Linear ultrafast dynamics of plasmon and magnetic resonances in nanoparticles
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In this study we present an analytical description of the ultrafast localized surface plasmon and
magnetic resonance dynamics in a single nanoparticle (Ag or Si, respectively), driven by an ultrashort
(fs-timescale) Gaussian pulse. Three possible scenarios have been found depending on the incident
field, i.e. pulse duration much shorter, similar and much longer than the localized surface plasmon
resonance (LPSR) lifetime. A rich physics arises for Tpuise < TLsPR, €ven in the linear regime. The
surface plasmon dynamics is manifested as (i) a temporal delay of the surface plasmon excitation
with regard to the freely propagating pulse and (ii) as a negative exponential tail after the exciting
pulse is over. In addition, for sub-fs pulses clear oscillations in the near-field decay have been
observed. A similar scenario has been observed considering a non-absorbing Si sphere. Nanoparticle
resonance dynamics may lead to a wealth of new phenomena and applications in nanophotonics
such as multipole order resonances interference, pulse induced delay or temporal shaping on the fs-
scale, high harmonic generation, attosecond near-field pulse sources and electron acceleration from

metasurface or 3D engineered nanostructures.

I. INTRODUCTION

Nanoplasmonics world is built around the fundamen-
tal concept of the collective resonant response of the con-
duction electrons of a nanostructure, known as plasmon
resonances, induced by an incident electric field. Optical
properties of plasmonic nanoparticles, such as their large
optical cross sections and the enhancement of the optical
near-field in sub-wavelength regions, are well known in
the literature®2.

The first theories®® of light interacting with small
objects (called later on plasmonics) based on classical
electrodynamics go back more than one century ago.
However, recent developments in nano-fabrication tech-
niques, high-sensitivity single particle optical character-
isation techniques, and fast numerical modelling tools
for simulating complex nanostructures, have led to an
increasing interest of the scientific community. This is
mainly due to the huge number of applications nanoplas-
monics can offer”®. These range from solar cells ef-
ficiency improvement®!?, to surface enhanced Raman
spectroscopy!!, sub-diffraction photon confinement!?1!3,
bio-sensing'4'®, non linear phenomena'®, nano-antenna
for light-emitting devices!”'?, and quantum cascade

lasers20,

Silver and gold are the obvious choice among metals for
many plasmon-based applications in the visible, because

of the very narrow resonance. Moreover, plasmonic exci-
tation can be also obtained in the far infrared zone using
doped semiconductors?':2? or in the ultraviolet zone using
aluminium or silicon, in particular, the latter offers the
possibility to excite ultraviolet long-range surface polari-
tons in extremely thin films?3. However, metals present
high non-radiative losses that lead to unwanted heating
limiting some of their applications in photonics. Luckily,
even if it is well known that interaction of the magnetic
field part of the light with matter is much weaker than
the electric field one??, lately, plasmonic-like resonances
have been shown also in dielectrics. Indeed, nanoparticles
made of high-refractive-index semiconductors (such as
germanium, tellurium, GaAs, AlGaAs, GaP, and silicon),
do not suffer from large intrinsic absorption at the vis-
ible, infrared, and telecom frequencies, thereby strongly
attracting the attention and emerging as a promising al-
ternative to plasmonic nanostructures for nanophotonic
applications?®:26.

Inspired by the work of Garcia-Etxarri et al.?” on dipo-
lar magnetic resonances, as well as by the first theoret-
ical and experimental demonstration of magnetic reso-
nance of Si nanoparticles in the visible and in the in-
frared range?®2%, substantial effort has been put into in-
vestigating the (multi-order) resonant properties of high-
refractive index nanoparticles®® 36, coining indeed the
term of magnetic light?”. The peculiar properties of
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FIG. 1. (a) Scheme of the idea: a 40 nm diameter Ag nanoparticle placed in the beam waist of an incident Fourier-limited
Gaussian pulse in the long wavelength limit (A > d = 2a) under paraxial approximation. In the beam waist the electric field
is polarized along the z-axis. (b) Plane wave extinction efficiency of a 40 nm silver particle, computed considering radiative
correction effect. (c)(d)(e) Normalized spectra of the laser pulse (|Einc| in red) centred at Apspr = 369 nm having a bandwidth
bigger, similar or smaller compared to the LSPR one, considering pulse duration respectively of 0.5 fs, 5.4 fs (7spr) and 50 fs.

such magnetic resonances, achieved with non-magnetic,
low-absorptive nanostructures, have been explored in
a variety of fields: metamaterials®® 40, metasurfaces*!,
nanoantennas®>*243, Fano resonances**®, and surface-
enhanced spectroscopies®4?. Moreover, it has been
proven the possibility to selectively tune the magnetic
and electric dipole resonances in Si nanoparticles by
changing their shape and aspect ratio and to calculate
the scattering efficiencies of arbitrary shaped nanopar-
ticles in the discrete dipole approximation*®. The sin-
gle Si nanoparticle dipole scattering, computed taking
into account radiation correction terms in the magnetic
dipole polarizability, has been calculated and found to
be in agreement with experimental scattering spectrum
of laser-printed nanoparticles in a dark-field microscopic
setup49.

Recently, a different approach to nanophotonics has

also emerged, considering all-dielectric metamaterials as
completely transparent building blocks®®. In these ones,
light does not couple to plasmons or optical phonons,
thus overcoming the critical issue of irreversible heat dis-
sipation that was limiting many practical device applica-
tions.

Despite the intense research done in the field, most
of these studies on plasmonics and magnetic light are
limited to the monochromatic, continuous wave regime.
Nonetheless, in the last decades, due to the develop-
ment of ultrashort (fs-timescale) laser pulses, a lot of
attempts have been made to combine ultrashort laser
pulses with nanostructures, generating the fast expand-
ing field of ultrafast nanoplasmonics. In the latter, the
key point is the control of the strong-field enhancement
localized in space on the nanometer scale and in time
on the fs and sub-fs scale, either in the linear or non-



linear regime. Different studies have been carried out,
for example, on ultrafast fs->' and as-microscopy®?°3
or photoscopy®®, on sub-fs plasmon dynamics in ta-
pered waveguides®®, on nanowires®®®°, and on silver
nanoparticles®®6!. Others new area of research with in-
creasing interest due to strong-field phenomena are high-
order harmonic generation (HHG)®2 68 hard X-ray pro-
duction from gold nanoplasma enhanced by prechirped
ultrafast laser pulses®®, real-space coherent manipulation
of electrons motion in single tunnel junction”™, and sur-
face plasmon-based particle acceleration” 7.

Moreover, the surface plasmon propagation, the near-
field and the far-field scattered from planar surface de-
fects have been extensively studied by Sanchez-Gil and
colleagues™7,

However, an analytical description of the fields is still
missing for nanoparticles. Experiments involving ul-
trafast pump-probe techniques and microscopy®’®2 are
ahead of the theory, that mainly relies on the inadequate
use of the physics of bulk material in order to explain
nanoparticles or thin films properties and response. For
example, Makarov and colleagues®' recently showed the
possibility to tune the magnetic optical response of a 210
nm dielectric nanoparticle by ultrafast photoexcitation
of dense electron-hole plasma, by changing the laser flu-
ence. On the other hand, even the theory of the simplest
case is unknown, i.e. the time dependence of near and
far-field linearly induced in a small sphere by an ultrafast
pulse.

Here we will address the latter configuration which, as
we will see, is particularly interesting when plasmonic or
magnetic resonances are driving the physics. In addi-
tion, there are many situations where nonlinear optical
effects, coming from tight focus of high laser intensities
in nanoparticles, are just a correction of few percents to
the optical absorption®%:82; this incidentally reveals the
growing interest in this field and that the physics still
relies on the linear response in most common situations.

We think that ultrafast dynamics is insightful, espe-
cially for the case of lower laser intensities or unfocused
beams, below the fluence threshold for two-photon ab-
sorption. In this regard, we limit our analysis to the
linear regime, presenting here an analytical description
in time of the dynamics of a single nanoparticle response
to an ultrafast driving pulse. Of course, it will be inter-
esting to extend this study to the nonlinear case.

In literature, spatially homogeneous monochromatic
electric fields are usually considered. In this scenario the
well known classical equations®? for the optical properties
of a single metal particle and the near-field enhancement
are calculated considering plane waves.

In this article we show the response on a fs-timescale of
a single nanoparticle to a few-cycle Fourier-limited Gaus-
sian ultrashort pulse in the long-wavelength limit. We
consider the two cases of a 40 nm diameter silver sphere
in the visible and a 460 nm diameter non-absorbing sili-
con sphere in the near-IR.

In the next sections we will calculate from the single

Ag particle the extinction curve (see Fig. 1b), the local-
ized surface plasmon resonance (LSPR) lifetime®?, that
results to be of 5.4 fs. We will compute both analyt-
ically and numerically the near-field enhancement con-
sidering a driving pulse centred at a wavelength in the
range 200 to 800 nm, with a bandwidth much smaller,
comparable or broader than the LSPR curve (of time
duration 7puse = 50 fs, 5.4 fs and 0.5 fs, respectively).
We will then observe the ultrafast relaxation dynamics of
the resonance-induced near field enhancements and ver-
ify that a similar scenario happens in the bigger Si parti-
cle, solving on the fs-timescale the electric and magnetic
multipole particle response by Mie theory.

II. SILVER NANO-PARTICLE IN DIPOLE
LIMIT

Here we present the results concerning the situation
described in Fig. la. A Fourier-limited fs Gaussian pulse
impinges on a single 40 nm diameter silver sphere. We
solve this problem in the long wavelength limit, i.e. when
ka < 1 (k = 27/X is the wavevector, A is the wave-
length and a is the particle radius). Silver is described
by a Drude-Sommerfeld model, the dielectric function as
function of the probing frequency w reads

w2

- (1)

51(("'}) =€ UJ2+’L.UJ’)/’
where the dielectric function at infinite frequency, e, =
5, accounts for net contribution of positive ions. The
plasma frequency hw, = 8.9 eV is related to the effec-
tive mass of the electron m* and the electron density
N, through w, = (N.e?/egm*)'/2. The relaxation rate
describes the effective electron scattering rate, with a cor-
responding relaxation time y~! = 17 £s8°.

We have considered an incoming pulse polarized along
the z-axis and propagating along z. Such pulse is a so-
lution of the Helmholtz wave equation

V2E + k’E =0, (2)

with k£ = |k| = w/c. By using the paraxial approxima-
tion, the pulse can be written as the product of a spatial
and a temporal parts

E(I‘, T) = Espace(r)Etime (T) (3)

Here Egpqce represents the solution of the paraxial
Helmholtz equation, that is a gaussian (T'E Mgy mode)
wave propagating along z and polarized along z. It is
worth to remark that, by considering the nanoparticle to
be placed in the beam waist, the beam spot size is much
bigger than the particle diameter; in other words we can
consider the particle to be on the axis of the gaussian
pulse (i.e. having a radial coordinate p ~ 0) and hence
the pulse amplitude has constant value Ey over the vol-
ume of the particle. In the adopted approximation, the



spatial part of the solution can be considered to be a
plane wave

Espace(r) = Eye**x, (4)

where E is a constant. The temporal part is given by a
pulse with gaussian time profile of the form

Etime (T) = efoép'rzefiwo'r7 (5)

where wg is the central pulse frequency and o, is re-
lated to the pulse duration 7pyse, here in the range 0.5
to 250 fs, by ap = 41n(2)/7§ulse. The values of the pulse
duration we consider cover the range of the state of the
art laser pulses for pump-probe experiments. Such values
are useful to study the collective charge excitation and
dephasing (1-10 fs), the non-thermal electron distribution
effects and the e — e (or e — h in semiconductor) scatter-
ing (100 fs range)®2. In addition, we found no physical
behaviour variation for longer or shorter pulses than the
respectively longest or shortest cases here considered.

The next step is to expand the temporal part in Fourier
components:

+oo
Fyime(7) 1/ £(w)e= " du. (6)

= % -
For each frequency, the incident field on the small sphere
becomes

E(r,w) = Epé(w)x. (7)

The solution of an incident harmonic and uniform field
on a small sphere it is well known!? and it is obtained
from the electrostatic approximation. In fact, it reduces
to the solution of the Laplace equation of the potential
P

V2P =0, (8)

where the electric field is given from the potential as E =
—V©®. The solution of the internal field has the following
form (see appendix):

352
E (w) =E(r,w)— 2
1(W) (r,w) 81(&]) + 2e9
(w—wp)?
N 3e2 %, (9)
O[p IS =+ 252 — w(wijjl’y)

where &5 is the background dielectric constant, which for
simplicity will be considered to be air (e = 1). The
time response can be easily recovered thanks to the anti-
Fourier transform of Eq. (9), as showed in the appendix.

The induced dipolar moment by the field E(w) has
value p = gge20’(w)E(w), where « is the polarizabil-
ity. The electrostatic polarizability o can be easily
obtained!'® and represents a good approximation to « in
the case of a small sphere:

3 61(&1) — &9

e1(w) + 2e5 (10)

a®(w) = 4rega
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FIG. 2. Color-maps showing the E-field enhancement
(|E1|/Eop) inside the 40 nm Ag sphere on a ultrafast timescale.
The plasmon resonance is excited with a Gaussian Fourier-
limited pulse centered at Ao with pulse duration of (a) 0,5 fs,
(b) 5.4 fs and (c) 50 fs. The dashed with lines represent the
resonance wavelength Arspr, while the solid white lines show
the pulse bandwidths.

The electrostatic polarizability can be further improved
considering the radiative correction®3887. In fact, im-
posing that the particle polarizability has to satisfy the
optical theorem (see appendix), we obtain a more accu-
rate expression that reads

(11)

From Eq. (11) it is straightforward to obtain the extinc-

tion cross section for a small particle as'?®3
k
Oext = afm[a(w)] , (12)

with g the vacuum permittivity. For example, using
the previous formulas, we calculated the extinction effi-
ciency shown in Fig. 1b. We can appreciate a FWHM of
0.245 eV, corresponding to a plasmon lifetime 7 5pr =
5.4 fs.

Now we focus on the three following limit cases for the
driving pulse: a pulse duration of 7p,;sc = 0.5, 5.4 and
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FIG. 3. E-field induced inside the 40 nm (diameter) Ag sphere (solid black line) by a laser pulse centred at the LSPR wavelength,
ArLspr = 369 nm, for different pulse durations: (a) Tpuise = 0.5 fs, (b) 5.4 fs and (c) 50 fs. The absolute values of the electric
fields have been normalized and plotted in a semi-log scale in order to observe the shift of the LSPR-induced field with respect
to the incoming one (dashed red line). For short pulses (Tpuise < Trspr = 5.4 fs) it is clearly visible that the near-field induced
in the sphere is delayed, because of the resonant excitation, and decays as a Lorentz mode slower than the driving gaussian
pulse, showing ultrafast oscillations only for pulses much shorter than rspr (panel (a)).

50 fs (Fig. lc,d,e respectively). To solve the LSPR dy-
namics in the temporal domain, the electric field F ()
has been calculated numerically, obtaining the E-field en-
hancement maps shown in Fig. 2 for the three limit cases
of Fig. 1. The pulse central wavelength was spanned in
the range 200 to 800 nm.

We observed that, when the pulse bandwidth matches
that of the LSPR (Fig. 2b), the 5.4 fs long pulse is
delayed in the wavelength range around the resonance
(dashed white line) with respect to the driving pulse. In
the case the pulse bandwidth is narrower (Fig. 2c), it still
excites the resonance (e.g. E-field enhancement > 1) but
the pulse shape and duration are not affected apart from
a small time shift. Vice versa, in the case of a pulse much
broader than the resonance (Fig. 2a), the resonant ex-
citation effects in the pulse bandwidth region (identified
by white lines) are not clearly observable.

The LSPR has been fully characterized by looking at
the near-field decay in time after the driving pulse is over.
Figure 3 shows in log-scale the absolute values of the
near-field normalized for the three cases, where their de-
cays in time (black curve) are compared with the driving
pulse Gaussian electric field (red dashed curve).

The first result, as a confirmation of the resonant ex-
citation of plasmon modes in the particle, is the obser-
vation of a time-delayed exponential decay of the near-
field for driving pulses shorter than the LSPR lifetime

Tpuise = 5.4 fs (Fig. 3a and 3b). The near-field enhance-
ment decay has been fitted in the log-scale obtaining a
constant linear coefficient according to the Lorentz reso-
nance mode decay constant I'/2 = 0.186 fs—!, that corre-
sponds to the surface plasmon decay (7 ~ 5.37 fs). This
is certainly true for pulses shorter or comparable with
the resonance, while for the 50 fs case the fit presents a
quadratic coefficient, indicating that there is no near-field
LSPR-delayed decay; even if it still presents a Gaussian
shape (Fig. 3c).

The second important point, for all pulse durations
tested, is the delay of the induced near-field with respect
to the driving pulse. This delay increases with pulse du-
ration and saturates at a value of At =5.4+0.1 fs (Fig.
4c), that is in good agreement with the resonance lifetime
(T'/2)~t = 5.37 fs. On the other hand, for pulses shorter
than 1 fs, the delay reaches a value of At = 0.7£0.1 fs and
the near-field enhancement is smaller than the unity. In-
deed, in this scenario, the driving pulse has a bandwidth
of a few hundreds of nm (3> AApspr = 27 nm), meaning
that the resonance has no time to build up.

Another confirmation that the above mentioned de-
lay indicates a resonant excitation of plasmon modes is
the fact that, for a driving pulse centred out of reso-
nance (A = 800 nm) with a bandwidth non overlapping
with the plasmon resonance, the near-field is perfectly
matching the driving pulse: Namely, a Gaussian shape
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FIG. 4. Difference in exciting the LSPR with (a) a 0.5 fs
ultrashort pulse and (b) a 5.4 fs pulse. In both cases we show
the Eq(t) field inside the Ag particle excited with a pulse
matching the resonance (solid black curve) and with a pulse
of the same duration but out of resonance (dashed blue curve).
The insets show the corresponding spectra of incoming pulses
at and out of resonance compared to the resonance extinction
curve (red). When pulses are really short (broadband), they
are still able to excite the resonance as shown by the overlap
of black and blue curves in (a). Vice versa when they have
non-overlapping bandwidth comparable to the resonance one,
the E-field inside the sphere out of resonance, blue curve in
(b), remains unchanged. (c) Delay of the E-field inside the
sphere with respect to the incoming pulse as a function of
pulse duration.

with no delay, as can be seen from the blue curve in Fig.
4b. The same situation happens for all the pulses whose
duration is longer than 7p5pr = 5.4 fs. On the other
hand, for ultrashort sub-fs pulses, they are so broadband
in the visible range that even if not matching the reso-
nance they still induce a delayed decay as illustrated in
Fig. 4a (where all the electric field amplitudes have been
normalized for comparison).

We observed oscillations in the near-field decay by plot-
ting its absolute value in time in a log-scale. Their am-
plitude depends on the driving pulse duration, as they
can be only seen in the log-scale of Fig. 3a, where the
driving pulse is shorter than 1 fs.

The oscillations period does not depend on the driving
pulse electric field nor on the particle size, but only on
the metal plasma parameters. Solving analytically the
near-field in time, the Lorentz-mode presents an expo-
nential decay with constant I'/2 and an oscillating part
at a frequency

5o Wp B l? foo + 2
€00 + 2 wg 4

2

Y
= 1—— 13
res 4“363 ( )
where Wyes = ——2 — s the resonance frequency satisfy-
ing the Frohlich condition Rele1(wrps)] = —2. These

ultrafast oscillations observed for the near-field decay of
Fig. 3a, for such a small nanoparticle, disappear if the
radiation reaction effect is not considered in computing
the effective polarizability. This means that the self-
interacting corrections is the origin of the oscillations in
Fig. 3a and 4a. This is confirmed by computing the elec-
tric dipole moment, by Mie theory, induced in the Ag
sphere for a driving pulse of 0.5 fs shown in Fig. 7a.

III. MIE THEORY FOR SILVER AND SILICON
SUB-WAVELENGTH SPHERES

The single particle dipole limit, ka < 1, where k is the
wavevector of the driving pulse and a the particle radius,
has been used so far to calculate nanoparticle near-fields.
However, in the case of bigger particles or different mate-
rial we must consider the exact Mie solution®”88, in order
to compute the particle polarizability and the cross sec-
tions, having so the possibility to consider retardation
effects and multipole terms contributions.

By using Mie coefficients (see appendix), the particle
induced electric and magnetic dipole moments can be
calculated as

_ (w—wp)?
p(w) = eoesap(W)Bo, [ —e~ v &, (14)
Qp

_ (w=wq)?
E() N (XLG dap
m(w) = ay(w) e 7, (15)

where €y and pg are the vacuum permittivity and per-
meability, uo is the relative permeability of the particle,
and ap and «jy, respectively, the effective electric and
magnetic polarizabilities obtained by using the Mie ex-
pansion (see appendix). In the time domain all the dipo-
lar resonances have been calculated by an Inverse Fourier
Transform (IFT) algorithm in MATLAB.

The long wavelength limit (ka < 1) of Mie terms, also
gives electric and magnetic dipole polarizabilities as in
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FIG. 5. (a,b,c) Spectral Gaussian bandwidths (dashed black curves), compared to electric (red) and magnetic (green) dipole
resonance contributions to the scattering cross section for a 460 nm Si sphere, computed by Mie theory, of the following pulses:
(a) 50 fs centered at 1678 nm (centered at the magnetic dipole resonance), (b) 50 fs at 1262 nm (centered at the electric dipole
resonance) and (c¢) 5.4 fs pulse at 1470 nm (between the two dipoles). (d,e,f) Dipole moments p(t) and m(t) computed by
the Inverse Fourier Transform, with the incident pulses respectively as in (a,b,c). Clearly visible are the delays of the dipole
resonance contributions with respect to the driving pulse in the case (d) and (e) where the resonances are selectively excited;
while in the case (f) the pulse is so broadband that even if centred between the two dipolar resonances, it still excites both

with a similar delay.

Eq. (11). Equivalent formulas for the magnetic polariz-
ability in the same approximation can be found in the
work of Zywietz et al.*® In fact, considering the effect of
an incident uniform and harmonic magnetic field in the
quasi-static approximation, it was obtained

3V 3 3
0
ay(w)=——[1—- ——= 4+ — cot(k1a 16
M( ) 2 [ (kla)g kl(l ( 1 )]7 ( )
and considering radiation correction terms
3 _ 9V [3(1—kiacot(kia))—(kia 2
af(w) = (kla)?(2ik3a3+31£2a2+6)76(ik3a31k§a2)21]71“@cot(zﬁa))v (17)

with V the volume of the particle, k the wavenumber in
free space (k? = w?pupep), and k; the wavenumber inside
the particle (k% = k%e).

By using Eq. (9) and the modified Drude-Sommerfeld
model for the dielectric constant, we have found for the
silver electric dipole moment p(t) the same delayed decay-
ing response to ultrafast pulses as that for the near-fields
of Fig. 4 (Fig. 7). In the case of a 460 nm diameter
non-absorbing silicon sphere (with a refractive index of
3.5 as considered in?7), the normalized dipole moments
are shown in Fig. 5. For such a bigger particle with well
separated dipole resonances, a driving pulse with smaller
bandwidth than these (50 fs long) can selectively excite
the magnetic resonance (Fig. 5a) or the electric one (Fig.
5b), centred at a wavelength of 1678 or 1262 nm respec-
tively. This is confirmed by looking at Fig. 5d and 5e,
where a clear delayed dipole response can be observed
respectively for the magnetic (green curve) and for the
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electric resonance (red curve).

In the case of an ultra-short pulse centred between the
two resonances (Fig. 5¢), both dipole resonances are ex-
cited and the induced (normalized) dipoles present the
same delay (Fig. 5f) even if with different decay co-
efficients. Incidentally, even though both (electric and
magnetic) resonances exhibit a weakly asymmetric Fano
lineshape®®?1, pulse durations are such that their asym-
metry is not fully probed; this will be shown elsewhere.

The delay in the Si particle response has been charac-
terized as a function of both the driving pulse duration
and the sphere diameter (Fig. 6a). In the first case (Fig.
6a,b) we have a similar scenario to the Ag case, where
the delays for the p- and m-dipole saturate at values in
agreement with those expected from the resonance curve
width I'. Indeed, in the above considered case of a 460 nm
particle, we got At, ~ (I'/2)~! = 5.2 fs for the p-dipole
and At,, = 19 fs for the m-dipole. This is in agreement
with the foundings of Evlyukhin and colleagues®!, where
they show that the induced magnetic-dipole mode life-
time of a Si nanoparticle decreases with increasing the
particle size (our case). Moreover, said mode becomes
faster by increasing the dielectric constant of the sur-
rounding medium; indeed if we consider the response of
the same particle in water instead of air (€yqter = 1.73 ),
we get a decreased resonance lifetime from 19 fs to 7 fs.

Dipolar mode response as a function of the nanopar-
ticle diameter is shown in Fig. 6c,d. It is interesting
to note that for a 50 fs pulse, longer than the resonance
lifetime, we have found a linear dependence for both the
dipole response delays with the sphere diameter. Indeed
the dipole response delay depends only on the particle di-
mension and dielectric refractive index, and can be sim-
ply explained by the travelling time inside the dielectric

particle At ~ d%. However, in the case the pulse is faster

than the resonance and for bigger particles, we observed
a smaller response delay. This can be explained taking
into consideration the fact that for such short pulse du-
ration, the equivalent spectrum is much broader than the
two resonances and their relative separation, so the driv-
ing pulse is simultaneously exciting both resonances (as
shown for example in Fig. 5¢,f). In this scenario the
measurement of a single resonance (dipole) mode with
respect to the other starts to fail and the interplay of
both modes (electric and magnetic) must be taken into
account, as well as their interaction with themselves in
such a broad spectrum (few eV).

IV. CONCLUSION

We have investigated analytically and numerically the
ultrafast localized surface plasmon and magnetic reso-
nances dynamics in a single sub-wavelength nanoparticle
(Ag or Si, respectively), driven by a Gaussian ultrashort
pulse (0.5 to 250 fs pulse duration).

We have characterized the effective extinction effi-
ciency of a 40 nm diameter Ag sphere in the long-
wavelength limit and solved the near-field enhancement
inside the nanoparticle, by observing the resonant excita-
tion of LSPR modes. These are manifested as (i) a tem-
poral delay of the LSPR pulse with regard to the freely
propagating pulse and (ii) as a negative exponential tail
after the exciting pulse is over (for 7,y < 50 fs). Both
the delay and the exponential E-field decay have resulted
in agreement with the effective absorption efficiency from
a modified Drude-Sommerfeld model for silver.

In the case of ultrashort driving pulses (Tpuise <
TLspr = 5.4 fs) we have also observed ultrafast oscil-
lations in the decaying part of the computed near-field,
much after the driving pulse is over. These are neither
pulse nor particle size dependent, but they only depend
on the plasma properties of the metal as shown by Egs.
A.21-A.23, and they disappear if self-interacting radia-
tion effects are not taken into account.

We have checked the consistency of our findings on the
single Ag particle by considering a non-absorbing silicon
sphere of 460 nm diameter, where the exact Mie theory
has been used to compute the first dipole moments. We
observed a similar delayed response in the near-field of
the particle, where (either electric or magnetic) dipole
resonances can be selectively excited with a 50 fs pulse.

We see as a possible development of this work the the-
oretical extension to the non-linear case, when the high-
intensity (fluence) of the pumping laser could induce a
significant change in the optical properties of metal and
all-dielectric particles. Indeed, what has been shown in
this work is valid in the linear case, easily implementable
in an ultrafast laser laboratory (where usually the in-
tensity is high and non linear effects are dominant) by
attenuating the pulse energy or by changing the focus-
ing condition in order to reduce the energy fluence on a
single or different nanoparticles disposed on a substrate.



Under consideration are the study of the ultrafast
(few fs) excitation and relaxation of collective motion of
charge particles, that could be observable with state of
the art ultrafast pump-probe experiments, and the pos-
sibility to resolve the scattered far-field dynamics, and
the laser-matter or laser-plasma interaction and evolu-
tion, on the same time-scale. These possibilities could
be achieved by exploiting some ultrafast phenomena (on
the few fs- or as-time-scale), for example by properly
tuning the ultrafast oscillations we showed in the pa-
per. Other interesting points not yet fully understood in
literature are the study of interference between different
resonance orders in bigger particles and the multiple par-
ticle effects on the single particle optical response when-
ever a pump beam is focused on a sample area contain-
ing several sub-wavelength nanostructures, for example
nanoparticles fabricated on an array with spacing bigger
than the nanoparticle dimension.

Moreover, the shown ability of nano objects to intro-
duce time delay in the propagation of ultrafast pulses
along with the E-field enhancement, can be used to gen-
erate, by means of properly enginereed nanostructures,
high-harmonics and attosecond light sources with con-
trolled (or delayed) temporal profiles. Finally, this re-
search could be framed in the high-field plasmonics area
where clustered gas targets and metamaterial surfaces are
employed to exploit the direct acceleration of electrons
or as innovative high-power laser-plasma diagnostics for
particle acceleration experiments.
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Appendix: I

Considering incident radiation of wavevector k = 27/
on a sub-wavelength nanoparticle in air whose polariz-
ability is a, the scattering and extinction efficiencies (see
Fig. 1b) read!

k4
Oscatt = ﬂ| (W)|2, (A-1>
Oext = —Im[a(w)], (A.2)

with g the vacuum permittivity. In the quasi-static limit
the classical particle polarizability is

3 81((,0) — &9

e1(w) + 2e5’ (A-3)

a®(w) = 4rega

but this violates the optical theorem in the dipole limit®3

(i.e. no scattering is taken into account in computing the
total extinction from a nanoparticle). Indeed, the optical
theorem states that the total extinction cross section of
a plane wave E,,, = Eyetk2=wt % propagating along the
z-axis off an arbitrary object is

47 .
Oegt = ﬁRe[X - %],

(A4)
where k is the wavevector, and the scattering amplitude
X evaluated in the propagation direction (for z,y = 0,
z — 00) is related to the scattered far-field

(A.5)

with R the radial distance from the scattering object.
Now, considering that for a small particle the field Eg
is originated from the dipole moment p, and calculating
the scattering and absorption cross sections, respectively,
from the radiated power

p|?w?
Psca = T 3> A6
" 12meqc3 (A-6)
and the absorbed power
w *
P, = §Im[p -E*g], (A7)

it results that the extinction cross section only accounts
for the absorption and not for the scattering part. There-
fore the quasi-static limit is not correct to compute the
effective cross efficiencies of Eqs. A.1 and A.2, but ra-
diation effects must be taken into account. Considering
the radiation effect of an oscillating particle of charge ¢
interacting with itself it is possible to solve the equation
of motion (r) where the radiation reaction force is given
by the Abraham-Lorentz formula

9nes
F, =1

6megcs

(A.8)

with ¢ the speed of light in vacuum. This force induces
a self-field F, = gEg ¢, and thus we can calculate the
induced dipole inside the sphere p = a°(w)(Eo+Esef) =
a(w)Eog, where the effective polarizability reads®?

(A.9)

The resonance curve for a 40 nm Ag sphere of Fig. 1b
has been obtained using eq.(A.2). In order to retrieve the
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FIG. 7. Electric dipole moment induced in a single 40 nm Ag particle, solved in time by inverse Fourier transform with
(continuous red line) and without (dashed red) considering radiation effect, considering a driving pulse (Ejn.) of time duration
(FWHM) of (a) 0.5 fs, (b) 5.4 fs = T7.spr, and (¢) 50 fs. All moments have been calculated by using Mie coefficients and the

modified Drude-Sommerfeld model for the dielectric constant.

LSPR lifetime we can fit the extinction with a Lorentz-
type curve

L(w) = (A.10)

r
1 3
T (w—w)? + (g)z’

obtaining a resonance centred at fiwyg = 3.36 eV and a
FWHM T" = 0.245 eV. The resonance lifetime, 7,5pr =
%, can be obtained by Fourier transform

1 [ . 1 . i
FﬁlL(w) = / L(w)efu‘)tdw = 2—67“"0’56 TLSPR .

o s
(A.11)
If we consider an harmonic incident plane wave, the field
induced inside the nanoparticle has the simple following
dependence®3

— 00

Elpw (w) = EOE (ws)ej_ % =Ey 32 o2 s
1 2 €00 + 282 — St
(A.12)
where the subscript pw stands for plane wave. This result
can be generalized to a generic incident field making use
of its Fourier expansion in the frequency domain

Similarly, the E-field enhancement in time has been
solved by the inverse Fourier transform of the near-field
computed in the frequency domain

1 [* ;
Ey(w)e”“'dw. (A.16)

— 00

The color maps shown in Fig. 2 have been computed
numerically in MATLAB by an inverse Fourier Transform
algorithm, with time steps of 0.0012 eV.

The time dependent LSPR near-field, has been ob-
tained analytically by looking at the inverse Fourier
transform of Eq. A.16 as a convolution in time of two
functions (f and g) that have been computed separately
by Inverse Fourier Transform. That is,

Bi(r) = FF(F@) = frg = [ " g — .
- (A.17)

Ei(w) = E(w)?)#, (A.13)  where the first term is the Gaussian incident field
&1 (OJ) + 2¢e9
where 5
T _ (w=—wg)
oo _ F(g) = Eoy[—e ™, (A.18)
E(w) = E(t)e™'dt. (A.14) P
In the particular case of a Gaussian incident field (see and the second results
Eq. 5) the transformed near-field reads
_ (w—wg)? 3 3
B (w) = E, /ale 2 (A5) F(f) = - (A.19)
— P _ A
p €00 + 262 w(w+iv) €oo +2 w(w+iy)



_ 1 [ et
10 = FE@ = o [ e
— foo +2 - iy
1 > g3 —iwt
== =
27 J_oo (€0 +2)

1 /oo 3w12)€—iwt
+ JE—

27 J_ oo (Eoo +2)2w(w +17) — (€00 + 2)w?
_30(t)  Bwie M Zsin(at)
e 2 (Eoo +2)%@

: (A.20)

where the second integral of Fourier has been calculated
in the complex plane (w — z € C) by using the residue
theorem, §(t) is the Dirac function and

o1 4wl =% (ex0 +2)
v oo +2

2
oo +27° 08
- 7) =Wres — 5

Wp

1

1
soo+2( w2 8

. (A.21)
The Inverse Fourier of Eq. A.18 , F~1[g(w)](t) is simply
the incident gaussian field in time

g(t) = Ege~o»t’ gmiwot (A.22)

The near-field is then obtained by the convolution of Eq.
A7 as

_ 3Ey
_500+2

2 .
— QT —l1wWoT
e T e 0

El(T)

2 o)
_(5313—021))2@/ e /2 sin(@t)e_%(T_t)ze_iw"(T_t)dt

. 2
_ 3E0 e—apTze—ing _ 1 3ZEOwP e—'yT/Qe—iLZJT
fo 2 ap 200 + 2)20

—7274(Q7w0)2+4i'y(®—w0)
[6 16ap

72 —4(@+wg)? —4iy(@+wq)
—e 16ap

eTi2T] (A.23)
For the case of a non-absorbing sub-wavelength Si sphere

we have followed the same road, where the electric and
magnetic polarizabilities in the quasi-static limit are

ap(w) = —% tan(ay), (A.24)
0 67
ap(w) = = tan(S1), (A.25)

11

and the the effective polarizabilities are

8% tan(a)

= A2
ap(w) 1+ itan(ay)’ (A.26)
an(w) = _M (A.27)
MY T T Fitan(By)’ '
with the extinction cross section
Oext(w) = kImlag + ap]. (A.28)

The Mie coefficients are «; (proportional to the elec-
tric dipole) and ; (proportional to the magnetic dipole),
where

_ m2jn@)zin(@)]" — jn (@) [yin ()]
tanan) = ) e @) — s @) )
tan(ﬂn) _ ]n(y)[l']n(x)y - ]n(m)[yjn(y)]l ) (A.?)O)

In(W)[@Yyn ()] — yn () [yin(y)]’

in terms of the spherical Bessel and Neumann functions
of n-order (j,(z) and y,(x) respectively), with relative
refractive index m = 3.5, size parameters z = ka, y =
ma, and the prime indicating the derivative with respect
to the argument (x or y).
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