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Many plasma applications involve the plasma coming into contact with a liquid surface. Previous

analyses of the stability of such liquid surfaces have neglected the presence of the sheath region

between the bulk plasma and the liquid. Large electric fields, typically in excess of several

MV m�1, and strong ion flows are present in this region. This paper considers a linear perturbation

analysis of a liquid-sheath interface in order to find the marginal condition for instability. This con-

dition shows that molten metal surfaces in tokamak edge plasmas are stable against the electric

field, if a normal sheath is formed, due to the impact of ions on the surface. The stabilization of the

liquid surface by ion bombardment is encouraging for the ongoing development of plasma-liquid

technologies. VC 2018 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/
4.0/). https://doi.org/10.1063/1.5013934

The study of plasma-liquid interactions is an increas-

ingly important topic in the field of plasma science and tech-

nology with applications in nanoparticle synthesis, catalysis

of chemical reactions, material processing, water treatment,

sterilization, and plasma medicine.1,2 This particular work is

motivated by the plasma-liquid interactions inherent in mag-

netic confinement fusion devices, such as tokamaks, either

due to melt damage of the metal walls3 or in new liquid

metal divertor concepts.4–6 The ejection of molten droplets

has been observed in both cases7,8 and is of considerable

concern to the operation of a successful fusion device.

Understanding the stability of the liquid metal surface is a

critical issue.

Previously studied instabilities of liquid metal surfaces

in tokamaks include a Kelvin-Helmholtz instability due to

plasma flow across the metal surface,9 a Rayleigh-Taylor

instability driven by the j�B force due to a current flowing

in the metal,10 a Rayleigh-Plateau instability of the liquid

metal rim around a cathode arc spot crater,11 and droplet

emission from bursting bubbles which are formed by liquid

boiling or absorption of gases from the plasma.12 However,

none of these studies considers the effect of the strong elec-

tric fields and ion flows in the sheath region between the

plasma and the liquid surface despite the observations of

electrical effects such as arcing, which cause considerable

damage to the tokamak wall,13 and enhanced droplet emis-

sion rates from electrically biased surfaces.7 Furthermore,

electrostatic breakup has been identified as an important pro-

cess for liquid droplets in plasmas.14

Instabilities driven by electric fields, i.e., electrohydrody-

namic (EHD) instabilities, at the interface between a conduct-

ing liquid and vacuum were originally studied by Melcher15

and subsequently by Taylor and McEwan.16 Melcher’s mar-

ginal stability criterion was invoked by Bruggeman et al. in

order to explain the filamentary structure of a glow discharge

over a water cathode17 and, additionally, to explain the insta-

bility of an electrolytic water solution cathode from an earlier

experiment.18 Earlier evidence for EHD instabilities of the

plasma-liquid interface appears in an experiment on unrelated

work19 where an arc spot occasionally formed on an electri-

cally isolated mercury pool which was in contact with the

plasma. Another EHD effect, the deformation of a liquid sur-

face into a Taylor cone, has recently been used to form the

cathode of a corona discharge.20

This paper investigates the EHD stability of a plasma-

liquid interface with a linear perturbation analysis. Melcher’s

stability criterion is found to apply to short-wavelength pertur-

bations of the surface. However, the fast-moving ions in the

sheath provide a significant pressure on the liquid surface

which can overcome the electric stress for long-wavelength

perturbations. This effect has been neglected in previous stud-

ies and provides an overall increase in the critical voltage

which must be applied to the surface in order to make it unsta-

ble. This effect is encouraging for the ongoing development

of new plasma-liquid technologies.

The interface between a plasma and a liquid, together

with the intermediate sheath region, is illustrated schemati-

cally in Fig. 1. The liquid provides a sink of electrons and

ions from the plasma which are drawn towards the surface

and, due to the higher average speed of the electrons, give

the surface a negative electric charge and hence a negative

potential. The potential difference is always measured from

zero at the plasma-sheath edge in this paper. The potential

drop across the sheath acts to accelerate ions and repel elec-

trons so that the electron and ion currents to the surface

become balanced. This requires a large electric field which

can drive EHD instabilities of the liquid surface. The situa-

tion is complicated by the ions from the plasma which, due

to their impact with the surface, exert a considerable pressure

on the plasma-liquid interface.

One of the simplest mathematical models of a plasma

sheath is that of Bohm.21,22 This comprises a collisionless

cold-ion fluid, with density n and velocity u, and Boltzmann-

distributed electrons with temperature Te. These particles
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interact with each other and a conducting wall via the elec-

trostatic field E which is described by the potential /.

Inserting the Boltzmann relation into Poisson’s equation

gives the sheath equations

@n

@t
þr � ðnuÞ ¼ 0; (1)

mi
@u

@t
þ miðu � rÞu ¼ eE; (2)

r � E ¼ e

�0

n� ns exp
e/

kBTe

� �� �
: (3)

The boundary conditions at the sheath-plasma edge are pro-

vided by asymptotically matching these equations with the

quasineutral plasma as n¼ ns, Es ¼ 0; /s ¼ 0, and us

¼ �ðkBTe=miÞ1=2ẑ ¼ �uBẑ in the limit z!1. The velocity

condition is the much-used equality form of the Bohm condi-

tion.21 The sheath-liquid interface, which is located at

z ¼ nðx; tÞ, is treated as an equipotential conducting surface

with potential /0w. The condition

n̂ � E½ �z¼n ¼ 0; (4)

where the unit normal n̂ points into the sheath region,

ensures that the electric field remains perpendicular to the

liquid surface.

However, the sheath represents only half of the problem;

the motion of the conducting liquid, which is taken to be

inviscid and incompressible, is determined by

r � v ¼ 0; (5)

q
@v

@t
þ qðv � rÞvþrp ¼ 0: (6)

where v, p, and q are the liquid velocity, pressure, and den-

sity, respectively. The liquid layer is assumed to be very

thick and so its velocity vanishes as z! �1. The pressure

at the liquid surface is found by considering the forces on a

small volume element enclosing the surface. These forces

can be expressed in their conservative forms, i.e., as diver-

gences of the stress tensor, which can then be integrated

using the divergence theorem to give the pressure jump con-

dition everywhere on the liquid surface

n̂pz¼n þ n̂ � r
z¼n
þ cjn̂ ¼ 0: (7)

This expression includes the Young-Laplace pressure, with

surface tension c and curvature j ¼ �r � n̂ , and the sheath

stress tensor

r ¼ �0E E� �0E2

2
I � minu u� nskBTe exp

e/
kBTe

� �
I; (8)

which comprises the electrostatic Maxwell stress, the ion

ram pressure, and the electron pressure. Gravity has been

neglected in this formulation of the problem; this is valid

when ck2=qg� 1 (Ref. 23, Chap. 3) which is easily verified

for typical parameters such as those discussed later.

The stability of the plasma-liquid interface is determined

according to a standard linearization procedure. First, the equi-

librium solution, denoted with a subscripted 0 and correspond-

ing to a static system with its interface at n0 ¼ 0, is found. All

the variables are then separated into zeroth- and first-order

terms such as / ¼ /0 þ /1, and only the terms which are lin-

ear in the first-order quantities are retained in Eqs. (1)–(8). The

first-order quantities are assumed to be of the separable form

/1 ¼ ~/ðzÞeiðxt�kxÞ; (9)

u1 ¼ ~uxðzÞx̂ þ ~uzðzÞẑ½ �eiðxt�kxÞ; (10)

etc., where the real part is understood. The interface condi-

tions given by Eqs. (4) and (7) are then applied at the liquid

surface defined by

n1 ¼ ~neiðxt�kxÞ � kD; (11)

which has the unit normal n̂ ¼ ẑ þ ikn1x̂ , to give a disper-

sion relation for x. The height of this perturbation is much

smaller than the Debye length, kD, which is defined at the

plasma-sheath edge. Finally, the marginal stability criterion

is found by determining where x transitions from a real,

travelling wave solution to an imaginary, exponentially

growing solution by setting x2 ¼ 0.

The zeroth-order planar sheath equations cannot be solved

explicitly in terms of z, but they do permit implicit solutions in

terms of the unperturbed electric potential /0. Equation (2)

integrates to give the ion energy conservation equation with the

constant of integration given by the sheath-edge Bohm condi-

tion and the z-component of ion velocity follows as:

uz0

uB
¼ � 1� 2

e/0

kBTe

� �1=2

: (12)

Integration of Eq. (1) gives the ion flux conservation equa-

tion and hence

n0

ns
¼ � uB

uz0

¼ 1� 2
e/0

kBTe

� ��1=2

: (13)

The stress balance equation r � r ¼ 0, with r given in Eq.

(8), results from a combination of Eqs. (1)–(3) and may be

integrated in the planar case to give the electric field

FIG. 1. Illustration of the variables throughout the plasma-sheath-liquid

transition region for a negatively charged, perturbed liquid surface. The elec-

tron density is given by the Boltzmann relation, ne ¼ ns exp ðe/=kBTeÞ,
while the ion density ni is abbreviated to n elsewhere in this paper.
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1

2

�0E2
z0

nskBTe
¼ 1� 2

e/0

kBTe

� �1=2

þ exp
e/0

kBTe

� �
� 2: (14)

The zeroth-order solutions in the liquid region are simply

v0 ¼ 0, and from the pressure jump condition and the unifor-

mity of the rzz0 stress component throughout the sheath,

p0 ¼ 2nskBTe.

The zeroth-order sheath solutions allow the immediate

derivation of the conventional EHD stability criterion in

terms of the plasma and surface properties. Melcher’s EHD

stability criterion, �0E2
c ¼ ck,15 can be written in terms of a

critical wall potential using Eq. (14) as

e/c

kBTe
¼ 1

2
1� 2þ kkD

2BoP

� �2
" #

; (15)

where BoP ¼ nskBTekD=c is named, by analogy with the

electric Bond number,24 as the plasma Bond number. The

critical wall potential tends to e/c=kBTe ¼ �1=2 for low-

wavenumber perturbations, and this value is always

exceeded by the floating potential25

e/0w

kBTe
¼ 1

2
ln

2pme

mi

� �
(16)

of a plasma-facing surface. This might appear to explain the

emission of droplets from plasma-liquid interfaces, particu-

larly given that the emission rate is enhanced when large

potentials are applied across the sheath,7 but this analysis

neglects the crucial role of the ions which emerge from the

following perturbation theory.

The linearized equations in the liquid region are

r � v1 ¼ 0; (17)

q
@v1

@t
þrp1 ¼ 0: (18)

Taking the divergence of Eq. (18), and inserting Eq. (17),

gives a Laplace equation r2p1 ¼ 0 with the solution

p1 ¼ Aekzeiðxt�kxÞ (19)

and substitution of this solution into Eq. (18) yields

v1 ¼ A
k

xq
x̂ þ ik

xq
ẑ

� �
e�kzeiðxt�kxÞ: (20)

After linearization, the variables n1 and vz1 are linked by

@n1

@t
¼ vz1;z¼0 (21)

which sets the constant as

A ¼ x2q~n
k

: (22)

The linearized sheath equations are rather more difficult

to solve than those in the liquid region. This set of first-order

equations is

@/1

@z
¼ �Ez1; (23)

@Cz1

@z
¼ ikn0ux1 � ixn1; (24)

@ux1

@z
¼ ike/1

miu0

� ixux1

u0

; (25)

@ðuz0uz1Þ
@z

¼ e

mi
Ez1 � ixuz1; (26)

@Ez1

@z
¼ e

�0

n1 � /1 exp
e/0

kBTe

� �� �
� k2/1; (27)

where the symbol Cz ¼ nuz represents the flux of ions in the

z direction. All of the first-order sheath quantities tend to

zero as z!1, while linearization of Eq. (4) gives

/1;z¼0 ¼ Ez0;z¼0n1.15 An additional linearization of the z-

component of Eq. (7) yields the first-order pressure jump

condition as

x2q
k

n1 þ rzz1;z¼0 � ck2n1 ¼ 0; (28)

which provides the dispersion relation of the wave when the

value of rzz1;z¼0 is known; however, the purpose of this work

is to determine the marginal stability condition of the surface

perturbations which is the point where x transitions from

real to imaginary values, i.e., at x2 ¼ 0. With this aim in

mind, Eqs. (23)–(27) are simplified by removing the x terms,

and the condition for instability is given by Eq. (28) with x
set equal to zero. Future work will consider the full solutions

which retain the x terms.

The perturbed sheath equations require numerical evalua-

tion, even with the x¼ 0 simplification made, and the numer-

ical method is briefly outlined as follows: First, Eq. (26)

can be immediately integrated to give uz1 ¼ �e/1=miuz0.

Application of the chain rule @=@z ¼ �Ez0@=@/0 then allows

the integration to be performed over a finite domain of /0 val-

ues rather than the infinite domain of z values; this also allows

the direct use of the implicit zeroth-order solutions in Eqs.

(12)–(14). However, using /0 as the integration variable

introduces an irregular point at the sheath edge where /0 ¼ 0.

A Taylor series expansion of Eqs. (23)–(27) at this point

proved itself to be extremely difficult to find so an alternative

shoot-and-correct method has been developed. This method

essentially guesses the values of the perturbed sheath quanti-

ties after the first step of the integration and calculates the

subsequent steps using the shooting RK4 method until the liq-

uid surface at /0 ¼ /0w is reached. The perturbation to the

electric potential is then compared to the boundary condition

/1;z¼0 ¼ Ez0;z¼0n1, and the initial guessed values are updated

accordingly. This cycle of shooting and correcting is contin-

ued until the /1 boundary condition is satisfied to within a

given error tolerance which was taken to be at least 1 part in

105. The codes used to generate and analyse these results are

available at http://www.github.com/joshholgate/ELIPS.

The solution of the linearized sheath equations gives the

zz-component of the first-order stress tensor at the liquid sur-

face in its normalized form according to

rzz1;z¼0

nskBTe
¼ �0Ez0Ez1

nskBTe
þ uz1

uB
� uz0Cz1

nsu2
B

� e/1

kBTe

� �
z¼0

; (29)
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which is, of course, a linear function of the surface height

perturbation n1=kD. Inserting this stress perturbation into Eq.

(28) with x¼ 0 gives the marginal stability condition as

rzz1;z¼0

nskBTe

kD

n1

¼ k2k2
D

BoP
: (30)

The term on the left is computed for various values of sur-

face potential and wavenumber, and Eq. (30) is subsequently

solved for different values of BoP in order to find the critical

surface potential /c at which the surface becomes unstable.

The results are displayed in Fig. 2.

Two main regimes are observed in Fig. 2. The sloping

region towards the right of the plot corresponds exactly to

the critical field strength for the EHD instability given earlier

by Eq. (15) and displayed as dashed lines. However, this

behaviour ceases when, roughly, kkD < 0:1, i.e., for plane-

wave perturbations with wavelengths longer than around ten

Debye lengths. This lengthscale corresponds, intriguingly, to

the physical width of a plasma sheath. This departure from

the conventional EHD theory indicates that the electric field

no longer provides the dominant force on the liquid surface

and ion bombardment of the surface can suppress the onset

of the EHD instability. The transition between the two

regimes is relatively sharp for BoP � 1 but becomes broader

and exhibits a slight dip in the critical surface potential as

BoP approaches unity.

The stability criterion can be investigated further by find-

ing the minimum potential which must be applied to the liq-

uid surface in order to make it unstable. These are extracted

as the minima of curves such as those in Fig. 2 and are plotted

against the plasma Bond number in Fig. 3. The results tend to

e/c=kBTe ¼ �1=2 for large values of BoP in accordance with

the conventional EHD limit given by Eq. (15).

A tokamak edge plasma has electron temperatures of

10–50 eV and densities of (0.3–2)� 1019 m�3.26 This plasma

may make contact with melted tungsten, with c ¼ 2:5 N m� 1,

or liquid lithium, with c ¼ 0:4 N m� 1, when a liquid divertor

is used. These parameters give BoP values of up to 5� 10�3,

and by comparison with Fig. 3, all surfaces with �e/0w=
kBTe < 100 are stable. The floating wall potential of a deute-

rium plasma, as given by Eq. (16), is �e/0w=kBTe ¼ 3:2 and

so conditions in a tokamak should not lead to an EHD insta-

bility. This is a rather unexpected but very useful result; the

sheath electric field, according to Eq. (14), exceeds several

MV m�1 which would cause a strong EHD instability if no

plasma were present. However, although the sheath alone is

insufficient to cause droplet emission, it remains highly plau-

sible that the electric field plays some role in the observation

of larger-than-predicted droplets from the bubble-bursting

mechanism12 and the increased emission rate of these droplets

from biased surfaces.7 The theory developed here is not

directly applicable to the collisional sheaths of technologi-

cally important water cathodes in atmospheric pressure dis-

charges,2,17 but it suggests that ion bombardment could be

exploited to stabilize these interfaces.

In summary, a linear perturbation analysis of a plasma-

liquid interface has been presented which fully accounts for the

positively charged sheath region between a bulk plasma and an

electrically conducting liquid surface. This analysis shows that

short-wavelength instabilities behave according to conventional

EHD theories, while the growth of long-wavelength perturba-

tions are suppressed by the impact of ions from the plasma on

the liquid surface. Liquid metal surfaces under tokamak diver-

tor conditions will be stable against the electric field if a normal

sheath is formed, which encourages their further exploitation.

This work also advocates further exploration of methods to

mitigate EHD instabilities for technologically important atmo-

spheric pressure discharges over water cathodes.

This work was supported by the UK’s Engineering and

Physical Sciences Research Council and the Imperial College

Ph.D. Scholarship Scheme. The code used to generate the

results in this paper is available at http://www.github.com/

joshholgate/ELIPS.

FIG. 2. The critical value of the potential of the liquid surface at which the

liquid becomes unstable as a function of wavenumber k and for a range of

plasma Bond numbers BoP. The asymptotic behaviour, Eq. (15), is indicated.

FIG. 3. Plot of the minimum surface potential required to cause the liquid

surface to become unstable for each value of BoP. These values are deter-

mined by the minimum points of the curves shown in Fig. 2.
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