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Abstract

We investigate the evolution of passive scalar statistics in a spatially developing turbulence using

direct numerical simulation. Turbulence is generated by a square grid-element, which is heated

continuously, and the passive scalar is temperature. The square element is the fundamental build-

ing block for both regular and fractal grids. We trace the dominant mechanisms responsible for

the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element cen-

terlines. The scalar-variance is generated predominantly by the action of mean scalar gradient

behind the bar and is transported laterally by turbulent fluctuations to the grid-element center-

line. The scalar-variance dissipation (proportional to the scalar gradient variance) is produced

primarily by the compression of the fluctuating scalar gradient vector by the turbulent strain-rate,

while the contribution of mean velocity and scalar fields is negligible. Close to the grid element

the scalar spectrum exhibits a well-defined −5/3 power law, even though the basic premises of the

Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly inter-

mittent, inhomogeneous and anisotropic, and the local Corrsin-microscale-Peclet number is small).

At this location, the PDF of scalar gradient production is only slightly skewed towards positive

and the fluctuating scalar gradient vector aligns only with the compressive strain-rate eigenvector.

The scalar gradient vector is stretched/compressed stronger than the vorticity vector by turbulent

strain-rate throughout the grid-element centerline. However, the alignment of the former changes

much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay ear-

lier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The

universal alignment behavior of the scalar gradient vector is found far-downstream although the

local Reynolds and Peclet numbers (based on the Taylor and Corrsin length scales respectively)

are low.
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I. INTRODUCTION

A passive scalar is transported by the flow but does not react back, i.e. does not influence

the carrier flow. Examples include small variations of temperature, pollutant concentration

etc. Understanding the statistical behavior of scalar fluctuations and their gradients is

important both from the application as well as the fundamental points of view. Most

of the industrial processes (for instance heat exchange, mixing, combustion) involve the

transport of scalar by a turbulent flow. Similarly, understanding of micro-mixing, and

thus arriving at an effective mixing model, requires knowledge of the fluctuating scalar

gradients [1]. The study of passive scalar is also fundamental to the understanding of

turbulence itself. Numerous studies on various aspects of scalar turbulence have appeared

in the literature and are reviewed in Sreenivasan [2], Sreenivasan and Antonia [3], Majda and

Kramer [4], Shraiman and Siggia [5], Warhaft [6], Falkovich et al. [7], Dimotakis [8], Gotoh

and Yeung [9].

The dynamics of passive scalar turbulence have been explored theoretically [10, 11], ex-

perimentally [1, 12–15], and numerically [16–21] for various flow configurations. Some flows

have shear (jets or wakes) and some are shear-free (grid turbulence). In most shear-free

flows, a mean scalar gradient is imposed at the inlet [22–26], but there are also studies

where the grid is heated [12, 27, 28]. It is important to stress that almost all of the pre-

vious studies on shear-free scalar turbulence are either experiments carried out rather far

downstream of the grid, or periodic box direct numerical simulations with an imposed mean

scalar gradient. Thus, they have analyzed mostly the scalar properties in turbulence which

is designed to be close to homogeneous isotropic turbulence (HIT, hereafter).

Last decade has witnessed an interest in turbulent flows generated by fractal grids. Since

the work of Seoud and Vassilicos [29], many studies have focused on the turbulent flow

generated by multi-scale or fractal grids [30–32]. Recently, Valente and Vassilicos [33], Zhou

et al. [34, 35, 36] and Paul et al. [37] have shown that the turbulence generated by a single

square grid-element shares similarities with that generated by a fractal square grid. In both

flows, there is an extended turbulent production region followed by a decay region. The

production region is characterized by increasing turbulent intensity, which decays further

downstream. Previous experimental and numerical studies of Paul et al. [37], Laizet et al.

[38], Gomes-Fernandes et al. [39], Laizet et al. [40] have shown that the dynamics of velocity-
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gradients in the near-grid region are different from the HIT case. In particular, the velocity

spectrum has a −5/3 power-law slope even in the near-grid region where the turbulence is

highly inhomogeneous and developing. In that region, the Q−R diagrams (where Q and R

are the second and third invariants of the velocity gradient tensor) are not developed, and

strain dominates enstrophy.

Previous works have demonstrated significantly increased turbulent scalar fluxes in the

cross-stream direction in the lee of a fractal grid, and proposed a mechanism to explain this

behavior [41–45]. To the best of authors’ knowledge, there are no comprehensive studies on

the dynamical evolution of scalar-variance and scalar gradients in turbulence generated by

fractal or single square grids.

The central aim of this paper is not only to study the statistical behavior of scalar

gradients, but also to investigate their relationship with velocity gradients. The turbulence

is generated by a single square grid-element which is heated continuously, and the passive

scalar is temperature. The present work complements the previous study of the authors on

the evolution of velocity gradients in a turbulent flow generated by the same geometry [37].

The scalar gradient analysis aims to answer the following five questions:

1. How are the large- and small-scale terms of scalar turbulence generated and trans-

ported in this spatially developing turbulence? We identify the dominant mechanisms

responsible for the transport of these quantities in §III.

2. It is sometimes believed that the evolution of scalar dissipation is similar to that

of the mean enstrophy of fluctuations [46]. Do these quantities indeed behave simi-

larly in the examined flow? We report on the similarities and differences along the

grid-element and bar centerlines in §III B and §VI. In §V, we explain the observed

trends by probing more deeply into the production of these quantities due to turbulent

stretching/compressing by strain-rate.

3. Does the −5/3 power-law slope of the scalar spectrum appear in the inhomogeneous,

near grid-element region? Previous studies have established that for HIT the −5/3

slope appears over a wider range of frequencies than the velocity spectrum (refer to

the review of Warhaft [6]). It is not clear if this is also true when the scalar field is

highly inhomogeneous and developing. We explore this question in §IV.
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4. If indeed there is a power-law in the scalar spectrum in the near grid-element re-

gion, how do the small-scale scalar dynamics correlate with the scalar cascade? The

stretching of vorticity vector is believed to be closely associated with the energy cas-

cade in turbulent flows. The equivalent process in the scalar cascade is the stretch-

ing/compressing of the passive scalar gradient vector. In §V, we correlate the behavior

of scalar small-scale terms with the −5/3 power-law slope of the scalar spectra.

5. How do the scalar spectrum and the scalar gradient dynamics evolve from the near

grid-element region to the far-downstream? Since the turbulence is developing, the

dynamics of scalar gradients are also expected to vary and we study this evolution

throughout this paper.

The rest of the paper is organized as follows. The next section provides the details of

the numerical setup. The budgets of large and small scale quantities (scalar variance and

dissipation respectively) are discussed in §III. Then we analyze the scalar spectra in §IV and

the relation with small scale stretching/compressing (§V). The evolution of scalar-variance

and turbulent kinetic energy dissipation rates are analyzed in §VI. Finally, we summarize

the main conclusions in §VII.

II. NUMERICAL METHOD AND COMPUTATIONAL PARAMETERS

Throughout the paper, the instantaneous, mean, and fluctuating velocity fields are de-

noted as u∗i , Ui, and ui respectively (where i = 1, 2, 3). The corresponding variables for

pressure and temperature are p∗, P , p and T ∗, 〈T ∗〉, T. Throughout the paper, the brackets

<> are used to represent the time-averaging operation. The continuity, momentum and

scalar conservation equations are written as:

∂u∗i
∂xi

= 0 (1)

∂u∗i
∂t

+ u∗j
∂u∗i
∂xj

= −1

ρ

∂p∗

∂xi
+ ν

∂2u∗i
∂xj∂xj

(2)

∂T ∗

∂t
+ u∗j

∂T ∗

∂xj
= α

∂2T ∗

∂xj∂xj
(3)
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FIG. 1: Sketch of the computational domain: (a) front view, (b) side view at plane z/t0=0

(the sketches are not to scale).

where ρ, ν, α are the density, kinematic viscosity and thermal diffusivity of the fluid respec-

tively.

These equations are solved using the in-house parallel solver, Pantarhei. The solver

is based on unstructured finite volume discretization in a collocated variable arrangement.

The convective and diffusive spatial terms are discretized using the second-order central-

differencing scheme, while the second-order backward scheme is employed for time advance-

ment. The code is parallelized using the PETSc libraries [47]. More details about the solver

can be found in Paul et al. [37], Paul [48], Paul et al. [49, 50].

The front view of the computational domain in the y − z plane is depicted in figure 1a.

The origin of the coordinate system is located at the center of the element. The bar has

lateral thickness t0 = 43mm, length L0 = 229mm, and streamwise thickness of 6mm. The

blockage ratio is 20%. A characteristic wake interaction length scale, defined as x∗ = L2
0/t0

(refer to [30]), is used to normalize the streamwise distance downstream of the grid-element.

A side-view of the computational domain at plane z/t0 = 0, with details on the size of the

domain and type of boundaries, is shown in figure 1b.

Uniform velocity and temperature profiles are prescribed at the inlet (U∞ and T∞ respec-

tively) and a convective boundary condition is imposed at the outlet. All lateral boundaries

are periodic. On the grid-element surface, no-slip condition is applied for velocity and uni-
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form heat flux (q̇w) for temperature. The Reynolds number based on the the free-stream

velocity U∞ and the bar length L0 is ReL0 = 2650, while based on the lateral thickness t0 is

Ret0 = 500. The Prandtl number, Pr = ν/α, is 0.71.

The same mesh employed in our previous study [37] is also used for this paper. It was

shown in Paul et al. [37] that the ratio of a characteristic mesh size to the Kolmogorov length

scale is less than 1 throughout the computational domain. Since Pr < 1, the Obukhov-

Corrsin scale ηOC (ηOC = ηPr−3/4 where η = (ν3/εk)
1/4 is the Kolmogorov length scale

and εk = 2ν〈sijsij〉 where sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the turbulent strain-rate) is larger than the

Kolmogorov length scale. Therefore, the mesh resolution is finer for the scalar field compared

to the velocity field. At worst, the mesh resolution is 0.63ηOC in the whole domain. More

details about the mesh and the numerical setup are presented in Paul et al. [37].

The validation of the solver against experiments for one-point velocity and velocity-

gradient statistics is presented in Paul et al. [37]. We rely upon this validation for the

present study since there are no experiments available for the scalar field.

III. BALANCE OF TRANSPORT EQUATIONS

In this section we investigate the dynamics and transport mechanisms of large and small

scales of scalar turbulence. The large-scale terms are characterized by fluctuations and the

small-scale terms by fluctuation gradients [51]. Scalar-variance is considered a large-scale

term while scalar-gradient-variance is a small-scale term. The transport equations of these

quantities are studied along the bar and grid-element centerlines because of the different

dynamics prevalent at these two locations.

The scalar field under consideration is visualized first. Contours of the instantaneous

scalar field are depicted in figure 2a. The scalar is being injected into the wake by heating

the grid-element. Vorticity is produced at the walls and shed into the wake. Both scalar

and vorticity have therefore initially the same length scale. For the time instant shown in

the figure, the scalar wakes behind the bars start meeting at x/x∗ ≈ 0.4. As shown later,

the scalar wakes meet at x/x∗ ≈ 0.2 on average, which is similar to the location reported in

Paul et al. [37] for the meeting of vortical wakes.

The time-averaged scalar field is shown in figure 2b. The iso-line of normalized mean

vorticity vector magnitude is superimposed in order to compare the spreading rate of vor-
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(a) (b)

FIG. 2: Contours of (a) instantaneous temperature, (b) mean temperature fields. The

isocontours range from 1 to 1.5 of T∞. The white colored dotted line in (b) is the isoline of

normalized mean vorticity vector magnitude (〈|ω∗|〉t0/U∞) of 0.18. The black colored

dotted-dashed-line is the centerline of the grid-element, while the bar centerline is

represented by a pink dotted-dashed-line.

ticity and scalar wakes. The two rates are similar, as expected [52]. A mean recirculation

region forms behind the bars and its length is approximately 3.7t0 (or 0.13x∗). The scalar

is trapped inside this region, leading to high values in the centerline (depicted as a small

circular red area behind the bars in figure 2b).

A. Scalar-variance balance

The transport equation of scalar-variance 1
2
〈T 2〉 can be written as (refer to [52])

∂
(
〈1
2
T 2〉
)

∂t
= −Uj

∂
(
〈1
2
T 2〉
)

∂xj︸ ︷︷ ︸
Cv

−〈ujT 〉
∂〈T ∗〉
∂xj︸ ︷︷ ︸

Gv

−α
〈
∂T

∂xj

∂T

∂xj

〉
︸ ︷︷ ︸

εv

− ∂

∂xj

〈
1

2
ujT

2

〉
︸ ︷︷ ︸

Tv

+α
∂

∂xj

(
∂ 1

2
〈T 2〉
∂xj

)
︸ ︷︷ ︸

Dv

(4)

where Cv is the mean flow convection, Gv is the production by mean scalar gradient, εv is

the scalar dissipation, Tv is the transport by turbulent fluctuations and Dv is the molecular

diffusion. The transient term in the left hand side is 0, as only time-averaged quantities

are considered. Note that εv is proportional to the scalar-gradient variance

〈
∂T
∂xj

∂T
∂xj

〉
, the

proportionality constant being the thermal diffusivity, α.

Figure 3a presents the evolutions of scalar-variance and turbulent kinetic energy along the

7



x/x*

0
.5
〈T

2 〉
/T

∞2

0
.5
〈u

iu
i〉
/U

∞2

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0

0.05

0.1

0.15

0.2

0.25Mean
recirculation

region

Turbulent
kinetic
energy

Scalar
variance

(a)

x/x*
0 0.2 0.4 0.6 0.8 1

-0.004

-0.002

0

0.002

0.004
Cv

Gv

εv

Tv

Dv

ΣRHSMean
transport

Dissipation

Turbulent
transport

Gradient
production

Mean
recirculation

region

(b)

FIG. 3: (a) Evolution of scalar-variance and turbulent kinetic energy along the bar

centerline, (b) Evolution of budget terms of scalar-variance along the bar centerline. All

terms are normalized by U∞T
2
∞/t0.

bar centerline. The scalar-variance increases from x = 0 till the end of the mean recirculation

region (i.e. x = 0.13x∗) and then decays downstream. This trend is very similar to the

evolution of the turbulent kinetic energy, but the scalar variance decays slightly faster. The

dynamics of scalar-variance is further analyzed through the evolution of the budget terms

(figure 3b). Close to the bar, the mean scalar gradients generate scalar-variance, which is

transported by the mean flow. The production and transport terms increase until the end

of the mean recirculation region, while they are balanced by the turbulent transport and

dissipation terms. Downstream of the mean recirculation region, the gradient production

and mean transport decrease. After x/x∗ ≈ 0.5, the turbulent transport term becomes

negligible and the scalar-variance decays due to dissipation while it is carried by the mean

flow.

We now turn our attention to the evolution of scalar-variance and turbulent kinetic energy

along the grid-element centerline, figure 4a. Although the variation of these quantities was

very similar behind the bars as demonstrated in the previous figure 3a, they exhibit intrigu-

ing differences along the grid-element centerline. Firstly, the scalar-variance is negligible for
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FIG. 4: (a) Evolution of scalar-variance and turbulent kinetic energy along the

grid-element centerline, (b) Evolution of budget terms of scalar-variance along the

grid-element centerline. All terms are normalized by U∞T
2
∞/t0. The transport due to

fluctuations of the turbulent kinetic energy is also shown.

x/x∗ < 0.2, but the kinetic energy is clearly not. The latter is generated by the work done

by pressure [37], a mechanism which is absent for the scalar variance. More specifically, the

presence of vortex shedding behind the bars generates a fluctuating pressure field that cor-

relates with the velocity in the grid-element centerline, making the generation term −∂(ujp)

∂xj

for kinetic energy dominant in the lee of the grid. Secondly, the onset of scalar-variance de-

cay occurs upstream compared to that of the turbulent kinetic energy. While the turbulent

kinetic energy starts decaying around x/x∗ ≈ 0.5, the decay of scalar-variance starts around

0.4. Comparing figures 3a and 4a, it is interesting that the variation of scalar-variance and

turbulent kinetic energy are qualitatively similar, with both quantities reaching a peak value

at exactly the same location along the bar centerline, but along the grid-element centerline,

their behavior is markedly different. They peak at different locations and the decay rate of

scalar variance is significantly faster compared to that of the turbulent kinetic energy.

The budget terms, shown in figure 4b, provide insight into the evolution of scalar-variance

along the grid-element centerline. The first term that becomes active is the turbulent trans-
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port term, Tv = − ∂
∂xj

〈
1
2
ujT

2
〉
. The two lateral directions (j = 2, 3) make the largest

contribution to this term, indicating that the scalar-variance, which was produced by the

mean scalar gradients near the bar, is brought to the grid-element centerline through the lat-

eral motion of the bar wakes. The average meeting point of the thermal wakes is x/x∗ ≈ 0.2,

and this marks the location of rapid growth of turbulent transport (and consequently scalar

variance). The turbulent transport term is balanced by the mean convection and dissipa-

tion. Turbulent transport becomes negligible around x/x∗ ≈ 0.5. Further downstream, the

scalar-variance is carried by the mean flow while it is dissipated.

The differences in the decay rate of turbulence kinetic energy and dissipation have been

studied before, but mainly for homogeneous isotropic turbulence [12, 53, 54]. Theoretical

analysis shows that, if the spectra of kinetic energy and scalar peak at wavenumbers that

are of the same order, the exponents of the decay equation are similar (values 1.38 and

1.48 are reported in Lesieur et al. [54]). If however, the scalar is injected at a much larger

wavenumber, then the instantaneous decay rate of scalar variance is much larger compared to

the aforementioned values. Such a behavior was observed by [12] on heated grid experiments

and a theoretical explanation was proposed by Lesieur et al. [54]. The (initially small)

temperature integral scale grows to approach the velocity integral scale, and during this

time larger decay rates are predicted. It is unlikely that this explanation is valid also for

our case. First, the anomalous behavior was measured when the scalar was introduced by

placing a heated parallel array of fine wires (a mandolin) downstream of the unheated grid.

This results in the scalar and velocity spectra to have different spectral peaks, but in our

case vorticity and scalar are both injected at the grid location. Secondly, the measurements

of [12] were carried out far from the grid (at location 80 times the grid size, as mentioned

in their figure 15), while our analysis focuses very close to the grid.

In the present case, the budget analysis reveals that the evolution of scalar-variance along

the grid-element centerline is controlled by two terms, turbulent transport and dissipation.

Although the turbulent transport of turbulent kinetic energy (also shown in figure 4b) and

that of scalar-variance reach a peak value around x/x∗ ≈ 0.3, their evolution downstream of

x/x∗ ≈ 0.3 differs. In particular, the turbulent transport of of scalar variance is negligible

after x/x∗ ≈ 0.45, while that of kinetic energy persists further downstream. It is interesting

to notice that the spatial shape of the two turbulent transport terms shares many similarities

with the shape of scalar variance and kinetic energy. To get a more detailed picture of scalar
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FIG. 5: (a) Evolution of scalar-gradient-variance and enstrophy along the bar centerline,

(b) Evolution of budget terms of scalar-gradient-variance along the bar centerline. All the

terms are normalized by U∞T
2
∞/t

3
0.

dynamics for our configuration, in the next section we examine the evolution of scalar-

gradient variance.

B. Scalar-gradient-variance balance

This subsection focuses on the evolution of the small-scale term, the scalar-gradient vari-

ance 〈GiGi〉, where Gi = ∂T
∂xi

. As mentioned earlier, the scalar dissipation εv is proportional

to this term.

Denoting the gradient of instantaneous scalar (i.e. mean plus fluctuation) as G∗i = ∂T ∗

∂xi
,
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the transport equation can be written as (see [55]):

∂
(
〈1
2
GiGi〉

)
∂t

= −Uj
∂
(
〈GiGi〉

)
∂xj︸ ︷︷ ︸

CG

−〈Giuj〉
〈
∂G∗i
∂xj

〉
︸ ︷︷ ︸

GG

−
〈
Gi
∂uj
∂xi

〉〈
∂G∗i
∂xj

〉
︸ ︷︷ ︸

αG

−〈GiGj〉
∂Uj
∂xi︸ ︷︷ ︸

βG

−
〈
GisijGj

〉
︸ ︷︷ ︸

PG

−1

2

∂

∂xj
〈GiGjuj〉︸ ︷︷ ︸
TG

+
α

2

∂2

∂xj∂xj
(〈GiGi〉)︸ ︷︷ ︸

DG

−α
〈
∂Gi

∂xj

∂Gi

∂xj

〉
︸ ︷︷ ︸

εG

(5)

where CG is the convection by mean flow, GG and βG are the production terms by mean

scalar and velocity gradient respectively, αG is the mixed production, PG is the production

by turbulent stretching/compression, TG is transport by turbulent fluctuations, DG is the

diffusion, and finally εG is the dissipation.

The evolution of scalar-gradient-variance along the bar centerline is presented in figure

5a. It is very similar to that of the mean enstrophy, also shown in the same figure, with

values reaching a peak at the end of the mean recirculation region and then monotonically

decaying further downstream. The corresponding budget terms, shown in figure 5b, reveal

that the growth of 〈GiGi〉 is due to the stretching/compression of the gradient vector Gi

by the fluctuating strain field (term PG). This is balanced by the dissipation throughout

the bar centerline, while the contribution of all the other terms is negligible. In the field

experiments of Gulitski et al. [1], the contribution of mean fields (both velocity and scalar)

to the generation of small scales was also found to be negligible.

The spatial evolution of scalar-gradient-variance and mean enstrophy however differ along

the grid-element centerline. As expected, the scalar-gradient-variance is negligible in the

region upstream the meeting of the wakes. It starts increasing at x/x∗ ≈ 0.2 until x/x∗ ≈ 0.4,

and the growth is faster than that of enstrophy (figure 6a). Also decay starts earlier compared

to enstrophy; this difference is further discussed in §VI.

The budgets along the grid-element centerline are plotted in figure 6b. The first term

to initiate the growth of 〈GiGi〉 is the turbulent transport term; this is similar to scalar-

variance. Once scalar gradients appear in the centerline, the background strain, which

is mainly due to pressure Hessian and turbulent transport [37], activates the production

stretching/compression term PG, which takes over and becomes the main growth mecha-

nism. The two production terms are balanced by mean convection and dissipation. After
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FIG. 6: (a) Evolution of scalar-gradient-variance and enstrophy along the grid-element

centerline, (b) Evolution of budget terms of scalar-gradient-variance along the grid-element

centerline. All the terms are normalized by U∞T
2
∞/t

3
0.

x/x∗ ≈ 0.4, the mean convection and production are balanced by turbulent transport and

dissipation. Far downstream, the transport terms (both mean and turbulent) become negli-

gible, and only the production and dissipation terms remain that balance each other. A more

detailed analysis of the production due to stretching/compression is presented in section V.

IV. SPECTRUM OF THE FLUCTUATING SCALAR

Results are presented only along the grid-element centerline. As demonstrated in §III B,

the scalar and turbulent kinetic energy dissipation evolve differently along the grid-element

centerline, and secondly both intermittent as well as fully-turbulent regions exist (see figure

2a). As will be shown in the rest of this study, scalar gradient dynamics also exhibit

intriguing behavior along the grid-element centerline.

The values of the Taylor-scale Reynolds number (Reλ) and the Corrsin-scale Peclet num-

ber (PeλT ) at different stations are provided in table I. Note the low values of Reλ and PeλT .

Such values allow for very well resolved numerical simulation and long time integration, both
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95

PeλT 5.21 12.31 19.45 25.6 24.71 23.89

Reλ 10.21 22.01 34.49 37.58 39.12 33.12

TABLE I: Values of PeλT and Reλ at different locations along the grid-element centerline.

Here, Reλ = λ
ν

√
〈uiui〉

3
where λ is the Taylor microscale defined as λ =

√
5ν〈uiui〉

εk
and

PeλT = λT
α

√
〈uiui〉

3
where λT is the Corrsin microscale, defined as λT =

√
6α〈T 2〉
εv

of which are conducive to the statistical convergence of second and third order correlations

as well as good balance of transport equations. In the following we assess whether turbulence

properties that are found for high Reynolds and Peclet number flows can be also detected in

flows with low values of these parameters. To this end, we analyze the scalar spectra along

the grid-element centerline.

Oboukhov [10] and Corrsin [11] extended the phenomenology of Kolmogorov [56] to the

scalar field, and developed what is known as Kolmogorov −Obukhov −Corrsin (or KOC)

theory. It is concerned with locally HIT at very high Reynolds and Peclet numbers. One of

its main predictions when Pr < 1 is that a range of wavenumbers exists where the scalar

spectrum (ETT ) takes the form

ETT (κ) = CεT ε
−1/3
k εvκ

−5/3 (6)

where CεT is the Obukhov-Corrsin constant and κ is the wavenumber. It is important to

stress that the claim of KOC theory is that ETT (κ) ∼ κ−5/3 is only applicable to fully-

developed homogeneous, isotropic turbulence (HIT) at high Reλ and PeλT .

The computed and compensated spectra at different locations along the grid-element

centerline are illustrated in figure 7. At x/x∗ = 0.25, where the velocity spectrum was

reported to exhibit a −5/3 slope for the first time along the grid-element centerline (refer

to Paul et al. [37]), the scalar spectrum has a well-defined −5/3 slope for about a decade

of frequencies (see the compensated spectra for x/x∗ = 0.25 in figure 7b). It is indeed

surprising that such a well-defined power-law appears at a location where the local Reλ

and PeλT numbers are too low for an inertial subrange to exist. In fact, Reλ is only 22.01

and PeλT is a mere 12.31 (see table I). Due to these very small values and the developing

nature of the turbulence, the scalar spectrum is not at all expected to have any power-law
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FIG. 7: (a) Spectra of the fluctuating scalar at different locations along the grid-element

centerline, (b) Compensated spectra plotted in linear-logarithmic axes at the same

locations. The dotted lines in (a) indicate the −5/3 slope, while in (b) they represent a

constant value of ETT (ft0/U∞)5/3.

scaling at this location. Yet, the spectrum does exhibit a definite -5/3 power-law slope for

just under a decade of frequencies. Note also that, x/x∗ = 0.25 is the location where the

fluctuating scalar and its gradients have just been brought to the grid-element centerline by

the turbulent transport from the bar wakes (see §III).

The power-law behavior observed in the near-grid-element region is not related to the

KOC theory. The relationship between the small scales of scalar and the well-defined −5/3

power-law slope is further analyzed in §V. Note that this is the first study that reports a

well-defined −5/3 power-law in the scalar spectrum for a flow characterized by intermittent

switching between turbulent and potential flow region at such low overall Reλ and PeλT

numbers.

The scalar spectra in the more homogeneous decay region are also plotted in figures 7a

and 7b. The frequency range of −5/3 slope appears to be decreasing in these locations

compared to that of the near-grid-element region. This is consistent with the observations

made for the velocity spectra in Paul et al. [37]. At these fully-turbulent locations, Paul
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FIG. 8: PDF of scalar gradient production at different locations along the grid-element

centerline: (a) x/x∗=0.25, (b) x/x∗=0.5, (c) x/x∗=0.95.

et al. [37] reported that the velocity spectra have power-law slope defined only for a limited

range of frequencies. The scalar spectra however have a more clearly defined power-law

for a wider range of frequencies. This observation has also been reported in the literature

on heated-grid fully developed homogeneous turbulence, but for high Reλ and PeλT values

[12, 27]. The −5/3 range of scalar spectra with respect to velocity spectra is also reported

in Lee et al. [57].

V. EIGEN-CONTRIBUTIONS OF STRAIN-RATE TO THE SCALAR GRADI-

ENT PRODUCTION

In this section, we explore further the relation of small scales with the spectra. To

this end, the stretching/compressing of scalar-gradient vector, −GisijGj, which is the main

production term of scalar dissipation is analyzed. This term can be written as,

−GisijGj = −|G|2λ1cos2(G, e1)− |G|2λ2cos2(G, e2)− |G|2λ3cos2(G, e3) (7)

where G is the scalar gradient vector, while λi and ei (where i=1,2,3) are the strain-rate

eigenvalues and eigenvectors respectively. Equation (7) shows that the production of scalar

dissipation depends on the strain-rate eigenvalues and the alignment between the scalar gra-

dient vector and the strain-rate eigenvectors. The statistical behavior of the production term

is discussed first, followed by an analysis of the contribution of the individual eigenvalues

and eigenvectors.
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95

−〈GisijGj〉/〈G2〉〈s2〉1/2 – 0.11 0.195 0.19 0.18 0.17

TABLE II: Values of normalized stretching/compressing at different locations along the

grid-element centerline.

The PDFs of scalar gradient production are plotted at different locations in figure 8. The

PDFs are skewed towards positive at all stations. The positive value of −〈GisijGj〉>0 is

considered a universal behavior of small-scale scalar turbulence [1, 21, 51, 58–60]. The same

behavior is observed also here, at locations where the local Reλ is very small and the flow

is intermittent.

Table II records the values of production term normalized by the product 〈s2〉1/2 =

〈sijsij〉1/2 and 〈G2〉 = 〈GiGi〉. This ratio initially increases rapidly from x/x∗ ≈0.2 to 0.35.

This increase shows that −〈GisijGj〉 increases faster than the product 〈G2〉〈s2〉1/2. Further

downstream, the ratio decreases gradually. This is because 〈s2〉 increases slightly in this

region (i.e. from x = 0.35x∗ to 0.5x∗, see figure 10 of Paul et al. [37]). Far downstream the

ratio again decreases slowly, ascertaining that the decay of −〈GisijGj〉 is similar to that of

〈G2〉 and 〈s2〉1/2. Therefore, the growth of −〈GisijGj〉 is faster than 〈s2〉1/2〈G2〉, while its

decay is similar to that of 〈s2〉1/2〈G2〉. The reason for this behavior will become clearer later

in this section.

A. The role of strain-rate eigenvalues in scalar gradient production

The strain-rate eigenvalues are ordered as λ1 > λ2 > λ3. The incompressibility constraint

implies that λ1+λ2+λ3=0. The largest strain-rate eigenvalue is always positive (i.e. λ1 > 0),

and the third eigenvalue is always negative (i.e. λ3 < 0). The intermediate eigenvalue can be

either positive or negative. For many turbulent flows, the intermediate eigenvalue is positive

on average, and this is one of the universal properties of small-scale turbulence [16, 39, 61, 62].

These strain-rate eigenvalues influence the scalar gradient production as indicated in (7)

(refer also to Gulitski et al. [1]). It is known from Paul et al. [37] that in the grid-element

centerline region 0.25 < x/x∗ < 1, the PDF of the intermediate strain-rate eigenvalue is

skewed positive resulting in two stretching directions and one compressive direction. More
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Quantity / x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95 Field experiment

〈λ1〉/〈s2〉
1
2 – 0.40 0.48 0.54 0.55 0.56 0.53

〈λ2〉/〈s2〉
1
2 – 0.09 0.09 0.12 0.13 0.13 0.09

〈λ3〉/〈s2〉
1
2 – -0.49 -0.57 -0.66 -0.68 -0.69 -0.62

〈λ21〉/〈s2〉 – 0.36 0.38 0.37 0.36 0.36 0.4

〈λ22〉/〈s2〉 – 0.05 0.05 0.05 0.05 0.05 0.04

〈λ23〉/〈s2〉 – 0.59 0.57 0.58 0.59 0.59 0.56

〈λ31〉/〈s2〉
3
2 – 0.74 0.43 0.32 0.28 0.28 0.48

〈λ32〉/〈s2〉
3
2 – 0.05 0.02 0.02 0.05 0.05 0.01

〈λ33〉/〈s2〉
3
2 – -1.57 -0.86 -0.66 -0.60 -0.60 -0.73

TABLE III: Values of normalized eigenvalues of strain-rate tensor at different locations

along the grid-element centerline. The values are compared against the field experiments of

Gulitski et al. [1].

statistics of the normalized strain-rate eigenvalues are provided in table III. The normalized

values of 〈λ2i 〉 (where i=1,2,3) remain remarkably constant, while the normalized values of

〈λ1〉 and 〈λ33〉 increase and 〈λ31〉 and 〈λ3〉 values decrease. The downstream evolution of 〈λ2〉,

〈λ22〉 and 〈λ32〉 remains insensitive to any kind of normalization, although the PDF of λ2

showed remarkable difference from the near-grid-element to the decay regions as reported in

Paul et al. [37]. In the same table III, the values from an atmospheric boundary layer field

experiment [63] are also provided. Although the Reynolds number of the field experiment is

too large (Reλ ≈ 104), the computed values of normalized mean strain-rate eigenvalues are

surprisingly close, in particular for 〈λi〉 and 〈λ2i 〉.

We turn now our attention to the contribution of the strain-rate eigenvalues on the scalar

gradient production. Figure 9 shows the joint probability distribution (JPDF) between the

strain-rate eigenvalues and the scalar gradient production. The analysis is carried out at

two stations along the grid-element centerline: (i) at x/x∗ = 0.25 located in the near-grid-

element region (figures 9a-9c) and (ii) at x/x∗ = 0.95 located in the far-downstream decay
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FIG. 9: JPDF of eigenvalues of strain-rate tensor against the scalar gradient production:

(a-c) at x/x∗=0.25 (near-grid-element inhomogeneous region), (d-f) at x/x∗=0.95 (decay

region). The isocontours range from 101 to 10−1.

region (figures 9d-9f). Figures 9d-9f also look similar to those reported in Gulitski et al.

[63] (see figure 16 of their paper) for the atmospheric boundary layer. It is evident from

figure 9 that the extensive λ1 and compressive λ3 strain-rate eigenvalues are positive and

negative respectively, while the tendency for the intermediate strain-rate eigenvalue λ2 to

skew towards positive is apparent in both the near-grid-element and far-downstream regions.

The preference for the positive scalar gradient production is only marginal at a loca-

tion where the scalar spectrum exhibits the best −5/3 power-law slope. Since stretch-

ing/compression is believed to have a close relationship with the scalar cascade, it might

be intuitive to expect a stronger preference for the production term of scalar gradients,

but in reality that does not occur. This indicates that the stretching/compression process

of scalar gradients may not be the most fundamental process behind the -5/3 power-law

slope. This is further ascertained in figures 9d-9f where the production of scalar gradi-

ent is strongly preferred (as evident from the asymmetry in the JPDF with respect to
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FIG. 10: PDF of cosine of the angle between scalar gradient vector and strain-rate

eigenvectors at different locations along the grid-element centerline: (a) x/x∗=0.25, (b)

x/x∗=0.35, (c) x/x∗=0.5. The dotted lines in (c) are the results from Vedula et al. [21].

−GisijGj/〈GisijGj〉 = 0), yet the spectrum at this location has a power-law defined for a

more narrow range of frequencies than that of the near-grid-element region. Figures 9d-9f

also reveal that there is a correlation between the strain-rate eigenvalues and the positive

skewness of scalar gradient production in the homogeneous decay region.

B. The role of geometrical alignments in scalar gradient production

The other factor that affects the production of scalar gradient, the geometrical alignments

(refer to equation 7), is analyzed in this subsection. These alignments were first reported by

Ashurst et al. [16] for a periodic homogeneous isotropic turbulence. It was observed that the

fluctuating scalar gradient vector aligns with the compressive strain-rate eigenvector, and

it is perpendicular to the intermediate strain-rate eigenvector. The extensive strain-rate

eigenvector aligns 45o with the fluctuating scalar gradient vector. These observations were

also verified in subsequent studies of Gulitski et al. [1], Abe et al. [17], Vedula et al. [21].

These alignment properties are also considered universal characteristics of small-scale scalar

turbulence.

The PDFs of the absolute value of the cosine of the angle between the fluctuating scalar

gradient vector and the strain-rate eigenvectors are plotted for different grid-element cen-
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FIG. 11: (a) PDF of cosine of the angle between fluctuating scalar gradient and vorticity

vectors at different locations along the grid-element centerline, (b-c) Comparison between

alignments of instantaneous versus fluctuating scalar-gradient and vorticity vectors at: (b)

x/x∗=0.25, (c) x/x∗=0.5.

terline locations in figure 10. The alignment behavior at x/x∗ = 0.25 and 0.35 is shown

in figures 10a and 10b respectively. The scalar gradient vector aligns with the compressive

strain-rate eigenvector but is normal to the other two eigenvectors. This is not the universal

alignment behavior reported in the previous studies [1, 17, 21]. Note that at the same loca-

tions the alignment behavior of vorticity was also found by Paul et al. [37] to be anomalous;

the vorticity vector aligned with both the extensive and intermediate strain-rate eigenvec-

tors. Note also that the alignment of the compressive strain-rate eigenvector with the scalar

gradient vector becomes stronger from x/x∗ = 0.25 to 0.35 giving a possible answer as to

why the scalar-gradient-variance increase in the region 0.2 < x/x∗ < 0.35 (refer to figure

6a). The alignment behavior for the region 0.2 < x/x∗ < 0.35 agrees with the results of

Brethouwer et al. [60] who reported that strain-dominated regions strengthen the alignment

of the scalar gradient vector with the compressive strain-rate eigenvector. The alignment

behavior after x/x∗ ≈ 0.4 starts to exhibit the universal trend reported in the literature as

the PDFs in figures 10c, plotted for x/x∗ = 0.5, are very similar to the results of Vedula

et al. [21]. This universal alignment behavior prevails throughout the decay region although

the values of PeλT and Reλ are significantly low.

Unlike the alignment behavior of the fluctuating scalar-gradient vector with the strain-
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FIG. 12: PDF of eigen-contribution to scalar gradient production at different locations

along the grid-element centerline: (a) x/x∗=0.25, (b) x/x∗=0.5, (c) x/x∗=0.95.

rate eigenvectors that changes along the grid-element centerline, the alignment with the

fluctuating vorticity vector remains the same as noted in figure 11a. The figure also shows

that homogeneity in fluctuating vorticity statistics is attained only in the downstream of

x/x∗ ≈0.35. The fluctuating scalar-gradient vector aligns perpendicular to the vorticity

vector throughout the grid-element centerline. This result closely follows the mathematical

fact that the instantaneous scalar product between vorticity and scalar-gradient vectors

is a Lagrangian inviscid invariant. We also noted some difference between instantaneous

and fluctuating alignment characteristics of scalar-gradient and vorticity vectors only in the

inhomogeneous region where the mean gradients are strong (see figure 11b). On the other

hand, the alignments results of instantaneous and fluctuating scalar-gradient and vorticity

vectors are nearly similar in the homogeneous region starting from x/x∗ ≈0.5 as shown in

figure 11c.

C. The combined effects of strain-rate eigenvalues and eigenvectors to scalar gra-

dient production

The combined effect of strain-rate eigenvalues and eigenvectors on the scalar gradient

production is plotted in figure 12. At x/x∗ = 0.25, where the scalar-gradient-variance

has just started to develop and the scalar spectrum has the best-defined −5/3 power-law

slope, the production of scalar gradient is predominantly due to the compressive strain-

rate eigenvalue and eigenvector as only the PDF of −|G|2λ3cos2(G, e3) is skewed to the
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Quantity/x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95 Field exp.

〈|G|2λ1 cos2(G, e1)〉/〈GisijGj〉 – -0.18 -0.31 -0.27 -0.25 -0.22 -0.64

〈|G|2λ2 cos2(G, e2)〉/〈GisijGj〉 – -0.03 -0.04 -0.04 -0.04 -0.04 -0.05

〈|G|2λ3 cos2(G, e3)〉/〈GisijGj〉 – 1.21 1.35 1.31 1.29 1.26 1.69

TABLE IV: Contribution of strain-rate eigenvalues to scalar gradient production. The

values are compared with the field-experiments of Gulitski et al. [1].

positive. A similar finding was reported in Gulitski et al. [1] but for a homogeneous isotropic

turbulence. Therefore, the small scales of scalar are due to compressing of fluid elements,

although the small scales of velocity fluctuation are due to vortex stretching. As a novelty,

this study takes this result one step further and shows that this compressing of fluid elements

is mostly associated with the strain-rate eigenvectors for the developing inhomogeneous

turbulence. In the decay region, some portion of the PDF of −|G|2λ2cos2(G, e2) is in the

positive x-axis, but the overall contribution is negative.

The observations noted in figure 12 are further analyzed through the mean values of in-

dividual components of the eigen-contribution to the scalar gradient production (see table

IV). The values of 〈|G|2λ1 cos2(G, e1)〉 and 〈|G|2λ2 cos2(G, e2)〉 are negative and the only

positive component is 〈|G|2λ3 cos2(G, e3)〉. This observation ascertains that the production

of scalar gradient is due to the compressive action of strain-rate eigenvalues and eigenvec-

tors [1]. The mean eigen-contribution values are compared against the very high Reynolds

number field experiments of Gulitski et al. [1]. Although the values of 〈|G|2λ2 cos2(G, e2)〉

and 〈|G|2λ3 cos2(G, e3)〉 are closer to the literature values, the values of 〈|G|2λ1 cos2(G, e1)〉

show some significant discrepancy. Recall that the present simulation is carried out for a low

Reynolds number, and the observed discrepancy could well be a Reynolds number effect.

Concerning the evolution of 〈|G|2λ3 cos2(G, e3)〉 with respect to −〈GisijGj〉, it can be

noted that the behavior of these two terms are similar; both terms increase from x/x∗=0.2

to 0.4, and then they decay gradually. Noting from table III that the values of 〈λ3〉 decrease

from x=0.25x∗ to 0.4x∗, the rapid increase of −〈GisijGj〉 compared to 〈GiGi〉 and 〈sijsij〉

is the result of rapid increase in the strong alignment between the compressive strain-rate

eigenvector and the scalar gradient vector. In simple terms, the asymmetric evolution of

−〈GisijGj〉 compared to 〈GiGi〉 and 〈sijsij〉 is the result of asymmetric evolution of the
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FIG. 13: Evolution of turbulent kinetic energy and scalar-variance dissipations along: (a)

the bar centerline, (b) the grid-element centerline. (c) Evolution of the time-averaged

quantities χ and Υ (defined in the text) along the grid-element centerline.

alignment behavior between the strain-rate eigenvector and the scalar gradient vector.

VI. STRETCHING OF VORTICITY VECTOR VERSUS STRETCHING OF A

PASSIVE VECTOR

The aim of this final section is to provide an explanation as to why the scalar dissipation

(εv = α〈GiGi〉) starts decaying earlier along the grid-element centerline compared to kinetic

energy dissipation (ν〈ωiωi〉), as demonstrated in figure 6a. The dissipation quantities are

sometimes believed to have similar behavior [46] and the relationship is given as 〈GiGi〉1/2 =

C〈ωiωi〉1/2Pr1/2, where C is a constant that depends on the flow conditions. In periodic box

simulation, Pumir [19] found that this relation is very well satisfied, with a value of constant

C close to 2.

The spatial evolution of these two dissipation rates along the bar and the grid-element

centerlines is plotted in figures 13a and 13b respectively. The relationship 〈GiGi〉1/2 ∼

〈ωiωi〉1/2Pr1/2 is valid only along the bar centerline and for x/x∗ > 0.6 on the grid-element

centerline. Indeed, figure 13a demonstrates that the qualitative behavior of the two dissi-

pation profiles is similar along the bar centerline, with values peaking at the same position.

The value of the constant C in the current simulation is approximately 0.2. At the grid-
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FIG. 14: PDF of scalar gradient production rate and enstrophy production rate at different

locations along the grid-element centerline: (a) x/x∗=0.25, (b) x/x∗=0.5, (c) x/x∗=0.95.

element centerline however, the onset of scalar dissipation decay occurs earlier than the

decay of kinetic energy dissipation (see figures 13b and 6a). A similar behavior between the

dissipation rates of kinetic energy and scalar-variance is also reported in Lesieur [53], Lesieur

et al. [54].

In order to provide an explanation for the aforementioned behavior, we explore below

in more detail the turbulent stretching/compression of the vorticity and the scalar gradient

vectors. This is motivated by the fact that the dominant production terms are −GisijGj and

ωisijωj respectively. As noted in Tsinober [51], the vorticity vector and turbulent strain-

rate are coupled. It can be seen from the governing equations of enstrophy (ωiωi) and

strain-product (sijsij) (refer to equations (5.4) and (5.7) of Paul et al. [37]) that the vortex

stretching/compression term appears in both equations: as a source term for enstrophy and

a sink for strain-product. This means that the growth of enstrophy reduces the strain-rate

and thus weakening the stretching/compression which eventually leads to the enstrophy

damping. On the other hand the stretching of the scalar gradient vector is determined

by strain only (i.e. does nor react back). It is thus expected that the statistics of the

stretching/compression of the two vectors will be different.

In Ohkitani [64], the normalized stretching/compression rates of vorticity and scalar

gradient were defined as χ =
ωisijωj/ωiωi√

〈ωiωi〉
, and Υ =

−GisijGj/GiGi√
〈ωiωi〉

. The variation of χ

and Υ along the different grid-element centerline is shown in figure 13c. Clearly, the

stretching/compression rate of the passive vector is stronger than that of the vorticity

vector throughout the grid-element centerline. The dominance of passive vector stretch-
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ing/compression over vorticity vector was first reported in Ohkitani [64]. The current re-

sults, however, cannot be directly compared with the study of Ohkitani [64], as the latter

considers ’frozen’ passive vectors that satisfy the continuity equation. For the distinction

between the two types of passive vectors refer to the book of Tsinober [51].

The reason for the observed difference lies in the two-way coupling between strain and

vorticity. When the mean enstrophy increases in the region of 0.2 < x/x∗ < 0.5 (see figure

8(a) of Paul et al. [37]), the stretching of vorticity also increases in this region, but this

increase weakens the strain-rate magnitude (because the stretching/compression term acts

as a sink for the strain) which in turn reduces the strength of vortex stretching/compression

(that depends on the strain magnitude). This can explain why the stretching/compression

rate of vorticity vector is smaller than that of a passive vector. Although the comparison

of stretching/compression rates between the vorticity vector and the scalar gradient vector

confirms the validity of Ohkitani’s observation for the current case, it cannot explain why

the onset of scalar-variance dissipation decay occurs much earlier along the grid-element

centerline.

Figure 13c demonstrates that the growth of both χ and Υ is suddenly hampered. This

occurs earlier for the passive scalar field compared to the vorticity field. What is the process

that suddenly impedes the growth of stretching/compression rates? It is intuitive that this

process should be related to the stretching/compression term. Indeed, as shown in the

next paragraph, the decay of scalar dissipation starts earlier than that of the kinetic energy

dissipation due to the difference in alignments between the scalar gradient vector and the

strain-rate eigenvector. The production of the two dissipation quantities depends on the

strain-rate eigenvalues and the alignment of the eigenvectors with the vorticity and scalar

gradient vector (equation (7)). Since the strain-rate eigenvalues appear in the same way

in both production terms, the difference in evolution should originate from the geometrical

alignments.

For the kinetic energy dissipation, the extensive and intermediate eigenvectors aid the

growth of 〈ωiωi〉 (see figure 20 of Paul et al. [37]). On the other hand, as reported in many

studies (and confirmed in figure 12), the growth of 〈GiGi〉 occurs predominantly due to the

compressive eigenvector. This is because, as was noticed earlier, the extensive eigenvector has

a negative effect on the growth of scalar-gradient-variance, and the intermediate eigenvector

aligns perpendicular to the scalar gradient vector. The vorticity vector aligns with both the
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extensive and intermediate eigenvectors in the region 0.2 < x/x∗ ≤ 0.5, and thus acting as a

main agent to increase 〈ωiωi〉 in that region (see figure 22 of Paul et al. [37]). If 〈GiGi〉 has

to increase in 0.2 < x/x∗ ≤ 0.5, then the scalar gradient vector is expected to align only with

the compressive eigenvector. Yet, such an alignment behavior is noticed only in the region

0.2 < x/x∗ < 0.4 where the extensive and intermediate eigenvectors align perpendicular

to the scalar gradient vector and thus they do not hamper the growth of scalar-gradient-

variance due to the compressive eigenvector. When the extensive strain-rate eigenvector

aligns 45o to the scalar gradient vector (i.e after x/x∗ > 0.4), the negative effect due to this

alignment on the scalar-gradient-variance is felt in the form of decreasing the scalar-gradient-

variance. Comparing the alignment behavior of the scalar gradient vector with that of the

vorticity vector, it is observed that the vorticity vector changes its alignment behavior later

along the grid-element centerline (it occurs only after x/x∗ = 0.5) than that of the scalar

gradient vector. Thus, the delayed change in alignment behavior of vorticity vector causes

the scalar-variance dissipation to decay earlier along the grid-element centerline than the

turbulent kinetic energy dissipation.

VII. CONCLUSIONS

This paper presents a statistical analysis of a passive scalar (in the form of temperature)

injected into a spatially developing turbulence. The turbulence is generated by a single

square grid-element which is heated continuously. The main objective of this study was to

seek answers to the five questions raised in §I. The answers for those questions are given

below:

1. The large-scale quantity (scalar-variance) is generated mainly behind the bars due to

the action of mean scalar gradients. It is then laterally transported to the grid-element

centerline through turbulent transport due to the intermittent meeting of the bar wakes

(external intermittency). The mean velocity and scalar fields have minimal effect on

the production of the small-scale quantity (scalar-gradient-variance, proportional to

scalar dissipation), even behind the grid-element bars. Instead, this is produced by the

turbulent strain rate via the stretching/compressing process. This study has shown

that the production of scalar dissipation is due to compressive action of strain-rate,

while it is the stretching action that produces the kinetic energy dissipation.
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2. Although the evolution of scalar dissipation is similar to the turbulent kinetic energy

dissipation along the bar-centerline, they behave differently along the grid-element

centerline. The different alignment behavior of the scalar gradient vector and the

vorticity vector with the strain-rate eigenvectors explains why the scalar dissipation

decays much earlier along the grid-element centerline than that of the turbulent kinetic

energy dissipation.

3. The scalar spectrum is observed to exhibit the best −5/3 power-law slope in the near-

grid-element region. This slope occurs even in the highly-intermittent, non-Gaussian

and inhomogeneous region where the local Reλ and Pe are significantly low.

4. The −5/3 slope in the scalar spectrum is most clearly observed in the regions where

the small-scale terms of scalar have just started developing. The scalar spectrum has a

well-defined −5/3 power-law slope for at least a decade of frequencies in the locations

where the strength of stretching/compressing of scalar gradient by strain-rate is weak.

On the other hand, in the locations where the stretching/compressing strength is high,

the frequency range becomes narrower. Hence, the stretching/compressing process of

scalar gradients by strain-rate (equivalent to the vortex stretching process in velocity

field) is not necessarily the cause of the -5/3 power-law behavior.

5. Moving from the near-grid-element centerline region to the far-downstream, it is noted

that the -5/3 slope in the scalar spectrum slowly erodes, and the alignment between

the scalar gradient vector and the strain-rate eigenvector morphs to the universal

alignment behavior reported in the literature.
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temperature derivatives in high-reynolds-number turbulent flows in the atmospheric surface

layer. part 1. facilities, methods and some general results,” J. Fluid Mech. 589, 57–81 (2007).

[64] K Ohkitani, “Numerical study of comparison of vorticity and passive vectors in turbulence

and inviscid flows,” Phys. Rev. E 65, 046304 (2002).

33


