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Abstract We study the Hessian of the solutions of time-independent Schrödinger
equations, aiming to obtain as large a class as possible of complete Riemannian
manifolds for which the estimate C( 1

t +
d2

t2 ) holds. For this purpose we introduce the
doubly damped stochastic parallel transport equation, study them and make expo-
nential estimates on them, deduce a second order Feynman-Kac formula and obtain
the desired estimates. Our aim here is to explain the intuition, the basic techniques,
and the formulas which might be useful in other studies.
AMS subject classification. 60Gxx, 60Hxx, 58J65, 58J70.
Keywords. Heat kernels, weighted Laplacian, Schrödinger operators, Hessian for-
mulas, Hessian estimates.

1 Introduction

The probability distribution of a Brownian motion or a Brownian bridge are refer-
ence measures with which we make L2 analysis on the space of continuous paths
(the Wiener space) and its subspaces of the pinned paths. On the Wiener space,
these are Gaussian measures and are well understood. The theory of the probability
distributions of Brownian motion and Brownian bridges on more general manifolds
is less developed. These include elliptic and semi-elliptic diffusion in an Euclidean
space, with non-constant coefficients. For example we would like to describe the
tail behaviour of the measure, but how do we describe the set of path far away? In-
stead, we measure the size of the tails by checking whether a Lipschitz continuous
function f is exponentially integrable, or whether E(ec f 2

) is finite for a constant
c. In fact, a theorem of Herbst states that if a probability measure µ on Rn satis-
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fies the following logarithmic Sobolev inequality E( f 2 log( f 2)) ≤ c0E|∇ f |2, then

E(eε f 2
) ≤ e

ε

(1−c0ε) for any smooth function f : Rn → R with ‖ f‖L2(µ) = 1 where
ε is any number in (0,1/c0) and. Also if a mean zero function f is Lipschitz con-
tinuous with ‖ f‖Lip = 1, then E(eα f ) ≤ ec0α2

holds for any number α , On a path
or loop space, similar results hold [1]. There are many other applications of Log-
arithmic Sobolev inequalities, see e.g. M. Ledoux’s Saint Flour notes [12] and the
reference therein. To obtain such functional inequalities we make use of estimates
on the fundamental solutions of Kolmogorov equations.

Let M denote a connected smooth manifold with a complete Riemannian metric
g. Denote by (gi j) the inverse of the Riemmanian metric g = (gi j). There exists on
M a strong Markov process with Markov generator 1

2 ∆ where ∆ is the Laplace-
Beltrami operator which in local coordinates takes the form

∆ f (x) =
1√

detg(x)
∂i

(√
detggi j

∂ j f
)
(x).

This stochastic process is said to be a Brownian motion. If Z is a vector field we
denote by LZ Lie differentiation in the direction of Z so for a real valued func-
tion f , LZ f = d f (Z). Observe that any second order elliptic differential operator is
of the form 1

2 ∆ +LZ where ∆ is the Laplacian for the Riemannian metric induced
by the operator, so they are generators of Brownian motions (with possibly a non-
zero drift). In this article we are mainly concerned with gradient drifts, Z = 2∇h
where h : M→R is a smooth function. In coordinates, the operators are of the form
∑i, j ai, j(x) ∂ 2

∂xi∂x j
+∑k

∂

∂xk
, which is (locally) elliptic and is in general not strictly

elliptic.
Set ∆ h = ∆ +2L∇h, this is called the Bismut-Witten or the weighted Laplacian.

With respect to the weighted volume measure e2hdx, ∆ h is like a Laplacian. In par-
ticular, ∆ h = −(d + δ h)2 where δ h is the adjoint of d on L2(e2hdx). All three op-
erators, d,δ h and ∆ h, extend to acting on differential forms. Then d + δ h and all
its powers are essentially self-adjoint on C∞

K , the space of smooth compactly sup-
ported differential forms, for the details see [14]. The densities of the probability
distributions of the weighted Brownian motion are the weighted heat kernel. These
are the fundamental solution to the equation ∂

∂ t =
1
2 ∆ h. There is also a commutative

relation with which one can obtain gradient estimates for the weighted heat kernels
under conditions on the Ricci curvature (without involving their derivatives).

We introduce the notations. Let Ricx : TxM×TxM→R denote the Ricci curvature
and let R denote the curvature tensor. Let Ric]x : TxM→ TxM denote the linear map
defined by the relation: 〈Ric]x(u),v〉=Ricx(u,v). One of the novelties is to introduce
the symmetrised tensor Θ , see [13],

〈Θ(v2)v1,v3〉=
(

∇v3Ric]
)
(v1,v2)−

(
∇v1Ric]

)
(v3,v2)−

(
∇v2Ric]

)
(v1,v3), (1)

where v1,v2,v3 ∈ Tx0M, and to impose growth conditions on a bilinear map Θ h from
Tx0M×Tx0M to R instead of imposing conditions on |∇Ric] |. The bilinear form is
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defined by the formula

Θ
h(v2)(v1) =

1
2

Θ(v2,v1)+∇
2(∇h)(v2,v1)+R(∇h,v2)(v1), v1,v2 ∈ Tx0M.

We are particularly interested in adding a zero order potential and consider a time
independent Schrödinger equation, which is a parabolic partial differential equation
of the form

∂u
∂ t

= (
1
2

∆ +L∇h +V )u, (2)

where u : R×M→R is a real valued function. For simplicity the zero order potential
function V : M→ R will be assumed to be bounded and Hölder continuous and so
∆ +2L∇h +V is essentially self-adjoint on C∞

K ⊂ L2(M,e2hdx), the space of smooth
functions with compact supports.

Our objectives are to obtain global estimates for the Schrödinger semi-group
e(

1
2 ∆ h+V )t f where f is a bounded measurable function, for its gradient, and for its

second order derivatives in terms of the geometric data of the Riemannian mani-
folds. We will be also interested in such estimates for its fundamental solutions,
which we denote by ph,V (t,x,y,), or PV (t,x,y) if h vanishes identically or ph(t,x,y)
if V vanishes identically, and p(t,x,y) if both h and V vanish. Similar notation, with
capital P, e.g. Ph,V

t , will be used to denote the corresponding semi-groups.
The commutative relation we mentioned earlier is as follows: the differential

d and the semi-group e
1
2 ∆ h

commute on C∞
K , and consequently de

1
2 ∆ h

solves the
heat equation on differential 1-forms: ∂

∂ t φ = 1
2 ∆ hφ . If M = Rn this equation on

differential 1-forms is an equation on ‘vector-valued’ functions. Let us denote by
∇h,∗ the adjoint of ∇ on L2(e2hdx), then this equation becomes:

∂

∂ t
φ =

1
2

∇
h,∗

∇φ − 1
2

φ(Ric]−2∇∇h). (3)

To see this we observe that, if ∇∗ is the adjoint of ∇ on L2(dx), then there is the
Weitzenbock formula ∆ h =−∇∗∇φ−Ric](φ)+2L∇hφ , L∇hφ =∇φ(∇h)d(φ(∇h)+
dφ(∇h, ·) where ι∇h denotes the interior product. Also, for a differential 1-form φ

we apply the identity
∇

h,∗
φ = ∇

∗
φ −2ι∇hφ

to see that
∇

h,∗
∇·φ = ∇

∗
∇·φ −2ι∇h∇·φ .

Equation (3) inspired the study of the damped stochastic parallel translation

Wt : Tx0M→ Txt (ω)M

along a path xt(ω) which solves the stochastic damped parallel translation equation

DWt

dt
=−1

2
Ric]xt (Wt)+∇Wt ∇h, W0 = Id (4)
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Here Id denotes the identity map on Tx0M and

DWt

dt
:= //t(x·(ω))

d
dt

(
//−1

t (x·(ω))Wt
)

is the covariant derivative along xt(ω) and //t(x·(ω)) : Tx0M → Txt (ω)M denotes
the standard stochastic parallel translation and //−1

t (x·(ω)) : Txt (ω)M→ Tx0M is its
inverse.

Stochastic parallel translations along the non-differentiable sample paths of a
Brownian motion can be constructed by a stochastic differential equation on the or-
thonormal frame bundle. This goes back to J. Eells, K. D. Elworthy and P. Malliavin,
earlier attempts go back to K. Itô and M. Pinsky. M. Emery and M. Arnaudon stud-
ied parallel translations along a general semi-martingale [9]. The damped parallel
translation goes back to E. Airault [2]. The damped stochastic parallel translation
takes into accounts of the effect of the Ricci curvature along its path and unwind
it, leading to the magic well known formula: de

1
2 ∆ ht f (v) = Ed f (Wt(v)) for (xt) a

Brownian motion with the initial value x0. This holds for all compact manifolds and
for more general manifolds.

The global estimates we are after are of the form

∣∣∇2 p(t,x0,y0)
∣∣≤C

(
1
t
+

d2(x0,y0)

t2

)
, t ∈ (0,1], x,y ∈M. (5)

Such estimates (for h = 0, V = 0 and for compact manifolds ) were obtained in [23]
and were generalised to other types of manifolds we refer to the references in [13].
We should remark that adequate care must be taken when generalising estimates
from compact manifolds to non-compact manifolds. For example taking a localising
sequence of stopping times may not come for free and any technique involving
differentiating a stochastic flow with respect to its initial point will likely need the
additional assumption the strong 1-completeness [15]. See also [4], [22], [25], [10],
and [24].

Our goal is to establish these estimates for as large a class of manifolds as pos-
sible and extend them to the operators 1

2 ∆ +L∇h +V . If both V and h vanish, these
estimates are relevant for the study of the space of continuous loops and pinned
paths using the Brownian bridge measure, e.g. the probability measure induced by a
Brownian motion conditioned to return to a point y0 at time 1. Naturally the Brow-
nian motions with the symmetric drift ∇h, which we refer as an h-Brownian mo-
tion, are also candidates for such studies. We recall, that the h-Brownian bridge is a
Markov process xt on [0,1) with the Markov generator

1
2

∆
h +∇ log p(1− t,x,y0),

and limt→1 xt = y0 where y0 is the terminal value. Observe that the corresponding
damped parallel translation would be
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DWt

dt
=−1

2
Ric]xt (Wt)+∇Wt ∇h+∇Wt ∇ log p(1− t,xt ,y0), t < 1.

Gradient estimates on the semi-group associated with the Brownian bridge will
naturally involve the second order derivative of log p(1− t,x,y0). It is clear that
the small time asymptotics of the Hessian are relevant, and estimates of the type
(5) appear to be essential for analysing the Brownian bridge measure and useful
for the L2 analysis of loop spaces. In this paper we explain the main formulas and
constructions rom [13] that leads to these estimates.

2 Summary of Results

The following is summary of some results from [13].

(a) We extend estimate (5) to a more general class of manifolds replacing the linear
growth condition on |∇Ric |op by a linear growth condition on Θ , Θ being a
symmetrised tensor obtained from ∇Ric] after taking into accounts of the effects
of ∇h defined (1).

(b) Our proof is based on an elementary Hessian formula which will then lead to
an integration by parts type Hessian formula. For these formulas we introduce a
doubly damped stochastic parallel transport equation which is defined using Θ . It
is natural to call these solutions ‘doubly damped stochastic parallel translations’.
We denote the solutions by W (2)

t , see Lemma 1. We have the formula:

Hess(Ph
t f )(v2,v1) = E [∇d f (Wt(v2),Wt(v1))]+E

[
d f
(

W (2)
t (v1,v2)

)]
.

Here Wt denotes the damped stochastic parallel translation defined by (4). The
Second Order Feynman-Kac Formula which does not involve the derivative of f
is given in Theorem 1.

(c) Such estimates will be also extended to the symmetric operators 1
2 ∆ h and 1

2 ∆ h +
V . Both operators are essentially self-adjoint on C∞

K . By unitary transformations
the drift term and the potential term can be treated almost exchangeably, however
the drift and the zero order term do behave differently. For example we assume
that h is smooth and pose no direct assumptions on its its growth at the infinity
while the zero order term V is only Hölder continuous and is assumed to be
bounded. We obtain a second order Feynman-Kac formula, see Theorem 1, the
Hölder continuity of V is needed and is used to offset singularities in some of
the integrals of the formulas. The modified doubly damped equation involves Θ h

instead of Θ itself.
(d) These estimates are refined for a subclass of manifolds with a pole, for which

we make use of and obtain some nice estimates in terms of the semi-classical
Brownian bridges, a more careful study of the semi-classical Brownian bridge
measure can be found in [17]. See also [18] for generalised Brownian bridges
and [20] for gradient estimates.



6 Xue-Mei Li

3 Key Ingredient

Let X(e) be smooth vector field on M given by an isometric embedding φ : M→Rm

and so X(e) is the gradient of the real valued function 〈φ ,e〉 where e∈Rm. If {ei} is
an o.n.b. of Rm, this induces a family of vector fields Xi(x) where Xi(x) = X(x)(ei).

Let Ft(x,ω) denote the solution to the gradient SDE

dxt =
m

∑
i=1

Xi(xt)◦dBi
t +∇h(xt)dt = X(xt)◦dBt +∇h(xt)dt

where ◦ denotes Stratonovich integration and Bt , Bt = (B1
t , . . . ,B

m
t ), is an Rm-valued

Brownian motion on a filtered probability space with the usual assumptions. Then
Ft(x0), the solution with the initial value x0 ∈ M, is a Brownian motion with the
initial value x0.

If xt is a semi-martingale, the stochastic damped parallel translation //t(x·(ω))
along xt(ω), which is also denoted by //t , allows us to bring a vector in the tangent
space of a solution path at time 0 to its tangent space at time t, to differentiate it
there and to bring it back to time t by the inverse parallel translation //−1

t . If (xt) is a
Brownian motion with the initial value x0, the damped stochastic parallel translation
Wt along its sample paths, where

DWt

dt
=−1

2
Ric]xt (Wt)+∇Wt ∇h, W0 = Id,

compensates the effect of the Ricci curvature in equation (3) and unwind it, leading
to the magic well known formula,

de
1
2 ∆ ht f (v) = E [d f (Wt(v))] ,

which holds trivially for compact manifolds and for manifolds with Ric−2Hessh
bounded from below and for more general manifolds.

For the second order derivatives of the fundamental solution of the heat ker-
nel, we ought to differentiate Wt with respect to its initial data, i.e. we differentiate
//−1

t (x·)Wt(x0) which is a map from M to the space of linear maps which we denote
by L (Tx0M;Tx0M).

We introduce the doubly damped stochastic parallel translation equation, whose
solution we call doubly damped stochastic parallel transports/translations. Unlike
damped parallel translations, the doubly damped ones involve genuine stochastic
integrals (unless the curvature vanishes) and it is a challenge to obtain exponen-
tial estimates. We also recall that the damped parallel translations are conditional
expectations of the spatial derivative of the solution to the gradient SDE. The dou-
bly damped ones are obtained by differentiating the damped parallel translations,
followed by taking conditional expectations. The beauty of it is that it satisfies the
doubly damped stochastic parallel translation equation:
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Dvt =(−1
2

Ric+Hessh)](vt)dt

+
1
2

Θ
h(Wt(v2))(Wt(v1))dt +R(d{xt},Wt(v2))Wt(v1).

(6)

We also introduce the notation d{xt}, by which we mean integration with respect
to the martingale part of {xt}, see [8, sec. 4.1] for detail. This allows us to give
statements on a h-Brownian motion that is independent of its representation as a
solution to a specific stochastic differential equation. In particular we may use any
of the two canonical representations: (1) xt = π(ut) where ut is the solution to the
canonical SDE on the orthonormal frame bundle

dut = H(ut)◦dBt +hut (∇h(π(ut)) dt,

where hu denotes the horizontal lift map at a given frame u, and π : OM→M takes
a frame, a point of OM, to its base point. (2) xt is the solution of a gradient SDE. If
ut is the solution to the canonical SDE on the orthonormal frame bundle, then d{xt}
is interpreted as ut dBt . If (xt) is the solution to to a gradient SDE driven by X then
d{xt} is interpreted as X(xt)dBt .

Lemma 1. Suppose that the gradient SDE is strongly 1-complete and suppose
that v1,v2 ∈ Txt M and x0 ∈ M and (xt) is the solution to the gradient SDE. Let
W (2)

t (v1,v2) denote the solution to the following covariant differential equation (the
doubly damped stochastic parallel translation equation):

Dvt =(−1
2

Ric+Hessh)](vt)dt

+
1
2

Θ
h(Wt(v2))(Wt(v1))dt +R(d{xt},Wt(v2))Wt(v1),

v0 = 0.

Then W (2)
t (v1,v2) is the local conditional expectation of ∇v2Wt(v1) with respect to

the filtration F x0
t := σ{xs : s≤ t}. If furthermore the latter is integrable, then

W (2)
t (v1,v2) = E

{
∇v2Wt(v1)

∣∣∣F x0
t

}
.

The proof for the lemma consists of stochastic calculus involving D
dsWt( j(s))

where j is a parallel field with j(0) = v2, along the normalised geodesic γ with the
initial condition x0 and the initial velocity γ̇(0) = v1. Observe also that

∇v2Wt(v1) =
D
ds
|s=0Wt( j(s)).

Strong 1-completeness of an SDE is a concept that is weaker than strong com-
pleteness, by the latter we mean the existence of a global solution to the SDE which
is continuous with respect to the initial value. Let p = 1,2, . . . ,n where n is the di-
mension of the manifold. Roughly speaking, an SDE is strongly p-complete if for
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a.s. every ω , and for all t, Ft(x,ω) is continuous with respect to the initial point x
when x is restricted to a sub-manifold of dimension p (or to a smooth C1 curve if
p = 1). The first example of an SDE which is complete (i.e. its solution from any
initial point has infinite life time) and which is not strongly complete was given by
K.D. Elworthy, prior to which it was generally believed that the two problems are
equivalent. The concept of strong p-completeness was introduced in [14, 15] where
we also give examples of strongly p− 1-complete SDEs which are not strongly
p-complete and n > 2 and p ≤ n. For n = 1 completeness is equivalent to strong
completeness, similarly for n = 2, strong completeness is equivalent to strong com-
pleteness. In [19], a non-strongly complete SDE on R2 is given: it has one single
driving linear Brownian motion and is driven a smooth bounded driving vector field.
We emphasise that, due to the fact that the exit time of Ft(x,ω) from a geodesic ball
(even one with smooth boundary) is not necessarily continuous with respect to the
initial point x, and it is not trivial to solve the strong 1-completeness by localisation.
The strong 1-completeness for gradient SDEs was specially studied in [13]. See also
the books [5] and [11].

Remark 1. If the gradient SDE is strongly 1-complete, s 7→ |Wt(γ̇(s))| is contin-
uous in L1 and E|Tγ(s)Ft | is finite, we know that for all f ∈ BC1, d(Ph

t f )(v1) =
Ed f (Wt(v1)), [13, 15, 6]. From this we see immediately that

|d(Pt f )|L∞
≤ |d f |∞ E

(
e
∫ t

0 ρh(xs)ds
)
,

where ρh(x) = sup|v|=1,v∈TxM{− 1
2 Ric(v,v) +Hess(h)(v,v)}. A more relaxed con-

dition for this to hold can be obtained, but most of the assumptions here will be
needed later. If ρh is bounded by −K then we see immediately on direction of the
characterisation for the Ricci curvature to be bounded below by K, by taking h = 0
in the earlier estimate,

|d(Pt f )|L∞
≤ |d f |∞ e−Kt .

We give below the second order analogue. Denote by Tx0Ft(v0) the derivative
flow of Ft(x), it solves the equation

dVt = (∇X)xt (Vt)◦dBt +(∇2h)xt (Vt)dt,

V0 = v0.

Useful moment estimates on the derivatives flows for non-compact manifolds can be
found in [16]. Recall that j(s) is a parallel field along the geodesic γ with γ̇(0) = v1.
with the initial value j(0) = v2.

Lemma 2. Suppose that Ric−2Hess(h) is bounded from below and that the gra-
dient SDE is strongly 1-complete. Suppose also the statements (a) and (b) below
hold.

(a) for every s, E|Tγ(s)Ft | and E|∇T Ft (γ(s))Wt | are finite.

(b) s 7→ E{ D
dsWt( j(s))

∣∣F γ(s)
t } is continuous in L1(Ω);
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Then for all f ∈ BC2,

Hess(Ph
t f )(v2,v1) = E [∇d f (Wt(v2),Wt(v1))]+E

[
d f
(

W (2)
t (v1,v2)

)]
. (7)

From this lemma we immediately obtain the following estimate:∣∣∣Hess(Ph
t f )
∣∣∣
L∞

≤ |∇d f |∞ E
(

e2
∫ t

0 ρh(xs)ds
)
+ |d f |L∞

E
∣∣∣W (2)

t

∣∣∣ .
It is clear that estimation on E

∣∣∣W (2)
t

∣∣∣ will be useful, this is given in [13] and
which we do not include here. As we shall see, to obtain Hessian estimates of the

form (5), we will need to obtain exponential integrability of
∣∣∣W (2)

t

∣∣∣2, such estimates
will be given shortly after we explain why this is so.

The following are the basic assumptions. [C1.]

(a)Ric−2Hess(h)≥−K;
(b)sups≤t E(‖W (2)

s ‖2)< ∞;
(c)for all f ∈ BC2(M;R), v1,v2 ∈ Tx0M, the elementary Hessian formula (7) holds.

For the Schrödinger equation we first set, for r < t and x0 ∈M,

Vt−r,t = (V (xt−r)−V (x0))e−
∫ t
t−r [V (xs)−V (x0)]ds. (8)

Set also,

Nt =
4
t2

∫ t

t
2

〈X(xs)dBs,Ws(v1)〉
∫ t

2

0
〈X(xs)dBs,Ws(v2)〉. (9)

Theorem 1 (Second Order Feynman-Kac Formula). Suppose that C1 holds. Let
V be a bounded Hölder continuous function. Then for any f ∈Bb(M;R),

HessPh,V
t f (v1,v2) =e−V (x0)tE [ f (xt)Nt ]+ e−V (x0)tE

[
f (xt)

2
t

∫ t/2

0
〈X(xs)dBs,W

(2)
s (v1,v2)〉

]
+ e−V (x0)t

∫ t

0
E
[

f (xt)
2Vt−r,t

t− r

∫ (t−r)/2

0
〈X(xs)dBs,W

(2)
s (v1,v2)〉

]
dr

+ e−V (x0)t
∫ t

0
E [ f (xt)Vt−r,tNt−r]dr.

(10)

For h=V = 0, a version of the Hessian formula was first given in [6] followed by
another in [3]. A version of the Hessian formula for h≡ 0 and V 6= 0 was also given
in [6], however no proof was given. The doubly damped stochastic parallel transla-
tion equations were not present in either papers, nor were any extensive estimates
given. Hessian formula and estimates for non-linear potential, on linear space, were
given in [21]. A formula for the Laplacian of the semigroup Pt f can be found in [7].

Corollary 1. We assume V (x0) = 0. Then,



10 Xue-Mei Li

Hess ph,V (t,x0,y)

= Hess ph
t (x0,y)+

∫ t

0

∫
M

V (z)Hess ph(t− r,x0,z)ph
r (z,y)E[e

−
∫ r

0 V (Y r,z,y
s )]dzdr,

where Y r,z,y
s is the h-Brownian bridge with terminal value r, initial value z and ter-

minal value y.

Finally we indicate how to obtain estimates from these formulas. Let us take
V = 0 for simplicity, so the formula reads:

HessPh
t f (v1,v2) =E [ f (xt)Nt ]+E

[
f (xt)

2
t

∫ t/2

0
〈Xi(xs)dBs,W

(2)
s (v1,v2)〉

]
.

(11)
We then choose f (x) to be the the fundamental solution ph(t,x,y0), so Ph

t f (x0,y0) =
p(2t,x0,y0). In particular,

Hess ph(2t,x0,y0)(v1,v2)

ph(2t,x0,y0)
=E
[

p(t,xt ,y0)

p(2t,x0,y0)
Nt

]
+E

[
p(t,xt ,y0)

p(2t,x0,y0)

2
t

∫ t/2

0
〈X(xs)dBs,W

(2)
s (v1,v2)〉

]
.

(12)
The right hand side can then be estimated. Since |Wt | is bounded by a deterministic
function (when ρh is bounded above), the first term of the right hand side is easier
to estimate. Let us work with the second term,

1
p(2t,x0,y0)

E
(

p(t,xt ,y0)
2
t

∫ t/2

0
〈X(xs)dBs,W

(2)
s (v1,v2)〉

)
≤ 2

t
E
(

p(t,xt ,y0)

p(2t,x0,y0)
log

p(t,xt ,y0)

p(2t,x0,y0)

)
+

2
t

logE
(

exp
(∫ t/2

0
〈Xi(xs)dBs,W

(2)
s (v1,v2)〉

))
≤2

t
sup
y∈M

log
p(t,y,y0)

p(2t,x0,y0)
+

2
t

logE
(

exp
(∫ t/2

0
〈Xi(xs)dBs,W

(2)
s (v1,v2)〉

))
.

This can then be refined by heat kernel estimates and by estimates on E

(
e
∣∣∣W (2)

s (v1,v2)
∣∣∣2),

we illustrate the latter below. The other terms can be treated similarly.

Lemma 3. Suppose that |ρh| ≤ K, ‖Rx‖ ≤ ‖R‖∞, and ‖Θ h‖2 ≤ c+δ r2 for δ suf-
ficiently small. Set C1(T,0) = 1,

C1(T,K) = sup
0<s≤3KT

1
s
(es−1), α2(T,K,‖R‖∞) =

1
49n2‖R‖2

∞C1(T,K)
.

Then there exists a universal constant c such that for unit vectors v1,v2 ∈ Tx0M, and
for any α ≤ α2(T,K,‖R‖∞),
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Eexp
(

αγ|W (2)
t (v1,v2)|2

)
≤ ce2αγ

√
Eexp

(
4t γα

∫ t

0
e3Ks‖Θ h‖2

xsds
)

≤ ce
2γ

49n2‖R‖2∞

√
Eexp

(
4tγ

49n2‖R‖2
∞C1(t,K)

∫ t

0
e3Ks‖Θ h‖2

xs ds
)
.

At this stage we must choose an optimal condition on the growth of |Θ h| at the
infinity and estimate the exponential integrability of the radial distance function.
The condition we imposed is linear growth, with the linear part sufficiently small
(or we may compensate the size of the linear part by taking t in a small interval
[0, t0]). With these estimates we conclude this paper, and invite the interested reader
to consult [13] for technicalities and further results. There we also studied the class
of manifolds with a pole using semi-classical bridges. The use of semi-classical
bridge for derivatives estimates is novel. See also [17]. Finally we pose the following
open question. We know that a bound of the form e−Kt on Pt characterises the lower
boundedness of a Ricci curvature. Elworthy asked me whether I can use equation
(7) and obtain some characterisation for manifolds. Let me make precise a question
here.

Open Problem. For f ∈ BC2, by Lemma 2,∣∣∣Hess(Ph
t f )
∣∣∣
L∞

≤ |∇d f |∞ E
(

e2
∫ t

0 ρh(xs)ds
)
+ |d f |L∞

E
∣∣∣W (2)

t

∣∣∣ .
If the Ricci curvature is bounded from below by K, we have∣∣∣Hess(Ph

t f )
∣∣∣
L∞

≤ |∇d f |∞e−2Kt + |d f |L∞
E
∣∣∣W (2)

t

∣∣∣ .
Can we characterise the class of complete Riemannian manifolds, among those
whose Ricci curvature is bounded from below by K and whose sectional curvature
and symmetrised tensor Θ h are bounded?
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