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a b s t r a c t

Transmission Network Expansion Planning (TNEP) in modern electricity systems is carried out on a cost-
benefit analysis basis; the planner identifies investments that maximize the social welfare. As the
integration of Renewable Energy Sources (RES) increases, there is a real challenge to accurately capture
the vast variability that characterizes system operation within a planning problem. Conventional ap-
proaches that rely on a large number of scenarios for representing the variability of operating points can
quickly lead to computational issues. An alternative approach that is becoming increasingly necessary is
to select representative scenarios from the original population via clustering techniques. However, direct
clustering of operating points in the input domain may not capture characteristics which are important
for investment decision-making. This paper presents a novel objective-based scenario selection frame-
work for TNEP to obtain optimal investment decisions with a significantly reduced number of operating
states. Different clustering frameworks, clustering variable s and clustering techniques are compared to
determine the most appropriate approach. The superior performance of the proposed framework is
demonstrated through a case study on a modified IEEE 118-bus system.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation and literature review

Theworldwide push for decarbonisation of electricity systems is
expected to be largely achieved by the high penetration of
renewable energy sources (RES). Given that the majority of RES is
remotely located in most jurisdictions, large scale transmission
network expansion is required to accommodate these RES. Histor-
ically, network design had been driven by the need to meet peak
demandwith sufficient reliability [1]; this peak-based approach has
led to economically efficient solutions in systems dominated by
thermal generators with high capacity value. However, under high
penetration of intermittent RES, that have a much lower capacity
value, accommodating peak flows during high demand seizes to be
the primary investment driver. Consequently, transmission
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investment is undertaken on a cost-benefit basis where the solu-
tion that minimizes total cost is pursued. Finding the right balance
that minimizes the overall system cost including cost of trans-
mission investment, cost of operation and cost of unserved load
constitutes the transmission network expansion planning (TNEP)
problem [2].

Under a cost-benefit planning framework, it is challenging to
accurately capture the plethora of operating points that can occur.
For this purpose, historical data of demand and wind across the
different system nodes can be used. Nevertheless, the computa-
tional complexity of accommodating thousands of operating points
in a large-scale Mixed Integer-Linear (MILP) planning model is
highly problematic. Therefore, it is highly desirable to analyse the
original dataset of historical operating points and select a small set
of representative scenarios that can lead to efficient planning de-
cisions. At the high level, there are three major approaches for
tackling this task.

The simplest and most practical approach is heuristic selection,
where a few scenarios are selected as representative snapshots by
experts. They are chosen on the assumption that they describe
critical states of the system according to the variations of the load
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

Sets and indices
UT Set of operating points, indexed t
UB Set of network buses, indexed b
UG Set of all generators, indexed g
UG Set of thermal generators, indexed g

UW Set of wind generators, indexed w

UC
L Set of existing transmission lines, indexed l

UC
L Set of candidate transmission lines, indexed l

UL Set of existing and candidate transmission lines,
indexed l

Input parameters
Cl Cost of building line l ($/year)
Cg Generation cost of thermal unit g ($/MWh)
V Value of lost load ($/MWh)
tt Duration of operating point t (hour)
pt Weighting of operating point t (scalar)
Dt;n Demand at bus n at operating point t (MW)

Pmax
g Maximum stable generation level of generator g

(MW)
Wt;w Wind power injection from unit w at operating point

t (MW)
bEl Susceptance of existing line l (p.u.)

bCl Susceptance of candidate line l (p.u.)
Fmax
l Power flow limit of transmission line l (MW)
ul Originating bus of line l
vl Terminating bus of line l

Decision variables
nl Binary variable to build line l
f Et;l Power flow on existing transmission line l (MW)

f Ct;l Power flow on candidate transmission line l (MW)

qt;n Phase angle at bus n (rad)
pt;g Output of thermal generator g (MW)
pt;w Output of wind generator w (MW)
ut;b Load curtailment at bus n (MW)
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and RES outputs [3]. Naturally, this approach lacks systematic se-
lection criteria and presents inherent limitations regarding
complexity.

A second approach is that the TNEP mathematical formulation
can be modified to explicitly accommodate probabilistic input data.
For example, in Ref. [4], point estimate methods are employed to
describe the operation of a Micro-Grid; a full probabilistic
description of state variables is obtained while numerically evalu-
ating it at only at a few points. Fuzzy methods have also been
applied in a similar vein (e.g. Ref. [5]). However, two major draw-
backs of such point-estimate techniques are that (i) they are based
on parametric marginal distribution functions which may not be a
good fit for demand and RES injection variables and (ii) they do not
capture dependence between variables which is a critical issue in a
multivariate setting.

A final approach is the use of clustering techniques. In general,
clustering is the task of grouping objects in such a way that objects
in the same group are more similar to each other than to those in
other groups. As such clustering can be a systematic way for ‘in-
formation compression’. Clustering algorithms can be categorized
as connectivity-based (e.g. hierarchical clustering), centroid-based
(e.g. k-means clustering), model-based (e.g. Gaussian mixture
model (GMM)), and density-based clustering (e.g. DBSCAN).
Connectivity-based methods construct a hierarchy of groups based
on distance metrics, whereas centroid-based clustering aims to
identify a pre-determined number of central points that minimize a
given centre-to-point distance metric. In contrast, model-based
and density-based clustering techniques focus on the distribution
and the density of the input data respectively. Comprehensive
comparisons among these clustering techniques have been per-
formed in terms of their statistical performance in Ref. [6]. Various
applications of clustering methods to power systems have been
proposed in the past, such as wake effect analysis in wind farm [7],
characterizing electricity load profiles [8], reliability constrained
congestion management [9], assessing the RES potential [10],
grouping high-dimensional stochastic variables in power systems
[11] and clustering of electricity consumption behavior dynamics
[12].

Recently there has been some limited work on the topic of
scenario selection in planning problems. In Ref. [13] the authors
employ k-means clustering to select representative operating
points for investment on wind generation. In Ref. [3], the k-means
algorithm is used to cluster system operation based on energy
prices and non-controllable power injections. In Ref. [14], k-means
is used to generate bounded intervals of demand and wind pro-
duction levels for resilience-driven generation planning. The k-
medoids method was employed in Ref. [15] for selecting operating
points to carry out TNEP. A self-adaptive clustering technique is
proposed in Ref. [16] to deal with the wind variability that char-
acterizes the TNEP using historical wind data. Another application
is to use of k-means to enhance the computational performance of
Benders decomposition for multi-area TNEP [17].

All the above approaches select representative scenarios by
directly clustering data in the input domain (e.g. energy price, de-
mand), (referred to as ‘input-based’), with the advantage of
straightforward implementation. However, it is important to
highlight that in the case of TNEP, the optimal investment decisions
are not linearly related to the input variables. Therefore, direct
clustering approaches may not be efficient since the effect of a
chosen input scenario on the objective of the TNEP problem cannot
be known as a priori. To this end, authors in Ref. [18], in recognition
of the fact that power flow patterns are key drivers for transmission
investment, use amoment-matching algorithm to cluster operating
points on the basis of their optimal power flow (OPF) patterns.
According to numerical examples, the proposed OPF-based sce-
nario selection algorithm indeed leads to amore effective reduction
in the number of scenarios required to obtain the optimal invest-
ment decisions. In addition, an effective operational state aggre-
gation technique has been proposed in Ref. [19] to select
representative scenarios based on the line benefit. However, this
algorithm needs to solve a relaxed TNEP problem with all the
operating points, resulting in an increased computational cost
before the clustering procedure. Recently, a novel method has been
presented in Ref. [18] for the TNEP; important operating points are
selected based on the expected power transfer of each corridor.
Approaches such are this, where clustering takes place in terms of
some output variable, are referred to as ‘effect-based’. However, no
proposal has been yet made to cluster operating points in terms of



Table 1
Overview of the scenarios selection methods for TNEP.

Method Example References Advantages and Disadvantages

Input-Based [13] [15], [16] [17] Advantages:

✓ Straightforward implementation.

Disadvantages:

� Not efficient since the effect of a particular operating point on the TNEP problem cannot be known as a priori.
Effect-Based [18] [19] [20] Advantages:

✓ Generally more efficient that input-based methods.

Disadvantages:

� Further computational effort required to solve individual operation problems (albeit in isolation which typically translates to
negligible complexity compared to the full problem at hand).

Objective-Based Presented approach Advantages:
✓ Highly efficient scenario selection method
✓ The proposed bi-level framework succeeds in capturing well a fully representative scenario set.

Disadvantages:

� Further computational effort required to solve individual operation problems (albeit in isolation which typically translates to
negligible complexity compared to the full problem at hand).
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the investment decisions themselves (referred to as ‘objective-
based’ since identifying investment is the objective of the TNEP).
The most important contribution of the present paper is that we
demonstrate the superior performance of the proposed objective-
based framework for solving the TNEP problem. An overview of
the advantages and disadvantages of the existing and proposed
methods is given in Table 1. Another topic of interest is clustering
validation; analysing whether the chosen operating points effec-
tively represent the full set of available data. Similar to the work
carried in Ref. [21], which compares the impact of different scenario
reduction techniques on the stochastic unit commitment problem,
more work is required for identifying appropriate clustering tech-
nique for the TNEP problem.
1.2. Research questions and contributions

Threemajor research questions that pertain to the application of
clustering-based approaches to TNEP can be summarized as:

(1) Which variables should the clustering be based on? The
choice can include combinations of variables in the input
domain (e.g. demand and/or renewable injection), in the
operational decision domain (e.g. power flows, bus angles)
and in the investment decision domain (e.g. lines built or
investment cost);

(2) Which is the most appropriate clustering technique to be
applied for a chosen set of variables (e.g. centroid methods,
mixture models etc.);

(3) After clustering the different scenarios, how to select the
representative profile of each cluster (e.g. mean value or
median point).

In this paper, we focus on exploring the first two issues of
clustering variables and clustering techniques, and also analyse the
impacts of selection methods. In summary, this work contributes to
the existing literature on the following points:

1. A novel objective-based scenario selection framework is pro-
posed by performing bi-level clustering on a combination of two
variables; the incurred investment costs for candidate lines and
the power flow patterns in existing lines.
2. A comprehensive analysis is performed, for the first time, to
understand the suitability and efficiency of clustering variables
and clustering techniques in the TNEP problem.
1.3. Analysis approach

Given a historical demand-wind dataset that consists of N ob-
servations of m ¼ jUNj þ jUW j interdependent injections and loads
zt;n; where t2UT is theoperatingpoint andn2f1;/;mg:Wedenote

each operation point by the vector zt
!2ℝm and the set of all obser-

vations as Z ¼ f z!t jt2UTg: Our aim is to identify a set of operating
points Z y so that C*ðZ Þ ¼ C*ðZ yÞ; where C* denotes the optimal
system cost, as shown later in Equation (1). To achieve this, we
compare different clustering approaches; a comprehensive analysis
framework has been developed that enables the evaluation of each
approach's performance in terms of the TNEP solution accuracy.

The framework is shown in Fig. 1 and can be summarized in the
following steps:

Step 1. We first solve the full TNEP problem considering all jUT j
available scenarios in Z to establish C*ðZ Þ which constitutes
the ‘ground truth’ benchmark in terms of investment decisions
and optimal cost.
Step 2. Given a number of clusters K; we perform one of four
scenario selection approaches (denoted A1, A2, A3 and A4) with
different combinations of clustering framework (i.e. single-level
and bi-level) and clustering variables (i.e. demand-wind pat-
terns, power flow patterns, and investment costs) to derive the
set of representative scenarios Z y: More information on this
step is provided in Section 3.
Step 3. For each of the above methods, six different clustering
techniques are applied to obtain Z  

y; k-means, k-medoids, hi-
erarchical average, hierarchical complete, hierarchical ward and
GMM. More information on the different clustering methods is
provided in Section 4.
Step 4. The optimal investment decisions ny are obtained by
solving the TNEP with the reduced data set Z y.
Step 5. The optimal operational cost C*

Oðny;Z Þ over the entire
dataset Z under the previously-identified investment scheme
ny is determined.



Fig. 1. Workflow of the tested scenario selection methods and the performance validation process.
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Step 6. The optimal system cost (i.e. sum of investment and
operation cost) is computed as C*ðZ yÞ ¼ CIðnyÞ þ COðny;Z Þ
Step 7. The solution C*ðZ yÞ obtained in step 6 is compared to
with the benchmark C*ðZ Þ obtained in step 1.

The rest of paper is structured as follows: Section 2 presents
TNEP model. Section 3 gives an introduction to various types of
clustering variables and different clustering techniques for the
TNEP problem. Section 4 explicitly introduces the structure of the
proposed bi-level clustering based scenario selection framework.
The case study results are presented in Section 5 to compare
different clustering frameworks, clustering variables, and clus-
tering techniques. Section 6 contains the concluding remarks.

2. Transmission network expansion planning model

2.1. Sources of stochasticity

With the introduction of shiftable load elements and the large-
scale integration of intermittent energy sources, the vast number of
stochastic variables beyond the transmission system operator
(TSO)’s control result in a significant increase of uncertainty in the
transmission operation and planning problem. In general, the sto-
chastic variables beyond the operator's control include:

� Load levels (active and reactive);
� Uncontrollable renewable generation injections (e.g. wind, solar,
etc.);

� External injections/withdrawals (e.g. cross-border imports/
exports);

In this paper, we focus on themultivariate stochastic variables of
demand and wind generation output as the sources of stochasticity
for the TNEP problem, by directly employing the historical mea-
surements as the scenarios that represent the various operating
conditions.
2.2. Mathematical formulation

In terms of the mathematical formulations, DC-power flow and
AC-power flow are two types of transmission network modeling
approaches for the TNEP problem [20]. For practical purposes, AC
power flow model can be approximated via the linearized DC po-
wer flow model with the advantages of unique solution, reliability,
and efficiency [21], especially in the context of the large-scale
integration of intermittent generation sources. In addition, DC
models, transportation models, hybrid models, and disjunctive
models have been introduced and compared in Ref. [22].
Concretely, the transportation model is derived by relaxing the
nonlinear constraint, an expression of Ohm's law, for the DCmodel,
however, resulting in a possible higher investment cost than the
optimal solution of DC model. On the other hand, the hybrid model
integrates the characteristics of the transportation model and the
DC model and only consider the Kirchhoff's voltage law (KVL)
constraint for the existing circuits. In Ref. [23], the disjunctive
model has been adopted to solve a stochastic TNEP problem with
the consideration of the uncertainties of load and RES. Also, the DC
model has been modified and used in Ref. [24] for solving a sto-
chastic transmission expansion planning (STEP) problem. In this
paper, the conventional DC model is used and adapted for solving
the TNEP problem considering multivariate dependency in load
and wind outputs. However note that the presented methodology
can be readily applied to other variants of the TNEP formulation
such as one employing AC power flow.

In this work, the objective of the TNEP problem is to minimize
the total system cost which is the sum of generation cost, load
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curtailment cost and line investment cost. When considering the
variability in multivariate load and RES, the TNEP model can be
formulated as a mixed integer-linear program as in Ref. [26]. It is
imperative to highlight that, compared with the case in Ref. [26]
which only captures the dependence between total load and total
wind output, the proposed TNEP model takes into account the
inter-spatial dependence of load and renewables output at various
places which is an important factor for transmission network in-
vestment planning. Built on this foundation, our work also pro-
poses a novel scenario selection framework for the TNEP problem
to tackle the large number of scenarios that are introduced by
considering the inter-spatial dependence.

C*ðZ Þ ¼ min
n; p;u

fCIðnÞ þ COðn;Z Þg (1)

where

CIðnÞ ¼
X
l2UC

L

nlCl (2)

COðn;Z Þ ¼
X
t2UT

tt$pt

0
@ X

g2UG

pt;gcg þ
X
b2UB

ut;bVOLLL

1
A (3)

s.t.

nl2f0;1g;cl2UC
L (4)

X
g2UG

pt;gþ
X

�
l2UC

L:vl¼b
�
�
f Et;l þ f Ct;l

�
�

X
�
l2UC

L:ul¼b
�
�
f Et;l þ f Ct;l

�

� ut;b ¼ 0; t2UT ;c b2UB

(5)

0 � pt;w � Pmax
w 

$Wt;w; t2UT ;cw2UW (6)

0 � pt;g � Pmax
g  ; t2UT ;c g2UG (7)

�Fmax
l � f Et;l � Fmax

l ; t2UT ;cl2UE
L (8)

f Et;l ¼ bEl
�
qt; ul � qt;vl

�
; t2UT ;cl2UE

L (9)

�nlF
max
l � f Ct;l � nlF

max
l ; t2UT ;c l2UC

L (10)

�Mð1� nlÞ � f Ct;l � bCl
�
qt; ul � qt;vl

� � Mð1� nlÞ; t2UT ;cl2UC
L

(11)

In the objective function (1), transmission investment cost and
operation cost are included as the first and second term respec-
tively. The investment cost CI is the annualized capital cost of
building candidate lines; it is a function of the binary variables nl as
described in constraints (4). The expected operational cost of each
scenario (t) shown in (3) is equal to the products of the weighting
ðptÞ of scenario  t; operating hours ðttÞ and the sum of the dispatch
cost of conventional generators and the cost of curtailed demand
penalized at the Value of Lost Load (VOLL). Constraint (5) repre-
sents the power balance equation for each system bus; the locally-
produced power as well as the incoming/outgoing power flows
must equal the demand minus the load curtailment. Maximum
capacity limits for wind generators and thermal plants are
introduced in constraints (6) and (7) respectively. Finally, con-
straints (8)e(11) denote thermal capacity limits as well as DC po-
wer flow constraints for existing and candidate transmission lines.
In particular, the standard DC power flow constraints (9) are
enforced in the case of existing lines. For candidates lines, a big-M
formulation is employed to express the disjunctive constraint (11)
which becomes active only the line nl is built and inactive in the
case that nl ¼ 0: It should be mentioned that security problem is
not considered in this research. Benders' decomposition [27] is one
of the most popular techniques for solving Mixed Integer Linear
problems. In this work, the proposed two-stage TNEP model can be
decomposed into a master problem and sub-problems via Benders'
decomposition. Note that amulti-cut formulation has been adopted
as in Ref. [28].
3. Clustering variables and clustering techniques

3.1. Clustering variables

The first step of the scenario selection problem is to choose the
variables upon which clustering will take place. For the TNEP
problem, scenario selection is typically done by clustering directly
the operating points  zt

! of Z . For example, demand-generation
patterns multiplied by the nodal price were used as clustering var-
iables to select snapshots from historical data in Ref. [3]. In Ref. [14],
a polyhedral set was built by clustering demand and wind power
generation data to characterize variability for TNEP. The wind gen-
eration was also selected as a clustering variable in Ref. [16] to
generate scenarios based on a proposed self-adaptive clustering
technique. However, clustering based on the information in the
input domain may not lead to an efficient scenario reduction in the
TNEP problem as some significantly different scenarios can lead to
identical investment decisions. To this end, instead of considering
the demand-generation patterns, the clustering process proposed in
Ref. [16] was based on the power flow patterns that measures the
benefits of the investments in the candidate lines, calculated by
solving the TNEP problem for each scenario based on a Network
Capacity Unconstrained Economic Dispatch (NCUED) model. Spe-
cifically, overloading scenarios relate to the network congestion
cases that lead to a potential increase in the operation costs,
whereas non-overloading scenarios should also be consideredwhen
the investments can decrease network losses. In Ref. [17], the ben-
efits of potential network reinforcements are used as clustering
variables; these were quantified and calculated by solving a relaxed
version of the TNEP problem. Recently, a novel selectionmethod has
been proposed in Ref. [18] that performs the clustering based on the
expected power transfer of each corridor of the system. However,
the clustering variables proposed in the existing literature are still
only marginally more relevant. Therefore, it may be more reason-
able to perform the clustering procedure directly on the decision
variables that arise if the TNEP problem was solved for each his-
torical operating scenario. This is due to the fact that the solutions of
the TNEP are not linearly related to the input demand-generation
patterns due to the complexity of the network structure and the
non-linear nature of the optimization problem. In this context, two
new clustering variables are considered in this paper:

1) Active power flows F ¼ f f
!

t ;ct2UTg; the power flow pat-
terns over the transmission network are highly related to
transmission congestions and losses, conveying information on
potential investments; Note that the active power flows are
obtained by solving the original TNEP problem for each scenario,
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proposed in Section 2, rather than a NCUED model [18] or a
relaxed model [19].

2) Investment costs J ¼ fClnljcl2UC
Lg; the capital cost associated

with each of the new-built lines are most relevant metrics for
TNEP problem.

To perform clustering based on these two new clustering vari-
ables, a TNEP problem is firstly solved for each individual scenario
n. Given the temporal mismatch between investment and opera-
tion (TNEP objective function is expressed in terms of annual costs,
whereas each scenario has duration of 1 h) the duration of each
scenario is made equivalent to the whole investment horizon.
Subsequently, the outputs (power flows over transmission lines or
investment costs of each new-built transmission lines) are used to
group the operating points into clusters.
Fig. 2. The structure of conventional scenario selection framework.
3.2. Clustering techniques

When solving the TNEP problem, the input scenarios are not
linearly related to the optimization outputs of operational cost and
investment decisions. Therefore, it is important to assess the per-
formance of different clustering techniques for this specific prob-
lem; a clustering technique with good statistical performance may
not guarantee an accurate solution. A large number of clustering
techniques have been proposed and investigated in the past.
However for practical purposes in this paper, we focus on some
particularly popular and widely used clustering techniques in po-
wer systems according to the power systems literature. The clus-
tering techniques considered here can be classified into three
categories: centroid-based clustering (k-means, k-medoids),
connectivity-based clustering (hierarchical clustering), and
distribution-based clustering (GMM).

As one of the most popular unsupervised clustering algorithms,
the k-means clustering technique [29] is used to classify data into K
clusters by means of an iterative procedure, where K is an a priori
defined integer value. Although k-means clustering is a technique
that can be rapidly deployed and has high computational efficiency,
the quality of clustering is highly sensitive to the randomly
initialized centroids and the number of clusters  K: Based on the k-
means clustering and the medoid shift algorithm, k-medoids
clustering method aims to minimize the sum of dissimilarities
between the data points assigned in a cluster and its corresponding
central point [30]. The partitioning around medoids (PAM) algo-
rithm is one of the most widely used k-medoid clustering. The
difference between k-means and k-medoids methods is that the
mean value in each cluster is replaced with the median, which may
be more appropriate for the TNEP problem as no new samples are
generated [15]. Nevertheless, this method also suffers from high
sensitivity to the initial conditions and the choice of  K:

Hierarchical clustering constructs a hierarchy of clusters by
employing a measure of similarity between groups of data mea-
surements rather than relying on a pre-defined number of clusters
[31]. There are two approaches to hierarchical clustering; divisive
clustering (top-down approach) and agglomerative clustering al-
gorithm (bottom-up approach); the latter is considered in this
research. In terms of the intergroup similarity, different linkage
criterions have been proposed with varieties of properties [32]. In
this paper, we implement average linkage, complete linkage, and
ward linkage in order to evaluate and compare their performance
in the proposed scenario selection framework. From the statistical
point of view, hierarchical clustering has the deficiency that the
result cannot be re-evaluated and further adjusted due to its
deterministic nature.

Beyond centroid and connectivity models, an alternative
approach is finite mixture model technique, where the whole
dataset is described as a mixture of parametric distributions.
Mixture models tackle the issue of determining the optimal num-
ber of clusters by employing information criteria [33]. Mixture
modeling is a ‘soft’ clustering approach that ascribes a probability
measure of classification to each data point. The Gaussian distri-
bution is employed for fitting continuous data, which is suitable to
the case of continuous demand and power injection data. The
optimal parameters that maximize the likelihood of a Gaussian
mixture model are usually estimated by the Expectation-
Maximization (EM) algorithm [34].

4. Frameworks for different clustering approaches

This section presents in detail the frameworks that are used by
the four clustering approaches outlined in Section 1. In particular,
two frameworks combined with different clustering variables are
proposed. In the case of approach A1, the scenario selection process
is performed based on the input variables (i.e. demand-generation
patterns); this approach has beenwidely used in the literature (e.g.
Ref. [3]). For the cases A2 to A4, the proposed clustering frame-
works (i.e. single-level and bi-level) as well as the clustering vari-
ables (i.e. the power flow patterns and the investment decisions
obtained via solving the original TNEP problem for each scenario)
are all the original contributions of this work.

4.1. Single-level framework

Conventionally, Single-level (SL) framework in Fig. 2 has been
used for clustering-based scenario selection. Based on this frame-
work, the clustering approaches A1 and A2 are explicitly described
as follows:

Approach 1 (A1): For the TNEP problem, scenario selection is
typically done by clustering directly the operating points  zt

! of
Z . This is the most straightforward approach for scenario
reduction where no further consideration is made regarding
how the state variables of interest depend on the input oper-
ating points.
Approach 2 (A2): Indirect clustering approach based on clus-
tering power flows across all the lines is applied in A2, which
can be described as follows:
Step 1. Given themulti-dimensional historical demand-wind
input data Z , the TNEP problem is first solved for each in-
dividual scenario (total N problems) by assuming the sce-
nario repeats across the whole investment horizon.
Step 2. From the solution, we form the dataset

F ¼ f f
!

t ;ct2UTg: The set F consists of jUT j vectors, where
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each vector f
!

t2ℝjULj describes the power flows across all

existing and candidate lines i.e. jULj ¼
���UE

L

���þ ���U>C
>L

���.
Step 3. A clustering technique is applied to partition F in K
clusters. We define UT ;k as the set of all operating points that
belong to cluster k.
Step 4.We proceed by ‘mapping’ the clusters obtained across
the dataset F to the domain of the input demand-wind data
Z . For each cluster k21;/;K we create the set

Z k ¼ f z!t ; ct2UT ;kg and we define the vector z!y
k2ℝm; as

the mean of the set Z k: Note that instead of the mean, the
median can also be used.
Step 5. We define the reduced scenario set

Z y ¼ f z!y
k; k ¼ 1;…;Kg: The probability set of Z y is defined

asPy ¼ fpk; k ¼ 1;…;Kg that includes the weighting of each

representative scenario z!y
k;pk; calculated by

pk ¼ ��UT ;k
��=jUT j.
4.2. Bi-level framework

The proposed bi-level framework is motivated based on the fact
that usually only a limited number of scenarios will explicitly drive
investment. However, the large number of remaining scenarios
should not be neglected (since they play a major role in the cost-
benefit determination) and should be properly represented
within the problem, in an aggregated form. To this end, we present
a novel bi-level framework to select scenarios that accurately
represent both sets; the set of operating points that directly drive
investment and the set of investment that do not result in new
investment. In the proposed TNEP model, transmission lines can be

categorized into existing lines UE
L and candidate lines UC

L for in-
vestment. In the operational level, it is effective to select the
representative scenarios by clustering the operating scenarios
based on the power flows over all transmission lines as the oper-
ational cost is highly related to the power flow patterns. However,
the problem at hand is driven by the power flows over the candi-
date lines. Clustering based on the power flows over all trans-
mission lines would under-weight the impact of this need.
Consequently, it may be more efficient to select and represent
scenarios based solely on power flows over candidate lines  F C :

Specifically, it is important to focus on the non-zero power flow
patterns of candidate lines because they can basically reflect the
need of transmission expansion. However, in practice, scenarios
without investment usually occupy a large proportion of all the
scenarios, which renders it unreasonable to group them into a
single cluster. In fact, these scenarios should be further classified
according to their power flow patterns of existing lines. To this end,
we first propose a bi-level (BI) clustering scenario selection
framework based on F E and F C (A3) that is illustrated in Fig. 3 and
explained in detail below:

Approach 3 (A3):

Step 1. The TNEP problem is first solved for each individual
scenario; a total of N TNEP problems are solved.
Step 2. From the solution, we form the datasets

F E ¼ f f
!E

t ;ct2UTg and F C ¼ f f
!C

t ;ct2UTg: These sets

consist of jUT j vectors. Each vector f
!E

t2ℝjUE
Lj describes the

power flows across all existing lines and each vector
f
!C

t 2ℝ
��UC

L

��
describes the power flows across all candidate

lines. Furthermore, we define F C
0 ¼ f f

!C

t : f Ct;l ¼ 0; cl2UC
L g

i.e. the set of vectors f
!C

t where all power flows on candidate
lines are zero. The operating points where this occurs are

denoted UC0
T : In a similar vein we introduce their comple-

mentary sets F C
inv and UCinv

T : Note that UT ¼ fUinv
T ∪UC0

T g.
Step 3. A clustering technique is applied to partition F C

inv in

K1 clusters and F E
0 ¼ f f

!E

t : f Ct;l ¼ 0; cl2UE
L g in K2 clusters

(note that in the latter case, clustering takes place on the F E

dataset); we define UCinv
T ;k and UC0

T ;k as the set of operating
points that belong to cluster k1 ¼ 1;/;K1 and k2 ¼ 1;/;K2
respectively.

Step 4. Based on Uinv
T and UC0

T obtained in step 3, we proceed
by ‘mapping’ the clusters obtained to the domain of the input
demand-wind data Z . For each cluster k ¼ 1;/;K1 we

define the vector z!yC
k 2ℝm; as the mean of the set

Z inv
k ¼ f z!t : ct2UCinv

T ;k g: Similarly, for each cluster

k21;/;K2 we define the vector z!yE
k 2ℝm; as the mean of

the set Z 0
k ¼ f z!t : ct2UC0

T;kg: Note that, as already
mentioned, the median can also be used instead of the mean.
Step 5. Having performed the above mapping for all K clus-
ters, we define the reduced scenario set

Z y ¼ f z!yC
k ; k ¼ 1;…;K1g∪f z!yE

k ; k ¼ 1;…;K2g: The proba-

bility set Py ¼ fpyC
k ; k ¼ 1;…;K1g∪fpyE

k ; k ¼ 1;…;K2g in-
cludes the weighting of each representative scenario is

defined as the ratio of
���F C

k

��� or ���F E
k

��� over the total number of

operating points jUT j in the original input data set Z .
Approach 4 (A4):

Although F C can indirectly signify the investment solutions,
different power flows' values on candidate lines may also cause
inaccurate solution as the scenarios with different investment de-
cisions can be grouped together due to the fact that most of clus-
tering methods are based on the Euclidean distance. Alternatively

we can define the set of investment cost results  J ¼ f it
!
;c t2UTg,

where it
!¼ fctnt;l; l2UC

Lg. The capital cost associated with each of
the new-built lines is the most relevant metric for the TNEP
problem. To this end, the proposed objective-based scenario se-
lection framework, termed A4, is constructed based on the in-
vestment costs of candidate lines J instead of F C in the first level
clustering stage.

As shown in Fig. 4, the set of operating points is split betweenUC0
T

andUCinv
T ; where the former is the set of operating points that do not

give rise to any investment whereas the latter result in non-zero
investment cost. Same as A3, the scenarios without investment are
clustered based on the power flow patterns of existing lines (level 2).
It is important to highlight that another advantage of A4 is that the
upper bound to K1 can be defined as the combination of unique

investment vectors it
!
. For example, given the number of candidate

lines
���UC

L

��� ¼ 5; there are 25 ¼ 32 possible combinations of invest-

ment decisions/investment costs. In practice, solving the individual

this number will lead to a number significantly smaller than 2
��UC

L

��
because some investment combinations will never happen.



Fig. 3. The structure of the proposed power flows-based scenario selection framework.

Fig. 4. The structure of the proposed objective-based scenario selection framework.
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5. Simulation study and results analysis

5.1. Historical data and test system

To demonstrate the performance of the proposed framework,
the original IEEE 118-bus system consisting of 54 generators and
186 existing transmission lines has been modified by including 10
wind farms each of size 100MW as well as 20 more candidate
transmission lines each with capacity 1000MW. For the historical
database of variables, a large library of historical measurements of
load and wind power injections was provided by RTE, the French
Transmission System Operator (TSO). The library consists of 14,251
measurements at 15-min time intervals and spans over 7000 load
buses and 200 wind plants [35]. In this work, we focus on a subset;
a 128-dimensional dataset consisting of 118 demand buses and 10
wind generators chosen randomly. To map the selected variables



Fig. 5. Histograms of marginals distributions and bivariate scatter plots of active loads (first three variables; MW) and wind power output (two last variables; MW) for randomly
selected buses in France.

Table 2
Candidate lines for the IEEE 118-bus system.

Line ID Lines Cost ($ million/year) Line ID Lines Cost ($ million/year)

1 (8e9) 5.49 11 (89e90) 17.95
2 (9e10) 5.80 12 (83e84) 19.80
3 (26e30) 15.48 13 (69e75) 18.30
4 (64e65) 5.44 14 (17e113) 5.42
5 (68e116) 0.91 15 (77e78) 2.79
6 (49e51) 20.55 16 (76e118) 9.79
7 (70e74) 19.85 17 (105e106) 9.85
8 (44e45) 16.22 18 (103e110) 27.19
9 (80e96) 27.30 19 (114e115) 2.34
10 (92e100) 44.25 20 (12e117) 21.00
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onto the test system, the historical dataset is scaled by calculating
the ratio between the maximum coincident peak demand of the
original data and the sum of active power demand across all buses
defined in the system. By this way, the temporal correlations and
inter-spatial dependencies between the 3 variables can be retained.
An example in Fig. 5 shows the histograms and bivariate scatter
plots of five variables taken from the French transmission system;
variables L1, L2 and L3 are loads at different locations whileW1 and
W2 are wind injections from two wind farms. It can be observed
that the variables have highly non-normal marginal distributions
(diagonal histograms) and non-linear dependencies (scatter dia-
grams). The dependence between the different loads, between the
outputs of the two wind farms as well as the dependence between
individual loads and wind power injections are highly complex and
non-standard. As such, for TNEP problem, it is of great potential
benefit to move beyond the assumption of perfect correlation be-
tween loads at different locations and investigate the dependence
Table 3
TNEP solution benchmark with all the scenarios.

Operational Cost
($million/year)

Investment cost
($ million/year)

Total cost
($ million/year)

All scenarios solution 2667.14 69.98 2737.12
structure at the level of disaggregated variables in more detail. To
this end, the proposed clustering framework is designed to select
representative scenarios in a multi-dimensional space.

Table 2 shows the 20 candidate lines and their annualized in-
vestment costs that are estimated by the product of cost multi-
pliers, cost per mile and line length [36]. Regarding the parameters
of the proposed TNEP model, value of lost load V is set to $40,000/
MWh. In addition, we use tt ¼ 8;760 hours and a penalty factor
 M ¼ 20;000;000.
5.2. Performance evaluation

In order to illustrate the comparative advantage of the proposed
framework, the frameworks (A1, A2, A3 and A4) designed in Section
4 are compared. Furthermore, the clustering methods performed
here are k-means, k-medoids clustering, hierarchical clustering
with average linkage (H(Average)), with Ward linkage (H(Ward)),
with complete linkage (H(Complete)) and GMM. The performances
of all 24 methods are evaluated according to their estimated in-
vestment costs, operation costs and total costs. To assess solution
quality of each method, the benchmark, given in Table 3, can be
obtained by solving the TNEP problemwith all the historical dataset
of 14,251 operating points.

Note that, given investment decisions, operation costs are
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computed by solving the economic dispatch problem considering
all the scenarios. In this section, we firstly compare the investment
decisions for each clustering method. Then sub-section 5.3 per-
forms the overall comparison considering the total cost of each
scenario selection framework under the associated clustering
technique with best performance.
5.2.1. TNEP results of A1
In this case, the representative scenarios are selected by directly

clustering the historical variables according to their statistical
similarities via the above-mentioned clustering techniques. Note
that, for this method, it is not required to solve the TNEP problem
per operating point before carrying out the clustering process. From
the view of statistical performance, clustering validity indicators
have been proposed and broadly used to quantitatively analyse the
quality of clustering schemes based on their similarities [6].
Consider that K partitioned scenario clusters with computed cen-
troids C ¼ fc1;…; cKg; are obtained by a clustering technique. Let
Xk denote the scenarios that belongs to cluster k, for  k ¼ 1;…;K;
the two indicators considered in this paper are computed as
follows.

1) One of the commonly used indicators applied in this paper, the
mean index adequacy (MIA) [35], indicates the average of the
distances between the centroid of a cluster and each scenario in
this cluster:

MIAðX;KÞ ¼ K�1
XK
k¼1

d2ðXk; ckÞ (12)
2) The clustering dispersion indicator (CDI), defined as the ratio of
the mean intraset distance between the scenarios in the same
cluster and the intraset distance between the centroids of all the
K clusters [36]:

CDIðX;KÞ ¼ bdðCÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1

XK
k¼1

bd2ðXk Þ
vuut (13)
Fig. 6. Comparisons among the clustering techniques by using (left)
where dð:; :Þ;  

bdð$Þ represent cluster-to-cluster distance and intra-
set distance (Euclidean distance), respectively, as defined in
Ref. [36]. Note that both indicators have the same characteristic that
a lower criterion value indicates better clustering performance.
Before solving the TNEP problem, the original data set of demand-
wind patterns are clustered via k-means, k-medoids clustering,
hierarchical clustering with average linkage (H(Average)), Ward
linkage (H(Ward)), complete linkage (H(Complete)) and GMM.
Fig. 6 shows the results of adequacy comparisons among the tested
clustering methods by using the CDI and MIA validity indicators for
clusters counts K ranging from 2 to 300. Note that 300 was chosen
as a sufficiently large number of clusters (which was validated by
our analysis).

The results illustrated in Fig. 6 shows that H(Average) is the
best-performing method among these tested on the historical load
and wind dataset, indicated by its lowest indicator values for both
of the indicators. In contrast, the limitations of GMM is indicated by
the large indicator values across all the number of clusters. In
addition, it is constructive to note that K-means, K-medoids,
H(Complete) and H(Ward) have comparable performances in terms
of the statistical similarities.

The next step is to assess the TNEP solution quality of the above
clustering methods when using demand-wind patterns as clus-
tering variables. To obtain the benchmark, the TNEP problem based
on the modified IEEE-118 system is firstly solved with all the his-
torical dataset of 14,251 operating points. The overall total cost
consisting of optimal operational cost and investment cost are
given in Table 3.

Based on the constructed clusters for each method, most of the
representative scenarios are selected by using the mean value of
each group with corresponding probabilities except the K-medoids
method whose final scenarios are presented by the actual median.
Fig. 7 show the TNEP solutions of investment cost obtained by
performing the tested clustering methods on the historical
demand-wind patterns X (14251 observations of 128 variables), for
the number of clusters K from 2 to 300.

Regarding the optimal investment costs, H(Ward) and H(Com-
plete) exhibit superior performance compared to the other tech-
niques indicated by their ability to approach the benchmark
solution at K¼ 300, whereas the other clustering methods cannot
the MIA indicator and (right) the CDI indicator for K ¼ 2 to 300.



Fig. 7. Comparisons among clustering methods based on the TNEP solutions of investment costs. The input scenarios are selected via A1.
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achieve the optimal solution in the tested range of K. Specifically,
most of clustering methods result in an underinvestment on the
transmission lines, whereas H(Average) method makes over-
investment decisions as more outliers (e.g. worst-case patterns)
are detected by this method with higher weights. In addition,
model-based clustering method, GMM, has relatively stable per-
formance after about K¼ 20. For the centroid-based clustering
methods, solutions of K-means are slightly closer to the target value
than K-medoids which indicates that taking the mean value of each
cluster has better performance than using the actual median in this
case. When comparing Fig. 7 with Fig. 6, it is imperative to note that
the validity indicators are not good predictors of accuracy regarding
the eventual TNEP solution i.e. the insights gained from a validity
indicator analysis do notmatch the TNEP results. This demonstrates
the importance of investigating the performance of a clustering
Fig. 8. Comparisons among clustering methods based
method beyond their inherent statistical properties (i.e. intra-
cluster dispersion) in order to determine their suitability to such
a complex problem.
5.2.2. TNEP results of A2
After solving the TNEP problem for each scenario, clustering

variables F are formed that consists of F E (14;251 observations of
186 variables) and F C (14;251 observations of 20 variables).
Applying different clustering methods on F , the results of indices
and corresponding probabilities are assigned to the historical sto-
chastic variables X for the number of clusters K from 2 to 300.
According to the constructed groups for each K, representative
scenarios are used as the final inputs for the proposed TNEP
problem with a certain probability for each operating point. The
on the TNEP solutions of investment costs (A2).
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TNEP solutions of investment cost for A2 are shown in Fig. 8. In this
case, K-medoids performs the best in this case that the solutions
achieve a relatively accurate level from K¼ 80 and converge to the
exact benchmark investment cost at K¼ 200. Then GMM and
H(Ward) methods also exhibit high efficient to approach approxi-
mate but not exact optimal solutions that may also result in huge
different in terms of the total cost. On the contrary, H(Average),
H(Complete) and K-means methods cannot achieve the benchmark
value in the tested range of number of clusters, and even increase to
an overestimated value from about K¼ 100, K¼ 230, and K¼ 240,
respectively.
5.2.3. TNEP results of A3

For A3, the constructed F E and F C are further classified into a
series of useful dataset for clustering according to the power flow
patterns of candidate lines. In particular, 3594 scenarios are
extracted from F C to form the first stage clustering variables, F C

inv;

which only containing the non-zero power flow patterns. After-
ward, the second level clustering variables F E

0 of size 10;657� 10
are indicated and constructed based on J 0 that result in all zeros
power flow values (no investments) in F C : Note that although
nearly 75% percent of scenarios are included in F E

0; the most

influential scenarios that lead to investment are identified by F C
inv:

To this end, we determine the number of clusters K1 ¼ 2;/;300 for
the first stage and then set K2 ¼ 5 for the second level clustering for
convenience.

Using the selected scenarios obtained from A3, the results of
investment for the tested clustering methods are shown in Fig. 9.
All the methods achieve the benchmark results at the end of tested
range of K ¼ K1 þ K2: In details, K-means presents the most inef-
ficient performance that obtains the steady optimal solution from
roughly K ¼ 90; Afterward, GMM and K-medoids converge to the
target investment cost at K ¼ 70 and K ¼ 80; respectively.
Comparing to the centroid-based and the distribution-based clus-
tering techniques, the tested connectivity-based methods exhibit
better solution qualities with the increasing number of K, especially
for H(Ward), the fastest approach to reach the exact optimal in-
vestment decisions from K ¼ 36.
Fig. 9. Comparisons among clustering methods based
5.2.4. TNEP results of A4
Finally, the proposed objective-based scenario selection frame-

work is implemented based on the constructed power flow pat-
terns of the existing lines F E and the occurred investment costs of
the candidate lines  J . In the first clustering stage, subset J inv are
constructed with 3594 vectors of non-zero investment costs from
J . Then the subset F E

0 for the second-level clustering is formed by

choosing the corresponding vectors from F E indicated by UC0
T : It is

imperative to note that one of the important benefits of performing
the first stage clustering on J is the determinedmaximum number
of clusters that requires for this problem. Mathematically, there
should be 220 ¼ 1;048;576 possible combinations of investment
cost as it is a constant value for each candidate line. However, only
56 sets of expansion plan actually occur in the investment solutions
when solving each scenario independently. Therefore, K ¼ 56 is
defined as the maximum essential number of clusters because it
already leads to exactly identical investment decision in each
cluster, and hence it is meaningless to further increase the number
clusters. Nevertheless, for the purposed of comparing with other
methods, the number of clusters are also defined as in Section 5.2.3
(i.e. K1 ¼ 2;/;300;K2 ¼ 5).

The TNEP solutions of the proposed objective-based framework
(A4) are shown in Fig. 10. Among the tested clustering techniques,
GMM requires themost number of scenarios to obtain the expected
result ðK ¼ 60Þ: In addition, it is evident that the scenarios selected
via A4 exhibit superior performance when using the centroid-
based and connectivity based clustering techniques. When
applying K-means, the most efficient method for A4, only 15
selected scenarios are required to approaches the target investment
cost. Meanwhile, both of H(Ward) and H(Complete) achieve the
accurate investment cost from K ¼ 20: Then K-medoids and
H(Average) converge to the benchmark solution at K ¼ 25 and K ¼
30; respectively.

5.3. Overall comparison

In this part, a comprehensive comparison is given among the
overall performance of different scenario selection methods to
highlight the contributions of the proposed framework.
on the TNEP solutions of investment costs (A3).



Fig. 10. Comparisons among clustering methods based on the TNEP solutions of investment costs (A4).
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Firstly, scenarios selection based on conventional clustering
variable, demand-wind patterns (A1), have the benefits of simple
implementation and readily comprehensible clustering procedure.
However, it suffers from the issues of inaccurate and under-
estimated investment costs with the increasing number of clusters
even for the best-performed method, H(Ward), whose estimated
solution approaches the optimal value at K ¼ 300:

To this end, the optimal power flow patterns of all transmission
lines F are proposed to be used as clustering variables in the
conventional framework (A2) to decrease the required number of
scenarios for the optimal TNEP solution. Comparing Fig. 8 with
Fig. 7, it is constructive to note that the estimated investment costs
of all the clustering technique is improved by using the power flow
patterns as clustering variables, especially for the K-medoids
method that achieves the benchmark objective investment cost
steadily after K ¼ 200 clusters.

Nevertheless, as shown in Fig. 9, an obvious improvement has
been observed when considering the power flow patterns of
existing lines and candidate lines as well as investment and no-
investment scenarios separately (A3). Regarding the network
expansion plan, the proposed OPF based bi-level clustering
frameworkwith H(Ward) exhibits the best estimation that achieves
the optimal decisions from K ¼ 36; resulting in approximately 80%
scenarios reduction. This enhancement is contributed to the fact
that the scenarios with investment in the full TNEP problem should
also lead to investment when solving the problem per operating
points. However, it is important to note that the contrary of the
above statement is not always true because it is a probabilistic
problem when solving the TNEP problem considering all the sce-
narios together. For example, the 9th candidate line is planned to be
built in some scenarios when solving the problem individually,
however, it is not worth to invest this line eventually according to
the optimal investment decision obtained by solving the full
problem.

Although such great achievements have been attained by A3,
the main contribution of this paper is to propose the idea that it is
the most efficient way to select the representative scenarios via
clustering directly on the objective of problem, which is the
expansion plan for TNEP problem. Consequently, the objective-
based scenario selection framework (A4) presents its superior
performance than all the other methods that it can reach the
optimal solution at K¼ 15, which is about 50% further reduction of
A3, when using the most efficient clustering technique, K-means, in
this case. Overall, the best-performed clustering technique for each
method can be concluded as follows: H(Ward) is the most appro-
priate clustering technique for A1 and A3; Centroid-based clus-
tering techniques, K-medoids and K-means, can be regarded as the
suitable clustering techniques for A2 and A4, respectively.

Fig. 11 shows the optimal total costs associated with the trans-
mission expansion plan obtained by solving the TNEP problem
using the tested methods A1, A2, A3, and A4 with their most
appropriate clustering techniques. It is evident that the perfor-
mance regarding the total costs is highly consistent with the results
concluded from the view of investment costs.

Note that the tested scenario selection methods and the TNEP
optimization problem were implemented in MATLAB and FICO
Xpress, respectively, and run on an Intel Xeon E5-2690 PC with 8
cores. For comparison, time consumptions of solving the full TNEP
problem as well as the TNEP problem with the minimum required
number of scenarios for each type of selection method with its
best-performed clustering technique are given in Table 4.
Comparing to the computation times of the full problem, it is
constructive to highlight that the computational cost has been
successfully reduced from hours to seconds when employing the
clustering-based scenario selection methods. In details, clustering
based on OPF patterns (A2) can reduce about 47% of the compu-
tational cost comparing to A1, while the power flow patterns based
bi-level clustering method (A3) further improve A2 by saving
roughly 70% computing times. Finally, another 73% reduction in the
computational time of A2 is accomplished via the proposed
objective-based framework (A4).
6. Conclusions

This paper proposes a novel objective-based scenario selection
framework to choose the representative operating points for the
TNEP problem with high penetration of RES. Beyond the conven-
tional clustering variable, demand-generation patterns, we propose



Fig. 11. Comparisons among the TNEP solutions of different selection algorithms according to total cost, based on the best-performed clustering method for each algorithm (i.e.
A1:H(Ward), A2: K-medoids, A3: H(Ward), A4(K-means)).

Table 4
TNEP solutions and computation Times(Seconds).

Optimal clustering
technique

Minimum required K CPU Times(s)

Benchmark e 14,251 1.47� 105

A1 H(Ward) 300 198.28
A2 K-medoids 200 103.78
A3 H(Ward) 36 30.13
A4 K-means 15 8.07
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three new clustering variables F E;F C ; and J , allowing the his-
torical scenarios to be classified based on their effects. In addition,
conventional clustering based framework and the proposed bi-
level clustering framework has been introduced and integrated
with the abovementioned clustering variables to construct four
types of tested scenario selection methods: clustering based on
demand-wind patterns (A1), clustering based on all power flow
patterns (A2), bi-level clustering based on power flow patterns
(A3), objective-based bi-level clustering (A4). Among varieties of
clustering techniques, we analyse the unsupervised clustering
techniques: centroid-based clustering (K-means, K-medoids),
connectivity-based clustering H(Average), H(Complete), and
H(Ward)), and distribution-based clustering (GMM). To evaluate
their performance, the selected scenarios are used to solve the
TNEP problem based on a modified IEEE-118 system with real
historical data in France.

One major conclusion stemming from the analysis is that the
proposed objective-based scenario selection framework (A4) with
K-means exhibits superior performance when compared to the
other methods, indicated by its fastest convergence speed to
approach the optimal TNEP solutions. In addition, another key
advantage of the proposed method is that we can define the
maximum number of clusters that required for the TNEP problem
by counting the actual number of existing combinations of

expansion plans which is far less than the theoretical number 2
��UC

L

��
in practice. Furthermore, this work identifies three major directions
in terms of the clustering based scenario selection method: (1)
selection of clustering variable; (2) selection of clustering tech-
nique; (3) selection of representative scenario in each constructed
cluster.
According to the results, we conclude that clustering based on
the impacts of the input data indeed improves the performance of
the selected scenarios obtained by clustering the input dataset it-
self. Regarding the power flow patterns, constructed by pre-solving
the TNEP problem per scenarios, it is of interest to consider the
existing lines and candidate lines as well as scenarios with and
without investment, separately, realized by the proposed bi-level
clustering framework. Although a great achievement has been
obtained via implementing the power flow based bi-level clus-
tering framework, directly based on the objective, investment costs,
exhibit the highest efficiency to reach the optimal solution. For the
second direction, various clustering techniques have been
demonstrated to have significantly different performances for each
scenario selection method. Finally, a primary conclusion of
choosing the scenario in each cluster is that taking the actual me-
dian in each cluster is more suitable for A2 and A3, whereas using
the mean value can result in a good performance for A4.

Future research should be mainly devoted to further improve
the efficiency of the proposed framework, and implementing it into
a larger multi-energy system with more complicated network
structures. The increasing complexity of the TNEP problem, intro-
ducing by the multi-energy resources, leads to the changelings of
high variability and high-dimensionality. Therefore, feature
extraction and dimensionality reduction techniques can be inte-
grated into the framework. In addition, contingency constraints
could be appended to the TNEP model. Lastly, the idea of objective-
based clustering can also be extended to the other applications such
as generation planning and system scheduling.
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