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ABSTRACT 

The production of an agricultural commodity involves a sequence of processes: 

planting/growing, harvesting, sorting/grading, post-harvest treatment, packing, and exporting. 

A Bayesian network has been developed to represent the level of potential infestation of an 

agricultural commodity by a specified pest along an agricultural production chain. It reflects 

the dependency of this infestation on the predicted level of pest challenge, the anticipated 

susceptibility of the commodity to the pest, the level of impact from pest control measures as 

designed, and any variation from that due to uncertainty in measure efficacy. The objective of 

this Bayesian network is to facilitate agreement between national governments of the exporters 

and importers on a set of phytosanitary measures to meet specific phytosanitary measure 

requirements to achieve target levels of protection against regulated pests. The model can be 

used to compare the performance of different combinations of measures under different 

scenarios of pest challenge, making use of available measure performance data. A case study 

is presented using a model developed for a fruit fly pest on dragon fruit in Vietnam; the model 

parameters and results are illustrative and do not imply a particular level fruit fly infestation of 

these exports; rather they provide the most likely, alternative or worst case scenarios of the 

impact of measures. As a means to facilitate agreement for trade, the model provides a 

framework to support communication between exporters and importers about any differences 

in perceptions of the risk reduction achieved by pest control measures deployed during the 

commodity production chain. 
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1. INTRODUCTION 

 

Pest Risk Analysis, which can be abbreviated to the initials PRA,(1) is ‘The process of 

evaluating biological or other scientific and economic evidence to determine whether an 

organism is a pest, whether it should be regulated, and the strength of any phytosanitary 

measures to be taken against it’.(2,3) PRA has four phases: Initiation (including identification of 

the hazard), Risk Assessment (evaluating probability, consequences, and uncertainty), Risk 

Management (choices between measures, their efficacy, feasibility, impacts), and Risk 

Communication. 

 

One of the important roles of a national plant protection organization (NPPO), the 

governmental authority implementing plant health policy, is to facilitate the reduction of risk 

posed by pests associated with imported commodities, in order to achieve an appropriate level 

of protection for their country’s plant resources.(4) In the Risk Management phase of a PRA, 

phytosanitary measures are presented and evaluated in relation to the objective of management 

in proportion to the identified risk. During this phase, evidence is collected and expert 

judgement may be given about the best measure, or combination of measures, to apply to trade 

or other pathways to achieve an appropriate level of protection. Historically, single 

phytosanitary measures, such as post-harvest fumigants, were widely accepted owing to their 

demonstrated high efficacy. A single measure may not provide the necessary assurance of 

protection, however, or may be unacceptable for environmental, food quality, or cost reasons. 

In such instances, a combination of measures, each of which is only partially effective in 

reaching the appropriate level of protection, may be employed as described in the International 

Standard for Phytosanitary Measures (ISPM) No. 14.(5) This is referred to in plant health as a 

Systems Approach. One of the challenges of employing such an approach has been the lack of 



an agreed method for determining the risk reduction achievable by a combination of 

measures.(6) Determination of the efficacy of measures for equivalence agreements (4) has also 

been a barrier to market access.(7,8) 

 

Bayesian networks can provide a means to estimate and compare the efficacy of measures, 

or combinations of measures. Bayesian networks are well established as a sound statistical 

framework to integrate information from diverse sources such as empirical data, expert 

opinion, and model output, and have been used in a wide variety disciplines, including 

conservation,(9) forensic science,(10) health,(11) environmental and resource management,(12) and 

biosecurity.(13) 

 

Bayesian networks allow uncertainty in model variables to be expressed.(14) The ISPM No. 

11(15) explains the importance of considering and documenting uncertainty in a PRA; both pest 

challenge and the efficacy of measures can be predicted with varying accuracy and it is 

essential to take these uncertainties into account, so providing the user with a powerful tool for 

reasoning under uncertainty.(14) Bayesian networks are acyclic directed hierarchies of 

dependency between variables which describe how the probabilities of the events being 

modelled interact; these hierarchies are readily presented graphically so it is easy to see the 

assumptions that are being made about the variables and dependencies between them.(14) This 

can provide a common framework for a group’s understanding of the issue concerned and so 

assist in the building of consensus for action. Tools based on Bayesian networks have been 

developed in the context of PRA for Risk Assessment;(16,17) here we extend their use to Risk 

Management. 

 



The work described here was carried out as part of the project called ‘Beyond 

Compliance’(18) funded by the Standards and Trade Development Facility (STDF). The project 

aims to enhance competency and confidence for NPPOs in the South East Asian sub-region to 

apply Systems Approaches to reduce the risk of introducing regulated pests through trade. The 

project developed and tested a suite of three decision-support tools for pest risk management 

by using case studies involving four countries within the South East Asian region: Vietnam, 

Thailand, Malaysia, and the Philippines. The three decision-support tools – production chains, 

elicitation templates, and Bayesian networks – were designed to help structure, parameterize, 

and analyse the pest risk management problem, respectively. The production chain is a detailed 

flowchart which shows the steps in the production of the commodity and the points where 

actions of any kind affecting production can be taken. The elicitation template, implemented 

using a spreadsheet, provides a framework within which pest management experts can collate 

and define the effects of potential control interventions that may be used at different points on 

the production chain. The Bayesian network is a model of the probability of pest infestation on 

the production chain parameterized using the information recorded using the elicitation 

template.  

 

This paper describes the Bayesian network in detail by specific reference to one of the 

project case studies: the potential infestation by fruit fly (Bactrocera spp.) of dragon fruit 

(Hylocereus undatus) grown in Vietnam for export to the Republic of Korea. Although the 

model development and output were specific to fruit fly in dragon fruit in Vietnam, this case 

study demonstrates a methodology that can be widely applied to other such systems. The 

general goals of the project were to offer greater inclusion of stakeholders in development of 

pest risk management plans, increase confidence of the NPPO staff in trade negotiations, and 

facilitate new opportunities for trade. 



 

2. METHOD 

 

The Bayesian network is a model of the probability of pest infestation along the production 

chain of an agricultural commodity, parameterized with the information collected and collated 

using an elicitation template. The Bayesian network is a description of the stages and activities 

of the production chain and of the concurrent pest threat from the pest species concerned. The 

factors affecting changes in the probability of pest infestation are distinguished and modelled 

in sequence. Software developed for Bayesian network construction (GeNIe2)(19) provided a 

convenient, widely-accessible platform that also offered graphical representation and analysis 

tools. In this application, the Bayesian network is essentially a single chain in which the nodes 

represent the predicted level of pest infestation of the commodity at a sequence of points in 

time. It starts with an initial probability distribution of potential infestation which was based 

on stated assumptions regarding the prevalent pest population size and the susceptibility of the 

commodity in production. Nodes located in side-branches of the chain allow the effects of 

phytosanitary measures to be incorporated; these interventions may reduce the existing 

infestation of the commodity or prevent new pest challenge, or both. Other nodes in the side-

branches allow the possibility for new pest challenge to occur at points along the chain, such 

as during post-harvest handling. The phytosanitary measures are grouped according to the 

stages along the production chain where they can be implemented. 

 

All potential control interventions relevant to the case study were included in the model 

and different combinations can be examined by selecting or de-selecting measures as required; 

a measure is de-selected by setting its efficacy to ‘Negligible’. In this way the Bayesian 

networks can be used to assess the risk-reduction capability of a combination of control 



measures across the full spectrum of potential pest challenge, as expressed in the probability 

distributions contained in the pest infestation nodes. 

 

An important feature of Bayesian networks is that evidence may be added at any stage to 

express some level of greater knowledge. This enables specific situations to be examined, for 

example, where the level of pest challenge is known with greater accuracy. With this in mind, 

‘control points’ are indicated in the model at which evidence may be available. Three such 

stages were identified in the case study: pest surveillance in the field, fruit-sorting after harvest, 

and export quarantine inspection. For example, if from field surveillance in a specific case, it 

was inferred that pest infestation of the commodity was likely to be ‘Low’ at the end of the 

growing season, then the model is updated with this estimate and the range of predicted 

outcomes is then relevant in the context of the evidence provided. 

 

The graphical depiction of the Bayesian network developed for the threat of fruit fly on 

dragon fruit in Vietnam shows the model structure (Figure 1). The rectangles in which 

probability distributions are displayed are described as nodes and the arrows which link them 

as arcs. The model variables constitute the nodes in the Bayesian network and there is a 

probability table associated with each node, which describes either (a) its marginal probability 

distribution, when it has no parent nodes, or (b) its conditional probability distribution, when 

it has one or more parent nodes.(20) The nodes which do not have parents (i.e., have arcs leaving 

but not entering) contain a probability distribution specified by the user using the elicitation 

template; for example, the initial fruit fly challenge was believed to have a 90% chance of being 

‘Low’ and a 10% chance of being ‘High’. The nodes which have arcs entering them contain a 

conditional probability table (CPT); these are explained below. All variables are described as 

a series of ordinal categories with an associated probability distribution of the categories. Pest 



infestation is described as ‘Negligible’ if it is below the level of detection1, ‘High’ if it is above 

the level that would be easily detected and ‘Low’ if it is between these limits. Uncertainty in 

fruit fly challenge can then be expressed, for example, as a 90% chance that it will cause a 

‘Low’ infestation and a 10% chance that it will cause a ‘High’ infestation (Figure 1). 

 

Each control measure is described by a sub-model which contains three nodes (Figure 2); 

on the main model page (Figure 1) sub-models are shown as rounded rectangles. For each 

measure sub-model the user specified a probability distribution of their beliefs about maximum 

measure efficacy, ‘High’, ‘Low’, or ‘Negligible’, that would be achievable under ideal 

conditions. To allow situations which are not ideal to be represented, an estimate is included 

of how likely it is that the full potential efficacy of a measure would be achieved under the 

actual field conditions. The default used was a high standard of implementation. A ‘Low’ 

implementation standard was defined as a reduction in maximum efficacy of 50%. A low 

implementation standard may result from changes in conditions, e.g., rain soon after pesticide 

application, or sub-standard management practice, e.g., incorrectly calibrated equipment, poor 

application technique, or labour/time constraints. The likely efficacy of the measure as actually 

implemented, taking into account implementation standard, is determined using the CPT 

shown in Table 1a. ‘High’, ‘Low’, and ‘Negligible’ measure efficacy were defined as described 

below in terms of the estimated change that each was expected to cause to the level of 

infestation.  

 

Using the elicitation template, the maximum efficacy of a measure was elicited on a five-

point scale (very low to very high). The Bayesian network represents the variable with fewer 

                                                           
1 Detection using typical methods of pest surveillance or monitoring which meet NPPO guidelines or detection 

which occurs through other routine procedures such as fruit sorting 



states (Negligible, Low, and High). ‘Negligible’ corresponds to no effect (or measure not used) 

so the five-point scale was reduced to two points (Low, High) by dividing the scale in half and 

describing the probability associated with the lower half as ‘Low’ and the upper half as ‘High’. 

Table 2 shows the efficacies of the measures, so described. The elicitation of values on a five-

point scale allows the possibility for any future versions of the Bayesian network to take 

advantage of this finer resolution in expert perception. 

 

As far as was consistent with a realistic representation of the problem, the CPTs in the 

network defined relationships between variables deterministically. In the CPT (Table 1a), for 

example, if maximum efficacy of measure is ‘Negligible’, then the efficacy as implemented 

must also be ‘Negligible’; no distribution of probability is necessary. Where more than one 

possible category of outcome could occur, a probability distribution was defined by project 

partners. While this introduced complexity, it represented realistic expectations and the 

associated assumptions are transparent (Table 1). It is an important feature of the approach that, 

throughout, assumptions can be questioned by any stakeholder and the impact of alternative 

perceptions tested using the model. 

 

In the case of Table 1a, if the maximum possible efficacy of measure is ‘High’ and the 

implementation standard is also ‘High’, then the efficacy as implemented is also considered to 

be ‘High’. On the other hand if the implementation standard is ‘Low’ then there is only a 50% 

chance that efficacy as implemented will be ‘High’ and a 50% chance that it will be ‘Low’. 

 

The assumptions shown in Table 1a are identical for all the measure sub-models so 

differences between measures are specified in the nodes defining maximum efficacy and 

implementation standard. A structured process was used to elicit these values for each measure. 



Using one of the other tools from the wider project, the spreadsheet-based elicitation template, 

the users entered their expectations, which were instantaneously displayed as histograms of the 

probability distributions so that the values for all measures could be viewed simultaneously 

thus providing valuable feedback to the user. This facilitated review and amendment as well as 

consistency of values between measures.  

 

A sequence of four stages of the production chain were identified: last season, this season, 

harvesting, and packing. The model has a modular structure which, with minor variations, is 

repeated at each of these stages. The infestation is first updated with any new pest challenge 

since the previous stage; this incorporates the effects of any measures used which may reduce 

this pest challenge. Thereafter the direct effect of any control measures on the infestation of 

the fruit is taken into account. These two steps are then repeated for the next stage but the 

details differ because of the different numbers of potential measures which are available either 

to prevent new pest challenge or to reduce existing infestation of the fruit. The points at which 

different measures act can be seen in Figure 1. 

 

More than one measure may be implemented at each stage. In such cases it is necessary to 

determine a combined efficacy. Logically, this must be at least as high as the efficacy of the 

most effective measure but where a number of measures have the same efficacy, the additional 

possibility was introduced that several low-efficacy measures in combination have some 

probability of being equivalent to a high-efficacy measure. The assumptions for the 

combination of two measures are specified in the CPT, Table 1b. If one measure delivers ‘High’ 

efficacy, then clearly the addition of other measures will not reduce this. At the other extreme, 

if a measure has ‘Negligible’ efficacy (if it was not implemented, or if implementation was 

very poor), then the combined efficacy equals that of the other measure. If both measures have 



‘Low’ efficacy then there is some chance (12%) that the combined efficacy will be ‘High’ 

(Table 1b). A straightforward extension of this logic is applied when combining more than two 

measures. In the case study, the equivalent chance of a ‘High’ efficacy outcome when three 

‘Low’ efficacy measures were combined was 24%.  

 

Having calculated the combined efficacy of the measures acting at a particular stage, their 

effect on pest infestation was determined according to the CPT, Table 1c. If the effect of a 

measure is ‘Negligible’ then it has no effect on pest infestation. If the effect of a measure is 

‘Low’, then there is a 67% chance that a ‘High’ infestation is reduced to a ‘Low’ infestation 

but a 33% chance that it will remain ‘High’. Similarly, there is a 67% chance that a ‘Low’ 

infestation is reduced to ‘Negligible’ but a 33% chance that it will remain ‘Low’. If the effect 

of a measure is ‘High’ the impact on pest infestation is much greater; a ‘High’ infestation is 

assumed to have no likelihood of remaining ‘High’ but has a 0.1% chance of being reduced to 

‘Low’ and a 99.9% chance of being reduced to ‘Negligible’. A ‘Low’ infestation has a very 

small chance (0.0001%) of remaining ‘Low’ but a high (99.9999%) chance of being reduced 

to ‘Negligible’. This CPT, which provides definitions of measure efficacy in terms of reduction 

in pest infestation, is necessarily the most complex in the model.  

 

At points along the production chain, measures may be implemented which reduce pest 

infestation but pest infestation may also increase owing to new pest exposure. The final CPT 

(Table 1d) defines the level of pest infestation resulting from additional pest challenge at points 

along the production chain. If either the existing level of infestation or the infestation due to 

new pest challenge is ‘High’ then the result is also ‘High’. If either is ‘Negligible’ the result is 

determined solely by the other. The only situation requiring a non-deterministic outcome is 

where both the existing level of infestation or the infestation due to new pest challenge are 



‘Low’; in this case there is a 12% chance that the result would be a ‘High’ infestation (and 

hence an 88% chance that it would be ‘Low’). 

 

The values in all the CPTs shown in Table 1 were based on the experience of the project 

team which included members specifically experienced in dragon fruit pest management. The 

expectations of the pest managers was particularly critical concerning their interpretation of 

the meaning of ‘High’ and ‘Low’ with respect to the efficacy of a measure and what these terms 

would imply for the level of fruit fly control in dragon fruit. The team of people involved in 

model-building allowed judgements from industry, NPPOs, scientists, and other stakeholders 

to be taken into account. Information to quantify the Bayesian network was obtained through 

a systematic elicitation process using the elicitation template to provide instant feedback in 

workshop discussion so allowing amendment and consensus-building. Similarly, network 

structure was developed interactively by constructing network diagrams in a workshop setting 

and through repeated circulation of draft network structures.   

 

3. RESULTS 

 

To illustrate the use of the Bayesian network, the situation was considered where current 

practice employed a highly effective measure, the use of vapour heat treatment (VHT) at the 

packing house, to achieve an appropriate level of protection. The model was used to investigate 

combinations of measures that might be used to replace VHT and achieve similar levels of 

protection. The illustration (Table 3) shows a comparison of six scenarios each with a different 

combination of measures: 

 Scenario 1 – No measures 

 Scenario 2 – Measure 10.4 VHT only 



 Scenario 3 – Measure 10.4 VHT plus Measure 11.1 Boxes and Measure 12.1 Sealed 

vehicles  

 Scenario 4 – As Scenario 3 but replacing Measure 10.4 VHT with Measures 3.1 & 6.2 

Sanitation and Measure 6.3 Sorting 

 Scenario 5 – As Scenario 4 but adding Measure 5.2 Fruit bagging 

 Scenario 6 – As Scenario 5 but also adding Measures 6.1 & 10.1 Boxes/covers 

 

A typical pattern of pest challenge is illustrated with a greater chance of new pest 

infestation in the field than at the post-harvest stages of the production chain. The small chance 

of additional pest challenge in the later stages of the production chain should however be taken 

into account in selecting fruit fly management measures. The pattern of pest challenge is 

described Table 3 along with the results obtained using scenarios which employ different 

combinations of measures. 

 

As a reference point, Scenario 1, where no measures are used, resulted in a 70% chance of 

a ‘Low’ infestation and a 30% chance of a ‘High’ infestation at the point of export. Measure 

10.4 VHT is known to be very highly effective against fruit fly and if Measure 10.4 VHT is 

then employed on its own this resulted in a 99% chance of a ‘Negligible’ infestation and a 1% 

chance of a ‘Low’ infestation at the point of export (Scenario 2). The efficacy of VHT is known 

to be much higher than this (Table 2) but if measures to prevent subsequent infestation are 

omitted then detectable infestation at export may result. In Scenario 3, the addition of measures 

to protect the fruit from re-infestation following VHT (Measures 11.1 and 12.1) resulted in an 

appropriate level of protection. 

 



If Measure 10.4 VHT is not employed, it will clearly be necessary to replace it with a 

measure or combination of measures which deliver similar high levels of protection. In 

Scenarios 4, 5, and 6, having removed Measure 10.4 VHT, progressively more measures are 

added until an equivalent level of protection is obtained. In Scenario 4, two measures concerned 

with sanitation (Measures 3.1 and 6.2) are added, together with removal of infested fruit during 

sorting (Measure 6.3). This resulted in a 92% chance of a ‘Negligible’ infestation, a 7% chance 

of a ‘Low’ infestation, and a 1% chance of a ‘High’ infestation (Table 3). Though an 

insufficient level of protection for export, this reduction would still make a significant 

contribution to the management of the pest. Fruit bagging is expected to be fairly effective to 

prevent both fruit fly already present in the particular field and also fruit fly originating from 

the wider environment. Modelling the addition of Measure 5.2 Fruit bagging achieved a 

significant improvement but there is still a 2% chance of ‘Low’ infestation (Scenario 5). 

Finally, in Scenario 6, the further addition of measures to prevent fruit fly challenge during and 

after harvest (Measures 6.1 and 10.1) provided a combination which achieved comparable 

levels of protection to VHT. 

 

There are two types of variable: those associated with pest challenge and those associated 

with the measures. Model analysis tools within the GeNIe software(19) were used to assess the 

sensitivity of pest infestation at export to pest challenge at different times and to the measures 

used in the scenario. The results are summarized in Table 4; the sensitivity to each variable is 

not fixed but depends on its own value as well as that of other variables in the model associated 

with a particular scenario.  

 

In Scenario 1 with no control measures, the result was very sensitive to pest challenge at 

all points throughout the chain. The result was not sensitive to any measures as none were used 



in this scenario. In Scenario 2, which incorporated the highly effective VHT treatment, any 

infestation occurring up to that point was controlled by VHT and as a result the outcome was 

sensitive only to pest challenge occurring after the VHT treatment. In Scenario 3, management 

of any late challenge was introduced by Measures 11.1 and 12.1. This scenario was 

characterized by much higher sensitivity to the VHT treatment than to any other variables. 

 

When other measures were modelled to replace VHT, the reduction of final infestation was 

more sensitive to events at different points in the chain. Of the three measures introduced in 

Scenario 4 (3.1, 6.2, and 6.3), Measure 6.2 was thought to have the most effect (Table 2) and 

this was reflected by the sensitivity of the result to this measure. It is interesting to note that 

the final outcome was then also sensitive to fruit fly challenge immediately following Measure 

6.2, between harvesting and packing. In Scenario 5 another measure, fruit bagging (5.2), was 

added, which was also thought to be quite effective (Table 2). With the inclusion two quite 

effective measures (6.2 and 5.2), both acting at points relatively early in the chain, sensitivity 

to pest challenge remained important between harvesting and packing. The result was no longer 

very sensitive to pest challenge in the field because fruit bagging managed this. It is interesting 

that the outcome shows only moderate sensitivity to fruit bagging in this scenario even though 

this measure is effective. The reason is that, under this scenario, the final outcome hinges more 

on pest challenge events subsequent to this measure.  

 

The final point of potential pest challenge in the chain occurs between packing and export 

but in Scenario 3 onwards, Measures 11.1 and 12.1 were incorporated to manage this. Finally, 

in Scenario 6, two more measures (6.1 and 10.1) were added to reduce the fruit fly challenge 

at harvesting and between harvesting and packing, respectively. As a consequence, the outcome 

became more sensitive to Measure 5.2, fruit bagging. In this scenario, a set of measures (6.1, 



10.1 11.1, and 12.1) were implemented to reduce fruit fly challenge at all points subsequent to 

fruit bagging. Scenario 6 is therefore characterized by high sensitivity to fruit bagging as this 

was then the key measure preventing the important fruit fly challenge in the field. This scenario 

illustrates the value of maintaining the benefits of an effective measure which acts early in the 

production chain through the use of subsequent measures to prevent re-infestation. It is worth 

noting that high sensitivity remains to potential re-infestation between harvesting and packing; 

if this scenario were implemented, this implies particular value in ensuring measures to manage 

pest challenge at this point are operating well. 

 

Quarantine inspection is included in the model as a measure but is not employed in this 

case study. It can be regarded as a control measure because affected lots or units which are 

found are removed and prevented from being included in the shipment. It is also regarded as 

highly effective (Table 2). In practice, it is undesirable for the shipment to fail the inspection 

and the objective in this illustration was to find a set of measures that achieves adequate 

protection without the extra security provided by the inspection. 

 

The six scenarios described here are illustrative of the use of the tool to explore potential 

measure combinations but other combinations are feasible and will depend on the constraints 

prevailing in particular circumstances. The intention of the results illustrated is to show how 

the model might be used to compare sets of control measures which might constitute 

alternatives to current practice and offer equivalent risk reduction. 

 

One of the most important practical results so far has been the direct value for plant health 

practice which has emerged from the model-building process itself: a clarification of the 

variables and their interactions which need to be taken into account in pest risk management 



decision-making. The full range of tools developed in the project: the production chain, the 

elicitation template, and the Bayesian network, have not yet been used in trade discussions 

related to phytosanitary issues. However, the NPPO in the Philippines has been able to use the 

production chain, and associated descriptions of measure efficacy provided by the elicitation 

template, in resolving non-compliance disputes on bananas and pineapples with China early in 

2014. The tools demonstrated an understanding of the set of measures being applied by the 

exporting industry and allowed the Philippine and Chinese authorities to focus on marginal 

improvements that would meet the importing phytosanitary requirements more effectively.  

 

4. DISCUSSION 

 

A model of the level of pest infestation at points along a commodity production chain has 

been developed and used to illustrate comparisons between alternative combinations of control 

measures with the objective of informing the selection of measures to offer an equivalent level 

of protection to existing procedures. The use of a Bayesian network for this exercise allows the 

varying effect and uncertainty of factors affecting pest infestation to be incorporated and 

reflected in the uncertainty of model outcomes. Sensitivity analysis of the model can highlight 

both those measures and those periods of pest challenge which have most impact on the final 

outcome. In implementing a system of measures it is useful to know which components are 

most critical and where any failures are likely to cause the largest risk. Model parameterization 

was by expert judgement so the results should be seen in this context; they show what these 

judgements imply for the likely efficacy of combinations of measures. Particularly where 

evidence is lacking, these judgements may err, making the contribution of such a model 

particularly important in providing a clear statement of beliefs which can be challenged.  

 



The three tools developed in the project – the production chain, the elicitation template, 

and the Bayesian network – together promote a systematic consideration of the issues to help 

build deeper understanding and clarity and therefore confidence for a person conducting 

negotiations. By making Systems Approaches to Pest Risk Management more visible for 

exporters and importers in this way, it has been evident that much value is obtained directly 

from structuring the problem in the form of a descriptive network, the production chain. It is 

then a natural extension of the descriptive network to integrate the probabilistic performance 

estimates of the measures as a Bayesian network. 

 

It is expected to be important for exporters to make use of the production chain and the 

elicitation template as well as the Bayesian network to prepare importer NPPOs for 

negotiations which involve the use arguments based on output of the Bayesian network itself. 

For this it may not be imperative that the outputs of any of the tools be shared with the 

importing NPPO directly. However, in the case of some disagreement on a particular point, the 

great advantage from the clarity and transparency of the tools when applied is to support 

communication about concerns and to encourage precision in exactly where the two parties 

disagree. The values used in the models are clearly displayed in the elicitation template and 

can easily be adjusted in the Bayesian network to demonstrate the impact of the other party's 

assumptions or conclusions, so preventing negotiations being delayed by concerns which turn 

out to have little impact on the overall risk management. The tools are therefore intended to 

provide an effective communication aid between NPPOs. The exporting NPPO could 

demonstrate both official and commercial practice measures, after consulting with its domestic 

stakeholders (e.g., industry, shippers, etc.); the importing NPPO could justify a decision to its 

own stakeholders. 

 



A criticism which is often made of Bayesian networks concerns the large number and the 

difficulty of estimating a large number of probabilities which, here, define the probability 

distributions of the risk factors as well as the conditional probabilities used to integrate the risk 

factors. Recent work to improve European decision-support schemes in PRA – ‘Prima 

phacie’(21,22) and ‘PRATIQUE’(23,24) – used networks analogous to Bayesian networks but with 

parameterization of the risk factors made possible by offering users choices from restricted sets 

of probability distributions which had direct correspondence to an existing risk-rating system 

with which PRA practitioners were already familiar. In these projects, parameterization of the 

CPTs was made easier by integrating nodes two at a time and by restricting the CPTs to a small 

set of alternative configurations, so offering alternative ways in which the risks expressed in 

the parent two nodes could be integrated.(16,25) Here also, by restricting the CPTs to two 

dimensions and by using deterministic CPTs as far as is reasonable, the underlying assumptions 

of the model can be described by a small set of tables or matrices; only four of these used are 

in the model (Table 1). As with the earlier applications in Pest Risk Assessment, the deliberate 

use of limited parameter sets facilitates consistency, ease of interpretation, and review.(26) 

 

Central to Bayesian approaches is the inclusion of evidence and here there are two 

particular examples related to the sensitivity of the model to the addition of evidence. Each 

model component (node) is represented by a probability distribution and the inclusion of 

evidence means that a distribution may be replaced by a known value or by a distribution with 

lower variance. This reduces uncertainty and may alter the final probability distribution of 

model outcome. For example, an importing NPPO may wish to have further proof of the 

efficacy of a control measure and the model could then support decisions regarding 

requirements for verification measures. Addition of a proposed verification measure at a 

particular point in the production chain could be modelled by the inclusion of hypothetical 



evidence about the value of a node and its potential value examined through model queries. It 

may be revealed that potential evidence associated with the effect of a particular measure has 

little influence on the final outcome of the model. This might imply that particular control 

measures are redundant or at least that verification at that point would not be useful. 

 

A second example relates to the concepts of hazard analysis and critical control points 

(HACCP) in food safety methodology. This involves monitoring the uptake of control 

procedures and/or their effects, and taking any necessary responsive corrective action. This 

paradigm has a broad parallel in the work described here in that there are points along a chain 

of events where evidence can be obtained about pest challenge which may then inform further 

control actions. The Bayesian network can be used to model control points first by 

incorporating evidence (or hypothetical evidence) of pest infestation at one or more control 

points in the production chain, then by adding or removing measures conditionally upon the 

evidence. By running model queries this way, a more HACCP-like responsive approach to the 

use of measures could be investigated. 

 

For a limited number of cases it is possible to construct more quantitative models of the 

pests associated with a pathway of entry.(17) In most cases, however, parameter estimation in 

PRA relies heavily on judgement. A more descriptive, categorical description of pest 

infestation, as used here, is therefore a widely compatible reflection of expert understanding. 

The model has a general structure that can be adapted to a wide range of pests associated with 

the production chains of agricultural commodities. It is described here in the context of a 

particular case study involving a potential fruit fly infestation of the dragon fruit production 

chain in Vietnam.  

 



The complex probability calculations resulting from running queries against the model, 

and updating the probability distributions of the variables, are encoded in Bayesian network 

modelling software and do not require the operator to be conversant with the methods and 

algorithms used. The meaning and effects of model parameters are however very accessible to 

scrutiny at a conceptual level and this enabled non-modellers to interact effectively with the 

Bayesian network models. In the Vietnam case study, for example, the plant protection officers 

and dragon fruit farmers did so equally well. If the system of measures and pest infestation 

levels were described using only mathematical equations they would be less generally 

accessible.(18) The fact that Bayesian network models can provide a simple and clear visual 

representation of potentially complex systems, involving many variables and inter-

relationships, makes them particularly appealing as a modelling framework in a biosecurity 

context when stakeholders with diverse backgrounds need to be engaged. 
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Figure 1. Bayesian network of pest infestation on a production chain: model structure 

developed for fruit fly on dragon fruit in Vietnam. Letters in brackets refer to Table 1 and 

indicate the conditional probability table used in each node. In all nodes the categories 

‘Negligible’, ‘Low’, and ‘High’ are ordered so that the risk on infestation increases from top 

to bottom; a negligible pest challenge and a high measure efficacy both imply least risk. 

Probabilities shown correspond to Scenario 6. 

  



Figure 2. Measure 3.1 sub-model structure. All measure sub-models have the same structure. 

 


