H2O           =  C7H7O  2.2700E+09 0.00 -3.15 [75] 

1037 C6H5CH  +   OH          =  C7H6O      +   H  1.1400E+10 0.00 0.00 [75] 

1038 C6H5CH  +   OH          =  C6H5C      +   H2O     4.4810E+03 2.00 12.56 [75] 

1039 C6H5CH  +   CH2(T)     =  C8H8      1.0000E+10 0.00 0.00 [75] 

1040 C6H5CH  +   CH2(S)     =  C8H8       1.0000E+10 0.00 0.00 [75] 

1041 C6H5CH  +   CH3         =  C8H8         +   H   1.0000E+10 0.00 0.00 [75] 

1042 C6H5CH  +   CH4         =  C8H9             +   H  1.0000E+10 0.00 0.00 [75] 

1043 C6H5CH  +   C3H3        =  C9H6CH2  +   H   1.0000E+10 0.00 0.00 [75] 
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1044 C6H5CH  +   C2H2        =  C9H8(T)  3.3333E+09 0.00 0.00 [75] 

1045 C6H5CH  +   HO2         =  C7H7        +   O2 1.0000E+10 0.00 0.00 [75] 

1046 C6H5CH  +   C7H7        =  C8H8        +   C6H5   1.0000E+10 0.00 0.00 [75] 

1047 C6H5CH  +   O2           =  C6H6        +   CO2  5.3300E+10 -3.30 12.00 [75] 

1048 C6H5CH  +   O2           =  C7H6O     +   O  8.0000E+18 -3.30 12.00 [75] 

1049 C6H5CH  +   H            =  C7H7       1.0000E+11 0.00 0.00 [75] 

1050 C6H5CH  +   H            =  C6H5C      +   H2  4.3620E+10 0.00 0.00 [75] 

1051 C6H5CH  +   O            =  C7H6O   1.0000E+10 0.00 0.00 [75] 

1052 C7H7    +   H               =  C6H5CH   +   H2 6.0300E+10 0.00 63.20 [200] 

1053 C7H7    +   OH             =  C7H7O    +   H   4.5920E+09 -0.23 58.28 [75] 

1054 C7H7        =  C7H7L  3.1600E+15 0.00 356.67 [201] 

1055 C7H7    +   CH3           =  C8H9        +   H 3.5000E+09 0.10 44.36 [75] 

1056 C7H7    +   C7H7          =  C14H14      5.0100E+09 0.00 1.89 [90] 

1057 C7H7    +   O              =  C6H6          +   CHO  3.5000E+10 0.00 0.00 [202] 

1058 C7H7    +   O              =  C7H6O       +   H  3.5000E+10 0.00 0.00 [202] 

1059 C7H7    +   C2H2         =  C9H8          +   H   1.0000E+09 0.00 20.92 [74] 

1060 C7H7    +   O2              =  C7H7O      +   O  8.6400E+10 0.00 131.36 [75] 

1061 C7H7    +   O2             =  C7H7OO 6                 k∞ = 
                                                                       k0 = 

1.3400E+06 
5.3100E+19 

1.10 
-3.30 

0.00 
0.00 

[75] 

1062 C7H7    +   CH2(S)     =  C8H8    +   H  2.4000E+11 0.00 0.00 [72] 

1063 C7H7    +   CH3          =  C8H10  1.4600E+10 0.00 0.00 [61] 

1064 C7H7    +   HO2          =  C7H7O   +   OH 1.0000E+10 0.00 0.00 [72] 

1065 C7H7    +   C3H3          =  C10H10   3.0000E+10 0.00 0.00 [112] 

1066 C7H7    +   CH2(T)       =  C8H8    +   H  7.0000E+10 0.00 37.50 [72] 

1067 C7H7    +   C2H2          =  C9H9(P)  1.0000E+09 0.00 20.92 [61] 

1068 C7H7                          =   C7H6    +    H 8.2000E+14 0.00 337.52 [90] 

1069 C7H7                          =  C4H4    +   C3H3  2.0000E+14 0.00 349.78 [28] 

1070 C7H7L                        =  C7H6    +   H 5.0000E+15 0.00 165.00 [28] 

1071 C7H7L                      =  C4H4    +   C3H3 2.0000E+15 0.00 349.78 [28] 

1072 C7H7P   +   C3H3         =  C10H10F   3.0000E+10 0.00 0.00 [61] 

1073 C7H7P   +   C2H2         =  C9H9(F) 1.0000E+09 0.00 20.92 [61] 

1074 C7H7P                        =  C4H3(N) +   C3H4(P) 2.5000E+14 0.00 408.00 [112] 

1075 C7H7P                        =  C2H2    +   C2H2   + C3H3  2.5000E+14 0.00 347.00 [85] 

1076 C7H7P    +  O2            =  OOC7H7P       3.8000E+09 -0.15 0.66 [72] 

1077 C7H7P    +  O2            =  OC7H7   +   O 2.6000E+10 0.00 25.61 [72]  

1078 C7H8                          =  C7H7    +   H  2.0900E+15 0.00 366.14 [90] 
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1079 C7H8                          =  C6H5    +   CH3 2.6600E+16 0.00 409.52 [90] 

1080 C7H8    +   H               =  C7H7    +   H2  1.2600E+12 0.00 61.99 [90] 

1081 C7H8    +   H               =  C6H6    +   CH3       5.7800E+10 0.00 33.84 [90] 

1082 C7H8    +   H               =  C7H7P   +   H2    2.5000E+11 0.00 66.94 [72] 

1083 C7H8    +   OH             =  C7H7    +   H2O  5.1900E+06 1.00 3.65 [101] 

1084 C7H8    +   OH            =  C7H7O   +   H2   2.2900E+09 0.00 35.00 [75] 

1085 C7H8    +   OH            =  HOC7H7  +   H  2.2900E+09 0.00 -1.49 [112] 

1086 C7H8    +   OH             =  C7H7OH  +   H 6.6000E+09 0.00 44.31 [112] 

1087 C7H8    +   O2              =  C7H7    +   HO2     1.8100E+09 0.00 166.28 [101] 

1088 C7H8    +   C6H5           =  C6H6    +   C7H7 2.1000E+10 0.00 18.42 [203] 

1089 C7H8    +   CH3            =  CH4     +   C7H7   3.1600E+09 0.00 0.00 [90] 

1090 C7H8    +   CH3             =  C7H7P   +   CH4  1.0000E+10 0.00 66.94 [112] 

1091 C7H8    +   O                 =  OC7H7   +   H   3.1000E+10 0.00 16.62 [118] 

1092 C7H8    +   O                 =  C7H7    +   OH  6.3000E+08 0.00 0.00 [118] 

1093 C7H8    +   O                 =  C7H7O   +   H  1.5500E+10 0.00 16.62 [112] 

1094 C7H8    +   O                 =  C7H8OA    3.1000E+09 0.00 16.62 [118] 

1095 C7H8    +   O                 =  C7H7P   +   OH   1.8400E+10 0.00 61.52 [75] 

1096 C7H8    +   C2H3            =  C7H7    +   C2H4  3.9800E+09 0.00 33.47 [112] 

1097 C7H8    +   C3H5(A)        =  C7H7    +   C3H6   5.0000E+09 0.00 58.57 [112] 

1098 C7H8    +   HO2             =  C7H7    +   H2O2      3.9750E+08 0.00 58.86 [178] 

1099 C7H8    +   HO2             =  C7H7P   +   H2O2  5.4800E+09 0.00 120.55 [178] 

1100 C7H8    +   OH              =  C7H7P   +   H2O  1.5000E+05 1.42 6.10 [75] 

1101 C7H6O   +   O               =  C6H6    +   CO2  2.0000E+10 0.00 0.00 [75] 

1102 C7H6O                         =  C6H5CO  +   H  3.9800E+15 0.00 350.19 [204] 

1103 C7H6O  +    O2              =  C6H5CO  +   HO2  1.0200E+10 0.00 163.04 [55] 

1104 C7H6O  +    OH            =  C6H5CO  +   H2O 1.7100E+06 1.18 -1.87 [55] 

1105 C7H6O  +    H              =  C6H5CO  +   H2 5.0000E+10 0.00 20.62 [55] 

 1106 C7H6O  +    H               =  C6H6    +   CHO  6.3000E+04 1.62 9.06 [55] 

1107 C7H6O  +    O               =  C6H5CO  +   OH  9.0400E+09 0.00 12.89 [55] 

1108 C7H6O  +    HO2            =  C6H5CO  +   H2O2  1.9900E+09 0.00 48.80 [112] 

1109 C7H6O  +    CH3         =  C6H5CO  +   CH4  2.7700E+00 2.81 24.16 [55] 

1110 C7H6O  +    C6H5       =  C6H5CO  +   C6H6 7.0100E+08 0.00 18.41 [55] 

1111 C7H7O                      =  C6H5    +   CH2O  2.5000E+12 0.00 135.00 [75] 

1112 C7H7O  +    H            =  C7H6O   +   H2 3.0000E+10 0.00 0.00 [112] 

1113 C7H7O  +    H            =  C7H7OH  2.5300E+11 0.00 0.00 [112] 
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1114 C7H7O  +    O            =  C7H6O   +   OH 4.2000E+10 0.00 0.00 [112] 

1115 C7H7O  +    OH        =  C7H6O   +   H2O  2.4000E+10 0.00 0.00 [112] 

1116 C7H7O  +    O2           =  C7H6O   +   HO2  1.0000E+10 0.00 21.00 [112] 

1117 C7H7O                       =  C7H6O   +   H    3.0000E+12 0.00 68.00 [75] 

1118 C7H7O  +    M            =  C7H6O   +   H   +   M  2.5000E+08 0.00 0.00 [118] 

1119 OC7H7  +    H             =  HOC7H7       2.5000E+11 0.00 0.00 [55] 

1120 OC7H7                       =  C5H4CH3 +   CO 2.5100E+11 0.00 189.00 [72] 

1121 OC7H7  +    H2O        =  HOC7H7  +   OH  6.8800E+09 0.36 136.18 [55] 

1122 HOC7H7 +    C7H7      =  OC7H7   +   C7H8   1.0500E+08 0.00 39.76 [55] 

1123 HOC7H7 +    H           =  OC7H7   +   H2 1.1500E+11 0.00 51.90 [205] 

1124 HOC7H7 +    H          =  C6H5OH  +   CH3   1.2000E+10 0.00 21.55 [55] 

1125 C7H7OH +    O2         =  C7H6O   +   HO2    +     H 2.0000E+11 0.00 173.30 [55] 

1126 C7H7OH +    OH        =  C7H7O   +   H2O  5.0000E+09 0.00 0.00 [88] 

1127 C7H7OH +    H          =  C7H7O   +   H2   8.0000E+10 0.00 34.45 [75] 

1128 C7H7OH +    H          =  C6H6    +   CH2OH 1.2000E+10 0.00 21.55 [55] 

1129 C7H7OH +    C6H5     =  C7H6O   +   C6H6   +     H 1.4000E+09 0.00 18.41 [55] 

1130 C7H7OO                    =  C7H6O   +   OH   1.0000E+10 0.00 121.00 [112] 

1131 C7H7OO                     =  C7H7O    +  O 7.8300E+16 0.00 244.78 Est.(1006) 

1132 OOC7H7P                  =  OC7H7   +   O    4.2700E+15 -0.70 138.27 [75] 

1133 OOC7H7P                  =  C5H4CH3 +   CO2   1.5060E+08 0.00 0.00 [75] 

1134 C6H5CO                     =  C6H5    +   CO   3.9800E+14 0.00 123.00 [206] 

1135 C6H5CO +     H          =  C6H6    +   CO    3.0000E+10 0.00 0.00 [207] 

1136 C7H8OA                     =  C6H5O   +   CH3  2.0000E+15 0.00 266.09 [208] 

1137 C7H8OA +     H          =  C6H5OH  +   CH3   7.0800E+09 0.00 22.54 [208] 

1138 C7H8OA +     O          =  C7H7OA  +   OH 1.6700E+10 0.00 12.29 [209] 

1139 C7H8OA +     OH       =  C7H7OA  +   H2O  1.2000E+09 0.00 -2.09 [210] 

1140 C7H8OA +     CH3      =  C7H7OA  +   CH4  5.0100E+08 0.00 43.92 [211] 

1141 C7H7OA                     =  C7H6O   +   H  3.1600E+12 0.00 87.85 [211] 

1142 C8H5    +    H              =  C8H6   2.0000E+11 0.00 0.00 [75] 

1143 C8H5    +    C2H2          =  C10H7L  4.0000E+10 0.00 42.30 [76] 

1144 C8H5    +    O2             =  C8H5OO    1.6490E+10 -0.15 0.66 [75] 

1145 C8H5    +    O2            =  C8H5O   +   O  2.2700E+10 0.00 25.61 [75] 

1146 C8H5(S) +    H            =  C8H6      1.8100E+11 0.00 0.00 [112] 

1147 C8H5(S) +    O2           =  C6H4    +   CHO   +   CO  1.8800E+09 0.00 31.25 [112] 

1148 C8H5(S) +    C2H2        =  C10H7M                  4.0000E+10 0.00 42.30 [76] 
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1149 C8H6    +    H              =  C8H5    +   H2 2.5000E+11 0.00 66.94 [119] 

1150 C8H6    +    H              =  C8H5(S) +   H2  3.0150E+10 0.00 116.40 [112] 

1151 C8H6    +    O              =  C6H5C2O +   H  2.1900E+03 2.09 6.53 [75] 

1152 C8H6    +    OH            =  C6H6    +   C2HO  2.4400E+00 3.02 46.34 [112] 

1153 C8H6    +    OH           =  C7H7    +   CO  6.1000E+00 3.02 46.34 [112] 

1154 C8H6    +    OH            =  C8H5    +   H2O  2.1000E+10 0.00 19.10 [76] 

1155 C8H6    +    OH           =  C8H5(S) +   H2O  1.6850E+04 2.00 58.57 [112] 

1156 C8H6    +    CH2(S)      =  C9H8(S)        1.2000E+10 0.00 0.00 [112] 

1157 C8H6    +    CH2(T)      =  C9H8(T)   1.2000E+10 0.00 0.00 [112] 

1158 C8H6    +    CH3          =  C9H8(S)  +  H  4.0000E+16 -2.08 132.18 [112] 

1159 C8H6    +    CH3           =  C9H8(T)  +  H   1.6000E+15 -1.96 86.16 [112] 

1160 C8H6       =  C6H4  +  C2H2       1.0000E+14 0.00 398.70 [75] 

1161 C8H6    +    O              =  C6H5CH   +  CO 1.4600E+03 2.09 6.53 [212] 

1162 C8H6    +    O               =  C8H5O    +  H  2.4000E+10 0.00 19.53 [75] 

1163 C8H6    +    O               =  C6H5     +  C2HO  6.5100E+03 2.09 6.54 [61] 

1164 C8H6    +    O               =  C8H5     +  OH   2.0000E+10 0.00 61.52 [75] 

1165 C8H6    +    OH             =  C2H      +  C6H5OH  3.3700E+04 2.00 58.57 [75] 

1166 C8H6    +    OH             =  C2H2O    +  C6H5  3.7500E+03 1.70 4.18 [75] 

1167 C8H6    +    HO2            =  C2H2O    +  C6H5O  6.0000E+06 0.00 33.52 [75] 

1168 C8H6    +    HO2            =  C8H5     +  H2O2  1.0000E+09 0.00 101.00 [75] 

1169 C8H6    +    M                =  C6H5CHC  +  M    1.3400E+12 -0.64 207.00 [75] 

1170 C8H6     +   CH2(T)     =  C9H8 7.0000E+10 0.00 0.00 Adj.(560) 

1171 C8H6     +  O            =  C6H5O   +   C2H 2.2000E+10 0.00 18.95 est. 

1172 C6H5CHC +    O2          =  C6H5CH   +  CO2 2.6800E+10 0.00 0.00 [75] 

1173 C6H5CHC +    H            =  C8H7       1.0750E+11 0.00 0.00 [75] 

1174 C8H7    +    M                =  C8H6    +   H  + M   2.0000E+14 0.00 166.28 [112] 

1175 C8H7    +    H                =  C8H6    +   H2   9.6400E+10 0.00 0.00 [112] 

1176 C8H7    +    H                =  C8H8     1.2000E+11 0.00 0.00 [112] 

1177 C8H7    +    OH             =  C8H6    +   H2O   2.0000E+10 0.00 0.00 [112] 

1178 C8H7    +    OH              =  C6H5    +   CH3CO   3.0000E+10 0.00 0.00 [112] 

1179 C8H7    +    O                =  C6H5    +   C2H2O  3.0000E+10 0.00 0.00 [112] 

1180 C8H7    +    O                =  C7H7    +   CO  3.0000E+10 0.00 0.00 [112] 

1181 C8H7    +    O2              =  C8H6    +   HO2   8.4900E+10 -0.83 10.63 [75] 

1182 C8H7    +    O2              =  C7H6O   +   CHO  8.3900E+17 -2.78 10.56 [75] 

1183 C8H7    +    O2              =  C6H6    +   C2HO +   O  2.5000E+09 0.06 43.97 [75] 
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1184 C8H7    +    C2H2           =  C10H9A       4.0000E+10 0.00 42.30 [112] 

1185 C8H7    +    HO2            =  C8H6    +   H2O2  2.0000E+10 0.00 0.00 [75] 

1186 C8H7    +    HO2            =  C7H7    +   CO + OH   3.0000E+10 0.00 0.00 [75] 

1187 C8H7                            =  C8H6    +   H   1.3000E+41 -8.65 46.10 [119] 

1188 C8H7(P) +    H              =  C8H8   7.8300E+10 0.00 0.00 [112] 

1189 C8H7(P) +    O              =  C7H7P   +   CO  3.0000E+10 0.00 0.00 [112] 

1190 C8H7(P) +    O              =  C6H5O   +   C2H2  3.0000E+10 0.00 0.00 [112] 

1191 C8H7(P) +    OH            =  C6H5O   +   C2H3 3.0000E+10 0.00 0.00 [112] 

1192 C8H7(P) +    C2H2          =  C10H9P   1.0000E+10 0.00 20.92 Est.(1073) 

1193 C8H8    +    H                =  C8H7    +   H2  6.6200E+02 2.53 51.21 [112] 

1194 C8H8    +    H                =  C8H7(P) +   H2  2.7000E+10 0.00 40.58 [112] 

1195 C8H8    +    OH              =  C8H7    +   H2O  7.8500E+00 2.75 17.46 [112] 

1196 C8H8    +    OH             =  C8H7(P) +   H2O  2.1000E+10 0.00 19.10 [112] 

1197 C8H8    +    OH             =  C7H7    +   CH2O  3.0000E+10 0.00 0.00 [112]  

1198 C8H8    +    O                =  C7H7    +   CHO     4.2020E+03 1.88 0.76 [72] 

1199 C8H8    +    O                =  C6H5    +   CH3CO  2.5000E+03 1.88 0.76 [75] 

1200 C8H8    +    O                =  C6H6    +   C2H2O 3.3000E+02 1.88 0.76 [75] 

1201 C8H8     +   O              =  C8H7     +  OH 7.5500E+03 1.91 15.63 [61] 

1202 C8H9                            =  C8H8    +   H  3.1600E+13 0.00 211.99 [86] 

1203 C8H9                            =  C6H5    +   C2H4   8.9100E+12 0.00 303.75 [112] 

1204 C8H9(F)                       =  C8H8    +   H  3.0000E+13 0.00 172.40 [61] 

1205 C8H10                          =  C8H9    +   H  2.5000E+15 0.00 339.99 [86] 

1206 C8H10   +    H               =  C8H9    +   H2  1.2600E-01 3.44 13.05 [112] 

1207 C8H10   +    H               =  C6H6    +   C2H5  1.2000E+10 0.00 21.33 [116] 

1208 C8H10   +    O              =  C8H9    +   OH   2.2000E+09 0.00 15.89 [112] 

1209 C8H10   +    OH            =  C8H9    +   H2O    5.0000E+08 0.00 0.00 [101] 

1210 C8H10   +    HO2           =  C8H9    +   H2O2 2.6500E+08 0.00 47.21 [178] 

1211 C8H10   +    C6H5          =  C8H9    +   C6H6     5.0000E+08 0.00 0.00 [112] 

1212 C8H5O                         =  C7H5    +   CO  4.0100E+11 0.00 183.68 [75] 

1213 C8H5OO                      =  C8H5O   +   O  3.8060E+14 -0.70 138.20 [75] 

1214 C8H5OO                      =  C7H5    +   CO2  1.7825E+07 0.00 0.00 [75] 

1215 C6H5C2O +   O2           =  C6H5CO  +   CO2  1.1839E+10 0.00 0.00 [75] 

1216 C6H5C2O +   O2           =  C6H5    +   CO     + CO2    1.0000E+10 0.00 0.00 [75] 

1217 C6H5C2O +   O2           =  C6H5O   +   CO     + CO   1.0000E+10 0.00 0.00 [75] 

1218 C9H7L   +   O               =  C6H5    +   C2H2   +  CO  8.2000E+10 0.00 0.00 [112] 
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1219 C9H7L   +   OH          =  C6H5    +   C2H2   + CHO 3.5000E+10 0.00 26.00 [112] 

1220 C9H7L   +   O2           =  C6H5    +   C2HO   + CHO 1.7000E+07 0.00 12.00 [112] 

1221 C9H7    +   CH3            =  C9H7CH3  2.0000E+10 0.00 0.00 [131] 

1222 C9H7    +   H                =  C9H8     2.0000E+11 0.00 0.00 [75] 

1223 C9H7    +   O                =  C8H7(P) +   CO  4.5000E+10 0.00 0.00 [75] 

1224 C9H7     +   O               =  C8H7    +    CO 1.0000E+11 0.00 0.00 [112] 

1225 C9H7    +   O                =  C9H6O   +   H  5.8100E+10 -0.02 0.08 [75] 

1226 C9H7    +   OH             =  C8H7(P) +   CHO  1.0000E+11 0.00 97.00 [75] 

1227 C9H7    +   O                 =  C9H7O  7.5000E+09 0.00 0.00 [130] 

1228 C9H7    +   HO2        =  C9H7O   +   OH  8.5770E+65 -16.69 101.78 [70] 

1229 C9H7    +   HO2            =  C9H6O   +   H2O  1.9600E+30 -6.14 228.50 [70] 

1230 C9H7    +   O2               =  C9H6O   +   OH   1.9325E+12 -0.73 203.92 [75] 

1231 C9H7    +   O2               =  C9H7O   +   O   1.9325E+12 -0.73 203.92 [75] 

1232 C9H7    +   O2               =  C7H7    +   CO +  CO 1.7420E+09 0.31 123.10 [70] 

1233 C9H7    +   O2               =  C6H5O   +   C3H2O  1.8760E+10 -0.05 124.68 [70] 

1234 C9H7    +   O2               =  C7H6O   +   C2HO     1.7420E+09 0.31 123.10 [70] 

1235 C9H7     +   CH2(S)    =  C10H9T 1.0000E+11 0.00 0.00 [112] 

1236 C9H8     +   CH3          =  C9H7     +  CH4 7.5400E+09 0.00 58.57 [131] 

1237  C9H8    +   H                =  C9H7    +   H2  2.1120E+10 0.00 9.45 [75] 

1238 C9H8    +   O                =  C9H7    +   OH   1.3650E+10 0.00 12.87 [75] 

1239 C9H8    +   HO2             =  C9H7    +   H2O2  1.5086E+09 0.00 48.78 [75] 

1240 C9H8    +   OH              =  C9H7    +   H2O  8.6230E+05 1.18 -1.87 [75] 

1241 C9H8(S) +   H              =  C9H7L   +   H2  1.2000E+11 0.00 62.84 [112] 

1242 C9H8(S) +   O              =  C8H7    +   CHO   6.5000E-06 4.61 -17.80 [112] 

1243 C9H8(S) +   OH            =  C9H7L   +   H2O   5.9000E+08 0.00 6.27 [112] 

1244 C9H8(T) +   H              =  C9H7L   +   H2    1.2000E+11 0.00 62.84 [112] 

1245 C9H8(T) +   O              =  C8H8    +   CO   1.3690E+03 2.09 6.53 [112] 

1246 C9H8(T) +   OH           =  C8H8    +   CHO    3.0000E-07 4.50 -4.19 [112] 

1247 C9H8(T) +   OH            =  C9H7L   +   H2O  1.8000E+00 3.00 0.83 [112] 

1248 C9H9(S)                       =  C9H8    +   H   1.0000E+13 0.00 137.00 [112] 

1249 C9H9(I)                        =  C9H8(T) +   H    1.0000E+13 0.00 150.00 [112] 

1250 C9H9(I)                      =  C9H9(N) 1.0000E+13 0.00 17.00 [112] 

1251 C9H9(I)                      =  C9H8(S) +   H 1.0000E+13 0.00 138.00 [112] 

1252 C9H9(N)                     =  C9H9(S) 1.0000E+10 0.00 0.00 [112] 

1253 C9H9(C)                       =  C9H9(P)  1.0000E+14 0.00 334.00 [112] 
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1254 C9H9(C)                       =  C9H8    +   H   1.0000E+13 0.00 90.00 [112] 

1255 C9H9(P)                       =  C9H8(T) +   H   1.0000E+13 0.00 137.00 [112] 

1256 C9H9(F)                       =  C9H9(S)   1.0000E+09 0.00 0.00 [112] 

1257 C9H6O                         =  C8H6     +  CO  1.8825E+11 0.00 183.68 [112] 

1258 C9H6O                       =  CO       +  C2H2    + C6H4   1.0000E+15 0.00 326.57 [112] 

1259 C9H6O    +  O              =  C8H6     +  CO2  1.0000E+10 0.00 8.37 [112] 

1260 C9H6O    +  H              =  C8H7     +  CO    1.2500E+10 0.00 19.67 [112] 

1261 C9H6O    +  H              =  C8H7(P)  +  CO   1.2500E+10 0.00 16.67 [112] 

1262 C9H7O                         =  C9H6O    +  H   2.0000E+14 0.00 242.00 [112] 

1263 C9H7O                         =  C8H7     +  CO              2.0000E+14 0.00 155.00 [130] 

1264  C10H7L                        =  C10H7 1.0000E+10 0.00 0.00 [61] 

1265 C10H7L                        =  C10H6   +   H 1.0000E+13 0.00 138.00 [75] 

1266 C10H7L  +   H              =  C10H6   +   H2 1.0000E+10 0.00 0.00 [112] 

1267 C10H7L  +   H              =  C10H8L 1.0000E+11 0.00 0.00 [112] 

1268 C10H7L  +   OH           =  C10H6   +   H2O 1.0000E+10 0.00 0.00 [112] 

1269 C10H7M                       =  C10H7 1.6600E+11 0.00 68.41 [112] 

1270 C10H7M                       =  C10H6   +   H 1.0000E+13 0.00 141.00 [112] 

1271 C10H7   +   H               =  C10H8 1.1300E+10 0.00 0.00 [75] 

1272 C10H7   +   O2              =  C10H7O  +   O 2.1500E+10 0.00 25.61 [75] 

1273 C10H7   +   O2              =  C10H7OO 2.5000E+09 -0.15 0.66 [75] 

1274 C10H7   +   HO2            =  C10H7O  +   OH 4.0700E+10 0.00 4.18 [75] 

1275 C10H7   +   H2              =  C10H8   +   H 4.4400E+01 2.43 26.29 Est.[196] 

1276 C10H7   +   OH             =  C10H7O  +   H 5.0000E+10 0.00 0.00 [112] 

1277 C10H7   +   C2H4           =  1C12H10 +   H 2.0160E+09 0.00 25.93 Est.(920) 

1278 C10H7   +   C2H2           =  AC12H8  +   H 3.5700E+21 -3.17 62.20 [200] 

1279 C10H8   +   C2H3           =  1C12H10 +   H 7.9400E+08 0.00 26.70 [75] 

1280 C10H8   +   HO2            =  C10H7   +   H2O2 1.2160E+08 0.00 71.70 [75] 

1281 C10H8   +   O                =  C10H7O  +   H 2.5000E+10 0.00 19.54 [75] 

1282 C10H8   +   O                =  C10H7   +   OH 2.0000E+10 0.00 61.52 [75] 

1283 C10H8   +   OH              =  C10H7   +   H2O 1.7000E+05 1.42 6.07 [75] 

1284 C10H8   +   OH             =  C10H7OH +   H 1.0300E+10 0.00 44.31 [75] 

1285 C10H8   +   H                =  C10H9T 4.0000E+10 0.00 18.04 [112] 

1286 C10H8   +   H                =  C10H9 4.0000E+10 0.00 18.04 [112] 

1287 C10H8   +   O2                =  C10H7   +   HO2 5.0400E+10 0.00 251.04 [75] 

1288 C10H8    +   CH3         =  C10H7    +  CH4 4.3600E-07 5.00 51.49 Adj.(964) 
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1289 C10H8L  +   H               =  C10H7L  +   H2 1.0000E+10 0.00 24.00 [112] 

1290 C10H8L  +   OH            =  C10H7L  +   H2O 1.0000E+10 0.00 0.00 [112] 

1291 C10H8K                        =  C10H8 8.5100E+12 0.00 263.00 [112] 

1292 C9H6CH2                     =  C10H8 8.0000E+13 0.00 305.60 [131] 

1293 C10H8G   +  H             =  C10H9T 2.0000E+11 0.00 0.00 [61] 

1294 C10H8J   +  H             =  C10H9T 2.0000E+11 0.00 0.00 [61] 

1295 C10H9    +  O2            =  C6H5    +   C4H4O  +     O 1.6000E+09 0.00 31.25 [112] 

1296 C10H9                          =  C10H9A 3.0000E+14 0.00 209.20 [112] 

1297 C10H9A                        =  C10H8L  +   H 1.0000E+13 0.00 146.00 [112] 

1298 C10H9P                        =  C10H9T 1.0000E+10 0.00 0.00 [112] 

1299 C10H9P                        =  C10H8L  +   H 1.0000E+13 0.00 135.00 [112] 

1300 C10H9B                        =  C10H9L 1.0000E+13 0.00 36.00 [61] 

1301 C10H9B                        =  C10H8L  +   H 1.0000E+13 0.00 166.00 [112] 

1302 C10H9L                        =  C10H9M 1.0000E+10 0.00 0.00 [112] 

1303 C10H9M                        =  C10H9T 1.0000E+10 0.00 0.00 [112] 

1304 C10H9D                        =  C10H9 1.0000E+10 0.00 0.00 [112] 

1305 C10H9D                        =  C10H8L  +   H 1.0000E+13 0.00 70.00 [112] 

1306 C10H9E                        =  C10H9T 1.0000E+10 0.00 0.00 [112] 

1307 C10H9E                        =  C10H8L  +   H 1.0000E+13 0.00 90.00 [112] 

1308 C10H9F                        =  C10H8   +   H 3.0000E+13 0.00 197.00 [112] 

1309 C9H6CH3                     =  C9H6CH2 +   H 5.0000E+14 0.00 213.50 [131] 

1310 C10H9K                        =  C10H8K  +   H 1.0000E+13 0.00 210.40 [112] 

1311 C10H9T   +  O2           =  C6H5    +   C4H4O  +     O 1.6000E+09 0.00 31.25 [112] 

1312 C10H10F                       =  C10H9E  +   H 1.0000E+13 0.00 459.00 [112] 

1313 C10H10F +   H              =  C10H9E  +   H2 1.0000E+10 0.00 23.00 [112] 

1314 C10H10F +   O              =  C10H9E  +   OH 1.0000E+10 0.00 31.00 [112] 

1315 C10H10F +   OH           =  C10H9E  +   H2O 1.0000E+10 0.00 0.00 [112] 

1316 C10H10K                      =  C10H9K  +   H 1.0000E+13 0.00 266.00 [112] 

1317 C10H10K +   H              =  C10H9K  +   H2 1.0000E+11 0.00 0.00 [112] 

1318 C10H10K +   O              =  C10H9K  +   H2O 1.0000E+11 0.00 0.00 [112] 

1319 C10H10K +   O              =  C10H9K  +   OH 1.0000E+11 0.00 000 [112] 

1320 C10H10                         =  C10H9D  +   H 1.0000E+13 0.00 459.00 [112] 

1321 C10H10  +   H               =  C10H9D  +   H2 1.0000E+10 0.00 24.00 [112] 

1322 C10H10  +   O               =  C10H9D  +   OH 1.0000E+10 0.00 31.00 [112] 

1323 C10H10  +   OH            =  C10H9D  +   H2O 1.0000E+10 0.00 0.00 [112] 
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1324 C9H7CH3                     =  C9H6CH3 +   H 5.0000E+15 0.00 314.00 [131] 

1325 C10H7O  +   O             =  C10H6O2 +   H 3.0000E+10 0.00 0.00 [75] 

1326 C10H7O                       =  C9H7    +   CO 1.8000E+11 0.00 183.68 [75] 

1327 C10H7O  +   H             =  C10H7OH 2.5000E+11 0.00 0.00 [75] 

1328 C10H6O2                      =  C9H6O   +   CO 2.9600E+11 0.00 247.00 [75] 

1329 C10H6O2 +   H             =  C9H7O   +   CO 2.5000E+10 0.00 19.67 [75] 

1330 C10H7OO                    =  C10H7O  +   O 3.5300E+15 -0.70 138.27 [75] 

1331 C10H7OO                    =  C10H6O2 +   H 2.2720E+08 0.00 0.00 [75] 

1332 C10H7OO                    =  C9H7    +   CO2 2.2720E+08 0.00 0.00 [75] 

1333 C10H7OH +    H           =  C10H7O  +   H2 9.0000E+10 0.00 51.88 [75] 

1334 C10H7OH +    O          =  C10H7O  +   OH 2.2300E+10 0.00 30.76 [75] 

1335 C10H7OH +    OH       =  C10H7O  +   H2O 4.8000E+09 0.00 0.00 [75] 

1336 C10H7OH                    =  C9H8    +   CO 4.0350E+11 0.00 254.00 [75] 

1337 C10H7OH +    HO2      =  C10H7O  +   H2O2 2.4490E+10 0.00 62.80 [75] 

1338 C10H7OH +    O2         =  C10H7O  +   HO2 8.0000E+09 0.00 159.00 [75] 

1339 C11H9   +    CH3          =  C12H11  +   H 2.4500E+07 0.100 44.36 [75] 

1340 C11H9   +    OH            =  C11H9O  +   H 3.2100E+09 -0.23 58.28 [75] 

1341 C11H9   +    O              =  C11H8O  +   H 2.8000E+10 0.00 0.00 [75] 

1342 C11H9   +    O              =  C10H8   +   CHO 2.8000E+10 0.00 0.00 [75] 

1343 C11H9   +    O2             =  C11H9O  +   O 6.6000E+10 0.00 131.36 [75] 

1344 C11H9   +    O2             =  C11H8O  +   OH 4.1827E+03 0.20 0.00 [75] 

1345 C11H9   +    HO2           =  C11H9O  +   OH 4.0000E+09 0.00 0.00 [75] 

1346 C11H9   +    CH3           =  C12H12 7.3000E+08 0.00 0.00 [72] 

1347 C11H9                       =   C9H7  +  C2H2 8.0000E+09 0.00 186.60 Adj.[28] 

1348 C11H9P                        =  C3H3    +   C8H6 1.0000E+14 0.00 298.17 [75] 

1349 C11H9P                        =  C8H5    +   C3H4(P) 2.0000E+14 0.00 408.00 [75] 

1350 C11H9P  +    O2            =  OC11H9  +   O 1.9575E+10 0.00 25.61 [75] 

1351 C11H9P  +    O2            =  OOC11H9P 2.5000E+09 -0.15 0.66 [75] 

1352 C11H9P  +    H2            =  C11H10  +   H 4.4400E+01 2.43 26.29 [75] 

1353 C11H9P  +    H              =  C11H10 7.8300E+10 0.00 0.00 [75] 

1354 C11H10  +    O2             =  C11H9P  +   HO2 5.0400E+10 0.00 251.00 [75] 

1355 C11H10  +    O              =  C11H9P  +   OH 2.0000E+10 0.00 61.52 [75] 

1356 C11H10                         =  C10H7   +   CH3 7.1280E+12 0.00 303.76 [75] 

1357 C11H10  +    OH            =  C11H9P  +   H2O 1.7000E+05 1.42 6.07 [75] 

1358 C11H10                         =  C11H9   +   H 4.4800E+15 0.00 381.30 [75] 
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1359 C11H10  +    O2              =  C11H9   +   HO2 1.2670E+09 0.00 166.28 [75] 

1360 C11H10  +    OH            =  C11H9   +   H2O 4.1520E+06 1.00 3.66 [75] 

1361 C11H10  +    H               =  C11H9   +   H2 1.6860E+11 0.00 61.99 Adj.[90] 

1362 C11H10  +    H               =  C10H8   +   CH3 7.7356E+09 0.00 33.84 Adj.[90] 

1363 C11H10  +    O               =  C11H9   +   OH 5.0400E+08 0.00 0.00 [75] 

1364 C11H10  +    HO2           =  C11H9   +   H2O2 3.1800E+08 0.00 58.76 [75] 

1365 C11H10  +    CH3           =  C11H9   +   CH4 1.5000E-10 6.00 25.26 Adj.[90] 

1366 C11H10  +    C10H7         =  C11H9   +   C10H8 1.6800E+09 0.00 18.42 [75] 

1367 C11H10  +    HO2           =  C11H9P  +   H2O2 4.3840E+09 0.00 120.55 [75] 

1368 C11H10  +    OH            =  C11H9O   +  H2 1.7760E+09 0.00 35.00 [75] 

1369 C11H10  +    OH            =  HOC11H9  +  H 1.8320E+09 0.00 -1.49 [75] 

1370 C11H10  +    CH3           =  CH4      +  C11H9P 1.0000E+10 0.00 66.94 Present 
Work 

1371 C11H10  +    OH            =  C11H10O  +  H 5.2800E+09 0.00 44.31 [75] 

1372 C11H10  +    O               =  C11H9O   +  H 1.2420E+10 0.00 16.62 [75] 

1373 C11H10  +    O               =  OC11H9   +  H 2.4000E+10 0.00 16.54 [75] 

1374 C11H10  +    O               =  AC11H10O 2.1700E+08 0.00 16.62 [75] 

1375 C11H7O                        =  C10H7   +   CO 3.1840E+14 0.00 123.06 [75] 

1376 C11H7O  +    H             =  C10H8   +   CO 2.4000E+10 0.00 0.00 [75] 

1377 C11H8O                        =  C11H7O  +   H 3.1840E+14 0.00 350.20 Adj.[204] 

1378 C11H8O  +    O2            =  C11H7O  +   HO2 8.1600E+09 0.00 163.05 [75] 

1379 C11H8O  +    OH           =  C11H7O  +   H2O 1.3680E+06 1.18 -1.87 [75] 

1380 C11H8O  +    H             =  C11H7O  +   H2 4.0000E+10 0.00 20.63 [75] 

1381 C11H8O  +    H             =  C10H8   +   CHO 5.0000E+04 1.62 9.06 [75] 

1382 C11H8O  +    O             =  C11H7O  +   OH 7.2320E+09 0.00 12.89 [75] 

1383 C11H8O  +    HO2         =  C11H7O  +   H2O2 1.6000E+09 0.00 48.81 [75] 

1384 C11H8O  +    CH3          =  C11H7O  +   CH4 2.2160E+00 2.81 24.17 [75] 

1385 C11H8O  +    C10H7       =  C11H7O  +   C10H8 5.6080E+08 0.00 18.42 [75] 

1386 C11H8O  +    O             =  C10H8   +   CO2 1.6000E+10 0.00 0.00 [75] 

1387 C11H9O                        =  C10H8   +   CHO 4.0000E+12 0.00 79.00 [75] 

1388 C11H9O                        =  C10H7   +   CH2O 2.0000E+13 0.00 135.39 [75] 

1389 C11H9O  +    M             =  C11H8O  +   H         + M 2.0000E+08 0.00 0.00 [75] 

1390 C11H9O  +    H             =  C11H8O  +   H2 2.4000E+10 0.00 0.00 [75] 

1391 C11H9O  +    O             =  C11H8O  +   OH 3.3600E+10 0.00 0.00 [75] 

1392 C11H9O  +    OH          =  C11H8O  +   H2O 1.9200E+10 0.00 0.00 [75] 

1393 C11H9O  +    O2           =  C11H8O  +   HO2 8.0000E+09 0.00 21.00 [75] 
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1394 C11H9O  +    H            =  C11H10O 2.0240E+11 0.00 0.00 [75] 

1395 AC11H9O                     =  C11H8O  +   H 2.5280E+12 0.00 87.86 [75] 

1396 OC11H9  +    H             =  HOC11H9 2.0000E+11 0.00 0.00 [75] 

1397 OC11H9  +    H2O        =  HOC11H9 +   OH 5.5040E+09 0.36 136.25 [75] 

1398 OC11H9                       =  C10H9   +   CO 1.0080E-11 0.00 129.56 [72] 

1399 OC11H9                       =  C9H6CH3 +   CO 3.3750E+11 0.00 183.74 [75] 

1400 OOC11H9P                  =  C9H6CH3 +   CO2 1.2048E+08 0.00 0.00 [75] 

1401 OOC11H9P                  =  OC11H9  +   O 1.0000E+10 0.00 0.00 [72] 

1402 C11H9OO                    =  C11H8O  +   OH 8.0000E+09 0.00 121.00 [75] 

1403 HOC11H9 +    H           =  OC11H9  +   H2 9.2000E+10 0.00 51.91 [75] 

1404 HOC11H9 +    H           =  C10H7OH +   CH3 9.6000E+09 0.00 21.55 [75] 

1405 C11H10O +    H            =  C10H8   +   CH2OH 9.0000E+07 0.00 21.55 Adj.[55] 

1406 AC11H10O                   =  C10H7O   +  CH3 1.6000E+15 0.00 266.10 [75] 

1407 AC11H10O +   H           =  C10H7OH  +  CH3 5.6640E+09 0.00 22.55 [75] 

1408 AC11H10O +   O           =  AC11H9O  +  OH 1.3360E+10 0.00 12.30 [75] 

1409 AC11H10O +   OH         =  AC11H9O  +  H2O 9.6000E+08 0.00 -2.10 [75] 

1410 AC11H10O +   CH3       =  AC11H9O  +  CH4 4.0080E+08 0.00 43.92 [75] 

1411 C11H10O  +   H            =  C11H9O   +  H2 5.6000E+10 0.00 34.00 [75] 

1412 C11H10O  +   O            =  C11H9O   +  OH 4.0000E+09 0.00 8.00 [72] 

1413 C11H10O  +   OH          =  C11H9O   +  H2O 4.0000E+09 0.00 0.00 [72] 

1414 C11H10O  +   O2         =  C11H8O   +  HO2   +     H 1.4000E+10 0.00 173.30 [75] 

1415 C11H10O  +   HO2         =  C11H9O   +  H2O2 3.0000E+10 0.00 69.60 [72] 

1416 1C12H10  +   OH          =  C11H9    +  CH2O 3.3750E+03 1.88 0.76 [75] 

1417 1C12H10  +   O            =  C11H9    +  CHO 3.3750E+03 1.88 0.76 [75] 

1418 1C12H10  +   O            =  C10H7    +  CH3CO 2.0080E+03 1.88 0.76 [75] 

1419 C12H11                        =  1C12H10  +  H 2.5380E+13 0.00 211.99 [75] 

1420 C12H12                        =  C12H11   +  H 1.2255E+15 0.00 330.00 [75] 

1421 C12H12   +   H             =  C12H11   +  H2 6.3000E-02 3.44 13.05 [75] 

1422 C12H12   +   H             =  C10H8    +  C2H5 6.0000E+09 0.00 21.33 [75] 

1423 C12H12   +   O            =  C12H11   +  OH 1.1000E+09 0.00 15.89 [75] 

1424 C12H12   +   OH          =  C12H11   +  H2O 2.5000E+08 0.00 0.00 [75] 

1425 C12H12   +   HO2         =  C12H11   +  H2O2 1.3250E+09 0.00 47.21 [75] 

1426 AC14H10                     =  PC14H10 7.4900E+09 0.00 271.90 [75] 
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TABLE A.2 

n-Propyl benzene Detailed Kinetic Sub-Mechanism 

(units are kmole, m3, s, K and kJ/mole) 

 
No Reaction A n Ea Ref 

1427 C5H9                          =  C3H5(A)  +  C2H4 2.5000E+13 0.00 125.52 [213] 

1428 C5H9                          =  C2H3     +  C3H6 2.5000E+13 0.00 125.52 [213] 

1429  C5H9                          =  C4H6(S)  +  CH3 1.0000E+14 0.00 133.89 [112] 

1430 1C5H10                      =  C2H5     +  C3H5(A) 1.0000E+16 0.00 298.80 [214] 

1431 1C5H10                      =  C3H6     +  C2H4 3.1600E+12 0.00 237.99 [214] 

1432 1C5H10   +  H            =  C5H9     +  H2 2.8000E+10 0.00 16.74 [213] 

1433 1C5H10   +  O            =  C5H9     +  OH 2.5400E+02 2.56 -4.73 [112] 

1434 1C5H10   +  O            =  C4H9(N)  +  CHO 1.0000E+08 0.00 0.00 [112] 

1435 1C5H10   +  O            =  C3H7(N)  +  CH3CO 1.0000E+08 0.00 0.00 [112] 

1436 1C5H10   +  O            =  C4H8(N)  +  CH2O  8.5100E+09 0.00 0.00 [112] 

1437 1C5H10   +  O            =  CH3CHO   +  C3H6 8.5100E+09 0.00 0.00 [213] 

1438 1C5H10   +  O            =  C3H5(S)  +  C2H4   +   OH 2.0000E+10 0.00 29.30 [112] 

1439 1C5H10   +  O            =  C3H6     +  C2H3   +   OH 1.0000E+10 0.00 29.30 [112] 

1440 1C5H10   +  OH         =  C5H9     +  H2O 6.8000E+10 0.00 12.80 [112] 

1441 1C5H10   +  OH         =  C4H9(N)  +  CH2O 1.0000E+08 0.00 0.00 [112] 

1442 1C5H10   +  OH         =  C3H7(N)  +  CH3CHO 1.0000E+08 0.00 0.00 [112] 

1443 1C5H10   +  OH         =  C3H5(S)  +  C2H4   +  H2O 2.0000E+06 1.20 0.50 [112] 

1444 1C5H10   +  OH         =  C3H6     +  C2H3   +  H2O 1.0000E+06 1.20 0.50 [112] 

1445 1C5H10   +  O2          =  C5H9     +  HO2 4.0000E+09 0.00 167.44 [112] 

1446 1C5H10   +  CH3       =  C5H9     +  CH4 1.0000E+08 0.00 30.55 [112] 

1447 1C5H11                     =  C3H7(N)  +  C2H4 3.2000E+13 0.00 118.82 [112] 

1448 1C5H11                     =  1C5H10   +  H 1.3000E+13 0.00 161.50 [112] 

1449 C6H11                       =  C3H6    +   C3H5(A) 5.0400E+13 0.00 125.58 [215] 

1450 C6H11                       =  C2H5    +   C4H6(T) 5.0000E+12 0.00 133.88 [215] 

1451 1C6H12                     =  C3H6    +   C3H6 3.9800E+12 0.00 241.41 [214] 

1452 1C6H12   +  H           =  C6H11   +   H2 5.0000E+09 0.00 14.23 [112] 

1453 1C6H12   +  O           =  C6H11   +   OH 4.0000E+10 0.00 16.74 [215] 

1454 1C6H12   +  OH         =  C6H11   +   H2O 2.0000E+09 0.00 10.88 [112] 

1455 1C6H12   +  CH3        =  C6H11   +   CH4 2.0000E+08 0.00 28.46 [215] 

1456 1C6H12   +  HO2        =  C6H11   +   H2O2 1.0000E+08 0.00 71.41 [215] 

1457 1C6H12   +  O           =  C2H3    +   C4H8(N) +  OH 2.8200E+10 0.00 21.76 [215] 
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1458 1C6H12   +  O           =  C3H5(A) +   C3H6    +  OH 2.8200E+10 0.00 21.76 [215] 

1459 1C6H12   +  O           =  C4H7(N) +   C2H4    +  OH 5.0100E+10 0.00 32.86 [215] 

1460 1C6H12   +  O           =  CHO     +   1C5H11 1.0000E+08 0.00 0.00 [215] 

1461 1C6H12   +  O           =  CH3   +   CO   +  C4H9(N) 1.0000E+08 0.00 0.00 [215] 

1462 1C6H12   +  OH        =  C2H3    +   C4H8(N) +  H2O 2.1700E+05 1.25 2.93 [215] 

1463 1C6H12   +  OH        =  C3H5(A) +   C3H6    +  H2O 2.1700E+05 1.25 2.93 [215] 

1464 1C6H12   +  OH        =  C4H7(N) +   C2H4    +  H2O 7.1700E+05 1.05 7.57 [215] 

1465 1C6H12   +  OH        =  CH2O    +   1C5H11 1.0000E+08 0.00 0.00 [215] 

1466 1C6H12   +  OH        =  CH3CHO  +   C4H9(N) 1.0000E+08 0.00 0.00 [215] 

1467 1C6H12                     =  C3H7(N) +   C3H5(A) 7.9400E+15 0.00 297.64 [214] 

1468 1C6H13                     =  2C6H13 2.0000E+11 0.00 75.76 [215] 

1469 1C6H13                     =  C2H4    +   C4H9(N) 2.5200E+13 0.00 120.55 [213] 

1470 2C6H13                     =  C3H7(N) +   C3H6 1.6000E+13 0.00 118.46 [213] 

1471 C7H13                       =  C3H5(A) +   C4H8(N) 2.5200E+13 0.00 125.58 [215] 

1472 C7H13                       =  C3H4(A) +   C4H9(N) 1.0000E+13 0.00 125.58 [215] 

1473 C7H13                       =  C4H6(S) +   C3H7(N) 1.0000E+13 0.00 133.95 [213] 

1474 1C7H14                     =  C3H5(A) +   C4H9(N) 2.5200E+16 0.00 297.62 [215] 

1475 1C7H14  +  H             =  C7H13   +   H2 8.0000E+10 0.00 14.23 [215] 

1476 1C7H14  +  OH          =  C7H13   +   H2O 2.0000E+10 0.00 10.88 [215] 

1477 1C7H14  +  OH         =  C2H3    +   1C5H10  + H2O 1.2900E+06 1.25 2.93 [215] 

1478 1C7H14  +  OH        =  C3H5(A) +   C4H8(N) + H2O 1.2900E+06 1.25 2.93 [215] 

1479 1C7H14  +  OH         =  C4H7(N) +   C3H6    + H2O 1.2900E+06 1.25 2.93 [215] 

1480 1C7H14  +  OH            =  C5H9    +   C2H4    + H2O 4.2700E+06 1.05 7.56 [215] 

1481 1C7H14  +  CH3           =  C7H13   +   CH4 2.0000E+08 0.00 28.46 [215] 

1482 1C7H14  +  HO2          =  C7H13   +   H2O2 5.0000E+09 0.00 0.00 [215] 

1483 1C7H14  +  O              =  C7H13   +   OH 4.0000E+10 0.00 16.74 [215] 

1484 1C7H14  +  O              =  C2H3    +   1C5H10  +  OH 2.8200E+10 0.00 21.76 [215] 

1485 1C7H14  +  O           =  C3H5(A) +   C4H8(N) +  OH 2.8200E+10 0.00 21.76 [215] 

1486 1C7H14  +  O             =  C4H7(N) +   C3H6    +  OH 2.8200E+10 0.00 21.76 [215] 

1487 1C7H14  +  O              =  C5H9    +   C2H4    +  OH 5.0000E+10 0.00 32.86 [215] 

1488 2C7H14                       =  C3H7(N) +   C4H7(N) 1.6000E+16 0.00 290.00 [213] 

1489 2C7H14  +  H              =  C7H13   +   H2 1.6000E+11 0.00 14.23 [215] 

1490 2C7H14  +  O              =  C7H13   +   OH 8.0000E+10 0.00 16.74 [215] 

1491 2C7H14  +  O           =  C3H5(T) +   C4H8(N) +  OH 2.8200E+10 0.00 21.76 [215] 

1492 2C7H14  +  O            =  C4H7(N) +   C3H6    +  OH 2.8200E+10 0.00 21.76 [215] 
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1493 2C7H14  +  O              =  C5H9    +   C2H4    +  OH 5.0000E+10 0.00 32.86 [215] 

1494 2C7H14  +  OH            =  C7H13   +   H2O 4.0000E+10 0.00 10.88 [215] 

1495 2C7H14  +  OH       =  C3H5(A) +   C4H8(N) + H2O 1.1600E+06 1.25 2.93 [215] 

1496 2C7H14  +  OH         =  C4H7(N) +   C3H6    + H2O 1.1600E+06 1.25 2.93 [215] 

1497 2C7H14  +  OH           =  C5H9    +   C2H4    + H2O 4.2700E+06 1.05 7.57 [215] 

1498 2C7H14  +  CH3          =  C7H13   +   CH4 4.0000E+08 0.00 28.46 [112] 

1499 2C7H14  +  HO2          =  C7H13   +   H2O2 5.0000E+09 0.00 0.00 [215] 

1500 3C7H14                       =  C2H5    +   C5H9 3.6000E+15 0.00 297.20 [215] 

1501 3C7H14                       =  C6H11   +   CH3 5.3000E+16 0.00 305.57 [215] 

1502 3C7H14  +  H               =  C7H13   +   H2 1.6000E+11 0.00 14.23 [215] 

1503 3C7H14  +  O              =  C7H13   +   OH 8.0000E+10 0.00 16.74 [215] 

1504 3C7H14  +  O              =  C4H7(N) +   C3H6   +  OH 2.8200E+10 0.00 21.76 [215] 

1505 3C7H14  +  O              =  C5H9    +   C2H4   +  OH 5.0000E+10 0.00 32.86 [215] 

1506 3C7H14  +  OH            =  C7H13   +   H2O 4.0000E+10 0.00 10.88 [215] 

1507 3C7H14  +  OH          =  C4H7(N) +   C3H6   +  H2O 1.1600E+06 1.25 2.93 [215] 

1508 3C7H14  +  OH            =  C5H9    +   C2H4   +  H2O 4.2700E+06 1.05 2.93 [215] 

1509 3C7H14  +  CH3           =  C7H13   +   CH4 4.0800E+08 0.00 28.46 [215] 

1510 3C7H14  +  HO2           =  C7H13   +   H2O2 5.0000E+09 0.00 0.00 [215] 

1511 1C7H15                        =  C2H4    +   1C5H11 2.5200E+13 0.00 120.55 [213] 

1512 1C7H15                        =  2C7H15 2.0000E+11 0.00 46.46 [215] 

1513 1C7H15                        =  3C7H15 2.0000E+11 0.00 75.76 [215] 

1514 1C7H15                        =  4C7H15 2.0000E+11 0.00 83.72 [215] 

1515 1C7H15                        =  1C7H14   +   H 1.0000E+13 0.00 169.11 [215] 

1516 1C7H15  +  O2             =  1C7H14   +   HO2 1.0000E+09 0.00 8.37 [215] 

1517 2C7H15                       =  3C7H15 2.0000E+11 0.00 83.72 [215] 

1518 2C7H15  +  O2             =  1C7H14   +   HO2 1.0000E+09 0.00 18.83 [215] 

1519 2C7H15  +  O2             =  2C7H14   +   HO2 2.0000E+09 0.00 17.79 [215] 

1520 2C7H15                       =  C3H6     +   C4H9(N) 1.6000E+13 0.00 118.46 [213] 

1521 2C7H15                       =  1C7H14   +   H 1.0000E+13 0.00 169.11 [215] 

1522 2C7H15                       =  2C7H14   +   H 1.0000E+13 0.00 169.11 [215] 

1523 3C7H15                       =  C3H7(N)  +   C4H8(N) 5.0000E+12 0.00 121.81 [213] 

1524 3C7H15                       =  2C7H14   +   H 1.0000E+13 0.00 169.11 [215] 

1525 3C7H15                       =  3C7H14   +   H  1.0000E+13 0.00 169.11 [215] 

1526 3C7H15  +  O2             =  2C7H14   +   HO2 2.0000E+09 0.00 17.79 [215] 

1527 3C7H15  +  O2             =  3C7H14   +   HO2 2.0000E+09 0.00 17.79 [215] 
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1528 4C7H15                       =  3C7H14   +   H 1.0000E+13 0.00 169.11 [215] 

1529 4C7H15  +  O2             =  3C7H14   +   HO2 4.0000E+09 0.00 17.79 [215] 

1530 C7H16                         =  1C6H13   +   CH3 4.1750E+12 0.00 261.90 [112] 

1531 C7H16                         =  1C7H15   +   H 1.0000E+15 0.00 418.60 [215] 

1532 C7H16                         =  2C7H15   +   H 1.0000E+15 0.00 418.60 [215] 

1533 C7H16                         =  3C7H15   +   H 1.0000E+15 0.00 418.60 [215] 

1534 C7H16                          =  4C7H15   +   H 1.0000E+15 0.00 418.60 [215] 

1535 C7H16   +  H                =  1C7H15   +   H2 5.6200E+04 2.00 32.23 [215] 

1536 C7H16   +  H                =  2C7H15   +   H2 1.8200E+03 2.00 20.93 [215] 

1537 C7H16   +  H                =  3C7H15   +   H2 1.8200E+03 2.00 20.93 [215] 

1538 C7H16   +  H                =  4C7H15   +   H2 9.0000E+03 2.00 20.93 [215] 

1539 C7H16   +  O                  =  1C7H15   +   OH 2.3000E+03 2.40 6.65 [215] 

1540 C7H16   +  O                  =  2C7H15   +   OH 6.4000E+02 2.50 20.93 [215] 

1541 C7H16   +  O                  =  3C7H15   +   OH 6.4000E+02 2.50 20.93 [215] 

1542 C7H16   +  O                  =  4C7H15   +   OH 3.2000E+02 2.50 20.93 [215] 

1543 C7H16   +  OH               =  1C7H15   +   H2O 5.2500E+06 0.97 6.65 [215] 

1544 C7H16   +  OH               =  2C7H15   +   H2O 2.3500E+04 1.61 0.00 [215] 

1545 C7H16   +  OH               =  3C7H15   +   H2O 2.3500E+04 1.61 0.00 [215] 

1546 C7H16   +  OH               =  4C7H15   +   H2O 1.1750E+04 1.61 0.00 [215] 

1547 C7H16   +  CH3             =  1C7H15    +   CH4 3.0000E+09 0.00 48.55 [215] 

1548 C7H16   +  CH3             =  2C7H15   +   CH4 1.6000E+09 0.00 39.76 [215] 

1549 C7H16   +  CH3             =  3C7H15   +   CH4 1.6000E+09 0.00 39.76 [215] 

1550 C7H16   +  CH3             =  4C7H15   +   CH4 8.0000E+08 0.00 39.76 [215] 

1551 C7H16   +  O2                =  1C7H15   +   HO2 2.5100E+10 0.00 205.11 [215] 

1552 C7H16   +  O2                =  2C7H15   +   HO2 3.9800E+10 0.00 199.25 [215] 

1553 C7H16   +  O2               =  3C7H15   +   HO2 4.0000E+10 0.00 199.25 [215] 

1554 C7H16   +  O2               =  4C7H15   +   HO2 2.0000E+10 0.00 199.25 [215] 

1555 C7H16                          =  C3H7(N)  +   C4H9(N) 2.5000E+13 0.00 261.90 [112] 

1556 C7H16                          =  C2H5      +  1C5H11 1.2500E+13 0.00 261.90 [112] 

1557 C8H16   +  O                =  1C7H15  +   CHO 1.0000E+08 0.00 0.00 [213] 

1558 C8H16   +  OH             =  1C7H15   +   CH2O 1.0000E+08 0.00 0.00 [213] 

1559 C8H16                         =  1C5H11   +   C3H5(A) 2.0000E+15 0.00 297.48 [213] 

1560 C8H16                         =  C4H9(N) +   C4H7(N) 1.0000E+16 0.00 342.25 [213] 

1561 C8H16   +  O                =  1C6H13  +   CH3CO 1.0000E+08 0.00 0.00 [213] 

1562 C8H16   +  OH             =  1C6H13  +   CH3CHO 1.0000E+08 0.00 0.00 [213] 
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1563 C8H17                          =  1C7H14  +   CH3 7.9400E+13 0.00 138.07 [213] 

1564 C8H17                         =  1C5H11  +   C3H6 1.5800E+13 0.00 118.41 [213] 

1565 C8H17                         =  C4H9(N) +   C4H8(N) 5.0100E+12 0.00 121.75 [213] 

1566 C8H17                         =  C8H16     +   H 2.0000E+13 0.00 158.99 [112] 

1567 C8H17                         =  1C5H10  +   C3H7(N) 5.0100E+12 0.00 121.75 [213] 

1568 C8H17                         =  1C6H13  +   C2H4 2.5100E+13 0.00 120.50 [213] 

1569 C8H17   +   O2             =  C8H16   +   HO2 4.0000E+09 0.00 8.36 [112] 

1570 1C9H10    + H             =  C6H5    +   C3H6 1.0000E+10 0.00 44.57 [216] 

1571 1C9H10    + H             =  C8H8    +   CH3 3.9800E+10 0.00 9.97 [216] 

1572 1C9H10    + H             =  C6H6    +   C3H5(S) 1.5848E+11 0.00 52.35 [216] 

1573 1C9H10    + H             =  C9H9(T) +   H2 1.5848E+11 0.00 46.53 [216] 

1574 1C9H10    + O             =  C7H6O   +   C2H4 5.2300E+04 1.57 -2.63 [75] 

1575 1C9H10    + O2           =  C9H9(T) +   HO2 2.0000E+10 0.00 184.10 [75] 

1576 1C9H10    + O2            =  C7H6O   +   CH3CHO 1.0000E+10 0.00 0.00 [75] 

1577 1C9H10    + HO2          =  C7H6O   +   C2H4   + OH 1.0000E+09 0.00 0.00 [75] 

1578 1C9H10    + OH           =  C7H6O   +   C2H5 1.0000E+10 0.00 0.00 [75] 

1579 2C9H10    + H              =  3C9H11 7.2300E+09 0.00 12.14 [75] 

1580 2C9H10    + H              =  C6H5    +   C3H6 1.0000E+11 0.00 44.57 [75] 

1581 2C9H10    + H             =  C7H7    +   C2H4 2.6000E+05 1.50 8.36 Present 
Work  

1582 2C9H10    + H             =  C6H6    +   C3H5(S) 1.5848E+11 0.00 52.35 [75] 

1583 2C9H10    + O             =  C8H8    +   CH2O  5.2300E+04 1.57 2.63 [75] 

1584 1C9H11                       =  1C9H10  +   H 6.3000E+13 0.00 154.39 [75] 

1585 1C9H11                       =  C7H7    +   C2H4 2.0000E+10 0.00 123.50 [75] 

1586 2C9H11                       =  2C9H10  +   H 3.1500E+13 0.00 154.39 [75] 

1587 2C9H11                       =  C8H8    +   CH3 2.0000E+10 0.00 123.43 [75] 

1588 2C9H11                       =  1C9H10  +   H 3.1500E+13 0.00 154.39 [75] 

1589 2C9H11                       =  C6H6    +   C3H5(S) 4.0000E+13 0.00 197.75 [75] 

1590 2C9H11                        =  C6H6    +   C3H5(A) 0.00 0.00 0.00 [75] 

1591 3C9H11    + HO2         =  C8H10   +   CHO + OH 2.5000E+09 0.00 0.00 [75] 

1592 3C9H11    + HO2         =  C8H9    +   CH2O + OH 2.5000E+09 0.00 0.00 [75] 

1593 3C9H11                       =  C8H8    +   CH3 2.0000E+13 0.00 113.10 [75] 

1594 1C9H11                       =  C8H8     +  CH3 1.0000E+14 0.00 145.81 [36] 

1595 1C9H11   +  O              =  C7H6O    +  C2H5 1.6000E+10 0.00 0.00 [36] 

1596 1C9H11   +  OH           =  C7H6O    +  C2H6 1.6000E+10 0.00 0.00 [36] 

1597 2C9H11   +  OH           =  C7H8     +  CH3CHO 2.0000E+10 0.00 16.73 [36] 
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1598 2C9H11                        =  C6H5     +  C3H6 1.0000E+14 0.00 145.60 [36] 

1599 3C9H11                        =  C7H7     +  C2H4 1.2300E+13 -0.10 126.37 Present 
Work  

1600 C9H12     + H               =  1C9H11  +   H2 1.0100E+01 2.90 8.07 [36] 

1601 C9H12     + O               =  1C9H11  +   OH 4.7700E+01 2.70 4.62 Adj.[113] 

1602 C9H12     + OH            =  1C9H11  +   H2O 7.0800E+03 1.90 -4.84 [36] 

1603 C9H12     + H               =  2C9H11  +   H2 1.0100E+01 2.90 12.26 [36] 

1604 C9H12     + O               =  2C9H11  +  OH 4.7700E+01 2.70 8.81 Adj.[113] 

1605 C9H12     + OH             =  2C9H11  +  H2O 4.7865E+03 1.40 3.56 [75] 

1606 C9H12     + H                =  3C9H11  +  H2 1.3300E+03 2.50 28.26 [36] 

1607 C9H12     + O                =  3C9H11  +  OH 1.9300E+02 2.70 15.54 [36] 

1608 C9H12     + OH             =  3C9H11  +  H2O 3.1600E+04 1.80 3.90 Adj.[217] 

1609 C9H12     + HO2            =  1C9H11  +  H2O2 9.6400E+00 2.60 54.01 [36] 

1610 C9H12     + CH3            =  1C9H11  +  CH4 1.5000E-03 3.46 22.90 Adj.[113] 

1611 C9H12     + HO2            =  2C9H11  +  H2O2 9.6400E+00 2.60 58.20 Adj.[113] 

1612 C9H12     + HO2            =  3C9H11  +  H2O2 4.7600E+01 2.50 69.01 Adj.[113] 

1613 C9H12     + CH3             =  3C9H11  +  CH4 9.0300E-04 3.65 29.90 Adj.[113] 

1614 C9H12     + CH3             =  2C9H11  +  CH4 1.5055E-03 3.46 22.90 Adj.[113] 

1615 C9H12     + C2H5            =  1C9H11  +  C2H6 1.2100E-03 3.46 31.26 Adj.[113] 

1616 C9H12     + C2H5            =  2C9H11  +  C2H6 1.2100E-03 3.46 31.26 Adj.[113] 

1617 C9H12     + C2H5           =  3C9H11  +  C2H6 9.0400E-04 3.65 38.24 Adj.[113] 

1618 C9H12     + C2H3            =  1C9H11  +  C2H4 1.0000E+00 3.10 36.94 Adj.[113] 

1619 C9H12     + C2H3            =  2C9H11  +  C2H4 1.0000E+00 3.10 36.94 Adj.[113] 

1620 C9H12     + C2H3            =  3C9H11  +  C2H4 6.0000E-01 3.30 43.94 Adj.[113] 

1621 C9H12     + C3H5(A)       =  1C9H11  +  C3H6 7.9400E+08 0.00 67.82 [36] 

1622 C9H12     + C3H5(A)       =  2C9H11  +  C3H6 7.9400E+08 0.00 67.78 [36] 

1623 C9H12     + C3H5(A)       =  3C9H11  +  C3H6 7.9400E+08 0.00 85.77 [36] 

1624 C9H12     + C6H5            =  1C9H11  +  C6H6 7.9400E+08 0.00 67.78 [36] 

1625 C9H12     + C6H5            =  2C9H11  +  C6H6 7.9400E+08 0.00 67.68 [36] 

1626 C9H12     + C6H5            =  3C9H11  +  C6H6 7.9400E+08 0.00 85.77 [36] 

1627 C9H12     + C7H7             =  1C9H11  +  C7H8 7.9400E+08 0.00 67.78 [36] 

1628 C9H12     + C7H7             =  2C9H11  +  C7H8 7.9400E+08 0.00 67.68 [36] 

1629 C9H12     + C7H7             =  3C9H11  +  C7H8 7.9400E+08 0.00 85.84 [36] 

1630 C9H12     + O2                =  1C9H11  +  HO2 4.0000E+10 0.00 149.78 [36] 

1631 C9H12     + O2                =  2C9H11  +  HO2 4.0000E+10 0.00 207.10 [36] 

1632 C9H12     + O2                =  3C9H11  +  HO2 4.0000E+10 0.00 211.71 [36] 
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1633 C9H12                            =  C6H5    +  C3H7(N) 1.0000E+16 0.00 305.43 Adj.[13] 

1634 C9H12                            =  C7H7    +  C2H5 1.0000E+16 0.00 305.43 Adj.[13] 

1635 C9H12                            =  C8H9    +  CH3 8.0000E+16 0.00 353.13 Adj.[13] 

1636 C9H12    + H                  =  C3H7(N) +  C6H6 5.7800E+10 0.00 33.84 Adj.[90] 

1637 C9H12                            =  3C9H11   +  H 8.0000E+15 0.00 419.27 [36] 

1638 C9H12                            =  2C9H11   +  H 8.0000E+15 0.00 414.00 [36] 

1639 C9H12                            =  1C9H11   +  H 8.0000E+15 0.00 360.70 [36] 

1640 C9H12    +  C3H5(T)       =  1C9H11   +  C3H6 7.9400E+08 0.00 67.78 [36] 

1641 C9H12    +  C3H5(S)       =  1C9H11   +  C3H6 7.9400E+08 0.00 67.78 [36] 

1642 C9H12    +  C3H5(T)       =  2C9H11   +  C3H6 7.9400E+08 0.00 67.78 [36] 

1643 C9H12    +  C3H5(S)       =  2C9H11   +  C3H6 7.9400E+08 0.00 67.78 [36] 

1644 C9H12    +  C3H5(T)       =  3C9H11   +  C3H6 7.9400E+08 0.00 85.77 [36] 

1645 C9H12    +  C3H5(S)       =  3C9H11   +  C3H6 7.9400E+08 0.00 85.77 [36] 

1646 1C10H21                         =  C8H17   +  C2H4 2.1000E+13 0.00 121.00 [112] 

1647 1C10H21                         =  4C10H21 2.0000E+11 0.00 84.00 [112] 

1648 1C10H21                         =  5C10H21 2.0000E+11 0.00 84.00 [112] 

1649 2C10H21                         =  1C7H15   + C3H6 2.1000E+13 0.00 121.00 [112] 

1650 2C10H21                         =  5C10H21 2.0000E+11 0.00 84.00 [112] 

1651 2C10H21                         =  4C10H21 2.0000E+11 0.00 84.00 [112] 

1652 3C10H21                         =  1C6H13   + C4H8(N) 2.1000E+13 0.00 121.00 [112] 

1653 3C10H21                         =  5C10H21 2.0000E+11 0.00 84.00 [112] 

1654 3C10H21                         =  4C10H21 2.0000E+11 0.00 84.00 [112] 

1655 4C10H21                         =  1C5H11   +  1C5H10 2.1000E+13 0.00 121.00 [112] 

1656 4C10H21                         =  C8H16    +  C2H5 2.1000E+13 0.00 121.00 [75] 

1657 5C10H21                         =  C4H9(N)  +  1C6H12 2.1000E+13 0.00 121.00 [75] 

1658 5C10H21                        =  C3H7(N)  +  1C7H14 2.1000E+13 0.00 121.00 [75] 

1659 C10H22                          =  1C7H15   +  C3H7(N) 3.1420E+14 0.00 283.90 [75] 

1660 C10H22                          =  1C5H11   +  1C5H11 3.1420E+14 0.00 283.90 [75] 

1661 C10H22                          =  1C6H13   +  C4H9(N) 3.1420E+14 0.00 283.90 [75] 

1662 C10H22                          =  1C10H21  +  H 8.0000E+14 0.00 424.00 [112] 

1663 C10H22                         =  2C10H21  +  H 8.0000E+14 0.00 424.00 [112] 

1664 C10H22                         =  3C10H21  +  H 8.0000E+14 0.00 424.00 [112] 

1665 C10H22                         =  4C10H21  +  H 8.0000E+14 0.00 424.00 [112] 

1666 C10H22                         =  5C10H21  +  H 8.0000E+14 0.00 424.00 [112] 

1667 C10H22   +    H              =  1C10H21  +  H2 4.7000E+04 2.00 32.20 [112] 
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1668 C10H22   +    H              =  2C10H21  +  H2 1.5000E+04 2.00 20.92 [112] 

1669 C10H22   +    H              =  3C10H21  +  H2 1.5000E+04 2.00 20.92 [112] 

1670 C10H22   +    H              =  4C10H21  +  H2 1.5000E+04 2.00 20.92 [112] 

1671 C10H22   +    H              =  5C10H21  +  H2 1.5000E+04 2.00 20.92 [112] 

1672 C10H22   +    OH           =  1C10H21  +  H2O 4.4000E+06 0.97 6.65 [112] 

1673 C10H22   +    OH           =  2C10H21  +  H2O 1.9600E+04 1.61 0.00 [112] 

1674 C10H22   +    OH           =  3C10H21  +  H2O 1.9600E+04 1.61 0.00 [112] 

1675 C10H22   +    OH           =  4C10H21  +  H2O 1.9600E+04 1.61 0.00 [112] 

1676 C10H22   +    OH            =  5C10H21  +  H2O 1.9600E+04 1.61 0.00 [112] 

1677 C10H22   +    O              =  1C10H21  +  OH 1.9200E+03 2.40 6.65 [112] 

1678 C10H22   +    O              =  2C10H21  +  OH 5.3300E+02 2.50 20.92 [112] 

1679 C10H22   +    O              =  3C10H21  +  OH 5.3300E+02 2.50 20.92 [112] 

1680 C10H22   +    O              =  4C10H21  +  OH 5.3300E+02 2.50 20.92 [112] 

1681 C10H22   +    O              =  5C10H21  +  OH 5.3300E+02 2.50 20.92 [112] 

1682 C10H22   +    CH3          =  1C10H21  +  CH4 2.5000E+09 0.00 48.53 [112] 

1683 C10H22   +    CH3          =  2C10H21  +  CH4 1.3300E+09 0.00 39.75 [112] 

1684 C10H22   +    CH3          =  3C10H21  +  CH4 1.3300E+09 0.00 39.75 [112] 

1685 C10H22   +    CH3          =  4C10H21  +  CH4 1.3300E+09 0.00 39.75 [112] 

1686 C10H22   +    CH3          =  5C10H21  +  CH4 1.3300E+09 0.00 39.75 [112] 

1687 C10H22   +    O2             =  1C10H21  +  HO2 2.0900E+10 0.00 218.12 [112] 

1688 C10H22   +    O2             =  2C10H21  +  HO2 3.3000E+10 0.00 204.00 [112] 

1689 C10H22   +    O2             =  3C10H21  +  HO2 3.3000E+10 0.00 204.00 [112] 

1690 C10H22   +    O2             =  4C10H21  +  HO2 3.3000E+10 0.00 204.00 [112] 

1691 C10H22   +    O2              =  5C10H21  +  HO2 3.3000E+10 0.00 204.00 [112] 
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Enhanced Collision Efficiencies 
 
Unless otherwise specified, collision efficiencies are set equal to 1.  
 
α CO =1.9; CO2 = 2.4; H2 = 1.49; H2O = 0.0; Ar = 0.0; He = 0.0 
 
b H2O = 1.0 
 
c Ar = 1.0 
 
d He = 1.0 
 
e CO= 1.9; CO2 =3.8; H2 = 2.5; H2O = 12.0 
 
f CO = 0.0; CO2 = 0.0; H2O = 0.0 
 
g H2 = 1.0  
 
h H2O = 1.0 
 
i CO2 = 1.0 
 
j CO = 2.0; CO2 = 5.0; H2 = 3.0; H2O = 12.0; O2 = 2.5 
 
k CO = 1.9;  CO2 = 3.8; H2 = 2.5; H2O = 6.5 
 
l C2H2 = 5.0; C2H4 = 1.4; C2H6 = 2.2; CH4 = 0.7;  CO = 0.36; CO2 = 0.36;  

H2O = 4.0; N2 = 0.36 

m H2 = 2.0; O2 = 1.5; CO = 1.5; H2O = 6.0; CO2 = 3.0 
 
n CO = 1.9; CO2 = 3.8; H2 = 2.5; H2O = 12.0 
 
o CO = 2.5; CO2 = 2.5; H2 = 1.89;  H2O = 12.0 
 
p CH3OH = 1.0 
 
q H2O = 6.5; Ar = 0.4 
 
r CO = 2.0; CO2 = 3.0; H2 = 2.0; H2O = 5.0; O2 = 1.5 
 
s CO = 1.9; CO2 = 3.3; H2 = 1.1; H2O = 5.7; O2 = 1.9; N2 = 1.6 
 
t H2 = 2.0; H2O = 6.0; CH4 = 2.0; CO = 1.5; CO2 = 2.0; C2H6 = 3.0 
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Fall-off parameters for pressure dependent reactions 
 
Unless otherwise defined, third body collision efficiencies are 1. 
 
* Reactions in the Lindemann form 
 
1 Fc = 0.57 
 
2 Fc = 0.81 
 
3 Fc = 0.51 
 
4 Fc = 0.5 
 
5 Fc = 0.18exp(-T/ 200.0) + 0.82exp(-T/1438) 
 
6 Fc  = 0.27 
 
7 Fc = 0.35 
 
8 Fc = 47.6exp(-16182.0/T) + exp(-T/3371.0) 
 
9 Fc = exp(-T/1097.0) + exp(6860.0/T) 
 
10 Fc = log(k/k∞) = -0.1155 + 8.8420E-4*T-1.591E-6*T2+2.874E-10*T3 
 
11 Fc = 2.17exp(-T/251.0) + exp(-1185.0/T) 
 
12 Fc = 0.76exp(-T/38.0) + 0.24exp(-T/1946.0) 
 
13 Fc = 1.0exp(-T/1314.0) + 1.0exp(-50000.0/T) 
 
14 Fc = 1.01exp(-T/206.0) + 0.196exp(-278.0/T) 
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Appendix B 

 

Thermodynamic Properties 

 
The thermodynamic data of the chemical species are essential for the 

predictions of the heat release and equilibrium constants. 

ln(K) =
∆H

RT
+

∆S

R
    (B.1) 

The thermodynamic data or commonly referred as JANAF polynomials can 

take the following forms: 

Cp

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4     (B.2) 

H

RT
= a1 +

a2T

2
+

a3T
2

3
+

a4T
3

4
+

a5T
4

5
+

a6

T
   (B.3) 

S

R
= a1 ln(T) + a2T +

a3T
2

2
+

a4T
3

3
+

a5T
4

4
+ a7  (B.4) 

The data for each species is represented by fourteen coefficients 

corresponding to temperature ranges above 1000 K (first set of seven coefficients) 

and below 1000 K (second set).  The molecular structures, heats of formation and 

entropies at 298 K are found in Table B.1 .The JANAF polynomials for the species 

utilized in the current chemical mechanism are grouped in Table B.2.  
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Table B.1 

Species Structure and Thermodynamic Data 

Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

H2 H2 0.00 130.67 [71] 

O2 O2 0.00 205.14 [71] 

H H 217.99 114.71 [71] 

OH OH 37.30 183.73 [71] 

O H 249.19 160.94 [71] 

H2O H2O -241.81 188.82 [71] 

HO2 HO O  
  12.55 229.09 [71] 

H2O2 HO OH  -135.87 234.53 [71] 

CH4 CH4 -74.60 186.36 [71] 

CH3 CH3 145.69 194.04 [71] 

CH2(S) C1H2 428.78 189.21 [71] 

CH2(T) C3H2 391.18 194.41 [71] 

CH CH 595.77 183.03 [71] 

C1 C 716.63 158.09 [71] 

CO C O  -110.52 197.65 [71] 

CO2 O OC
 -393.49 213.77 [71] 

CH2O CH2 O
 -108.57 218.75 [218] 

CHO CH   O  42.30 224.27 [71] 

CH2OH CH2
  OH

 -17.00 244.16 [71] 

CH3OH CH3 OH
 -200.99 240.64 [71] 

CH3O CH3 O  
 21.00 234.27 [71] 

CH3OO 
CH3 O

O  

 

9.00 269.64 [71] 

CH3OOH 
CH3 O

OH

 

-126.73 275.89 [71] 

C2 C2 824.30 197.09 [71] 

C2O O  C  
 291.02 233.61 [71] 

C2H HC  
 569.10 213.29 [71] 

C2H2 CH CH  228.19 200.90 [71] 

H2C2 C  CH2  414.76 221.01 [71] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C2HO OCH   
 178.26 249.24 [15] 

C2H2O OCH2  -47.70 241.88 [71] 

C2H3 CH2CH   
 296.56 233.65 [71] 

CH3CHO CH3 C
H

O

 

-165.13 265.42 [15] 

CH3CO 
CH3 C  

O

 

-10.30 267.43 [71] 

CH2CHO CH2
  C

H

O

 

25.34 268.96 [71] 

C2H4 CH2 CH2  52.50 219.31 [71] 

C2H5 CH2
  CH3  118.65 247.10 [71] 

C2H6 CH3 CH3  -83.85 229.21 [71] 

CHCH2O 
CH   CH2

O

 

12.79 259.61 [15] 

C2H4O 
CH2CH2

O

 

-52.63 242.86 [71] 

C2H4OOH 
CH3

C
H

  
O

OH
 

28.80 324.79 [71] 

C2H5O 
CH3

C
H2

O  
 

-13.60 277.63 [71] 

C2H5OO 
CH3

C
H2

O
O  

 

-28.70 299.97 [71] 

C2H5OOH 
CH3

CH2

O

OH
 

-162.23 324.50 [15] 

C3H CH  719.35 247.78 [71] 

C3H2 CH2

 

476.95 236.19 [71] 

C3H2L CH CH  
 601.30 248.32 [15] 

C3H3 CH2
  CH

 345.98 256.64 [71] 

C3H4(A) CH2 CH2  190.91 243.42 [71] 

C3H4(P) CH3 CH
 185.42 248.28 [71] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C3H4(B) 
CH

CH2
CH  

277.08 243.59 

 
 

[71] 
 

C3H5(A) 
 

167.79 258.98 [15] 

C3H5(S) 
CH3

C
H

CH  
 

265.52 271.29 [71] 

C3H5(T) CH2

C  

CH3  
250.67 276.03 [15] 

C3H5(B) 
CH2

C
H  

CH2  

279.89 251.47 [71] 

C3H6(B) 

CH2 CH2

C
H2

 

56.20 237.89 [15] 

C3H6 
CH2

C
H

CH3  

20.00 266.65 [71] 

C3H7(N) 
CH3

C
H2

CH2
  

 

101.31 290.44 [71] 

C3H7(I) CH3 C
H

  

CH3

 

90.18 289.49 [15] 

C3H8 
CH3

C
H2

CH3  

-104.47 273.62 [15] 

C3H2O 
CH C

H

O

 

128.67 277.37 [15] 

C3H3O O
C  

C
H

CH2

 
88.53 300.64 [71] 

C3H4O CH2

C
H

C
H

O

 

-68.06 297.01 [71] 

H 2C CH 2

H
C
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C3H5O 
C
H2

C
H2

C
H

O  

 

71.85 281.76 [15] 

PC3H5O CH3 C
H2

C  O

 

-32.83 314.27 [71] 

TC3H5O 
CH2

  C
H2

C
H

O

 

21.78 321.38 [15] 

AC3H5O 

CH2
  CH3

O

 

-33.34 307.50 [71] 

C3H6O 
C
H2

C
H2

C
H

OH

 

-101.50 277.44 [71] 

AC3H6O 

CH3 CH3

O

 

-219.94 297.33 [15] 

PC3H6O 
CH3 C

H2

C
H

O

 

-185.12 311.53 [15] 

C3H7O(I) 

CH3

C
H CH3

O  

 

-47.73 306.81 [15] 

C3H7O(N) 
CH3

C
H2

C
H2

O  

 

-37.91 324.76 [15] 

C3H6OH CH3

C
H  

C
H2

OH

 

-55.22 343.23 [15] 

C3H7OOH(I) CH3 CH

CH3

O OH

 

-200.68 352.43 
[15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C3H7OOH(N) 
CH3 C

H2

C
H2

O OH

 

-181.90 371.12 [15] 

C3H7OO(I) CH3 C
H

O O  

CH3  

-63.89 350.32 [15] 

C3H7OO(N) 
CH3 C

H2

C
H2

O O  

 

-42.43 365.55 [15] 

C3H6OOH 
CH3

C
H

  
C
H2

O
OH

 

16.38 391.26 [15] 

C4H CH C  
 815.76 264.53 [15] 

C4H2 CH CH  458.27 249.60 [71] 

C4H3(N) 
CH   

C
H

CH
 

543.50 284.36 [15] 

C4H3(I) 
CH2

C  CH  
501.80 305.35 [71] 

C4H4 

CH2

C
H

CH
 

287.84 277.30 [71] 

C4H5(S) 
CH2 C

H
C
H

C
H

CH2
  

 

315.23 286.22 [15] 

C4H5(T) 
CH2

C
H

C
H

CH  

 

363.32 303.57 [71] 

C4H5(I) 
CH2

C
H

C  CH2

 

315.20 290.10 [71] 

C4H6(S) 

CH3

C
H

CH2
 

161.30 290.98 [71] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C4H6(T) 
CH2

C
H

C
H

CH2

 

110.83 293.31 [71] 

C4H6(F) 

CH3

C
H2

CH

 

165.91 291.69 [15] 

C4H6(B) 

C
H

C
H

C
H

CH3

 

255.04 285.28 [15] 

C4H6(M) 

 
 

CH3CH3  
 
 

146.31 291.89 [71] 

C4H7(I) 

 

135.63 301.70 [15] 

C4H7(N) 
CH2

  

C
H2

C
H

CH2

 

204.58 317.33 [71] 

C4H7(S) 

 

136.32 304.16 [15] 

C4H8(I) 

CH3 CH3

CH2

 

-16.17 297.72 [15] 

C4H8(N) 
CH2 C

H

C
H2

CH3

 

0.42 313.98 [15] 

C4H8(S) CH3 C
H

C
H

CH3

 

-10.48 301.07 [15] 

C4H9(I) 

CH3

C
HCH2

  

CH3

 

73.78 304.64 [71] 

C H 
3 

C H 

C H C H 
2 

 H 
 

H 
2 
C C H 

2 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C4H9(T) 

CH3

C  

CH3

CH3

 

55.04 322.37 [71] 

C4H9(N) CH2
  

C
H2

C
H2

CH3

 

81.80 307.61 [71] 

C4H9(S) CH3

C
H  

C
H2

CH3

 

70.22 321.63 [71] 

C4H10(N) 
CH3

C
H2

C
H2

CH3

 

-125.49 317.94 [15] 

C4H10(I) 

CH3

C
HCH3

CH3

 

-134.98 295.48 [71] 

C4H2O O CH2  216.65 292.39 [15] 

C4H4O 
CH

CH CH2

O

 

41.80 285.52 [15] 

XC4H5O 
CH3 C

H
  

C
H

O

 

67.55 328.19 [15] 

YC4H5O CH2

C
H

C
H

  
C
H

O
 

35.07 311.37 [15] 

BC4H6O 
CH3

C
H

C
H

C
H

O
 

-105.21 305.99 [15] 

AC4H6O 
C
H2

O
C
H

C
H

CH2  

9.40 310.72 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C4H7O(X) 
CH3 C

H2

O  

CH2

 

55.78 341.89 [15] 

C4H7O(M) 

CH3

CH

C
H

  OH

CH3

 

-58.85 348.45 [15] 

C4H8O(X) CH2 CH3

CH3

O  

-139.28 317.03 [15] 

C4H8O(M) CH C
H

OCH3

CH3  

-215.68 338.68 [15] 

C4H8OH(I) CH C
H2

CH3

CH2
  OH

 

-77.91 366.98 [15] 

O2C4H9O OH
C
H2

C
H2

C
H2

O

O  

 

-223.55 425.07 [15] 

C5H C=C=C=C=CH 778.23 260.40 [71] 

C5H2 CH=C=C=C=CH 691.37 266.62 [71] 

C5H3(L) CH≡C-CH-C≡CH 560.97 295.18 [71] 

C5H4(L) CH2=C=CH=C≡CH 427.00 304.10 [15] 

C5H5 

 

266.09 279.47 [71] 

C5H5(L) CH2=C=CH=CH=CH 396.48 307.44 [71] 

C5H6(L) 
CH3

C
H

CH2  

247.12 316.15 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C5H6 

C
H2

 

136.39 275.05 [15] 

C5H7(I) 

CH2 C
H

CH2

CH2
  

 

316.29 341.67 [15] 

C5H7 
CH  

C
H2

CH

C
H

C
H2  

172.65 292.49 [15] 

C5H7(L) CH2
  

C
H

C
H

C
H

CH2

 

221.74 312.11 [128] 

C5H8 
CH2

C
H2

CH

C
H

C
H2  

37.33 292.45 [15] 

C5H8(I) 

CH2 C
H

CH2

CH3

 

87.84 321.42 [15] 

C5H9 CH3CH2CHCHCH2 170.80 357.26 [219] 

C5H9(A) 

CH2 C
H

  
CH3

CH3

 

110.45 345.06 [15] 

C5H9(B) 
CH2 C

H2

CH3

CH2
  

 

120.98 340.03 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C5H10(A) 
CH2 C

H2

CH3

CH3

 

-33.91 345.94 [15] 

C5H10(B) 

CH3 C
H

CH3

CH3

 

-39.79 337.91 [15] 

C5H11(T) 
CH3

C  

C
H2

CH3

CH3

 

36.75 375.81 [15] 

1C5H11 CH3-3(CH2)CH2 45.28 374.97 [220] 

1C5H10 CH2CH-2(CH2)CH3 -21.73 345.24 [220] 

C5H4OH 
C  

OH

 

90.83 309.17 [15] 

C5H4O 

O

 

54.75 291.42 [15] 

C5H5O O  

 

103.29 307.79 [71] 

C5H5OO 
C
H

O O  

 

215.59 352.45 [15] 

C5H5OH 

OH

 

-8.14 309.39 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C6H2 CH
CH

 
700.78 299.17 [73] 

C6H3 
CH C  

C
H

CH

 
752.48 352.48 [15] 

C6H4 
CH

CH CH

CH

 

461.11 283.22 [71] 

C6H4L CH C
H

C
H

CH

 

523.17 325.85 [15] 

C6H5(A) 
CH C

H
  

C
H2

CH

 

576.05 363.46 [15] 

C6H5(B) CH=C-CH=CH-CH=CH 605.93 342.09 [15] 

C6H5 
C  

 

345.44 290.01 [15] 

C6H6(A) CH C
H2

C
H2

CH

 

417.44 348.66 [15] 

C6H6(B) 
CH2 C

H

C
H2

CH

 

416.49 354.17 [15] 

C6H6(D) CH2

C
H

C
H

C
H

CH

 

343.51 336.18 [15] 

C6H6(S) CH2 C
H

C
H

CH2

 

396.28 337.90 [15] 

C6H6(F) 

CH2

 

216.34 294.74 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C6H6(M) 

CH2 CH2

 

339.99 305.15 [15] 

C6H6 

 

85.13 270.20 [15] 

C6H7 
C  

 

210.86 302.72 [15] 

C6H7(L) CH2=CH-CH=CH-CH=CH 428.53 346.54 [15] 

C5H4CH3 C  CH3

 

219.37 324.56 [15] 

C6H8 

 

109.16 299.54 [15] 

C5H5CH3 CH3

 

112.16 312.62 [15] 

C6H11 CH2

C
H

C
H2

C
H2

C
H2

CH2
  

 

142.25 394.95 [221] 

1C6H12 CH2

C
H

C
H2

C
H2

C
H2

CH3

 

-41.69 384.80 [221] 

1C6H13 CH3

C
H2

C
H2

C
H2

C
H2

CH2
  

 

25.10 407.63 [126] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

2C6H13 CH3

C
H2

C
H2

C
H2

C
H

  
CH3

 

75.35 378.93 [126] 

C6H3O2 

C  O

O  

147.09 341.81 [15] 

C6H3O3 

O  

O

O  

-129.54 365.08 [15] 

C6H5OH 

OH

 

-82.45 321.64 [15] 

C6H5O 

O  

 

61.65 311.57 [15] 

C6H4O2 

O

O  

-121.32 323.52 [15] 

C6H5OO 

O O  

 

151.60 354.30 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C6H5OOH 

O OH

 

-2.61 355.43 [15] 

C7H5 C  CH

 

476.46 326.03 [15] 

C7H6 CH

 

367.33 357.35 [71] 

C6H5C 

 

616.44 328.29 [15] 

C6H5CH 

CH:

 

474.03 320.41 [15] 

C7H7 

CH2
•

 

215.28 318.42 [15] 

C7H7L C  CH2

 

453.53 350.43 [15] 

C7H7P C  CH2

 

314.52 321.27 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C7H8 

CH3

 

51.97 322.10 [15] 

C7H16 CH3

C
H2

C
H2

C
H2

C
H2

C
H2

CH3

 

-188.23 456.03 [15] 

C7H13 CH2

C
H

C
H2

C
H  

C
H2

C
H2

CH3

 

145.06 458.15 [15] 

1C7H14 CH3

C
H2

C
H2

C
H2

C
H2

C
H

CH2

 

-63.28 501.66 [15] 

2C7H14 CH3

C
H2

C
H2

C
H2

C
H

C
H

CH3

 

-73.07 436.49 [15] 

3C7H14 CH3

C
H2

C
H2

C
H

C
H

C
H2

CH3

 

-72.02 440.73 [15] 

1C7H15 CH3

C
H2

C
H2

C
H2

C
H2

C
H2

CH2
  

 

18.59 472.84 [15] 

2C7H15 CH3

C
H2

C
H2

C
H2

C
H2

C
H  

CH3

 

7.09 481.86 [15] 

3C7H15 CH3

C
H2

C
H2

C
H2

C
H

  
C
H2

CH3

 

8.09 487.97 [15] 

4C7H15 CH3

C
H2

C
H2

C
H  

C
H2

C
H2

CH3

 

8.09 485.73 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C6H5CO CO

 

108.77 355.34 [55] 

C7H6O C
H

O

 

-39.04 342.33 [15] 

C7H7O 

O  

 

126.00 359.06 [15] 

C7H7OA O

CH2
  

 

118.99 369.23 [15] 

OC7H7 CH3O  

 

22.87 354.68 [15] 

C7H7OH C
H2

OH

 

-92.71 361.86 [15] 

HOC7H7 
CH3OH

 

-123.72 352.43 [15] 

C7H8OA O

CH3

 

-72.39 351.10 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C7H7OO CH

CH
CH

CH

CH

CH2 O O  

 

119.20 403.25 [15] 

OOC7H7P 

 

CH3
OO  

 
 

117.94 385.43 [15] 

C8H2 CH
CH

 
908.89 352.66 [15] 

C8H5(S) 

C  

 

555.46 326.08 [126] 

C8H5 C  

CH

 

624.12 342.36 [15] 

C8H6 

CH

 

317.78 331.20 [15] 

C6H5CHC 

C  

 

519.80 351.11 [15] 

C8H7 

C  

 

411.51 359.34 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C8H7(F) 

C
H

CH

CH
C
H

C
H

CH2

 

480.56 364.00 [15] 

C8H7(P) C  C
H

CH2

 

397.09 368.11 [126] 

C8H8 C
H

CH2

 

149.14 345.99 [15] 

C8H9(F) 

C
H

CH

CH
C
H

C
H

C
H2

CH2

 

366.22 393.84 [15] 

C8H9 C  

 

185.64 354.34 [15] 

C8H10 

 

30.29 365.14 [15] 

C8H16 CH2CH-5(CH2)CH3 -82.90 462.37 [221] 

C8H17 CH3-6(CH2)CH2 -16.32 486.80 [221] 

C6H5C2O 

C  O

 

249.20 368.19 [15] 

C8H5O 
CHO

 

287.26 358.29 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C8H5OO 

CH

OO  

 

375.82 396.28 [15] 

C9H7 

 

285.58 342.82 [126] 

C9H7L C
H2

C
H2

CH2
  

 

531.47 370.08 [126] 

C9H8 

 

164.13 335.83 [221] 

C9H8(S) 
C
H

CH2

 

286.30 376.70 [15] 

C9H8(T) 
C
H2

CH

 

305.78 380.15 [15] 

C9H9(N) 

C  

C
H2

C
H

CH2

 

394.26 407.04 [15] 

C9H9(I) 
C
H2

C  CH2

 

365.57 415.19 [15] 

C9H9(S) 
C
H

CH2

 

214.35 356.69 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C9H9(P) C
H2

C
H

CH  

 

381.09 399.98 [15] 

C9H9(C) 

C  
 

315.29 353.21 [15] 

C9H9(F) 
C
H2

CH2
  

CH3  

378.85 391.22 [15] 

C9H9(T) 

C  

 

377.28 394.43 [126] 

1C9H10 

 

117.00 380.36 [222] 

2C9H10 

 

117.00 380.36 [222] 

1C9H11 

C  

 

147.18 397.42 [36] 

2C9H11 
C  

 

204.21 403.43 [36] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

3C9H11 

C  

 

209.22 403.43 [36] 

C9H12 

 

7.74 408.34 [15] 

C9H6O 

C
H

CH

O

 

54.97 352.13 [15] 

C9H7O 

C
H

CH

O

 

131.92 342.22 est. [221] 

C10H6 

CH

CH

 

554.44 381.76 [15] 

C10H7 
C  

 

401.66 352.22 [15] 

C10H7L 

C  

 

650.04 394.28 [15] 

C10H7M 

C  

 

635.52 406.56 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C10H8L 

 

375.14 393.20 [126] 

C10H8 

 

147.64 335.46 [15] 

C10H8K 

 

360.22 368.63 [15] 

C10H8G 

 

375.49 402.18 [15] 

C9H6CH2 

CH2

 

238.45 355.60 [131] 

C10H8J 

 

381.95 403.90 [15] 

C10H9A 

C  

 

475.08 408.21 [15] 

C10H9D 

C  

 

433.78 428.40 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C10H9 

C  
 

249.25 366.87 [15] 

C10H9F C  

 

361.64 380.29 [15] 

C10H9P 
C  

 

485.87 416.74 [15] 

C9H6CH3 

C  

CH3

 

255.55 347.44 [131] 

C10H9T 
C  

 

249.22 366.74 [15] 

C10H9B 
C  

 

424.68 408.01 [15] 

C10H9L 
C  

 

453.42 421.82 [126] 

C10H9E C  

 

403.44 405.78 [15] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C10H10K 

 

264.39 367.18 [126] 

C10H9K C  

 

460.09 398.36 [15] 

C10H9M 
C  

 

472.83 419.40 [15] 

C9H7CH3 

CH3

 

147.10 390.12 [131] 

C10H10 

 

279.36 414.96 [126] 

C10H10F 

 

256.27 410.98 [15] 

1C10H21 CH3-8(CH2)CH2 -57.75 565.99 [126] 

2C10H21 CH3-7(CH2)CHCH3 -58.99 566.73 [126] 

3C10H21 CH3-6(CH2)CHCH2CH3 -58.99 566.73 [126] 

4C10H21 CH2-5(CH2)CH-2(CH2)CH3 -58.99 566.73 [126] 

5C10H21 CH3-4(CH2)CH-3(CH2)CH3 -58.99 566.73 [126] 

C10H22 CH3-8(CH2)CH3 -250.13 544.19 [126] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C10H7OO 

O O  
 

220.99 402.03 [15] 

C10H7O 

O  
 

123.14 374.07 [15] 

C10H7OH 

OH  

-30.79 368.69 [126] 

C10H6O2 

O

O  

-103.86 388.72 [15] 

C11H9 

CH2
  

 

272.79 375.72 [221] 

C11H9P C  

CH3

 

357.02 375.81 [11] 

C11H10 

CH3

 

116.10 381.96 [221] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C11H7O 

CO

 

174.92 415.82 [221] 

C11H8O 

CHO

 

30.54 415.68 [221] 

C11H9O 

CH2 O  

 

189.23 375.81 est. [11] 

AC11H9O 

O C
H2

  

 

155.20 375.81 est. [11] 

OOC11H9P 

O O  

CH3

 

284.20 465.62 est. [11] 

C11H9OO 

CH2 O O  

 

254.99 415.78 est. [126] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C11H10O 

CH2 OH

 

-28.47 452.86 est. [11] 

OC11H9 

O  

CH3

 

85.22 375.81 est. [11] 

HOC11H9 

OH

CH3

 

-58.77 375.81 est. [11] 

AC11H10O 

O CH3

 

0.48 452.76 
Est.[11, 

15] 

C12H10 

 

182.14 388.84 [221] 

1C12H10 

 

215.04 400.83 [221] 
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Acronym Structure ∆fH298 
kJ/mol 

S298 
J/mol/K Reference  

C12H11 

C  

 

220.45 426.59 [221] 

C12H12 

 

96.90 406.30 [221] 

C14H14 C
H2

C
H2

 

143.14 483.24 [221] 
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Table B.2 

Polynomials for species 

H2                                                          REF : BURCAT 20/09/06 
   0.29328305E+01  0.82659802E-03 -0.14640057E-06  0.15409851E-10 -0.68879615E-15 
  -0.81305582E+03 -0.10243164E+01  0.23443029E+01  0.79804248E-02 -0.19477917E-04 
   0.20156967E-07 -0.73760289E-11 -0.91792413E+03  0.68300218E+00 
O2                                                          REF : BURCAT 20/09/06 
   3.66096083E+00  6.56365523E-04 -1.41149485E-07  2.05797658E-11 -1.29913248E-15 
  -1.21597725E+03  3.41536184E+00  3.78245636E+00 -2.99673415E-03  9.84730200E-06 
  -9.68129508E-09  3.24372836E-12 -1.06394356E+03  3.65767573E+00 
 H                                                          REF : BURCAT 20/09/06 
   0.25000000E+01  0.00000000E+00  0.00000000E+00  0.00000000E+00  0.00000000E+00 
   0.25473660E+05 -0.44668285E+00  0.25000000E+01  0.00000000E+00  0.00000000E+00 
   0.00000000E+00  0.00000000E+00  0.25473660E+05 -0.44668285E+00 
 OH                                                         REF : BURCAT 20/09/06 
   2.83853033E+00  1.10741289E-03 -2.94000209E-07  4.20698729E-11 -2.42289890E-15 
   3.69780808E+03  5.84494652E+00  3.99198424E+00 -2.40106655E-03  4.61664033E-06 
  -3.87916306E-09  1.36319502E-12  3.36889836E+03 -1.03998477E-01  4.48615380E+03 
 O                                                          REF : BURCAT 20/09/06 
   0.25420597E+01 -0.27550619E-04 -0.31028033E-08  0.45510674E-11 -0.43680515E-15 
   0.29230803E+05  0.49203081E+01  0.29464288E+01 -0.16381665E-02  0.24210317E-05 
  -0.16028432E-08  0.38906963E-12  0.29147644E+05  0.29639949E+01  
 H2O                                                        REF : BURCAT 20/09/06 
   0.26770389E+01  0.29731816E-02 -0.77376889E-06  0.94433514E-10 -0.42689991E-14 
  -0.29885894E+05  0.68825500E+01  0.41986352E+01 -0.20364017E-02  0.65203416E-05 
  -0.54879269E-08  0.17719680E-11 -0.30293726E+05 -0.84900901E+00 
 HO2                
   0.41722659E+01  0.18812098E-02 -0.34629297E-06  0.19468516E-10  0.17609153E-15 
   0.61818851E+02  0.29577974E+01  0.43017880E+01 -0.47490201E-02  0.21157953E-04 
  -0.24275961E-07  0.92920670E-11  0.29480876E+03  0.37167010E+01 
 H2O2                                                       REF : BURCAT 20/09/06 
   4.57977305E+00  4.05326003E-03 -1.29844730E-06  1.98211400E-10 -1.13968792E-14 
  -1.80071775E+04  6.64970694E-01  4.31515149E+00 -8.47390622E-04  1.76404323E-05 
  -2.26762944E-08  9.08950158E-12 -1.77067437E+04  3.27373319E+00 -1.63425145E+04 
 C2H6                                                       REF : BURCAT 20/09/06 
   4.04666411E+00  1.53538802E-02 -5.47039485E-06  8.77826544E-10 -5.23167531E-14 
  -1.24473499E+04 -9.68698313E-01  4.29142572E+00 -5.50154901E-03  5.99438458E-05 
  -7.08466469E-08  2.68685836E-11 -1.15222056E+04  2.66678994E+00 
 C2H5                           
   0.42878814E+01  0.12433893E-01 -0.44139119E-05  0.70654102E-09 -0.42035136E-13 
   0.12056455E+05  0.84602583E+00  0.43058580E+01 -0.41833638E-02  0.49707270E-04 
  -0.59905874E-07  0.23048478E-10  0.12841714E+05  0.47100236E+01 
 C2H4                                                       REF : BURCAT 20/09/06 
   3.99182724E+00  1.04833908E-02 -3.71721342E-06  5.94628366E-10 -3.53630386E-14 
   4.26865851E+03 -2.69081762E-01  3.95920063E+00 -7.57051373E-03  5.70989993E-05 
  -6.91588352E-08  2.69884190E-11  5.08977598E+03  4.09730213E+00 
 C2H2                                                       REF : BURCAT 20/09/06 
   4.65878489E+00  4.88396667E-03 -1.60828888E-06  2.46974544E-10 -1.38605959E-14 
   2.57594042E+04 -3.99838194E+00  8.08679682E-01  2.33615762E-02 -3.55172234E-05 
   2.80152958E-08 -8.50075165E-12  2.64289808E+04  1.39396761E+01 
 CH4                                            ANHARMONIC  REF : BURCAT 20/09/06 
 
   1.65326226E+00  1.00263099E-02 -3.31661238E-06  5.36483138E-10 -3.14696758E-14 
  -1.00095936E+04  9.90506283E+00  5.14911468E+00 -1.36622009E-02  4.91453921E-05 
  -4.84246767E-08  1.66603441E-11 -1.02465983E+04 -4.63848842E+00 -8.97226656E+03 
 CH3                                                        REF : BURCAT 20/09/06 
   0.28440516E+01  0.61379741E-02 -0.22303452E-05  0.37851608E-09 -0.24521590E-13 
   0.16437808E+05  0.54526973E+01  0.24304428E+01  0.11124099E-01 -0.16802203E-04 
   0.16218287E-07 -0.58649526E-11  0.16423781E+05  0.67897939E+01 
 CH2(S)                                                     REF : BURCAT 20/09/06 
   3.13501686E+00  2.89593926E-03 -8.16668090E-07  1.13572697E-10 -6.36262835E-15 
   5.05040504E+04  4.06030621E+00  4.19331325E+00 -2.33105184E-03  8.15676451E-06 
  -6.62985981E-09  1.93233199E-12  5.03662246E+04 -7.46734310E-01 
 CH2(T)                                                     REF : BURCAT 20/09/06 
   3.14631886E+00  3.03671259E-03 -9.96474439E-07  1.50483580E-10 -8.57335515E-15 
   4.60412605E+04  4.72341711E+00  3.71757846E+00  1.27391260E-03  2.17347251E-06 
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  -3.48858500E-09  1.65208866E-12  4.58723866E+04  1.75297945E+00 
 CH                                                         REF : BURCAT 20/09/06 
 
   0.25209369E+01  0.17653639E-02 -0.46147660E-06  0.59289675E-10 -0.33474501E-14 
   0.70946769E+05  0.74051829E+01  0.34897583E+01  0.32432160E-03 -0.16899751E-05 
   0.31628420E-08 -0.14061803E-11  0.70612646E+05  0.20842841E+01 
 C1             
   0.26055830E+01 -0.19593434E-03  0.10673722E-06 -0.16423940E-10  0.81870580E-15 
   0.85411742E+05  0.41923868E+01  0.25542395E+01 -0.32153772E-03  0.73379223E-06 
  -0.73223487E-09  0.26652144E-12  0.85442681E+05  0.45313085E+01 
 CO                                                         REF : BURCAT 20/09/06 
   0.30484859E+01  0.13517281E-02 -0.48579405E-06  0.78853644E-10 -0.46980746E-14 
  -0.14266117E+05  0.60170977E+01  0.35795335E+01 -0.61035369E-03  0.10168143E-05 
   0.90700586E-09 -0.90442449E-12 -0.14344086E+05  0.35084093E+01 
 CO2                                                        REF : BURCAT 20/09/06 
   0.46365111E+01  0.27414569E-02 -0.99589759E-06  0.16038666E-09 -0.91619857E-14 
  -0.49024904E+05 -0.19348955E+01  0.23568130E+01  0.89841299E-02 -0.71220632E-05 
   0.24573008E-08 -0.14288548E-12 -0.48371971E+05  0.99009035E+01 
 CH2O             
   0.31694807E+01  0.61932742E-02 -0.22505981E-05  0.36598245E-09 -0.22015410E-13 
  -0.14478425E+05  0.60423533E+01  0.47937036E+01 -0.99081518E-02  0.37321459E-04 
  -0.37927902E-07  0.13177015E-10 -0.14308955E+05  0.60288702E+00 
 CHO                                                        REF : BURCAT 20/09/06 
   3.92001542E+00  2.52279324E-03 -6.71004164E-07  1.05615948E-10 -7.43798261E-15 
   3.65342928E+03  3.58077056E+00  4.23754610E+00 -3.32075257E-03  1.40030264E-05 
  -1.34239995E-08  4.37416208E-12  3.87241185E+03  3.30834869E+00 
 CH3OH                                                      REF : BURCAT 20/09/06  
   3.52726795E+00  1.03178783E-02 -3.62892944E-06  5.77448016E-10 -3.42182632E-14 
  -2.60028834E+04  5.16758693E+00  5.65851051E+00 -1.62983419E-02  6.91938156E-05 
  -7.58372926E-08  2.80427550E-11 -2.56119736E+04 -8.97330508E-01 
 CH3O                                                       REF : BURCAT 20/09/06 
   4.75779238E+00  7.44142474E-03 -2.69705176E-06  4.38090504E-10 -2.63537098E-14 
   3.78111940E+02 -1.96680028E+00  3.71180502E+00 -2.80463306E-03  3.76550971E-05 
  -4.73072089E-08  1.86588420E-11  1.29569760E+03  6.57240864E+00 
 CH2OH                                                      REF : BURCAT 20/09/06 
   5.09314370E+00  5.94761260E-03 -2.06497460E-06  3.23008173E-10 -1.88125902E-14 
  -4.03409640E+03 -1.84691493E+00  4.47834367E+00 -1.35070310E-03  2.78484980E-05 
  -3.64869060E-08  1.47907450E-11 -3.50072890E+03  3.30913500E+00 
 C2O                                                        REF : BURCAT 20/09/06 
   5.42468378E+00  1.85393945E-03 -5.17932956E-07  6.77646230E-11 -3.53315237E-15 
   3.31537194E+04 -3.69608405E+00  2.86278214E+00  1.19701204E-02 -1.80851222E-05 
   1.52777730E-08 -5.20063163E-12  3.37501779E+04  8.89759099E+00 
 C2H                
   0.36646060E+01  0.38218694E-02 -0.13650743E-05  0.21324828E-09 -0.12309430E-13 
   0.67297055E+05  0.39134973E+01  0.29018020E+01  0.13285982E-01 -0.28050886E-04 
   0.28930184E-07 -0.10744742E-10  0.67190326E+05  0.61723506E+01 
 C2HO                                                   REF : R.ROBINSON 22/09/06 
   5.80668033E+00  3.63140881E-03 -1.28197024E-06  2.04562706E-10 -1.21475486E-14 
   1.94243191E+04 -4.44501759E+00  2.50499402E+00  1.94889354E-02 -3.30041888E-05 
   2.96410713E-08 -1.02822778E-11  2.00662139E+04  1.11211692E+01 
 C2H2O                                                      REF : BURCAT 20/09/06 
   0.57577901E+01  0.63496507E-02 -0.22584407E-05  0.36208462E-09 -0.21569030E-13 
  -0.79786113E+04 -0.61064037E+01  0.21401165E+01  0.18088368E-01 -0.17324216E-04 
   0.92767477E-08 -0.19915011E-11 -0.70430509E+04  0.12198699E+02 
 C2H3                                                       REF : BURCAT 20/09/06 
   4.15026763E+00  7.54021341E-03 -2.62997847E-06  4.15974048E-10 -2.45407509E-14 
   3.38566380E+04  1.72812235E+00  3.36377642E+00  2.65765722E-04  2.79620704E-05 
  -3.72986942E-08  1.51590176E-11  3.44749589E+04  7.91510092E+00 
 CH3CHO                            REF : UNPUBLISHED R.ROBINSON IMPERIAL 20/09/06 
   5.25190093E+00  1.18574124E-02 -4.27442759E-06  6.91482701E-10 -4.14491372E-14 
  -2.24327033E+04 -2.48438587E+00  5.08801432E+00 -6.39393756E-03  5.50299788E-05 
  -6.47002177E-08  2.44610814E-11 -2.14638582E+04  2.91845026E+00  
 CH3CO                                                      REF : BURCAT 20/09/06 
   0.53137165E+01  0.91737793E-02 -0.33220386E-05  0.53947456E-09 -0.32452368E-13 
  -0.36450414E+04 -0.16757558E+01  0.40358705E+01  0.87729487E-03  0.30710010E-04 
  -0.39247565E-07  0.15296869E-10 -0.26820738E+04  0.78617682E+01 -0.12388039E+04 
 C2                                                         REF : BURCAT 20/09/06 
   4.12492246E+00  1.08348338E-04  1.57252585E-07 -4.24046828E-11  3.25059373E-15 
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   9.81882961E+04  7.97432262E-01 -1.96261001E+00  5.76822247E-02 -1.58039636E-04 
   1.72462711E-07 -6.57913199E-11  9.82538219E+04  2.33201223E+01 
 CH2CHO                
   0.59756699E+01  0.81305914E-02 -0.27436245E-05  0.40703041E-09 -0.21760171E-13 
   0.49032178E+03 -0.50320879E+01  0.34090624E+01  0.10738574E-01  0.18914925E-05 
   0.71585831E-08  0.28673851E-11  0.15214766E+04  0.95714535E+01   
 H2C2              
   0.42780340E+01  0.47562804E-02 -0.16301009E-05  0.25462806E-09 -0.14886379E-13    
   0.48316688E+05  0.64023701E+00  0.32815483E+01  0.69764791E-02 -0.23855244E-05    
  -0.12104432E-08  0.98189545E-12  0.48621794E+05  0.59203910E+01     
 CH3OO                                                      REF : BURCAT 20/09/06 
   5.92505819E+00  9.00194542E-03 -3.24254309E-06  5.24362718E-10 -3.14263003E-14 
  -1.53258958E+03 -4.93669747E+00  4.76597792E+00 -3.51077148E-03  4.54394152E-05 
  -5.66763729E-08  2.21591482E-11 -4.82401289E+02  4.76095141E+00 
 CH3OOH                                                     REF : BURCAT 20/09/06 
   7.76538058E+00  8.61499712E-03 -2.98006935E-06  4.68638071E-10 -2.75339255E-14 
  -1.82979984E+04 -1.43992663E+01  2.90540897E+00  1.74994735E-02  5.28243630E-06 
 
  -2.52827275E-08  1.34368212E-11 -1.68894632E+04  1.13741987E+01 
 CHCH2O                                                 REF : R.ROBINSON 20/09/06 
   6.23101359E+00  8.68490881E-03 -3.11847314E-06  5.03260099E-10 -3.01192222E-14 
  -1.14930996E+03 -7.80034154E+00  2.49418731E+00  1.16640629E-02  1.21136016E-05 
  -2.54818477E-08  1.14805860E-11  2.14716931E+02  1.32015748E+01 
 C2H4O                   
   0.54887641E+01  0.12046190E-01 -0.43336931E-05  0.70028311E-09 -0.41949088E-13 
  -0.91804251E+04 -0.70799605E+01  0.37590532E+01 -0.94412180E-02  0.80309721E-04 
  -0.10080788E-06  0.40039921E-10 -0.75608143E+04  0.78497475E+01 
 C2H4OOH                                                    REF : BURCAT 20/09/06 
   9.74660000E+00  0.01084240E+00 -3.13022000E-06  3.83694000E-10 -1.60474000E-14 
  -3.94819063E+02 -2.07656245E+01  2.10863000E+00  0.03341860E+00 -2.66198000E-05 
   1.03835000E-08 -1.41770000E-12  1.56528996E+03  1.81813376E+01 
 C2H5O                                                      REF : BURCAT 20/09/06 
   0.66889982E+01  0.13125676E-01 -0.47038840E-05  0.75858552E-09 -0.45413306E-13 
  -0.47457832E+04 -0.96983755E+01  0.43074268E+01  0.64147205E-02  0.31139714E-04 
  -0.43314083E-07  0.17276184E-10 -0.34027524E+04  0.59025837E+01 
 C2H5OO               
   8.05957692E+00  1.52921019E-02 -5.54442603E-06  9.00496195E-10 -5.41302799E-14 
  -7.31028500E+03 -1.59992904E+01  5.21694144E+00  1.24160003E-04  6.15529492E-05 
  -7.94505636E-08  3.12101317E-11 -5.41455775E+03  4.22381533E+00 
 C2H5OOH                                                REF : R.ROBINSON 20/09/06 
   8.99519146E+00  1.52768090E-02 -5.42345537E-06  8.64392953E-10 -5.12061321E-14 
  -2.34335955E+04 -1.78995702E+01  6.95135129E+00  2.46459348E-03  5.06621132E-05 
  -6.73457524E-08  2.69294264E-11 -2.20224273E+04 -3.02023422E+00 
 C3H                                                        REF : BURCAT 20/09/06                                                   
   6.14184491E+00  3.39661013E-03 -1.21915444E-06  1.97782838E-10 -1.18312807E-14 
   8.44225753E+04 -6.44480148E+00  3.34917187E+00  1.65822626E-02 -2.77115653E-05 
   2.51382364E-08 -8.85285352E-12  8.49863168E+04  6.80362439E+00 
 C3H2                                              CYCLIC - REF : BURCAT 20/09/06                                                                            
   5.69445684E+00  6.53821901E-03 -2.35907266E-06  3.82037384E-10 -2.29227460E-14 
   5.49264274E+04 -6.96163733E+00  3.18167129E+00 -3.37611741E-04  3.95343765E-05 
  -5.49792422E-08  2.28335240E-11  5.61816758E+04  9.06482468E+00           
 C3H2L                                               G3 REF : R.ROBINSON 05/10/06 
   6.42557170E+00  5.57113530E-03 -1.93729414E-06  3.05883061E-10 -1.80270714E-14 
   6.99539184E+04 -8.83877867E+00  2.51874113E+00  1.96318981E-02 -2.17479988E-05 
   1.29990854E-08 -3.05445698E-12  7.08679212E+04  1.05212804E+01 
 C3H3                                                       REF : BURCAT 20/09/06                                                                            
   7.14221880E+00  7.61902005E-03 -2.67459950E-06  4.24914801E-10 -2.51475415E-14 
   3.89087427E+04 -1.25848435E+01  1.35110927E+00  3.27411223E-02 -4.73827135E-05 
   3.76309808E-08 -1.18540923E-11  4.01057783E+04  1.52058924E+01   
 C3H4(A)                                                                          
   0.63168722E+01  0.11133728E-01 -0.39629378E-05  0.63564238E-09 -0.37875540E-13 
   0.20117495E+05 -0.10995766E+02  0.26130445E+01  0.12122575E-01  0.18539880E-04 
  -0.34525149E-07  0.15335079E-10  0.21541567E+05  0.10226139E+02                 
 C3H4(P)                                                                          
   0.60252400E+01  0.11336542E-01 -0.40223391E-05  0.64376063E-09 -0.38299635E-13 
   0.19620942E+05 -0.86043785E+01  0.26803869E+01  0.15799651E-01  0.25070596E-05 
  -0.13657623E-07  0.66154285E-11  0.20802374E+05  0.98769351E+01                 
 C3H4(B)                                                                          
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   6.28078872E+00  1.12393798E-02 -4.01957416E-06  6.46920405E-10 -3.86433056E-14 
   3.03415080E+04 -1.11420363E+01  2.24666571E+00  5.76237942E-03  4.42080338E-05 
  -6.62906810E-08  2.81824735E-11  3.21284389E+04  1.33451493E+01           
 C3H5(A)                                                REF : R.ROBINSON 20/09/06 
   7.05019790E+00  1.30417133E-02 -4.62341683E-06  7.39605232E-10 -4.39893394E-14 
   1.69162444E+04 -1.41334291E+01  1.36322505E+00  2.00030606E-02  1.22366530E-05 
  -3.34032456E-08  1.59644171E-11  1.88365517E+04  1.71382540E+01 
 C3H5(S)                                                    REF : BURCAT 20/09/06                                                                       
   6.05091412E+00  1.34052084E-02 -4.73450586E-06  7.55380897E-10 -4.48421084E-14 
   2.90860210E+04 -6.73692060E+00  3.33277282E+00  1.06102499E-02  2.17559727E-05 
  -3.47145235E-08  1.44476835E-11  3.03404530E+04  9.78922358E+00               
 C3H5(T)                                                REF : R.ROBINSON 20/09/06                                                                         
   6.17467558E+00  1.35842068E-02 -4.86523676E-06  7.83574439E-10 -4.68222090E-14 
   2.72013596E+04 -7.02846541E+00  4.82883324E+00  8.99954001E-04  4.44768198E-05 
  -5.67019197E-08  2.21267105E-11  2.83786431E+04  3.89995688E+00              
 C3H5(B)                                                    REF : BURCAT 20/09/06 
   6.62512238E+00  1.36577057E-02 -4.90066661E-06  7.90436486E-10 -4.72860275E-14 
   3.03239999E+04 -1.31845240E+01  2.15143774E+00  3.80171682E-03  6.14538989E-05 
  -8.83383102E-08  3.70565687E-11  3.24689062E+04  1.48309194E+01 
 C3H6(B)                                                REF : R.ROBINSON 20/09/06 
   6.33778554E+00  1.64174480E-02 -5.85359278E-06  9.40111948E-10 -5.60727359E-14 
   3.28971390E+03 -1.41848666E+01  2.57234000E+00 -2.50916956E-03  8.62737013E-05 
  -1.16111392E-07  4.75602007E-11  5.54899161E+03  1.18019800E+01 
 C3H6                                                       REF : BURCAT 20/09/06                                                                         
   6.03870234E+00  1.62963931E-02 -5.82130800E-06  9.35936829E-10 -5.58603143E-14 
  -7.41715057E+02 -8.43825992E+00  3.83464468E+00  3.29078952E-03  5.05228001E-05 
  -6.66251176E-08  2.63707473E-11  7.88717123E+02  7.53408013E+00         
 C3H7(N)                                                    REF : BURCAT 20/09/06                                                                       
   6.49636579E+00  1.77337992E-02 -6.24898046E-06  9.95389495E-10 -5.90199770E-14 
   8.85973885E+03 -8.56389710E+00  4.08211458E+00  5.23240341E-03  5.13554466E-05 
  -6.99343598E-08  2.81819493E-11  1.04074558E+04  8.39534919E+00       
 C3H7(I)                                                REF : R.ROBINSON 20/09/06                                                                         
   6.10103510E+00  1.85252265E-02 -6.63451675E-06  1.06844391E-09 -6.38396464E-14 
   7.53376696E+03 -6.77594633E+00  7.17878202E+00 -1.63182405E-02  9.96703136E-05 
  -1.15074793E-07  4.35402866E-11  8.75779397E+03 -4.71632586E+00     
 C3H8                                                   REF : R.ROBINSON 20/09/06                                                           
   6.46876392E+00  2.07740138E-02 -7.41974628E-06  1.19269771E-09 -7.11713650E-14 
  -1.61396855E+04 -1.15613433E+01  4.34772075E+00  3.58595707E-03  6.14128031E-05 
  -7.96781660E-08  3.12762429E-11 -1.44205640E+04  4.98218695E+00 
 C3H2O                                                  REF : R.ROBINSON 20/09/06                                                                           
   8.31837925E+00  6.29241735E-03 -2.23673278E-06  3.58419038E-10 -2.13415819E-14 
   1.24699728E+04 -1.64469649E+01  3.31113539E-01  4.22486648E-02 -6.51735418E-05 
   4.99681989E-08 -1.46632942E-11  1.39839966E+04  2.13631640E+01  
 C3H3O                                                      REF : BURCAT 20/09/06                                                     
   6.90703955E+00  1.02341927E-02 -3.65649593E-06  5.87914100E-10 -3.51359226E-14 
   7.62708561E+03 -7.29856114E+00  4.11237192E+00  5.05829116E-03  3.17832265E-05 
  -4.55489258E-08  1.86325507E-11  8.99713585E+03  1.01743843E+01            
 C3H4O                                                      REF : BURCAT 20/09/06 
   7.31820729E+00  1.27398510E-02 -4.60112009E-06  7.44735077E-10 -4.46993049E-14 
  -1.16137229E+04 -1.11884734E+01  3.98487241E+00  3.40751550E-03  4.81227535E-05 
 
  -6.61399005E-08  2.67817331E-11 -9.83297241E+03  1.03960574E+01               
 C3H5O                                                  REF : R.ROBINSON 20/09/06 
   8.79584189E+00  1.43678209E-02 -5.15086817E-06  8.30425063E-10 -4.96670802E-14 
   4.54840599E+03 -2.22910017E+01  1.70176691E+00  1.81714690E-02  3.24069942E-05 
  -6.06152090E-08  2.71285315E-11  7.14713827E+03  1.78178812E+01 
 PC3H5O                                                     REF : BURCAT 20/09/06 
   6.52325448E+00  1.54211952E-02 -5.50898157E-06  8.85889862E-10 -5.28846399E-14 
  -7.19631634E+03 -5.19862218E+00  6.25722402E+00 -9.17612184E-03  7.61190493E-05 
  -9.05514997E-08  3.46198215E-11 -5.91616484E+03  2.23330599E+00              
 TC3H5O                                                 REF : R.ROBINSON 05/10/06 
   8.19121321E+00  1.40061388E-02 -5.00831912E-06  8.03961104E-10 -4.79449403E-14 
  -1.02130206E+03 -1.33490112E+01  7.54792894E+00 -7.02219530E-03  6.80989676E-05 
  -8.26664815E-08  3.19868293E-11  2.27709482E+02 -4.61588282E+00 
 AC3H5O                                                     REF : BURCAT 20/09/06                                                                          
   7.54410697E+00  1.43443222E-02 -5.08381081E-06  8.13200521E-10 -4.83673315E-14 
  -7.48672286E+03 -1.14792587E+01  4.70187196E+00  5.51653762E-03  4.27505858E-05 
  -5.94680816E-08  2.40685378E-11 -5.92845491E+03  7.12932590E+00              
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 C3H6O                                                      REF : BURCAT 20/09/06 
   8.95739587E+00  1.60217198E-02 -5.65131014E-06  9.01550505E-10 -5.35370086E-14 
  -1.65852904E+04 -2.45939234E+01  2.12818440E+00  8.44261433E-03  6.99012101E-05 
  -1.04542243E-07  4.42460530E-11 -1.36496693E+04  1.64564771E+01 
 AC3H6O                                                 REF : R.ROBINSON 20/09/06 
   7.34483390E+00  1.74962257E-02 -6.28532764E-06  1.01447594E-09 -6.07151779E-14 
  -3.01532755E+04 -1.27759736E+01  5.14509588E+00  4.67026325E-04  6.25054589E-05 
  -7.97481327E-08  3.11400443E-11 -2.84186997E+04  4.17376406E+00            
 PC3H6O                                                 REF : R.ROBINSON 20/09/06 
   7.49953799E+00  1.74385179E-02 -6.27541492E-06  1.01203640E-09 -6.05432962E-14 
  -2.60089832E+04 -1.19306739E+01  5.53463757E+00 -4.31251930E-04  6.31224828E-05 
  -7.93331121E-08  3.07213777E-11 -2.43119275E+04  3.89943422E+00       
 C3H7O(I)                                               REF : R.ROBINSON 05/10/06 
   8.80421897E+00  1.88114477E-02 -6.74383714E-06  1.08690817E-09 -6.49826929E-14 
  -9.96635265E+03 -2.04194805E+01  4.06975593E+00  1.57818571E-02  3.26769683E-05 
  -5.24145601E-08  2.17797338E-11 -7.85093901E+03  7.97686302E+00     
 C3H7O(N)                                               REF : R.ROBINSON 05/10/06 
   8.83565525E+00  1.89091891E-02 -6.80731617E-06  1.09639726E-09 -6.54627942E-14 
  -8.79968060E+03 -1.84611914E+01  5.11003655E+00  9.85648839E-03  4.56472212E-05 
  -6.46689824E-08  2.60236989E-11 -6.80904476E+03  5.49940565E+00             
 C3H6OH                                                 REF : R.ROBINSON 20/09/06 
   8.30739359E+00  1.86672380E-02 -6.65912831E-06  1.06610221E-09 -6.33929131E-14 
  -1.06259963E+04 -1.29498986E+01  8.01766675E+00 -6.97669884E-03  7.66310473E-05 
  -9.03375783E-08  3.39837757E-11 -9.23620653E+03 -4.99358603E+00            
 C3H7OOH(I)                                             REF : R.ROBINSON 20/09/06 
   1.20456150E+01  2.00609758E-02 -7.14988442E-06  1.14410241E-09 -6.79756845E-14 
  -2.93586148E+04 -3.37253315E+01  5.33794019E+00  2.76687712E-02  1.27589136E-05 
  -3.73171105E-08  1.75843187E-11 -2.70062593E+04  3.45478108E+00             
 C3H7OOH(N)                                             REF : R.ROBINSON 20/09/06  
   1.13659898E+01  2.09104854E-02 -7.54558182E-06  1.21408112E-09 -7.23348512E-14 
  -2.69948187E+04 -2.79668904E+01  7.72592798E+00  7.00071376E-03  6.31053345E-05 
  -8.74966515E-08  3.55373150E-11 -2.48944233E+04 -3.57008863E+00              
 C3H7OO(I)                                              REF : R.ROBINSON 05/10/06 
   1.01751084E+01  1.99154854E-02 -7.17577191E-06  1.15641116E-09 -6.90571155E-14 
  -1.24254561E+04 -2.34403543E+01  6.27854157E+00  9.67831116E-03  4.97219807E-05 
  -6.92781488E-08  2.76014913E-11 -1.03016894E+04  1.82502336E+00 
 C3H7OO(N)                                              REF : R.ROBINSON 05/10/06 
   1.00126671E+01  2.02489787E-02 -7.37478477E-06  1.19344117E-09 -7.13933622E-14 
  -9.88113441E+03 -2.09357644E+01  7.01899874E+00 -3.60956122E-04  7.97640943E-05 
 
  -1.03233840E-07  4.08206117E-11 -7.70037244E+03  1.37035175E+00               
 C3H6OOH                                                REF : R.ROBINSON 05/10/06 
   1.12645108E+01  1.83702458E-02 -6.64465781E-06  1.07024893E-09 -6.38038186E-14 
  -2.96405270E+03 -2.41355971E+01  1.08227752E+01 -1.44735606E-02  1.06410370E-04 
  -1.29121248E-07  5.03582068E-11 -1.32195120E+03 -1.39762404E+01               
 C4H                                                    REF : R.ROBINSON 20/09/06                                                                      
   6.80958026E+00  5.53720360E-03 -1.99731156E-06  3.23402907E-10 -1.94028936E-14 
   9.55410750E+04 -9.27742185E+00  1.61853523E+00  2.42334896E-02 -2.92435255E-05 
   1.90475677E-08 -5.00259472E-12  9.67816455E+04  1.65122775E+01         
 C4H2                                                       REF : BURCAT 20/09/06                                                                          
   8.68978130E+00  6.69732229E-03 -2.34774865E-06  3.72759231E-10 -2.20554548E-14 
   5.19942624E+04 -2.20010465E+01 -5.84768273E-01  5.33506727E-02 -9.50805952E-05 
   8.37959674E-08 -2.80912179E-11  5.36111160E+04  2.09878997E+01        
 C4H3(N)                                                REF : R.ROBINSON 20/09/06 
   8.67518979E+00  8.99760032E-03 -3.18870421E-06  5.10080852E-10 -3.03404906E-14 
   6.19699844E+04 -1.87973407E+01  7.12909471E-01  3.86307007E-02 -4.72486887E-05 
   3.09706868E-08 -8.10178201E-12  6.38015128E+04  2.04653602E+01          
 C4H3(I)                                                    REF : BURCAT 20/09/06  
   8.51181244E+00  9.03337808E-03 -3.17602594E-06  5.05276458E-10 -2.99379699E-14 
   5.71046116E+04 -1.51017769E+01  3.37964170E+00  2.70498840E-02 -2.90761572E-05 
   1.83027765E-08 -4.81164203E-12  5.83688723E+04  1.05464883E+01         
 C4H4                                                       REF : BURCAT 20/09/06 
   7.98456038E+00  1.20558816E-02 -4.23587475E-06  6.73646140E-10 -3.99059864E-14 
   3.11993029E+04 -1.67958975E+01  1.37368786E+00  2.88801256E-02 -1.46863874E-05 
  -3.91045446E-09  4.78133572E-12  3.30633344E+04  1.75941274E+01          
 C4H5(S)                                                REF : R.ROBINSON 20/09/06 
   9.07499704E+00  1.40412416E-02 -5.01355646E-06  8.05965772E-10 -4.81032062E-14 
   3.39249544E+04 -2.28554397E+01  1.70299608E+00  2.89781109E-02 -4.25871048E-06 
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  -1.81301166E-08  1.05682649E-11  3.61876524E+04  1.64121819E+01 
 C4H5(T)                                                    REF : BURCAT 20/09/06                                                                         
   8.11183574E+00  1.42276370E-02 -5.02419535E-06  8.00816580E-10 -4.75459802E-14 
   4.00134524E+04 -1.52704514E+01  3.28605952E+00  1.43352325E-02  2.78456642E-05 
  -4.84612551E-08  2.10628469E-11  4.19222504E+04  1.26653969E+01           
 C4H5(I)                                                    REF : BURCAT 20/09/06                                                                        
   8.58761100E+00  1.42683804E-02 -5.04812095E-06  8.06555355E-10 -4.79335634E-14 
   3.40836919E+04 -1.96196761E+01  2.00881066E+00  2.50340684E-02  4.47930427E-06 
  -2.63989791E-08  1.34432880E-11  3.62069792E+04  1.59913722E+01          
 C4H6(S)                                                    REF : BURCAT 20/09/06                                                                         
   8.13872997E+00  1.68655431E-02 -5.97324908E-06  9.54915173E-10 -5.67693708E-14 
   1.55467985E+04 -1.77959041E+01  2.90828336E+00  1.79025349E-02  2.61486503E-05 
  -4.81598832E-08  2.11295844E-11  1.75928783E+04  1.23118106E+01 
 C4H6(T)                                                    REF : BURCAT 20/09/06                                                                         
   7.62637466E+00  1.72523403E-02 -6.09184911E-06  9.70800102E-10 -5.76169721E-14 
   9.55306395E+03 -1.48325259E+01  4.10599669E+00  5.05575563E-03  5.83885454E-05 
  -8.05950198E-08  3.27447711E-11  1.15092468E+04  8.42978067E+00 
 C4H6(F)                                                REF : R.ROBINSON 20/09/06 
   8.69736431E+00  1.65073792E-02 -5.87610730E-06  9.42570499E-10 -5.61671362E-14 
   1.59826676E+04 -2.07144041E+01  2.11600152E+00  2.84863898E-02 -2.01729179E-06 
  -1.84254439E-08  1.00553840E-11  1.81079466E+04  1.47677382E+01          
 C4H6(B)                                                REF : R.ROBINSON 20/09/06 
   8.43096095E+00  1.68899025E-02 -6.04874596E-06  9.74340249E-10 -5.82343628E-14 
   2.66115375E+04 -2.04239627E+01  2.94003921E+00  1.44314059E-02  3.92545706E-05 
  -6.34679968E-08  2.70302044E-11  2.89234985E+04  1.20214885E+01               
 C4H6(M)                                                    REF : BURCAT 20/09/06 
   7.26055302E+00  1.80160845E-02 -6.47062409E-06  1.04411453E-09 -6.24741250E-14 
   1.39644246E+04 -1.29484347E+01  5.39211846E+00  2.98346178E-03  5.22542032E-05 
  -6.64726627E-08  2.56305331E-11  1.55148209E+04  1.71080366E+00              
 C4H7(I)                                                REF : R.ROBINSON 05/10/06 
   8.97924987E+00  1.89314502E-02 -6.74883879E-06  1.08370764E-09 -6.46277001E-14 
   1.19605358E+04 -2.22521993E+01  1.01003603E+00  3.02533518E-02  9.27971616E-06 
  -3.58385260E-08  1.74763632E-11  1.46483074E+04  2.13831640E+01           
 C4H7(N)                                                    REF : BURCAT 05/10/06 
   8.49073768E+00  1.91056974E-02 -6.74370664E-06  1.07343267E-09 -6.36251837E-14 
   2.04659294E+04 -1.74555814E+01  5.07355313E+00  5.27619329E-03  6.23441322E-05 
  -8.54203458E-08  3.45890031E-11  2.24615054E+04  5.60318035E+00 
 C4H7(S)                                                REF : R.ROBINSON 05/10/06 
   8.77047624E+00  1.92187729E-02 -6.87542705E-06  1.10663532E-09 -6.61028746E-14 
   1.20695085E+04 -2.08842606E+01  4.16630233E+00  8.96330982E-03  5.79781450E-05 
  -8.30895850E-08  3.41361824E-11  1.43921546E+04  8.26375850E+00 
 C4H8(I)                                                REF : R.ROBINSON 05/10/06 
   8.06269034E+00  2.20765179E-02 -7.90114313E-06  1.27198170E-09 -7.59864193E-14 
  -6.16389292E+03 -1.83725208E+01  5.16031440E+00  5.63178326E-03  6.25749118E-05 
  -8.20550258E-08  3.21220767E-11 -4.13902874E+03  2.60924249E+00             
 C4H8(N)                                                REF : R.ROBINSON 05/10/06 
   8.37176539E+00  2.17689316E-02 -7.77572559E-06  1.24747571E-09 -7.43321930E-14 
  -4.28560037E+03 -1.81843440E+01  5.48963814E+00  1.37802066E-03  7.79778572E-05 
  -1.01585586E-07  4.02781850E-11 -2.15478324E+03  3.42836316E+00 
 C4H8(S)                                                REF : R.ROBINSON 05/10/06 
   7.88750247E+00  2.22988814E-02 -7.99637187E-06  1.28899533E-09 -7.70725949E-14 
  -5.45955297E+03 -1.70739220E+01  6.85844649E+00 -6.51094213E-03  9.08047195E-05 
  -1.09617044E-07  4.18667549E-11 -3.62153801E+03 -4.07345440E+00 
 C4H9(I)                                                    REF : BURCAT 05/10/06 
   9.61250942E+00  2.28581786E-02 -8.06391309E-06  1.28556553E-09 -7.62730799E-14 
   4.15218608E+03 -2.66485099E+01  3.34476784E+00  2.31869650E-02  3.28261040E-05 
  -5.96398514E-08  2.58980820E-11  6.66201200E+03  9.68860372E+00          
 C4H9(T)                                                    REF : BURCAT 05/10/06 
   6.72557390E+00  2.53649194E-02 -9.05306262E-06  1.45474620E-09 -8.67934112E-14 
   2.57430692E+03 -8.89920414E+00  6.45910754E+00 -1.02015930E-02  1.06310577E-04 
  -1.25717030E-07  4.75543216E-11  4.43420391E+03  1.30648608E+00       
 C4H9(N)                                                    REF : BURCAT 05/10/06 
   8.97401527E+00  2.39704154E-02 -8.48703645E-06  1.35644127E-09 -8.06234913E-14 
   5.19161526E+03 -2.31075609E+01  4.73737837E+00  9.69051565E-03  6.63846383E-05 
  -9.24799302E-08  3.74006099E-11  7.57382332E+03  4.91063455E+00 
 C4H9(S)                                                    REF : BURCAT 05/10/06 
   7.72287211E+00  2.43427284E-02 -8.65476475E-06  1.38712529E-09 -8.26084187E-14 
   4.15004489E+03 -1.43949625E+01  5.42089393E+00 -9.12146870E-04  8.84998581E-05 
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  -1.12115531E-07  4.38222782E-11  6.28927311E+03  5.04210029E+00 
 C4H10(N)                                               REF : R.ROBINSON 05/10/06 
   8.92213454E+00  2.62597428E-02 -9.42142441E-06  1.51500444E-09 -9.03538061E-14 
  -1.98790900E+04 -2.23198916E+01  6.84977207E+00 -1.75116891E-03  9.48605428E-05 
  -1.19284063E-07  4.65100207E-11 -1.76822354E+04 -3.51832851E+00           
 C4H10(I)                                                   REF : BURCAT 05/10/06 
   9.76991697E+00  2.54997141E-02 -9.14142587E-06  1.47328201E-09 -8.80799697E-14 
  -2.14052667E+04 -3.00329670E+01  4.45479140E+00  8.26058864E-03  8.29886433E-05 
  -1.14647616E-07  4.64569994E-11 -1.84593929E+04  4.92740653E+00 
 C4H2O                                                  REF : R.ROBINSON 20/09/06 
   9.40908701E+00  8.64021882E-03 -3.12908612E-06  5.07868742E-10 -3.05160749E-14 
   2.24615264E+04 -2.18745001E+01  2.15973548E+00  3.72020987E-02 -5.14278090E-05 
   4.03137307E-08 -1.28501835E-11  2.41419803E+04  1.37260239E+01               
 C4H4O                                                  REF : R.ROBINSON 20/09/06 
   9.61322922E+00  1.39225141E-02 -5.05874715E-06  8.23043284E-10 -4.95420588E-14 
   5.87078239E+02 -2.66451271E+01  1.78782779E+00  1.73722022E-02  3.80649464E-05 
  -6.80589897E-08  3.00845106E-11  3.50676877E+03  1.78264604E+01 
 XC4H5O                                                 REF : R.ROBINSON 05/10/06 
   1.00109193E+01  1.56609245E-02 -5.64859331E-06  9.14217653E-10 -5.48218361E-14 
   3.70525874E+03 -2.37578616E+01  5.01239905E+00  1.50193265E-02  2.82372524E-05 
  -4.74581120E-08  2.00717803E-11  5.79705805E+03  5.56182744E+00 
 YC4H5O                                                 REF : R.ROBINSON 05/10/06 
   1.05082001E+01  1.56939134E-02 -5.67000455E-06  9.18897935E-10 -5.51590124E-14 
  -5.18511078E+02 -2.90238850E+01  3.28894051E+00  1.95544826E-02  2.97994330E-05 
  -5.57675403E-08  2.45205321E-11  2.20378942E+03  1.20012623E+01 
 BC4H6O                                                 REF : R.ROBINSON 05/10/06 
   1.04017539E+01  1.91801473E-02 -7.15850045E-06  1.17439803E-09 -7.08810109E-14 
  -1.75011636E+04 -3.00059373E+01  3.94073764E+00  2.32480563E-02  1.80932390E-05 
  -3.81207793E-08  1.63656642E-11 -1.49548630E+04  6.92065946E+00 
 AC4H6O                                                 REF : R.ROBINSON 20/09/06 
   1.06955708E+01  1.76034072E-02 -6.31551730E-06  1.01520407E-09 -6.05533529E-14 
  -3.74306952E+03 -3.07187354E+01  2.43462425E+00  2.77197540E-02  1.56055031E-05 
  -4.30249223E-08  2.02031524E-11 -8.90012699E+02  1.48831206E+01 
 C4H7O(X)                                               REF : R.ROBINSON 05/10/06 
   1.03519991E+01  2.03385849E-02 -7.35907392E-06  1.18946887E-09 -7.11844228E-14 
   1.75561028E+03 -2.59117862E+01  4.80290347E+00  1.26829060E-02  5.37008113E-05 
  -7.94047836E-08  3.26679573E-11  4.37998505E+03  8.22571029E+00 
 C4H7O(M)                                               REF : R.ROBINSON 05/10/06 
   9.95812346E+00  2.00549144E-02 -7.19396488E-06  1.15740437E-09 -6.91060030E-14 
  -1.17601480E+04 -2.24695101E+01  4.68146299E+00  1.86787473E-02  2.95246310E-05 
  -4.97395546E-08  2.07620847E-11 -9.47693435E+03  8.75509363E+00 
 C4H8O(X)                                               REF : R.ROBINSON 05/10/06 
   1.01453808E+01  2.30313259E-02 -8.27843616E-06  1.33674487E-09 -8.00286667E-14 
  -2.18459352E+04 -2.86842582E+01  4.91524246E+00  1.07110614E-02  6.48871041E-05 
  -9.10021090E-08  3.66436878E-11 -1.91042078E+04  4.78044074E+00              
 C4H8O(M)                                               REF : R.ROBINSON 05/10/06 
   9.74197781E+00  2.30221779E-02 -8.28513329E-06  1.33580581E-09 -7.98631500E-14 
  -3.08246201E+04 -2.35538706E+01  6.85713509E+00  1.73287406E-03  7.75498242E-05 
  -9.87341435E-08  3.83292752E-11 -2.85711183E+04 -1.49989282E+00            
 C4H8OH(I)                                              REF : R.ROBINSON 05/10/06 
   1.20408349E+01  2.27109222E-02 -8.09318390E-06  1.29534127E-09 -7.69845061E-14 
  -1.47279195E+04 -3.27518521E+01  3.50432963E+00  4.36215967E-02 -2.32342059E-05 
   1.29922560E-09  2.68598392E-12 -1.21533089E+04  1.21840368E+01 
 O2C4H9O                                                REF : R.ROBINSON 05/10/06 
   1.58754061E+01  2.45143718E-02 -9.02792662E-06  1.47136702E-09 -8.84192089E-14 
  -3.37499714E+04 -4.87350426E+01  1.20350104E+01  4.07786695E-03  8.13917304E-05 
  -1.06870642E-07  4.21108331E-11 -3.11855572E+04 -2.14156628E+01 
 C5H                                                         REF : BURCAT 24/09/07 
   0.86957493E+01  0.60543008E-02 -0.20160105E-05  0.28928926E-09 -0.14700995E-13 
   0.90310687E+05 -0.21029110E+02  0.16348248E+01  0.25095381E-01 -0.12066364E-04 
  -0.10465111E-07  0.88099883E-11  0.92124875E+05  0.15135100E+02 
 C5H2                                                       REF : BURCAT 24/09/07 
   0.11329175E+02  0.74240565E-02 -0.26281887E-05  0.40825410E-09 -0.23013326E-13 
   0.78787062E+05 -0.36184340E+02  0.30623217E+01  0.27099982E-01 -0.10091697E-04 
  -0.12727451E-07  0.91672191E-11  0.81149687E+05  0.70842413E+01 
 C5H3(L)                                                    REF : BURCAT 24/09/07 
   0.10296658E+02  0.10470124E-01 -0.37746103E-05  0.61077326E-09 -0.36621089E-13 
   0.63439389E+05 -0.27338507E+02  0.15946538E+01  0.43378369E-01 -0.56253789E-04 
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   0.41304029E-07 -0.12456939E-10  0.65491079E+05  0.15644812E+02 
 C5H4(L)                            200K-6000K REF : G3MP2B3 R.ROBINSON 30-Oct-07 
   1.05272273E+01  1.27467546E-02 -4.54905408E-06  7.31127121E-10 -4.36321667E-14 
   4.70599415E+04 -2.84644483E+01  5.99684934E-01  4.72382712E-02 -5.23129053E-05 
   3.15166007E-08 -7.62922870E-12  4.94837602E+04  2.11375685E+01 
 C5H5     G3withG3B3HeatofFormation 200K-6000K REF :         R.ROBINSON 22-Apr-08 
   1.08491980E+01  1.53713657E-02 -5.55119834E-06  8.99523521E-10 -5.39951842E-14 
   2.64320961E+04 -3.52284407E+01 -1.12762243E+00  3.43596094E-02  1.73763744E-05 
  -5.81600874E-08  2.90666197E-11  3.02130502E+04  2.94588572E+01 
 C5H5(l)                            200K-6000K REF : CBS-QB3 R.ROBINSON 24-Apr-08 
   1.23767441E+01  1.33125781E-02 -4.74652058E-06  7.58879775E-10 -4.50797047E-14 
   5.69143625E+04 -3.79040748E+01  4.02036903E-01  4.74761735E-02 -3.30601849E-05 
   4.06793719E-10  6.43178251E-12  6.00378092E+04  2.33056553E+01 
 C5H6(L)                            200K-6000K REF : G3B3    R.ROBINSON 07-Aug-07 
   9.59529027E+00  1.86098051E-02 -6.68618072E-06  1.07930396E-09 -6.46016547E-14                       
   2.52114864E+04 -2.38846887E+01  4.10249044E+00  1.70779364E-02  3.34941096E-05                       
  -5.56537037E-08  2.35127842E-11  2.75445653E+04  8.51660798E+00                                   
 C5H6                               200K-6000K REF : G3B3    R.ROBINSON 13-Mar-07                       
   1.01131403E+01  1.87180456E-02 -6.75847566E-06  1.09493046E-09 -6.57129588E-14                       
   1.13288676E+04 -3.27694463E+01  5.92562815E-01  1.81067404E-02  6.35718117E-05                       
  -1.04819105E-07  4.56499177E-11  1.50470513E+04  2.23183055E+01   
 C5H7(I)                            200K-6000K REF : G3B3    R.ROBINSON 07-Aug-07 
   7.17295000E+00  2.74828000E-02 -1.25234000E-05  2.51195000E-09 -1.83816000E-13 
   3.43404120E+04 -8.47072535E+00  2.70639000E+00  3.76025000E-02 -1.95473000E-05 
   3.85395000E-09 -6.81935000E-14  3.57297975E+04  1.52991891E+01 
 C5H7                               200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.05539442E+01  2.10410274E-02 -7.60264581E-06  1.23216241E-09 -7.39648585E-14                       
   1.53795928E+04 -3.40182093E+01  1.51100557E+00  1.47703124E-02  7.75539517E-05                       
  -1.19683376E-07  5.09986302E-11  1.91867221E+04  1.96776449E+01 
 C5H7(L)  
   0.18941353E+02  0.85102411E-02 -0.14014643E-05  0.00000000E+00  0.00000000E+00 
   0.18109184E+05 -0.78403470E+02 -0.56457147E+00  0.48115796E-01 -0.23131123E-04 
   0.00000000E+00  0.00000000E+00  0.24904574E+05  0.27439042E+02 
 C5H8                               200K-6000K REF : G3B3    R.ROBINSON 13-Mar-07                       
   9.86592030E+00  2.44020184E-02 -8.82789062E-06  1.43181832E-09 -8.59919666E-14                       
  -9.59855751E+02 -3.13231941E+01  2.50933871E+00  3.82798417E-03  1.11024150E-04                       
  -1.53500143E-07  6.29245445E-11  2.86394578E+03  1.60336382E+01 
 C5H8(I)                            200K-6000K REF : G3B3    R.ROBINSON 29-May-07         
   1.26178849E+01  2.04825855E-02 -7.27655362E-06  1.16254450E-09 -6.90540663E-14                       
   4.78553010E+03 -4.17166324E+01  2.51337826E+00  2.62954561E-02  4.80576980E-05                       
  -9.15599235E-08  4.16107984E-11  8.38349742E+03  1.50903564E+01    
 C5H9(A)                            200K-6000K REF : G3B3    R.ROBINSON 29-May-07                       
   1.02387504E+01  2.62103815E-02 -9.61636547E-06  1.56028890E-09 -9.34073089E-14                       
   8.03598745E+03 -2.67338239E+01  4.25891338E+00  1.73539089E-02  5.87298434E-05                       
  -8.88205873E-08  3.67775696E-11  1.08830148E+04  1.01660095E+01  
 C5H9(B)                            200K-6000K REF : G3B3    R.ROBINSON 29-May-07           
   1.16475532E+01  2.42158386E-02 -8.73709605E-06  1.40732927E-09 -8.39543416E-14                       
   9.02167848E+03 -3.46927661E+01  4.24094102E+00  2.53634639E-02  3.72604538E-05                       
  -6.82161902E-08  2.98010023E-11  1.19508500E+04  8.06049917E+00  
 C5H10(A)                           200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07                       
   1.05001829E+01  2.75643169E-02 -9.91309486E-06  1.59706130E-09 -9.53724218E-14                       
  -9.52157434E+03 -2.86285984E+01  4.70682242E+00  1.70738409E-02  6.06846510E-05                       
  -8.91019491E-08  3.62897286E-11 -6.61782541E+03  7.71884933E+00  
 C5H10(B)                           200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07               
   9.93522662E+00  2.80726324E-02 -1.00775991E-05  1.62568308E-09 -9.72552799E-14                       
  -1.00942898E+04 -2.65246769E+01  6.85180867E+00  2.28456171E-03  9.11518952E-05                       
  -1.15578710E-07  4.47491318E-11 -7.52818050E+03 -2.19532254E+00 
 C5H11(T)                           200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07                       
   1.01825195E+01  3.02340266E-02 -1.09144648E-05  1.76329609E-09 -1.05510064E-13                       
  -1.17151228E+03 -2.42477873E+01  9.30810413E+00 -1.62593976E-02  1.46448111E-04                       
  -1.76147687E-07  6.78107372E-11  1.38991968E+03 -8.07080433E+00     
 C5H4OH                             200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07                 
   1.36752494E+01  1.52162113E-02 -5.52789930E-06  8.99389731E-10 -5.41428455E-14                       
   4.95232766E+03 -4.79581152E+01 -1.20148288E+00  4.86464089E-02 -1.30026599E-05                       
  -2.83448443E-08  1.81113865E-11  9.28350067E+03  3.03205893E+01                                       
 C5H4O                              200K-6000K REF : G3B3    R.ROBINSON 13-Mar-07                       
   1.16281545E+01  1.47998088E-02 -5.37621419E-06  8.74710788E-10 -5.26577627E-14    
   1.35657386E+03 -3.80263557E+01 -2.83091176E-03  3.43473269E-02  1.05744670E-05                       
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  -4.66599559E-08  2.36147951E-11  5.04708261E+03  2.47228122E+01 
 C5H5O                                                           BURCAT 13-Mar-07 
   0.12711510E+02  0.16650171E-01 -0.60741189E-05  0.99090150E-09 -0.59758183E-13 
   0.66172961E+04 -0.43161680E+02  0.45438248E-01  0.33871750E-01  0.25637288E-04 
  -0.67844135E-07  0.32508364E-10  0.10797244E+05  0.26058142E+02 
 C5H5OO                             200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.42226314E+01  1.75152612E-02 -6.40305264E-06  1.04200860E-09 -6.26515921E-14                       
   1.96213722E+04 -4.66729070E+01  4.03772698E+00  1.80835145E-02  6.44483027E-05                       
  -1.06778175E-07  4.65228276E-11  2.35429815E+04  1.19816804E+01 
 C5H5OH                             200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.38018850E+01  1.72092529E-02 -6.11269503E-06  9.79577036E-10 -5.83486016E-14                       
  -7.03744252E+03 -4.91661999E+01 -1.13448598E+00  4.58163497E-02  1.04750370E-05                       
  -6.34680356E-08  3.41308062E-11 -2.65979172E+03  3.00448818E+01     
 C6H2                               200K-6000K REF : G3      R.ROBINSON 04-Jun-08 
   1.11167234E+01  9.69979976E-03 -3.49004981E-06  5.64122418E-10 -3.38030377E-14 
   7.86280484E+04 -3.13759648E+01 -4.73261257E-01  5.61811081E-02 -7.90149003E-05 
   5.80414115E-08 -1.68775653E-11  8.11517592E+04  2.50177740E+01 
 C6H3                               200K-6000K REF : G3B3    R.ROBINSON 25-May-07                       
   1.29646245E+01  1.05759186E-02 -3.77023128E-06  6.05639149E-10 -3.61341970E-14                       
   8.56896329E+04 -3.56595296E+01  1.36849693E+00  6.19812015E-02 -9.82993088E-05                       
   8.23077695E-08 -2.70183424E-11  8.80637205E+04  1.98144459E+01  
 C6H4                              o-BENZYNE      200K-6000K REF : G3B3    BURCAT    
   1.05707063E+01  1.56860613E-02 -5.68267148E-06  9.22956737E-10 -5.54966417E-14 
   5.04976657E+04 -3.32563927E+01  7.21604591E-01  2.47976151E-02  3.16372209E-05 
  -6.53230986E-08  2.96082142E-11  5.39797980E+04  2.16733825E+01  
 C6H4L                              200K-6000K REF : G3B3    R.ROBINSON 08-Aug-07                       
   1.26801074E+01  1.34374251E-02 -4.78401266E-06  7.67759645E-10 -4.57749413E-14                       
 
   5.78931791E+04 -3.84682066E+01  1.36749388E-01  6.13125097E-02 -7.95470793E-05                       
   5.62489114E-08 -1.60955867E-11  6.07596914E+04  2.32034252E+01  
 C6H5(A)                            200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07                       
   1.33608611E+01  1.49335995E-02 -5.38331240E-06  8.70337474E-10 -5.21352783E-14                       
   6.39400509E+04 -3.83416826E+01  1.55766331E+00  5.78077255E-02 -7.01319214E-05                       
   4.82579599E-08 -1.37620769E-11  6.67841381E+04  2.03237088E+01   
 C6H5(B)                            200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07 
   1.48931797E+01  1.37493189E-02 -4.90394555E-06  7.85066443E-10 -4.67065445E-14 
   6.69001550E+04 -4.98647517E+01  7.53536133E-01  5.37019231E-02 -3.68463678E-05 
  -1.38310583E-09  8.25092729E-12  7.05934868E+04  2.24753680E+01 
 C6H5                               200K-6000K REF : G3B3    R.ROBINSON 19-Mar-07                       
   1.14565087E+01  1.77093641E-02 -6.44201438E-06  1.04899091E-09 -6.31832290E-14                     
   3.60343704E+04 -3.85283667E+01 -6.64246625E-03  2.64038690E-02  4.48459620E-05                       
  -8.64753186E-08  3.89417961E-11  4.01343585E+04  2.57413079E+01  
 C6H6(A)                            200K-6000K REF : G3B3    R.ROBINSON 29-May-07                       
   1.36500711E+01  1.74518735E-02 -6.31301878E-06  1.02314365E-09 -6.13964652E-14                       
   4.44410108E+04 -4.30034010E+01  1.74187936E+00  4.95354683E-02 -3.29381168E-05                       
   3.46367151E-09  3.94777069E-12  4.77704725E+04  1.86686267E+01     
 C6H6(B)                            200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07                       
   1.27658744E+01  1.82379363E-02 -6.59535455E-06  1.06869756E-09 -6.41213620E-14                      
   4.45731479E+04 -3.74802751E+01  2.19981510E+00  4.34694277E-02 -2.01332649E-05                       
  -7.63977524E-09  7.51682971E-12  4.76970262E+04  1.80525270E+01    
 C6H6(D)                             200K-6000K REF : G3B3    R.ROBINSON 29-Oct-
07 
   1.48965378E+01  1.64872725E-02 -5.90741622E-06  9.49118132E-10 -5.66082426E-14 
   3.49812229E+04 -5.19034433E+01  2.28698860E+00  3.70898548E-02  1.51535445E-05 
  -5.64718054E-08  2.83103215E-11  3.89510057E+04  1.61157498E+01 
 C6H6(S)                            200K-6000K REF : G3B3    R.ROBINSON 29-May-07                       
   1.46022188E+01  1.67304256E-02 -6.08012037E-06  9.88196740E-10 -5.94101913E-14                       
   4.14784695E+04 -4.99135626E+01  1.15004104E+00  4.70506058E-02 -1.23493573E-05                       
  -2.70994349E-08  1.74294560E-11  4.53844375E+04  2.08155548E+01   
 
 C6H6(F)                            200K-6000K REF : G3B3    R.ROBINSON 19-Mar-07                       
   1.21895898E+01  1.95046414E-02 -7.03416458E-06  1.13879769E-09 -6.83157498E-14                       
   2.02202826E+04 -4.26337898E+01 -2.35057858E-01  3.38024640E-02  3.30290867E-05                       
  -7.69207160E-08  3.60547717E-11  2.44318628E+04  2.58522534E+01 
 C6H6(M)                            200K-6000K REF : G3B3    R.ROBINSON 19-Mar-07                       
   1.25877237E+01  1.90952438E-02 -6.87307907E-06  1.11119217E-09 -6.65937919E-14                       
   3.51088063E+04 -4.32640698E+01  2.56250451E-01  3.90023715E-02  1.29479000E-05                       
  -5.29412523E-08  2.65892171E-11  3.90616716E+04  2.34546412E+01  
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 C6H6                               200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.13666933E+01  2.04079721E-02 -7.39919697E-06  1.20214373E-09 -7.22929443E-14                       
   4.52666630E+03 -4.14111483E+01  9.69438736E-02  2.29318584E-02  6.33937535E-05                       
  -1.08316455E-07  4.73992187E-11  8.82216986E+03  2.31554832E+01  
 C6H7                               200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.23338010E+01  2.22625674E-02 -8.07486797E-06  1.31213477E-09 -7.89120659E-14                       
   1.92360666E+04 -4.36413477E+01  2.42231177E-01  2.86715106E-02  5.46203889E-05                       
  -1.00348133E-07  4.45687256E-11  2.37102853E+04  2.48525327E+01     
 C6H7(L)                            200K-6000K REF : G3B3    R.ROBINSON 29-Oct-07 
   1.68702156E+01  1.72634805E-02 -6.25732251E-06  1.00976679E-09 -6.03669209E-14 
   4.43145917E+04 -6.27561110E+01  2.07404306E+00  3.61323587E-02  3.88002702E-05 
  -9.20661197E-08  4.38852212E-11  4.91369816E+04  1.80934521E+01 
 C5H4CH3                            200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07                    
   1.24476217E+01  2.15029689E-02 -7.75134839E-06  1.25437737E-09 -7.52224739E-14                       
   2.04084826E+04 -4.11056808E+01  8.36909343E-01  3.18167267E-02  3.84022363E-05                       
  -8.02365832E-08  3.65591080E-11  2.45236619E+04  2.37127995E+01    
 C6H8                               200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.18161918E+01  2.54108479E-02 -9.20915524E-06  1.49551515E-09 -8.98979453E-14                       
   6.94418806E+03 -4.21338291E+01  1.28995501E+00  2.03667087E-02  7.93314916E-05                       
  -1.24246815E-07  5.26821611E-11  1.13601162E+04  2.00737498E+01   
 C5H5CH3                            200K-6000K REF : G3B3    R.ROBINSON 19-Mar-07                     
   1.28684461E+01  2.38025614E-02 -8.57820021E-06  1.38790503E-09 -8.32166735E-14                       
   7.12182042E+03 -4.59786731E+01  1.28310910E+00  2.47381989E-02  7.05624489E-05                       
  -1.19384342E-07  5.21980809E-11  1.15959246E+04  2.07311292E+01 
 C6H3O2                             200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07                       
   1.51915951E+01  1.46748024E-02 -5.42163659E-06  8.92003180E-10 -5.41138909E-14                       
   1.12656245E+04 -5.25491166E+01  3.18403948E-01  5.12223736E-02 -2.75750371E-05                       
  -7.51782629E-09  8.83473610E-12  1.55741843E+04  2.53014412E+01 
 C6H3O3                             200K-6000K REF : G3B3    R.ROBINSON 19-Mar-07                       
   1.74177458E+01  1.54590628E-02 -5.72711684E-06  9.43993385E-10 -5.73410135E-14                       
  -2.28280418E+04 -6.29444157E+01  7.76897049E-01  5.80164093E-02 -3.67022863E-05                       
  -7.28416129E-10  6.67374018E-12 -1.80689237E+04  2.38114327E+01 
 C6H5OH                             200K-6000K REF : G3B3    R.ROBINSON 07-Aug-07                       
   1.46414690E+01  1.94932405E-02 -7.02116352E-06  1.13603259E-09 -6.81317840E-14                       
  -1.65950023E+04 -5.37200677E+01 -5.64771978E-01  4.33464039E-02  2.07605251E-05                       
  -6.99372749E-08  3.45765647E-11 -1.17365183E+04  2.86068445E+01 
 C6H5O                              200K-6000K REF : G3B3    R.ROBINSON 15-Mar-07                       
   1.37326455E+01  1.84244924E-02 -6.71682550E-06  1.09539441E-09 -6.60492978E-14                       
   1.07830189E+03 -4.93708126E+01 -9.78096054E-02  3.71196938E-02  2.68005407E-05                       
  -7.12459156E-08  3.38931483E-11  5.68218891E+03  2.63366728E+01 
 C6H4O2                             200K-6000K REF : G3B3    R.ROBINSON 19-Mar-07                       
   1.50535698E+01  1.74168758E-02 -6.39478550E-06  1.04778871E-09 -6.33840383E-14                       
  -2.12124800E+04 -5.50096707E+01  4.98149162E-01  4.66938856E-02 -6.41492151E-06                       
  -3.18237578E-08  1.81067093E-11 -1.67049843E+04  2.26833299E+01 
 C6H5OO                             200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07                       
   1.63022037E+01  1.85033368E-02 -6.79432980E-06  1.10923299E-09 -6.68544424E-14                       
   1.09994191E+04 -5.92010142E+01  8.78266943E-01  3.92775211E-02  3.25262349E-05                       
  -8.33110188E-08  3.96825851E-11  1.60845838E+04  2.51120238E+01 
 C6H5OOH                            200K-6000K REF : G3B3    R.ROBINSON 04-Oct-07                       
   1.70218621E+01  1.96332619E-02 -7.09504317E-06  1.14641152E-09 -6.86057418E-14                       
  -7.70247401E+03 -6.32603258E+01 -1.06714347E-01  5.42672219E-02 -8.24717731E-07                       
  -5.13970113E-08  2.86991080E-11 -2.59867312E+03  2.76131116E+01                                       
 C7H5                               200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07      
   1.49448053E+01  1.69815759E-02 -6.11230385E-06  9.88416374E-10 -5.92520096E-14                       
   5.09198929E+04 -5.35861988E+01 -1.76307160E+00  6.38163332E-02 -4.60335922E-05                       
   4.31530589E-09  6.40826637E-12  5.53922611E+04  3.22277699E+01 
 C7H6  
   0.98222523E+01  0.33532158E-01 -0.18960140E-04  0.51221400E-08 -0.52916027E-12 
   0.39350844E+05 -0.23534618E+02  0.10617721E+01  0.60266692E-01 -0.48446786E-04 
   0.18895387E-07 -0.27898133E-11  0.41581770E+05  0.20963522E+02 
 C6H5C                              200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07                       
   1.41262353E+01  1.80237245E-02 -6.56048441E-06  1.06877362E-09 -6.43967261E-14                       
   6.77605763E+04 -4.93634930E+01  1.92634259E+00  2.85073680E-02  4.37838991E-05                       
  -8.70786602E-08  3.94549028E-11  7.20701846E+04  1.87571979E+01 
 
 C6H5CH                             200K-6000K REF : G3B3    R.ROBINSON 01-Nov-07                       
   1.39987971E+01  2.10115301E-02 -7.74130392E-06  1.26828964E-09 -7.66390696E-14                       
   5.04105003E+04 -5.07316398E+01 -1.42752653E-01  3.86171141E-02  3.12258253E-05                       
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  -7.78471033E-08  3.66075904E-11  5.52022173E+04  2.70663171E+01                                       
 C7H7                               200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07                       
   1.44185062E+01  2.32955544E-02 -8.54365127E-06  1.39475899E-09 -8.40514185E-14                 
   1.90472689E+04 -5.40649462E+01 -8.88621147E-01  4.67433711E-02  1.94036631E-05                       
  -6.85453132E-08  3.37680170E-11  2.40293208E+04  2.91018098E+01 
 C7H7L                              200K-6000K REF : G3B3    R.ROBINSON 04-Dec-07 
   1.46529322E+01  2.23127123E-02 -8.06039662E-06  1.30477447E-09 -7.82841066E-14 
   4.77231917E+04 -5.11565691E+01  1.78224005E+00  3.21036329E-02  4.97938535E-05 
  -9.78136681E-08  4.42656799E-11  5.23244914E+04  2.09864666E+01  
 C7H7P                              200K-6000K REF :         R.ROBINSON 03-Oct-07 
   1.33211864E+01  2.36827436E-02 -8.60327957E-06  1.39947590E-09 -8.42275079E-14 
   3.12684833E+04 -4.76131212E+01  1.24576524E+00  2.84214251E-02  5.73365370E-05 
  -1.01673075E-07  4.43852462E-11  3.58688678E+04  2.13324917E+01 
 C7H8                               200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07                       
   1.32565954E+01  2.63599691E-02 -9.55302770E-06  1.55145524E-09 -9.32680913E-14                       
  -5.15601767E+02 -4.81552995E+01  1.28570757E+00  2.53359931E-02  7.52284706E-05                       
  -1.23066209E-07  5.27377613E-11  4.29498473E+03  2.15013550E+01   
 C6H5CO                             200K-6000K REF : G3MP2   R.ROBINSON 02-May-08 
   1.50802910E+01  2.01206682E-02 -7.37900571E-06  1.20800427E-09 -7.30282061E-14 
   7.49341908E+03 -5.42585042E+01  1.29243926E+00  3.59691923E-02  3.34213989E-05 
  -7.75153854E-08  3.57892845E-11  1.22652588E+04  2.20114271E+01 
 C7H6O                              200K-6000K REF : G3B3    R.ROBINSON 08-May-07                       
   1.53113995E+01  2.20764479E-02 -8.06352686E-06  1.31293198E-09 -7.90305224E-14                       
  -1.18489313E+04 -5.61277803E+01  1.16187164E+00  3.53975987E-02  4.45580684E-05   
  -9.26018106E-08  4.20424938E-11 -6.84612985E+03  2.27562799E+01   
 C7H7O                              200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07                       
   1.58869165E+01  2.43099288E-02 -8.90170362E-06  1.45158328E-09 -8.74320865E-14                       
   7.64485078E+03 -5.82334053E+01  1.34875562E+00  3.62538213E-02  5.07399910E-05                       
  -1.01179022E-07  4.54957471E-11  1.28715161E+04  2.32423194E+01  
 C7H7OA                             200K-6000K REF : G3B3    R.ROBINSON 28-Mar-07                       
   1.63642524E+01  2.30069915E-02 -8.31828902E-06  1.34493299E-09 -8.05414900E-14                       
   7.05523453E+03 -5.85875486E+01  1.33751930E+00  5.60429555E-02 -1.89546627E-05      
  -1.94032242E-08  1.32947585E-11  1.16214229E+04  2.10678967E+01     
 OC7H7                              200K-6000K REF : G3B3    R.ROBINSON 28-Mar-07                       
   1.55885621E+01  2.44114513E-02 -8.88432600E-06  1.44703270E-09 -8.71687304E-14                       
  -4.63475079E+03 -5.69949856E+01  1.30109345E+00  3.78573405E-02  4.26663785E-05                       
  -9.00408613E-08  4.06916002E-11  4.62424782E+02  2.27793822E+01 
 C7H7OH                             200K-6000K REF : G3B3    R.ROBINSON 29-Mar-07                       
   1.55570133E+01  2.64742745E-02 -9.61492723E-06  1.56021335E-09 -9.36632967E-14                       
  -1.85951846E+04 -5.64807692E+01  4.57952512E+00  1.99720826E-02  8.62270226E-05        
  -1.32663415E-07  5.57676957E-11 -1.39302817E+04  8.70611961E+00    
 HOC7H7                             200K-6000K REF : G3B3    R.ROBINSON 05-Dec-07 
   1.62209484E+01  2.57279235E-02 -9.27769536E-06  1.50201883E-09 -9.01081430E-14 
  -2.24968087E+04 -6.12270691E+01  6.18655473E-01  4.67674565E-02  2.70020458E-05 
  -7.68288867E-08  3.65238162E-11 -1.72475878E+04  2.43271696E+01        
 C7H8OA                             200K-6000K REF : G3B3    R.ROBINSON 14-May-07                       
   1.61455922E+01  2.60503227E-02 -9.47230904E-06  1.53776710E-09 -9.23380319E-14                       
  -1.63397736E+04 -6.11038338E+01  9.17201862E-01  4.26156233E-02  4.04519700E-05                       
  -9.27459204E-08  4.29301602E-11 -1.10690376E+04  2.32349913E+01   
 C7H7OO                             200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07 
   1.75384010E+01  2.50464937E-02 -9.26566669E-06  1.52026888E-09 -9.19216824E-14 
   6.21200901E+03 -6.27388490E+01  3.43834939E+00  3.01848465E-02  7.00879785E-05 
  -1.22437556E-07  5.34739568E-11  1.15679497E+04  1.77734871E+01 
 OOC7H7P                            200K-6000K REF : G3B3    R.ROBINSON 24-May-07                       
   1.81925301E+01  2.44591365E-02 -8.95127578E-06  1.45924431E-09 -8.78792315E-14                       
   5.89545445E+03 -6.84482373E+01  2.19445974E+00  4.08471616E-02  4.62775588E-05                       
  -9.99260531E-08  4.56786288E-11  1.14829234E+04  2.04135472E+01   
 C8H2                               200K-6000K REF : G3B3    R.ROBINSON 24-May-07                       
   1.51207039E+01  1.15836375E-02 -4.19394867E-06  6.80845141E-10 -4.09238459E-14                       
   1.03629939E+05 -4.86456518E+01 -1.11492303E+00  8.37576243E-02 -1.36625122E-04                   
   1.14597154E-07 -3.74644192E-11  1.06927919E+05  2.89314564E+01    
 C8H5(S)   
  -0.18226665E+02  0.98105334E-01 -0.71376540E-04  0.23047990E-07 -0.27072450E-11 
   0.70338272E+05  0.12116527E+03 -0.10600960E+02  0.12687966E+00 -0.19579499E-03 
   0.15129409E-06 -0.42934854E-10  0.65782034E+05  0.69241891E+02 
 C8H5                               200K-6000K REF : G3B3    R.ROBINSON 16-May-07                       
   1.59141211E+01  1.90512856E-02 -6.91841357E-06  1.12540152E-09 -6.77403364E-14           
   6.81007829E+04 -5.81811951E+01 -1.13488264E+00  6.07145806E-02 -2.90528278E-05                       
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  -1.47803066E-08  1.33580907E-11  7.29875380E+04  3.09385073E+01  
 C8H6                               200K-6000K REF : G3B3    R.ROBINSON 28-Mar-07                       
   1.58841649E+01  2.16827507E-02 -7.84831056E-06  1.27381396E-09 -7.65525168E-14                       
   3.10445790E+04 -6.03434222E+01 -1.15774739E+00  5.83055920E-02 -1.28838641E-05                       
  -3.44192242E-08  2.10711101E-11  3.61473155E+04  2.98836364E+01  
 C6H5CHC                            200K-6000K REF : G3B3    R.ROBINSON 01-Nov-07                       
   1.60987575E+01  2.12246579E-02 -7.71771138E-06  1.25489588E-09 -7.55314844E-14               
   5.52793982E+04 -5.90713760E+01  8.74638267E-01  4.62530440E-02  1.31075596E-05                       
  -5.90928872E-08  2.96427137E-11  6.01908641E+04  2.33384585E+01                                       
 C8H7                               200K-6000K REF : G3B3    R.ROBINSON 06-Jun-07                       
   1.62024214E+01  2.37169830E-02 -8.59466428E-06  1.39261244E-09 -8.35582353E-14                       
   4.19911173E+04 -5.96757392E+01  5.98199404E-01  4.40312910E-02  3.19607403E-05  
  -8.36468343E-08  3.96903979E-11  4.72247875E+04  2.59253903E+01    
 C8H7(F)                            200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07 
   1.70920957E+01  2.32185495E-02 -8.38554563E-06  1.35891114E-09 -8.15767381E-14  
   5.01059137E+04 -6.39311685E+01  1.88585454E-01  5.32872069E-02  9.17657942E-06                       
  -6.13342150E-08  3.18842773E-11  5.54011643E+04  2.68906693E+01                                       
 C8H7(P)                             200K-6000K REF : G3B3    R.ROBINSON 09-May-
08 
   1.63560947E+01  2.37093009E-02 -8.62640748E-06  1.40109008E-09 -8.41885947E-14 
   4.11114604E+04 -6.17370864E+01  5.63912682E-01  4.11827962E-02  4.23434307E-05 
  -9.54358236E-08  4.41015736E-11  4.65490247E+04  2.56255584E+01 
 C8H8                               200K-6000K REF : G3B3    R.ROBINSON 16-May-07                       
   1.62750706E+01  2.63964230E-02 -9.57863609E-06  1.55335595E-09 -9.32416572E-14                       
   1.00959790E+04 -6.29161344E+01  5.95011053E-01  3.80448247E-02  6.03961301E-05                       
  -1.17000056E-07  5.25170617E-11  1.57432079E+04  2.51273231E+01  
 C8H9(F)                            200K-6000K REF : G3B3    R.ROBINSON 31-Oct-07 
   1.68344671E+01  2.79084466E-02 -1.01238931E-05  1.64223501E-09 -9.85715951E-14                       
   3.61377855E+04 -6.03841052E+01  5.44310351E+00  2.04252993E-02  9.47478839E-05                       
  -1.46919245E-07  6.24656421E-11  4.09409910E+04  7.23134573E+00                                       
 C8H9                               200K-6000K REF : G3B3    R.ROBINSON 03-Oct-07 
   1.70077836E+01  2.85107743E-02 -1.03611087E-05  1.68579546E-09 -1.01474435E-13 
   1.40901227E+04 -6.68746601E+01  1.20030068E+00  3.91799992E-02  6.16792669E-05 
  -1.17564426E-07  5.22466290E-11  1.98924692E+04  2.22931985E+01 
 C8H10                              200K-6000K REF : G3B3    R.ROBINSON 07-Aug-07                       
   1.55887664E+01  3.19611997E-02 -1.16287800E-05  1.88981260E-09 -1.13573824E-13                       
  -4.28458286E+03 -5.83661343E+01  3.39486331E+00  2.28588681E-02  1.01068868E-04                       
  -1.54540904E-07  6.49157293E-11  9.96421839E+02  1.45061179E+01 
 C6H5C2O                            200K-6000K REF : G3B3    R.ROBINSON 15-Oct-07 
   1.71311590E+01  2.09165892E-02 -7.65442484E-06  1.25139872E-09 -7.55835919E-14                       
   2.23670210E+04 -6.29702618E+01  6.88575892E-01  5.16059386E-02  1.11467607E-06                   
  -4.67425909E-08  2.49025388E-11  2.75447687E+04  2.52906444E+01                                       
 C8H5O                              200K-6000K REF : G3B3    R.ROBINSON 28-Mar-07                       
   1.81825231E+01  1.97889516E-02 -7.20508244E-06  1.17413394E-09 -7.07633472E-14                       
   2.67589710E+04 -6.96738502E+01 -1.09646467E+00  7.05298740E-02 -4.51376296E-05                       
  -1.29231576E-09  8.86629889E-12  3.21408799E+04  3.03139151E+01    
 C8H5OO                             200K-6000K REF : G3B3    R.ROBINSON 24-May-07                       
   2.05521332E+01  2.00445657E-02 -7.33413614E-06  1.19500584E-09 -7.19472479E-14                       
   3.65926838E+04 -7.89142990E+01  1.99509144E-01  7.21815780E-02 -4.20268840E-05                       
  -7.95299583E-09  1.19844141E-11  4.23167792E+04  2.69212527E+01    
 C9H7                               200K-6000K REF : G3B3    R.ROBINSON 09-May-07 
   1.78551775E+01  2.55569711E-02 -9.31059993E-06  1.51771688E-09 -9.14866981E-14 
   2.53861457E+04 -7.29344363E+01 -2.10502145E+00  5.40482794E-02  3.51502447E-05 
  -9.95706637E-08  4.80049399E-11  3.19332187E+04  3.58960228E+01 
 C9H7L                              200K-6000K REF : G3B3    R.ROBINSON 19-Jun-07 
   1.73899530E+01  2.56207079E-02 -9.35120219E-06  1.52234845E-09 -9.16292324E-14 
   7.18886856E+04 -6.37763834E+01  2.32219368E+00  3.45034586E-02  6.40157037E-05 
  -1.17798121E-07  5.20469433E-11  7.74618372E+04  2.14806537E+01 
 C9H8                               200K-6000K REF : G3B3    R.ROBINSON 09-May-07 
   1.74713086E+01  2.86713708E-02 -1.04526480E-05  1.70450761E-09 -1.02766685E-13 
   1.07722661E+04 -7.22017233E+01 -9.86208045E-01  4.46571876E-02  6.38460940E-05 
  -1.28213551E-07  5.79882498E-11  1.73319384E+04  3.09463621E+01 
 C9H8(S)                            200K-6000K REF : G3B3    R.ROBINSON 30-May-07                       
   1.79363817E+01  2.74951917E-02 -1.00445999E-05  1.63921965E-09 -9.88557024E-14                       
   2.59928036E+04 -6.91184788E+01  2.41274408E+00  3.68385244E-02  6.56609310E-05                       
  -1.22373357E-07  5.43884946E-11  3.17152719E+04  1.86346007E+01  
 C9H8(T)                            200K-6000K REF : G3B3    R.ROBINSON 19-Jun-07                       
   1.84716616E+01  2.68726914E-02 -9.78675620E-06  1.59388623E-09 -9.59868825E-14                       
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   2.83514107E+04 -7.12401639E+01  2.22172745E+00  4.86449880E-02  2.80106646E-05                       
  -7.97385688E-08  3.79166848E-11  3.38466357E+04  1.79470475E+01 
 C9H9(N)                            200K-6000K REF : G3B3    R.ROBINSON 19-Jun-07                       
   1.81928310E+01  2.95786006E-02 -1.08194577E-05  1.76277892E-09 -1.06103115E-13                       
   3.87738812E+04 -6.76043726E+01  4.02079723E+00  2.91381348E-02  8.79576149E-05                       
  -1.44921842E-07  6.24139447E-11  4.44076026E+04  1.46093595E+01 
 C9H9(I)                            200K-6000K REF : G3B3    R.ROBINSON 18-May-07                       
   1.81016326E+01  2.95750815E-02 -1.07844213E-05  1.75590613E-09 -1.05736838E-13                       
   3.53174008E+04 -6.61691485E+01  5.29905239E+00  1.92041567E-02  1.11981782E-04                       
  -1.69167614E-07  7.12250848E-11  4.08480913E+04  1.03975671E+01 
 C9H9(S)                            200K-6000K REF : G3B3    R.ROBINSON 30-May-07                       
   1.80310429E+01  3.08549384E-02 -1.12389309E-05  1.83155488E-09 -1.10374070E-13                       
   1.68565437E+04 -7.37394814E+01 -1.67306559E-01  4.22231459E-02  7.63992304E-05                       
  -1.42403222E-07  6.33163838E-11  2.35314116E+04  2.90045443E+01 
 C9H9(P)                            200K-6000K REF : G3B3    R.ROBINSON 30-May-07                       
   1.85560305E+01  2.91794143E-02 -1.06454331E-05  1.73195284E-09 -1.04178066E-13                       
   3.71145562E+04 -7.03815823E+01  2.09658023E+00  4.39112247E-02  5.28195952E-05                       
  -1.09993507E-07  4.98838938E-11  4.29868426E+04  2.15967500E+01 
 C9H9(C)                            200K-6000K REF : G3B3    R.ROBINSON 16-May-07                       
   1.84920702E+01  3.04579694E-02 -1.10995700E-05  1.80942158E-09 -1.09064739E-13                       
   2.88684041E+04 -7.67019087E+01 -9.78555510E-01  4.85483215E-02  6.35762462E-05                       
  -1.31511465E-07  5.99162791E-11  3.57270679E+04  3.18021083E+01  
 C9H9(F)                            200K-6000K REF : G3B3    R.ROBINSON 30-May-07                       
   1.84884580E+01  2.92919169E-02 -1.06058128E-05  1.71829897E-09 -1.03102152E-13                       
   3.69222518E+04 -7.09394144E+01  3.39687672E+00  3.85992795E-02  6.12333521E-05                       
  -1.15853351E-07  5.14136016E-11  4.25033352E+04  1.43939647E+01 
 C9H6O                              200K-6000K REF : G3MP2B3 R.ROBINSON 23-May-07                       
   1.89691541E+01  2.47818525E-02 -9.08390735E-06  1.48682032E-09 -8.98777623E-14                       
  -2.14760016E+03 -7.74939321E+01 -9.70808676E-01  5.55808772E-02  2.49057709E-05                       
  -8.50465645E-08  4.15947668E-11  4.35937475E+03  3.08758874E+01 
 C9H7O                              200K-6000K REF : CBS-QB3 R.ROBINSON 30-Apr-08 
   1.98149165E+01  2.66922030E-02 -9.76836131E-06  1.59708554E-09 -9.64679926E-14 
   2.76549520E+04 -8.16307465E+01 -4.91651031E-01  5.20289871E-02  4.64077741E-05 
  -1.12441821E-07  5.27360863E-11  3.45109648E+04  3.00220310E+01 
 C10H6                              200K-6000K REF : G3B3    R.ROBINSON 23-May-07                       
   2.03945148E+01  2.29843220E-02 -8.31173559E-06  1.34829347E-09 -8.10008039E-14                       
   5.80398517E+04 -8.05122711E+01 -2.34461417E+00  9.28838499E-02 -8.68597641E-05                       
   3.69340876E-08 -4.27916532E-12  6.39550773E+04  3.51261635E+01 
 C10H7                              200K-6000K REF : G3B3    R.ROBINSON 09-May-07                       
   1.91497125E+01  2.73037655E-02 -9.99294685E-06  1.63389295E-09 -9.86950716E-14                    
   3.92300112E+04 -7.95973962E+01 -1.74709178E+00  5.65867963E-02  3.58370225E-05                       
  -1.00865176E-07  4.81841784E-11  4.61768363E+04  3.46502365E+01  
 C10H7L                             200K-6000K REF : G3B3    R.ROBINSON 16-Oct-07                       
   2.24638279E+01  2.33461601E-02 -8.44005656E-06  1.36505447E-09 -8.17822119E-14                       
   6.86149398E+04 -9.15971151E+01 -1.60155935E+00  8.17909513E-02 -3.34045862E-05                       
  -3.29260130E-08  2.47944110E-11  7.53769696E+04  3.38894723E+01                                       
 C10H7M                             200K-6000K REF : G3B3    R.ROBINSON 19-Jun-07                       
   2.01585376E+01  2.61331590E-02 -9.50512984E-06  1.54759668E-09 -9.32061993E-14                       
   6.74419179E+04 -7.77106181E+01  8.40106188E-01  6.12918902E-02  5.53646468E-06                       
  -6.20566266E-08  3.26291228E-11  7.35237090E+04  2.60776758E+01   
 C10H8L              
   0.20179207E+02  0.29670304E-01 -0.11986855E-04  0.22532105E-08 -0.15916158E-12 
   0.36023766E+05 -0.80279839E+02 -0.27711501E+01  0.98102115E-01 -0.93714450E-04 
   0.50875709E-07 -0.12535519E-10  0.42320391E+05  0.37574230E+02 
 C10H8                              200K-6000K REF : G3B3    R.ROBINSON 09-May-07                       
   1.90700871E+01  2.99951680E-02 -1.09479895E-05  1.78674993E-09 -1.07789182E-13                       
   8.47476587E+03 -8.21752689E+01 -1.70336697E+00  5.33574054E-02  5.41019138E-05               
  -1.22619765E-07  5.66600389E-11  1.56318632E+04  3.27123601E+01 
 C10H8K                             200K-6000K REF : G3MP2B3 R.ROBINSON 01-Nov-07                       
   2.03900746E+01  2.85301415E-02 -1.03537922E-05  1.68348737E-09 -1.01302082E-13                       
   3.38045415E+04 -8.51027336E+01 -1.05459566E+00  5.65513917E-02  4.74179342E-05                       
  -1.19663649E-07  5.68975279E-11  4.09183627E+04  3.23240253E+01                                       
 C10H8G                             200K-6000K REF : G3B3    R.ROBINSON 29-Oct-07                       
   1.94150861E+01  2.90026607E-02 -1.05308167E-05  1.70876070E-09 -1.02612470E-13                       
   3.61820040E+04 -7.49948493E+01  2.06153655E+00  4.84901972E-02  4.32807233E-05                       
  -1.01207981E-07  4.68686020E-11  4.21895477E+04  2.10486943E+01                                       
 C9H6CH2  
   0.19196302E+02  0.31294353E-01 -0.11452624E-04  0.20944079E-08 -0.15138942E-12 
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   0.22725338E+05 -0.82727289E+02 -0.67796676E+01  0.99132130E-01 -0.77043901E-04 
   0.31111080E-07 -0.54388908E-11  0.30449510E+05  0.53315855E+02 
 C10H8J                             200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07                       
   2.01059079E+01  2.83480509E-02 -1.03369605E-05  1.68270688E-09 -1.01253068E-13                       
   3.68183988E+04 -7.84540589E+01  3.54764062E+00  4.32006001E-02  5.50173036E-05                       
  -1.13961268E-07  5.18941762E-11  4.26775448E+04  1.39458527E+01                                       
 C10H9A                             200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07                       
   2.28669724E+01  2.83091966E-02 -1.04039005E-05  1.70107940E-09 -1.02684204E-13                       
   4.68026622E+04 -9.45859608E+01  6.45528245E-01  5.79537252E-02  4.65853370E-05                       
  -1.19991015E-07  5.71770878E-11  5.41724986E+04  2.70192785E+01                                       
 C10H9D                             200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07                       
   2.16097416E+01  2.84473467E-02 -1.03397395E-05  1.68222254E-09 -1.01248424E-13                       
   4.26242097E+04 -8.40595232E+01  1.11809534E-01  7.88412797E-02 -3.41993081E-05                  
  -2.00348144E-08  1.65793561E-11  4.89715031E+04  2.90476430E+01                                       
 C10H9                              200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07                       
   1.98957312E+01  3.19619669E-02 -1.16609266E-05  1.90243854E-09 -1.14736441E-13                       
   2.02993377E+04 -8.38097392E+01 -1.04738447E+00  5.38670055E-02  5.90433326E-05                       
  -1.29056526E-07  5.91780458E-11  2.76030323E+04  3.24328027E+01                     
 C10H9F                             200K-6000K REF : G3B3    R.ROBINSON 26-Oct-07                       
   2.10483105E+01  3.06628768E-02 -1.11305804E-05  1.80996266E-09 -1.08915680E-13                       
   3.35684775E+04 -8.83295990E+01 -5.93555383E-01  5.44304345E-02  6.23536974E-05                       
  -1.38057443E-07  6.41485208E-11  4.09471695E+04  3.12155273E+01                                       
 C10H9P                             200K-6000K REF : G3B3    R.ROBINSON 16-Oct-07                       
   2.11712464E+01  2.95760474E-02 -1.07264003E-05  1.73492056E-09 -1.03868341E-13                       
   4.89011343E+04 -8.34394739E+01  5.25278518E+00  3.73495403E-02  7.47364782E-05                       
  -1.35966596E-07  6.02797378E-11  5.47938808E+04  6.82103263E+00                                       
 C9H6CH3                            200K-6000K REF : G3      R.ROBINSON 09-May-08 
   1.95402271E+01  3.19082520E-02 -1.16574967E-05  1.90347271E-09 -1.14860486E-13 
   1.94504304E+04 -8.02533927E+01  4.69536362E-01  4.85000051E-02  6.23857388E-05 
  -1.26955691E-07  5.71800051E-11  2.62999839E+04  2.64982394E+01 
 C10H9T                             200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07                       
   1.98990021E+01  3.19590476E-02 -1.16598773E-05  1.90226923E-09 -1.14726315E-13                       
   2.02955018E+04 -8.38426896E+01 -1.06814137E+00  5.40198750E-02  5.86876924E-05                       
  -1.28708105E-07  5.90543947E-11  2.76018112E+04  3.25031057E+01                                       
 C10H9B                             200K-6000K REF : G3B3    R.ROBINSON 19-Oct-07                       
   2.16506089E+01  2.94452290E-02 -1.07362554E-05  1.75062691E-09 -1.05534492E-13               
   4.11748845E+04 -8.77141335E+01  7.41778612E-01  5.93020333E-02  3.35408171E-05                       
  -9.94256386E-08  4.78456845E-11  4.81001111E+04  2.64612257E+01                                       
 C10H9L                             200K-6000K REF : G3      R.ROBINSON 09-May-08 
   2.46488052E+01  2.69281063E-02 -9.97295235E-06  1.63836311E-09 -9.91943546E-14 
   4.59391590E+04 -1.05186933E+02  2.05861761E+00  5.43928401E-02  5.51868671E-05 
  -1.28249685E-07  5.97544880E-11  5.35783154E+04  1.91485057E+01 
 C10H9E                             200K-6000K REF : G3B3    R.ROBINSON 29-Oct-07                       
   2.11567465E+01  3.01287315E-02 -1.10361445E-05  1.79894691E-09 -1.08280140E-13                       
   3.89281463E+04 -8.49248325E+01  1.65289299E-02  7.22740207E-02 -8.70756093E-06                       
  -4.98720547E-08  2.82290663E-11  4.54698059E+04  2.79363669E+01                                       
 C10H10K                            200K-6000K REF : G3B3    R.ROBINSON 02-May-08 
   2.09911209E+01  3.33899968E-02 -1.21115160E-05  1.96841287E-09 -1.18403555E-13 
   2.64315799E+04 -8.95090652E+01 -2.05618726E-01  4.59091076E-02  9.74273950E-05 
  -1.79429042E-07  8.04177688E-11  3.40979229E+04  2.99560338E+01 
 EC10H9                             200K-6000K REF : G3B3    R.ROBINSON 29-Oct-07 
   2.11567465E+01  3.01287315E-02 -1.10361445E-05  1.79894691E-09 -1.08280140E-13 
   3.89281463E+04 -8.49248325E+01  1.65289299E-02  7.22740207E-02 -8.70756093E-06 
  -4.98720547E-08  2.82290663E-11  4.54698059E+04  2.79363669E+01               
 GC10H9               
   0.19929077E+02  0.32680734E-01 -0.12861148E-04  0.23499754E-08 -0.16510897E-12 
   0.18696181E+05 -0.15099373E+02 -0.11953660E+01  0.87286167E-01 -0.65343927E-04 
   0.25376810E-07 -0.41583087E-11  0.25054098E+05  0.24035862E+02 
 C10H9K                             200K-6000K REF : G3B3    R.ROBINSON 30-Oct-07                       
   2.15323912E+01  2.96025034E-02 -1.07916786E-05  1.75863733E-09 -1.05953365E-13                     
   4.53865005E+04 -8.84454524E+01 -8.97421771E-01  6.11060586E-02  4.28921687E-05                       
  -1.18183167E-07  5.70782617E-11  5.27185282E+04  3.38332754E+01                                       
 C10H9M                             200K-6000K REF : G3      R.ROBINSON 05-Feb-08 
   2.19149977E+01  2.94389622E-02 -1.07769075E-05  1.76113517E-09 -1.06308668E-13 
   4.69078750E+04 -8.78033814E+01  1.19474282E+00  5.85700725E-02  3.53025398E-05 
  -1.01796708E-07  4.89612314E-11  5.37787117E+04  2.54086306E+01                
 C9H7CH3                            200K-6000K REF : G3      R.ROBINSON 30-Apr-08 
   2.01180990E+01  3.40764215E-02 -1.24393729E-05  2.03000712E-09 -1.22447963E-13 
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   6.14160687E+03 -8.58609871E+01  1.59612349E-01  4.73821231E-02  7.98260414E-05 
  -1.50801211E-07  6.70961412E-11  1.34561914E+04  2.67080379E+01 
 GC10H10             
   0.18912177E+02  0.34327266E-01 -0.13514685E-04  0.24029682E-08 -0.16235052E-12 
   0.70698054E+04 -0.15099373E+02 -0.11953660E+01  0.87286167E-01 -0.65343927E-04 
   0.25376810E-07 -0.41583087E-11  0.13030043E+05  0.24035862E+02 
 EC10H10              
   0.18912177E+02  0.34327266E-01 -0.13514685E-04  0.24029682E-08 -0.16235052E-12 
   0.66488284E+04 -0.15099373E+02 -0.11953660E+01  0.87286167E-01 -0.65343927E-04 
   0.25376810E-07 -0.41583087E-11  0.12609066E+05  0.24035862E+02 
 C10H10                             200K-6000K REF : G3B3    R.ROBINSON 30-Apr-08 
   2.07237519E+01  3.20420615E-02 -1.16635294E-05  1.89942575E-09 -1.14395965E-13 
   2.34021253E+04 -8.08334078E+01  3.02911361E+00  4.54157069E-02  6.41302895E-05 
  -1.26124981E-07  5.64371843E-11  2.98411201E+04  1.86631755E+01 
 C10H10F                            200K-6000K REF : G3B3    R.ROBINSON 01-Nov-07                       
   2.07741646E+01  3.25954531E-02 -1.18965594E-05  1.94064254E-09 -1.17010422E-13                       
   2.10532336E+04 -8.32029885E+01  4.16133760E+00  3.98020647E-02  7.53399313E-05                       
  -1.34798392E-07  5.87917489E-11  2.73869314E+04  1.15819865E+01                                       
 C10H7OO                            200K-6000K REF : G3B3    R.ROBINSON 05-Feb-08 
   2.38458193E+01  2.82830183E-02 -1.04366366E-05  1.71179015E-09 -1.03540228E-13 
   1.58145756E+04 -1.01211526E+02 -5.92153711E-01  6.74448059E-02  2.74306631E-05 
  -1.00787983E-07  4.98051184E-11  2.36924331E+04  3.11940000E+01          
 C10H7O                             200K-6000K REF : G3B3    R.ROBINSON 23-May-07                       
   2.13897470E+01  2.80525216E-02 -1.02801736E-05  1.68233474E-09 -1.01684503E-13                       
   4.91393515E+03 -9.02166334E+01 -1.45929061E+00  6.44203495E-02  2.48698363E-05                       
  -9.28973133E-08  4.58091634E-11  1.23251313E+04  3.37249315E+01                            
 C10H7OH                            200K-6000K REF : G3      R.ROBINSON 09-May-08 
   2.21393483E+01  2.93982444E-02 -1.07158216E-05  1.74762148E-09 -1.05386549E-13 
 
  -1.38716461E+04 -9.47546215E+01 -1.93343217E+00  6.96713698E-02  2.09740134E-05 
  -9.29937128E-08  4.67457679E-11 -6.18360395E+03  3.52838683E+01 
 C10H6O2                            200K-6000K REF : G3B3    R.ROBINSON 23-May-07 
   2.25799298E+01  2.71712679E-02 -1.00063568E-05  1.64285532E-09 -9.95210613E-14 
  -2.26918741E+04 -9.49418759E+01 -3.40769476E-01  6.68991807E-02  1.20446767E-05 
  -7.58721745E-08  3.85572616E-11 -1.53380749E+04  2.88094233E+01     
 C11H9 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
   0.21835987E+05 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.30429877E+05  0.48643127E+02 
 C11H9P 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
   0.31963483E+05 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.40557373E+05  0.48643127E+02 
 C11H10 
   0.20618816E+02  0.35127148E-01 -0.11830690E-04  0.18073995E-08 -0.10553787E-12 
   0.37591297E+04 -0.87356517E+02 -0.58980299E+01  0.10341065E+00 -0.76758084E-04 
   0.29731117E-07 -0.48860931E-11  0.11751871E+05  0.51882836E+02 
 C11H7O 
   0.27231269E+02  0.26040644E-01 -0.10377854E-04  0.18715858E-08 -0.12636018E-12 
   0.81121090E+04 -0.12050997E+03 -0.31465258E+01  0.10679716E+00 -0.10968916E-03 
   0.69037351E-07 -0.18363943E-10  0.18071491E+05  0.40402345E+02 
 C11H8O 
   0.21204625E+02  0.40753532E-01 -0.17960043E-04  0.35348363E-08 -0.25728495E-12 
  -0.64059942E+04 -0.87076491E+02 -0.44640862E+01  0.10410496E+00 -0.54663804E-04 
  -0.13750550E-07  0.16040985E-10  0.88328263E+03  0.46924361E+02 
 C11H9O 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
   0.11781769E+05 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.20375631E+05  0.48643127E+02 
 AC11H9O 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
   0.76891553E+04 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.16283017E+05  0.48643127E+02 
 BC11H9O 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
   0.11334813E+05 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.19928675E+05  0.48643127E+02 
 EC11H9O 
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   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
  -0.12317013E+04 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.73621602E+04  0.48643127E+02 
 OOC11H9P 
   0.72920350E 01  0.92502000E-01 -0.51686410E-04  0.13627090E-07 -0.13811480E-11 
   2.73164660E 04 -1.27437380E 01 -0.13889580E 02  0.17209840E 00 -0.17006600E-03 
   0.96018880E-07 -0.23732530E-10  0.31998940E 05  0.90588360E 02   
 C11H9OO 
   0.21204625E+02  0.40753532E-01 -0.17960043E-04  0.35348363E-08 -0.25728495E-12 
   0.20586909E+05 -0.87076491E+02 -0.44640862E+01  0.10410496E+00 -0.54663804E-04 
  -0.13750550E-07  0.16040985E-10  0.27876186E+05  0.46924361E+02 
 C11H10O 
   0.22727753E+02  0.43812073E-01 -0.17862083E-04  0.32897970E-08 -0.22638566E-12 
  -0.14723957E+05 -0.93448156E+02 -0.49985988E+01  0.11278945E+00 -0.72481576E-04 
   0.11138080E-07  0.52180972E-11 -0.63307633E+04  0.52433847E+02 
 OC11H9 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
  -0.72797280E+03 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11  0.78658888E+04  0.48643127E+02 
 HOC11H9 
   0.23571720E+02  0.29080150E-01 -0.94253200E-05  0.14375044E-08 -0.86432991E-13 
  -0.18046832E+05 -0.10355592E+03 -0.55627434E+01  0.10663281E+00 -0.86584861E-04 
   0.36316999E-07 -0.62652074E-11 -0.94529708E+04  0.48643127E+02 
 AC11H10O 
   0.22727753E+02  0.43812073E-01 -0.17862083E-04  0.32897970E-08 -0.22638566E-12 
  -0.11238992E+05 -0.93448156E+02 -0.49985988E+01  0.11278945E+00 -0.72481576E-04 
   0.11138080E-07  0.52180972E-11 -0.28457983E+04  0.52433847E+02 
  AC12H8   
   1.93183637E+01  3.90205238E-02 -1.63352587E-05  3.10041991E-09 -2.19199281E-13    
   2.15445149E+04 -8.32372261E+01 -2.81264181E+00  7.04681002E-02  3.15341955E-05    
  -1.05176189E-07  5.08713845E-11  2.88462829E+04  3.75755975E+01  3.12345526E+04    
 4C12H9   
   0.27231269E+02  0.26040644E-01 -0.10377854E-04  0.18715858E-08 -0.12636018E-12 
   4.31301090E+04 -0.11857997E+03 -0.31465258E+01  0.10679716E+00 -0.10968916E-03 
   0.69037351E-07 -0.18363943E-10  0.53089491E+05  0.42322345E+02 
 C12H10            
   0.24289017E 02  0.34006648E-01 -0.11722408E-04  0.17729298E-08 -0.96812532E-13 
   0.10287000E 05 -0.10802374E 03 -0.40739527E 01  0.86973310E-01 -0.42353613E-05 
  -0.64564460E-07  0.34150169E-10  0.19405965E 05  0.44741348E 02 
 1C12H10                            200K-6000K REF : G3B3    R.ROBINSON 19-Jun-08 
   2.35491970E+01  3.62502472E-02 -1.32050239E-05  2.14808308E-09 -1.29217696E-13 
   1.53538069E+04 -1.00965903E+02  1.35063575E+00  6.20091845E-02  5.01436081E-05 
  -1.20331553E-07  5.54414104E-11  2.30624723E+04  2.18769600E+01  
 C12H11                             200K-6000K REF : G3B3    R.ROBINSON 05-Feb-08 
   2.35238553E+01  3.63051378E-02 -1.32336643E-05  2.15367986E-09 -1.29592424E-13 
   1.49809324E+04 -1.01219624E+02  4.09837637E-01  6.49785912E-02  4.77231657E-05 
  -1.20899622E-07  5.64074436E-11  2.28951982E+04  2.61779929E+01 
 C12H12             
   2.53697727E+01  4.04594180E-02 -1.49784208E-05  2.46402471E-09 -1.49382751E-13    
  -8.20299732E+02 -1.14459910E+02  1.98405802E-02  6.20844325E-02  7.79624479E-05    
  -1.55438421E-07  6.85371120E-11  8.47514808E+03  2.80182938E+01  1.16544980E+04    
 C14H14          
   0.72920350E 01  0.92502000E-01 -0.51686410E-04  0.13627090E-07 -0.13811480E-11 
   0.10316730E 05 -0.11327380E 02 -0.13889580E 02  0.17209840E 00 -0.17006600E-03 
   0.96018880E-07 -0.23732530E-10  0.15032340E 05  0.92707360E 02  0.17216410E+05 
  AC14H10   
   0.26567127E+02  0.39790904E-01 -0.14577610E-04  0.23850396E-08 -0.14413090E-12    
   0.14850923E+05 -0.12283160E+03 -0.15665980E+01  0.69536302E-01  0.78609880E-04    
  -0.17056214E-06  0.78003880E-10  0.24656643E+05  0.33282196E+02  0.27674511E+05    
 PC14H10  
   0.26602474E+02  0.39769744E-01 -0.14572026E-04  0.23843296E-08 -0.14409548E-12    
   0.12132838E+05 -0.12266672E+03 -0.33646717E+01  0.85073271E-01  0.37531110E-04    
  -0.12664499E-06  0.61445705E-10  0.22019878E+05  0.40596218E+02  0.24908263E+05    
 C7H16                              200K-6000K REF : G3B3    R.ROBINSON 27-Feb-07 
   1.71920296E+01  4.14539747E-02 -1.51651024E-05  2.47160939E-09 -1.48771543E-13 
  -3.13651815E+04 -5.89840908E+01  1.49411476E+01 -1.83441607E-02  1.92992088E-04 
  -2.33818731E-07  9.00333961E-11 -2.75648103E+04 -3.14981036E+01 
 C7H13                              200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07 
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   1.66403664E+01  3.43972231E-02 -1.25294440E-05  2.03134169E-09 -1.21742286E-13 
   9.46402139E+03 -5.30039257E+01  9.66695103E+00  1.25596990E-02  1.03972230E-04 
  -1.43656988E-07  5.78758528E-11  1.33448708E+04 -7.18321426E+00 
 1C7H14                             200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07 
   2.04869566E+01  3.76992169E-02 -1.37946056E-05  2.24153654E-09 -1.34500804E-13 
  -1.68911870E+04 -7.06200500E+01  1.60772494E+01  1.61146132E-03  1.31069585E-04 
  -1.68141995E-07  6.58823035E-11 -1.33331433E+04 -3.62129019E+01 
 2C7H14                             200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07 
   1.62946407E+01  3.75501193E-02 -1.37047240E-05  2.22982210E-09 -1.34055742E-13 
  -1.69494880E+04 -5.48434002E+01  1.10167077E+01  2.81865403E-04  1.41659750E-04 
  -1.82794411E-07  7.20718900E-11 -1.30107170E+04 -1.51754558E+01 
 3C7H14                            200K-6000K REF : G3B3    R.ROBINSON 01-Mar-07 
   1.57526847E+01  3.81420729E-02 -1.39355391E-05  2.26856281E-09 -1.36423158E-13 
  -1.66980330E+04 -5.14409888E+01  1.00522701E+01  2.98530045E-03  1.37335816E-04 
  -1.79230419E-07  7.09483902E-11 -1.26852346E+04 -9.81436803E+00 
 1C7H15                             200K-6000K REF : G3B3    R.ROBINSON 02-Mar-07 
   1.87757382E+01  3.72035123E-02 -1.36134958E-05  2.21954080E-09 -1.33647354E-13 
  -6.95510130E+03 -6.52269276E+01  1.25072516E+01 -1.29516508E-02  1.96884688E-04 
  -2.52881776E-07  1.00893135E-10 -2.20512181E+03 -1.72426086E+01 
 2C7H15                             200K-6000K REF : G3B3    R.ROBINSON 02-Mar-07 
   1.91986718E+01  3.68720501E-02 -1.35092395E-05  2.20449215E-09 -1.32823611E-13 
  -8.36338230E+03 -6.62409810E+01  1.54320320E+01 -2.35043255E-02  2.12832009E-04 
  -2.63880433E-07  1.03753869E-10 -4.11174461E+03 -3.02929014E+01 
 3C7H15                             200K-6000K REF : G3B3    R.ROBINSON 02-Mar-07 
   1.81495153E+01  3.80195319E-02 -1.39431440E-05  2.27524196E-09 -1.37046980E-13 
  -7.95284499E+03 -5.97896206E+01  1.43358024E+01 -1.98137038E-02  2.03162883E-04 
  -2.52433995E-07  9.91131117E-11 -3.76391235E+03 -2.40746635E+01 
 4C7H15                             200K-6000K REF : G3B3    R.ROBINSON 02-Mar-07 
   1.89373102E+01  3.72576526E-02 -1.36618760E-05  2.22933930E-09 -1.34285083E-13 
  -8.11716615E+03 -6.42462492E+01  1.55726284E+01 -2.23878814E-02  2.07190459E-04 
  -2.56411153E-07  1.00664088E-10 -4.04671392E+03 -3.07705801E+01 
 C5H9        
   0.37042289E+01  0.39042108E-01 -0.18223191E-04  0.38031742E-08 -0.29095449E-12 
   0.17857311E+05  0.11002142E+02  0.37042289E+01  0.39042108E-01 -0.18223191E-04 
   0.38031742E-08 -0.29095449E-12  0.17857311E+05  0.11002142E+02 
 1C5H11                             200K-6000K REF : G3B3    R.ROBINSON 19-Jun-08 
   1.21220106E+01  2.84364383E-02 -1.02910526E-05  1.66173552E-09 -9.93163072E-14 
   1.22077977E+03 -3.36590974E+01  6.93079867E+00  1.07381051E-02  8.20981999E-05 
  -1.14226471E-07  4.62891827E-11  4.15909261E+03  7.36508569E-01 
 1C5H10            
  -0.26194715E+00  0.52521653E-01 -0.27921931E-04  0.52903104E-08  0.22517016E-12 
  -0.46336323E+04  0.28551981E+02 -0.26194715E+00  0.52521653E-01 -0.27921931E-04 
   0.52903104E-08  0.22517016E-12 -0.46336323E+04  0.28551981E+02 
 C6H11                              200K-6000K REF : G3B3    R.ROBINSON 12-May-08 
   1.40490015E+01  2.93908111E-02 -1.06889547E-05  1.73012907E-09 -1.03556777E-13 
   1.27697251E+04 -4.32903166E+01  7.39110577E+00  1.01303849E-02  9.86631131E-05 
  -1.38582018E-07  5.67748444E-11  1.63095012E+04 -1.63694229E-01 
 C6H12                              200K-6000K REF : G3B3    R.ROBINSON 12-May-08 
   1.37740168E+01  3.23524115E-02 -1.17758412E-05  1.90845558E-09 -1.14354808E-13 
  -1.19910313E+04 -4.51639875E+01  9.47768743E+00 -1.45943889E-03  1.27633398E-04 
  -1.64725402E-07  6.52184443E-11 -8.66661827E+03 -1.21673450E+01 
 C6H13                              200K-6000K REF : G3B3    R.ROBINSON 12-May-08 
   1.45710701E+01  3.39665373E-02 -1.23992076E-05  2.01336857E-09 -1.20773917E-13 
  -2.44926920E+03 -4.61250074E+01  9.96221886E+00  1.76854348E-03  1.23676086E-04 
  -1.61529444E-07  6.41535906E-11  9.30978164E+02 -1.16821636E+01 
 2C6H13                             200K-6000K REF : G3B3    R.ROBINSON 04-Jun-08 
   1.43598724E+01  3.35491015E-02 -1.21943169E-05  1.97936223E-09 -1.18824899E-13 
  -3.55655231E+03 -4.31834609E+01  1.06700712E+01 -7.08820296E-03  1.44732473E-04 
  -1.82081962E-07  7.13428152E-11 -1.34025754E+02 -1.20329429E+01 
 C8H16                              200K-6000K REF : G3B3    R.ROBINSON 19-Jun-08 
   1.98020647E+01  4.13898968E-02 -1.51156295E-05  2.46028532E-09 -1.47971777E-13 
  -1.98180374E+04 -7.40219156E+01  1.46318153E+01 -7.23507470E-03  1.74473079E-04 
  -2.18240351E-07  8.47591774E-11 -1.53378090E+04 -3.21363886E+01 
 C8H17                              200K-6000K REF : G3B3    R.ROBINSON 04-Jun-08 
   1.99038919E+01  4.45230697E-02 -1.64031177E-05  2.67992936E-09 -1.61438565E-13 
  -1.00772766E+04 -6.81527405E+01  1.54466788E+01 -8.75522049E-03  1.86131548E-04 
  -2.33509059E-07  9.12283870E-11 -5.72319179E+03 -2.94702395E+01 
 1C10H21                            200K-6000K REF : G3MP2B3 R.ROBINSON 19-Jun-08 
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   2.69792643E+01  5.09002132E-02 -1.85904821E-05  3.03114872E-09 -1.82621083E-13 
  -1.83058146E+04 -1.03958658E+02  2.15565615E+01 -1.97079655E-02  2.43572172E-04 
  -2.98314579E-07  1.15031334E-10 -1.26729329E+04 -5.53280156E+01 
 2C10H21             
   0.13470533E+02  0.80290854E-01 -0.39518403E-04  0.97089403E-08 -0.96419151E-12 
  -0.15685746E+05 -0.33952385E+02  0.29079616E+00  0.10640167E+00 -0.45561803E-04 
  -0.35957344E-08  0.54528122E-11 -0.11504166E+05  0.36831581E+02 
 3C10H21              
   0.13470533E+02  0.80290854E-01 -0.39518403E-04  0.97089403E-08 -0.96419151E-12 
  -0.15685746E+05 -0.33952385E+02  0.29079616E+00  0.10640167E+00 -0.45561803E-04 
  -0.35957344E-08  0.54528122E-11 -0.11504166E+05  0.36831581E+02 
 4C10H21               
   0.13470533E+02  0.80290854E-01 -0.39518403E-04  0.97089403E-08 -0.96419151E-12 
  -0.15685746E+05 -0.33952385E+02  0.29079616E+00  0.10640167E+00 -0.45561803E-04 
  -0.35957344E-08  0.54528122E-11 -0.11504166E+05  0.36831581E+02 
 5C10H21                            200K-6000K REF : G3MP2B3 R.ROBINSON 19-Jun-08 
   2.53320576E+01  5.19816695E-02 -1.88999290E-05  3.07318111E-09 -1.84823104E-13 
  -1.90309455E+04 -9.44791611E+01  2.00541677E+01 -1.82264070E-02  2.42000562E-04 
  -2.97642453E-07  1.15116287E-10 -1.34971611E+04 -4.68496909E+01 
 C10H22                             200K-6000K REF : G3MP2B3 R.ROBINSON 19-Jun-08 
   2.44359479E+01  5.37798374E-02 -1.92747269E-05  3.10516936E-09 -1.85568963E-13 
  -4.21122175E+04 -8.75997433E+01  2.21829472E+01 -2.08434192E-02  2.38368120E-04 
  -2.89524082E-07  1.11677093E-10 -3.76437569E+04 -5.66573146E+01 
 1C9H11                             200K-6000K REF : G3      R.ROBINSON 01-May-08 
   2.01253464E+01  3.39544364E-02 -1.24488961E-05  2.03581310E-09 -1.22932424E-13 
   9.80808429E+03 -8.18509643E+01  1.91621566E+00  4.66715275E-02  6.75582623E-05 
  -1.30639887E-07  5.80376488E-11  1.65264254E+04  2.08976724E+01 
 2C9H11                             200K-6000K REF : G3      R.ROBINSON 22-Apr-08 
   1.83794491E+01  3.45999957E-02 -1.27298452E-05  2.08359251E-09 -1.25822741E-13 
   1.74790161E+04 -6.69259597E+01  5.36291665E+00  1.81280438E-02  1.30279878E-04 
  -1.91020800E-07  7.94573309E-11  2.34210842E+04  1.24284940E+01 
 3C9H11                             200K-6000K REF : G3B3    R.ROBINSON 20-Jun-07 
   1.89656331E+01  3.37869607E-02 -1.23636786E-05  2.01605387E-09 -1.21416680E-13 
   1.66970707E+04 -7.11059151E+01  3.88078214E+00  3.30048899E-02  9.39094121E-05 
  -1.55591844E-07  6.70803124E-11  2.27102222E+04  1.64776031E+01 
 1C9H10                             200K-6000K REF : G3B3    R.ROBINSON 22-Apr-08 
   1.81249058E+01  3.24696892E-02 -1.18413013E-05  1.92769396E-09 -1.15997421E-13 
   5.25365017E+03 -7.09920747E+01  3.08905449E+00  3.38417912E-02  8.53571547E-05 
  -1.43596366E-07  6.18733556E-11  1.11871094E+04  1.59112579E+01 
 C9H9(T)                            200K-6000K REF : G3B3    R.ROBINSON 12-May-08 
   1.81120956E+01  3.01382784E-02 -1.09325842E-05  1.77664313E-09 -1.06854228E-13 
   3.21311876E+04 -6.88060877E+01  1.96017972E+00  4.28462408E-02  5.64127943E-05 
  -1.12860281E-07  5.06286454E-11  3.79927940E+04  2.19151760E+01 
 2C9H10                             200K-6000K REF : G3B3    R.ROBINSON 22-Apr-08 
   1.82404720E+01  3.21597958E-02 -1.17387160E-05  1.91040340E-09 -1.14909287E-13 
   7.33725444E+03 -7.03367784E+01  2.71720641E+00  3.40273426E-02  8.86276170E-05 
  -1.49886221E-07  6.49711012E-11  1.34032564E+04  1.91708004E+01  
 C9H12                              200K-6000K REF : G3B3    R.ROBINSON 12-Nov-07 
   1.86522630E+01  3.68024836E-02 -1.34769018E-05  2.19971236E-09 -1.32590770E-13 
  -8.42809806E+03 -7.27057393E+01  4.82394371E+00  2.42161569E-02  1.21943162E-04 
  -1.84028759E-07  7.70904630E-11 -2.33412955E+03  1.04635945E+01 
 N2                                                         REF : BURCAT 20/09/06 
   2.95257637E+00  1.39690040E-03 -4.92631603E-07  7.86010195E-11 -4.60755204E-15 
  -9.23948688E+02  5.87188762E+00  3.53100528E+00 -1.23660988E-04 -5.02999433E-07 
   2.43530612E-09 -1.40881235E-12 -1.04697628E+03  2.96747038E+00  
 AR   
   0.25000000E+01  0.00000000E+00  0.00000000E+00  0.00000000E+00  0.00000000E+00 
  -0.74537502E 03  0.43660006E 01  0.25000000E+01  0.00000000E+00  0.00000000E+00 
   0.00000000E+00  0.00000000E+00 -0.74537502E 03  0.43660006E 01 

 



 

 

 


