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Abstract

The power spectrum describes the fluctuations in the Universe and encodes much

of the cosmological information. Hence measuring different types of power spec-

tra is of great importance in cosmology today. In this thesis we try to constrain

two of these power spectra, the primordial power spectrum and the galaxy power

spectrum. First we analyse the binning of the primordial power spectrum. The

primordial power spectrum describes the initial perturbations in the Universe which

eventually grew into the large-scale structure we observe today, and thereby pro-

vides an indirect probe of inflation or other structure-formation mechanisms. We

will investigate which scales the primordial power spectrum can best be probed, in

accordance with the knowledge about other cosmological parameters. The aim is

to find the most informative way of measuring the primordial power spectrum at

different length scales, using different types of surveys, such as Planck and SDSS

(Bright Red Galaxy). For this we make use of the Fisher matrix formalism, principal

component analysis and Hermitian square root of the Fisher matrix. This method

of binning of the primordial power spectrum is then applied to the reconstruction of

this power spectrum from WMAP and simulated Planck data. Here a new method

for the reconstructing, directly from observations of the Cosmic Microwave Back-

ground (CMB), is introduced. Finally, we investigate the optimal observing strategy

for measuring galaxy/matter power spectrum. These power spectra are of great im-

portance in cosmology. Measuring this spectrum will enable us to measure other

cosmological parameters. If we are only interested in the large scale power spectrum

then we might gain more by sparsely observing a larger patch of sky, for the same

observing time, rather than observing a smaller contiguous area. We will investi-

gate the advantages and disadvantages of this strategy using Bayesian Experimental

Design.
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Chapter 1

Introduction to Cosmology

1.1 A Brief Overview

About 300, 000 years after the big bang the temperature of the Universe fell to

about a few thousand degrees and radiation was released which we now observe as

the cosmic microwave background (CMB). This radiation was discovered by radio

astronomers Arno Penzias and Robert Wilson in 1965 [1] and earned them the 1978

Nobel Prize. This discovery was in support of the Big Bang theory and ruled out

the only other available theory at that time — the steady state theory. The crucial

observations were made by the Far-Infrared Absolute Spectrophotometer (FIRAS)

instrument on the Cosmic Background Explorer (COBE) satellite [2], — orbited in

1989 − 1996. COBE made the most accurate measurements of the CMB frequency

spectrum and confirmed it as being a black body to within experimental limits.

This made the CMB spectrum the most precisely measured black body spectrum in

nature. The CMB has a thermal black body spectrum at a temperature of 2.725 K:

the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding

to a 1.9 mm wavelength — see Figure 1.1.

The results of COBE inspired a series of ground- and balloon-based experiments,

which measured CMB anisotropies on smaller scales over the next decade. These

experiments were aiming to measure the angular scale of the first acoustic peak (ex-

plained in Section 1.4), for which COBE did not have sufficient resolution. These

measurements ruled out cosmic strings as the theory of cosmic structure formation,

and suggested cosmic inflation as the right theory. During the 1990s, the first acous-

tic peak was measured with increasing sensitivity and by 2000 the BOOMERanG
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Figure 1.1: Cosmic Microwave Background (CMB) spectrum plotted in waves
per centimetre vs. intensity. The solid curve shows the expected intensity from a
single temperature black body spectrum, as predicted by the hot Big Bang theory
[3].

experiment [4] reported that the highest power fluctuations occur at scales of about

one degree. These results, together with other cosmological data, implied that the

geometry of the Universe is flat. A number of ground-based interferometers provided

measurements of the fluctuations with higher accuracy over the next three years,

including the Very Small Array [5], Degree Angular Scale Interferometer (DASI) [6]

and the Cosmic Background Imager (CBI) [7]. DASI was the first to detect the po-

larisation of the CMB and the CBI provided the first E-mode polarisation spectrum

with compelling evidence that it is out of phase with the T-mode spectrum.

In June 2001, NASA launched another CMB mission (COBE was its first mis-

sion), Wilkinson Microwave Anisotropy Explorer (WMAP) [8], to make much more

precise measurements of the CMB sky. Although WMAP provided very accurate

measurements of the large angular-scale fluctuations in the CMB ( 0.2 degrees), it
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did not have the angular resolution to cover the smaller scale fluctuations which had

been observed by previous ground-based interferometers. A third space mission, the

Planck Surveyor [9], was launched in May 2009. Planck will measure the CMB on

smaller scales than WMAP as well as precise measurements of the polarisation of

CMB. Additional ground-based instruments such as the South Pole Telescope [10],

the Clover Project [11] and the QUIET telescope [12] provide additional data not

available from satellite observations, possibly including the B-mode polarisation.

The CMB measurements have made the inflationary Big Bang theory the standard

model of the early Universe. This theory predicts a roughly Gaussian distribution

for the initial conditions of the Universe. The power spectrum of these fluctuations

agrees well with the observations, although certain observables, such as the over-

all amplitude of the fluctuations, remain as free parameters of the cosmic inflation

model. The model uses a Gaussian random field with a nearly scale invariant spec-

trum to represent the primeval inhomogeneities. Measuring the primordial power

spectrum is one of the tasks of the modern cosmology and the main goal of this

thesis.

Not only can we observe the structure of the Universe at recombination but also we

can observe the current state of the Universe. Technological developments over the

past two decades have accelerated the progress in observational cosmology. Observa-

tions now involve construction of huge maps of the distribution of galaxies in space,

showing the remarkable large scale structure of filaments and sheets in the Universe.

Early work involved making catalogs of galaxy positions on the sky, which showed

some pattern of clustering. An example is the APM galaxy survey [13] which played

a crucial roll in downfall of the Standard Cold Dark Matter (SCDM) model. The

next generation of observations was the Two-degree-Field Galaxy Redshift Survey

(2dF or 2dFGRS) [14]. The 2dF is a redshift survey which used the 3.9m Anglo-

Australian Telescope and conducted between 1997 and 2002. It obtained a total of

250, 000 redshifts and covered an area of about 1500 square degrees and determined

the large-scale structure in one section of the local Universe. Then came the Sloan

Digital Sky Survey (SDSS) [15] which uses a dedicated telescope aiming to redshift

a million galaxies, covering π steradians to a depth of several hundred mega parsecs.

The survey started in 2000 and aims to obtain photometric observations on around

100 million objects and spectra for 1 million objects. The SDSS is a major multi-

filter imaging and spectroscopic redshift survey using a dedicated 2.5m wide-angle

optical telescope at the Apache Point Observatory in New Mexico. There are red-

shifts for luminous red galaxies (LRG) as far as z = 0.4, for quasars as far as z = 5
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and beyond. In 2006 the survey extended to the SDSS-II by making observations

to explore the structure and stellar makeup of the Milky Way, the SEGUE and the

Sloan Supernova Survey, which watches after supernova Ia events to measure the

distances to far objects.

The outcome of these surveys is some type of a power spectrum which is a convolu-

tion of the primordial power spectrum and (the square of) a transfer function which,

in turn, depends on the cosmological parameters. This will be explained in more

depth in the rest of this thesis. Observations in other areas such as weak lensing,

peculiar velocity, etc. have helped a great deal in what we understand about our Uni-

verse today. The interplay between the new theoretical ideas and new observational

data has taken cosmology from a purely theoretical domain into a field of rigorous

experimental science and we are now in what is called the precision cosmology era.

1.2 Introduction

On the largest scales, the Universe is well described by the Friedmann equation

H2 = (
ȧ

a
)2 =

8πG

3
ρ+

Λ

3
− K

a2
(1.1)

where H = Hubble parameter, a = scale factor, ȧ = rate of change a with respect

to time, G = Gravitational Constant, ρ = total energy density of Universe, Λ =

Cosmological Constant and K = Curvature constant of Universe. The Friedmann

equation describes the expansion of space in homogeneous and isotropic models of

the Universe within the context of general relativity. While this works perfectly

well on large scales, it cannot be applied on small scales. On small scales, the

Universe is neither homogeneous nor isotropic. The typical over-density on galaxy

scales is about δρ/ρ = 105 and on cluster scales is about 102−3 and also, we know

from CMB experiments that, at the time of decoupling, the fluctuations were of the

order of 10−5. How the homogeneous and isotropic early Universe turned into the

clumpy Universe, made of galaxies and clusters, is believed to be due to gravitational

instability. This is responsible for the structure in the Universe today.

The density contrast is usually described by

δ(x) =
δρ(x)

ρ̄
=
ρ(x) − ρ̄

ρ̄
, (1.2)
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where ρ̄ is the average density of the Universe. We will assume linearity, δ . 1,

otherwise modes become coupled and cannot be treated analytically; this assump-

tion is valid while the perturbations are small. In the case of small perturbations

around a smooth Universe we would benefit from Fourier transforming; different

Fourier modes decouple and therefore can be treated independently. The funda-

mental equations governing fluid motion are

Euler
Dv

Dt
= −∇p

ρ
−∇Φ , (1.3)

energy
Dρ

Dt
= −ρ∇ · v , (1.4)

Poisson ∇2Φ = 4πGρ , (1.5)

where D/Dt = ∂/∂t + v · ∇ is the convective derivative, p =pressure, v =velocity.

For sufficiently small perturbation amplitude, terms containing a product of pertur-

bations are negligible in comparison with the first order terms and hence are ignored.

In the linear regime these partial differential equations turn into ordinary differential

equations with ∇ = −ık; this means on Fourier transform we get A(x) −→ Ã(k),

meaning every Fourier mode evolves independently.

Consider the Universe as a box of side L with periodic boundary conditions; taking

L to infinity, it is possible to expand in plane waves

δ(x) =
1

(2π)3

∫

δ(k) exp(−ık · x)d3k

δ(k) =

∫

δ(x) exp(ık · x)d3x . (1.6)

This prescription is only valid in flat models in which the exponential above form an

orthonormal harmonic basis with k being the eigenvalue of the expansion. Therefore,

the plane waves satisfy the flat space Laplacian, ∇2Y = −k2Y , where Y is the plane

wave.

The perturbations can be described statistically using the correlation function ξ

between two points. This is expected to depend only on the separation of two

points, as isotropy has been assumed. The correlation function is defined as

ξ(r) ≡ 〈δ(x)δ(x + r)〉 =

〈

1

(2π)6

∫

δ(k)δ∗(k′)e−ı(k−k
′)·xeık·rd3kd3k′

〉

, (1.7)

where δ∗(k) = δ(−k) (perturbations are real in coordinate space) and 〈· · · 〉 indicates
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ensemble average. Having only one Universe to observe, the ergodic theorem is used,

which says that on a large enough part of sky, the ensemble average is equivalent to

volume average.

Now, in Fourier space, the perturbations can be described as uncorrelated, Gaus-

sian random fields. Therefore, the second moment of δ(k) is enough to define the

perturbations completely. The second moment is called the Power Spectrum of the

field and is defined as

〈δ(k)δ∗(k′)〉 = (2π)3δD(k − k′)Pδ(k) , (1.8)

where k = |k| (i.e., isotropy is assumed) and δD is the Dirac delta function. From the

above equations, it can be seen that the correlation function is the Fourier transform

of the power spectrum

ξ(r) ≡ 〈δ(x)δ(x + r)〉 =
1

(2π)3

∫

Pδ(k)e−ık·rd3k . (1.9)

Expanding d3k = k2dk sin(θ)dθdφ and using e−ık·r = cos (kr cos θ) + ı sin(kr cos θ),

where θ is the angle between r and k, and k is aligned along the polar coordinate

axis, we get

ξ(r) =
1

2π2

∫

k3Pδ(k)
sin(kr)

kr
d ln k =

∫

∆2
δ

sin(kr)

kr
d ln k , (1.10)

where a dimensionless power spectrum is defined as

∆2
δ =

1

2π2
k3Pδ(k) . (1.11)

This is the variance per logarithmic k interval (per decade) of the field. ∆2 ≃ 1 is

the boundary between linear and non-linear regime.

The scalar perturbations discussed above are sourced by the density fluctuations.

However, many theories of the structure formation produce an additional tensor

perturbations. These perturbations produce observable distortions in the CMB,

especially on large scales. In Section 1.4.2 we will explain how these perturbations

are measured.
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1.3 Matter Power Spectrum

We need to find a way of relating the structure we see today to the initial pertur-

bations. If we know how perturbations were initially distributed, then it is possible

to predict what they should look like in the future if a time-dependent equation,

which describes the evolution of perturbations, is available. However, other than

the time-dependence, what mode we are considering is very important as well, as

the evolution of perturbations depends on the ratio of the scale of the perturbations

to that of the horizon. The power spectrum today needs factors accounting for

• time-dependence,

• mode-dependence,

• initial perturbation.

Therefore

Φ(k, a) ∝ Φ0(k)T (k)D(a) , (1.12)

where

• Φ(k, a) = the potential.

• Φ0(k) = the primordial potential set by inflation.

• T (k) = Transfer Function; it accounts for the mode horizon-crossing, and es-

pecially takes care of the effects on the modes at the matter-radiation equality.

It is defined as

T (k) ≡ Φ(k, aLate)

ΦLS(k, aLate)
, (1.13)

where, aLate denotes an epoch well after the transfer function regime and ΦLS

is the potential on large scales (this is the primordial Φ decreased by a small

amount — explained on the next page).

• D(a) = Growth Function; it takes care of the time evolution of modes af-

ter matter-radiation equality and it is mode-independent. In a flat, matter-

dominated Universe the potential is constant, which means the over-density

grows with scale factor, δ ∝ a.

It is worth mentioning that the separation of variables in Equation 1.12 is only

possible in the linear theory; on Fourier transforming the partial differential linear
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equations, we get ∂/∂x → k. This produces a set of ordinary differential equations

for the Fourier modes, and this set of equations is uncoupled.

[Aside; in reality we have

Φ(k, a) =
9

10
Φ0(k)T (k)D(a) . (1.14)

The 9/10 factor accounts for the transition from radiation- to matter-dominated

era. The transition is not instantaneous and happens over some time. This makes

the modes, even the largest ones, still decay some time after the matter-radiation

equality. Therefore, the final potential after the equality is a factor of 0.9 of what it

was before (Remember, that the potential on the largest scales are meant to present

the primordial potential, as they should not have been effected by the evolution

throughout the history of the Universe, being super-horizon. But the transition

through the matter-radiation equality makes the potential to drop by a factor of

10). Sometimes this factor is taken into the transfer function [16].]

Now, we can use the Poisson equation to relate the dark matter density perturbations

to the gravitational potential

Φ(k, a) =
4πGρma

2δ

k2
. (1.15)

Using

ρm = ρ0(
a0

a
)3

=
ρ0

ρcr
ρcr(

a0

a
)3

= Ωmρcra
−3 , (1.16)

having a0 = 1 and the critical density definition 4πGρcr = 3H2
0/2, for today, we

obtain

δ(k, a) =
3k2

5ΩmH2
0

Φ0(k)T (k)D(a) . (1.17)

The power spectrum is defined as

〈δ(k, a)δ∗(k′, a)〉 = (2π)3δD(k − k′)Pδ(k, a) . (1.18)
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The simplest form to assume for the primordial power spectrum is a dimensionless

power that is constant on all scales and is isotropic

〈Φ(k, a)Φ∗(k′, a)〉 = (2π)3δD(k − k′)PΦ(k, a) , (1.19)

with ∆2
Φ = (1/2π2)k3PΦ (k) = Akns−1. The ns = 1 case refers to the Harrison-

Zeldovich (HZ) scale-invariant spectrum.

[Aside; In the inflationary picture, scalar, vector and tensor perturbations of the

metric are produced during inflation [17, 18]. The scalar perturbations grow by

gravitational instability to structures in the Universe today. Vector perturbations

decay during the fast expansion and have no importance. The tensor perturbations

are due to the background of gravity waves (and they also induce some anisotropy

in the CMB photons). The vacuum energy of the scalar field is the dominant energy

density at the epoch of inflation. The kinetic energy is small and so the scalar field

is changing very slowly. This slow change in the scalar field, while the Universe is

going through rapid expansion, means the power spectrum after inflation is expected

to be scale-invariant, i.e. the HZ spectrum.]

From above, a matter power spectrum can be obtained

Pδ(k) ≃ AknsT 2(k)D2(a) . (1.20)

The observable in the present-day Universe is the galaxy distribution and so a galaxy

power spectrum is what we obtain from observations. This is related to the matter

power spectrum via bias , which is defined as Pg(k) = b2Pδ(k). This linear relation-

ship suggests where there is an over-density in dark matter, there is also a collection

of galaxies, but with somewhat more power. This means galaxies trace the under-

lying dark matter distribution. This is really a simplified version, as bias can be

scale-dependent or morphology-dependent. So far, some galaxy power spectra for

different types of galaxies have been obtained and they all seem to have the same

shape as the dark matter power spectrum, with a different amplitude; an example

is [19]. The measurements of the galaxy power spectrum will be under investiga-

tion in Chapter 4, where we intend to optimise galaxy surveys for power spectrum

measurements.

We can have a general idea of what the overall power spectrum should look like; the

dominant component of the Universe is of great importance here. This is what makes

the modes evolve differently. The driving force for the modes to grow is gravitation.
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In the radiation-dominated era, the energy in radiation is so great that it provides

the dominant gravitational force. The density grows in radiation and the matter

distribution tends to follow the radiation distribution. However, there is a limit

to how much radiation can clump, as radiation exerts pressure. The combination

of the gravitation and the radiation pressure forces introduces an oscillation in the

perturbations. This is exactly the photon-baryon acoustic oscillation (baryons and

photons are coupled because of Thompson scattering of photons and electrons and

the electrostatic attraction between the electrons and nuclei). The oscillation means

that over some time the over-densities do not grow on small scales. On larger scales

though, over-densities can grow as the radiation does not have time to cross the

whole scale. The boundary between the two scales is defined by the Jeans length,

which is when the sound crossing time (speed of radiation pressure) is equal to the

gravitational in-fall time 1 . As time goes on, Jeans length increases as radiation

pressure waves can travel further. This means that perturbations on larger and

larger scales stop growing as time passes. This is true until the epoch of matter-

radiation equality. After this, the main gravitational component is matter, which

has a small pressure. This means that all scales can now grow. This induces a break

in the matter power spectrum, frozen at the scale of the horizon at the epoch of

matter-radiation equality.

How much growth there is on each scale is translated to the amplitude of the relevant

scale in the power spectrum (through the Fourier transform); more growth means

larger amplitudes. This is depicted in Figure 1.2. The first plot is the scale-invariant

HZ power spectrum. The series of plots represent the matter power spectrum as

the Universe grows and goes through different phases of its evolution. The peak

moving across is the scale of the Jeans length at that time in the history of the

Universe. The last plot is the matter power spectrum today, with the peak at the

scale of matter-radiation equality. Scales smaller than the scale of equality became

sub-horizon at some time in the past. The smaller the scale, the earlier it becomes

sub-horizon and the less power it has in the power spectrum. Scales larger than the

scale of matter-radiation equality have been super-horizon all along.

Knowing the physics, it is easy to formulate a general form for the transfer function

and hence a general shape for the power spectrum. Perturbations with kdeq ≪ 1

(deq size of the Universe at the matter-radiation equality) have always been super-

horizon and will always grow. Perturbations with kdeq ≫ 1 will stop growing as

1Jeans length matches with the horizon scale in the radiation-dominated era. This is due to the
fact that the furthest sound can travel in this epoch is determined by the sound speed of radiation.
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Figure 1.2: Power Spectrum from just after inflation (a), until today (d), with
arbitrary normalisation.

soon as they become sub-horizon— which depends on their size k. Remembering

the growth of perturbations, δ∝ d2, we get

T =







1 kdeq ≪ 1

(kdeq)
−2 kdeq ≫ 1

, (1.21)

where (kdeq)
−2 is the ratio of the amplitude of the sub-horizon k-mode to its super-

horizon amplitude — had it not entered the horizon. This is shown in Figure 1.3.

Therefore, for Pδ(k) ∝ T 2k we have

Pδ(k) =







k kdeq ≪ 1

k−3 kdeq ≫ 1
. (1.22)

This is Figure 1.2-d for a ΛCDM model.
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Figure 1.3: Matter Transfer Function.

1.4 CMB Power Spectrum

1.4.1 Temperature Power Spectrum

In the case of the CMB, the observable quantity is the temperature of the photons

coming from different directions, at our position and time. The primordial photons

can be separated out from other nuisance photons (coming, for instance, from our

galaxy) by analysing the incoming flux and frequency from different directions. The

primordial photons seem to have the same flux in all directions. However, when

analysed in detail, fluctuations can be seen, which are only perturbed to one part

in 100, 000.

As our position and time is fixed, the only variation we can measure is the direction

the photon is coming from, p̂. This temperature can be described as

T (x, p̂, η) = TCMB(η)[1 + Θ(x, p̂, η)] , (1.23)

where Θ(x, p̂, η) is the temperature anisotropy. Just like the matter power spectrum,

we need to expand the field using an orthonormal basis which, in this case, is that
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of spherical harmonic functions, with coefficients aℓm described like

aℓm(x, η) =

∫

dΩΘ(x, p̂, η)Y ∗
ℓm(p̂)

=

∫

d3k

(2π)3
e−ık·x

∫

dΩΘ(k, p̂, η)Y ∗
ℓm(p̂) , (1.24)

where in the second line of the equation Θ(x) is replaced by its Fourier transform

Θ(k). The multipole moment, ℓ, is related to the angular size on the sky like

ℓ ∼ 1800/θ, m is the phase ranging from −ℓ to ℓ, dΩ refers to integration over

the whole sky and Y ∗
ℓm(p̂) is the spherical harmonic function. Assuming a Gaussian

random field again, all we need is the average and variance of all quantities. In case

of aℓm, the average vanishes and the variance is given by

〈aℓma
∗
ℓm〉 = δℓℓ′δmm′Cℓ . (1.25)

Cℓ is the angular power spectrum of the temperature field, and is m-independent, as

isotropy has been assumed. Cℓ is the variance of the Gaussian distribution and for

each ℓ, aℓm is drawn from the same width Gaussian. The angular power spectrum

is related to the angular correlation function as follows

C(θ) ≡ 〈Θ(n̂)Θ∗(m̂)〉 =
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(n̂ · m̂) , (1.26)

where n̂ · m̂ = cos(θ).

Knowing that only the initial perturbations (initial amplitude and phase of the

perturbations) are stochastic and the evolution of the initial perturbations to the

anisotropy today is not a stochastic process, we can have

Θ(k, p̂, η) = Φ0(k)
Θ(k, p̂, η)

Φ0(k)
, (1.27)

where it has been assumed that initial condition is isotropic, so that there is no p̂

dependence. The ratio on the right hand side of the above equation represents the

evolution of the perturbations. This means that each mode has the same phase,

independent of the direction it is coming from. This is known as coherence and this

is what allows us to see a coherent pattern of acoustic oscillations in the CMB at

the last scattering surface.
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Taking the ensemble average of the above

〈Θ(k, p̂, η)Θ∗(k′, p̂′, η)〉 =
Θ(k, p̂, η)

Φ0(k)

Θ∗(k′, p̂′, η)

Φ∗
0(k

′)
〈Φ0(k)Φ∗

0(k
′)〉

=
Θ(k, p̂, η)

Φ0(k)

Θ∗(k′, p̂′, η)

Φ∗
0(k

′)
(2π)3δD(k − k′)PΦ(k) .(1.28)

The ensemble average is only taken around the initial values as this is the stochastic

process, whereas, the ratio of perturbations to their initial values describes the

evolution of the mode and is the same in any realisation. Therefore,

Cℓ =

∫

d3k

(2π)3
PΦ(k)

×
∫

dΩdΩ′Y ∗
ℓm(p̂)Y ∗

ℓm(p̂′)
Θ(k, p̂, η)

Φ0(k)

Θ∗(k′, p̂′, η)

Φ∗
0(k

′)

=

∫

d3k

(2π)3
PΦ(k)

∫

dΩdΩ′Y ∗
ℓm(p̂)Y ∗

ℓm(p̂′)
Θ(k, p̂, η)

Φ0(k)

Θ∗(k, p̂′, η)

Φ∗
0(k)

. (1.29)

Using p̂→ p̂ · k̂ = µ and Θ(k, µ, η) =
∑

ℓ(−ı)ℓ(2ℓ+ 1)Pℓ(µ)Θℓ(k, η), we get

Cℓ =

∫

d3k

(2π)3
PΦ(k)

∑

ℓℓ′

(−ı)ℓ(−ı)ℓ′(2ℓ+ 1)(2ℓ′ + 1)
Θℓ(k, η)Θ

∗
ℓ′(k, η)

|Φ0(k)|2

×
∫

dΩPℓ(µ)Y ∗
ℓm(p̂)

∫

dΩ′Pℓ′(µ
′)Y ∗

ℓ′m(p̂′) , (1.30)

where µ′ = k̂ ·p̂′. Using Pℓ(k̂ ·p̂) = 4π/(2ℓ+1)
∑

m Yℓm(k̂)Y ∗
ℓ′m(p̂), the two integrals in

the last line of above equation → (4π)2/ ((2ℓ+ 1)(2ℓ′ + 1)) δℓℓ′Yℓm(k̂)Y ∗
ℓ′m(k̂), making

use of the orthonormality of the Legendre Polynomials. Then integrating over the

angular part of the wavenumber, using d3k = k2dk sin(θ)dθdφ, we get

Cℓ =
2

π

∫

dk k2PΦ(k)

∣

∣

∣

∣

Θℓ(k, η)

Φ(k)

∣

∣

∣

∣

2

, (1.31)

where the expression in the modulus is ∆ℓ(k, η), the angular transfer function of the

radiation anisotropies. It is a two-dimensional transfer function, since it converts

the real 3D perturbations into the angular perturbations on sky. Substituting the

initial power spectrum of the metric introduced earlier, k3PΦ(k) = Akns−1, we have

Cℓ =
2A

π

∫

d ln k kns−1 |∆ℓ(k, η)|2 . (1.32)

This tells us the relation between what we observe today and the primordial power
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spectrum. The angular transfer function is calculated using the Boltzmann equa-

tion. The Boltzmann equations describe the statistical distribution in an out of

equilibrium fluid. Therefore, it can perfectly describe the distribution and evolution

of particles throughout the history of Universe. It is defined, in its most general

form, as
df(t, x, p)

dt
= C[f ] , (1.33)

where f describes the distribution of particles as a function of time, position and

momentum and d/dt contains gravitational effects. C[f ] accounts for all the collision

terms between the particles. This is zero in absence of collisions, which is the case

for photons after decoupling. The collision-less case states that the number density

of particles in a phase space element (dxdp) is constant with time.

Writing this equation for all the components in the Universe, we get a set of equations

for photons, dark matter, baryons (and mass-less neutrinos). For the case of the

CMB, the Boltzmann equations for photons are of interest [20];

Θ̇ + ıkµΘ = −Φ̇ − ıkµΨ − τ̇

[

Θ0 − Θ + µvb −
1

2
P2(µ)Π

]

, (1.34)

where Φ is the perturbations to spatial curvature, Ψ is the Newtonian potential and

Π is the anisotropic shear. This equation is expanded in multipole moments using

Θ(k,n) =
∑

ℓ

(2ℓ+ 1)(−ı)ℓΘℓPℓ(µ) , (1.35)

which gives a hierarchy of coupled equations. Up to 1996, the angular transfer

function was calculated by solving these coupled equations simultaneously. This

meant some thousands of equations had to be solved at the same time and so it was

a very time-consuming procedure. In 1996 Seljak and Zaldarriaga [21] solved this

problem by separating the geometrical and dynamical contributions. This meant

that the dynamical contribution, which is the source term expressed in terms of

photons, baryons and metric perturbations, as in Equation 1.34, had to be solved

for only a couple of equations at low multipole and integrated through the photon’s

past light cone. This improved the speed of the calculations greatly and this is

exactly what the CMBFAST code is based on, [21].

The shape of the angular power spectrum (Figure 1.4) can be easily predicted by

understanding the physics; in the case of the CMB, the oscillations of photons

in the photon-baryon fluid are of interest. After matter-radiation equality dark

matter perturbations can grow easily. However, the photon-baryon fluid is still
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Figure 1.4: CMB Angular Power Spectrum, showing the important scales dis-
cussed in the text.

undergoing oscillations, as discussed before. They fall in the gravitational potential

wells of dark matter, but get pushed apart by the radiation pressure of photons.

This oscillation carries on until the time of recombination. This is when photons

decouple from baryons and travel unimpeded through the Universe, reaching us

today. What is frozen in the distribution of photons that we receive today is the

signature of their last oscillation at the time of recombination. Large enough scales

have not had time to undergo any oscillations by the time of recombination. There

are some scales which have had just enough time to compress maximally under

gravity. There are smaller scales which have had time for many oscillations. The

scales with maximal compression represent the first peak in the power spectrum.

The second peak represents the scales which have had time for a compression and

are caught when maximally rarefied at the time of recombination. The third peak is

again a compression. If we look at the CMB map, we expect to see lots of patterns

on these scales — Figure 1.5.
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Figure 1.5: CMB map seen by WMAP — http://map.gsfc.nasa.gov/.

The position of the peaks are of great importance in cosmology. The first peak

corresponds to the horizon scale at the time of recombination. It shows how far

radiation has travelled since the Big Bang until the time of recombination. However,

what we see on sky is the apparent angular size of the physical scale, defined by

θ = d/DA, where θ is the angular size of the scale on sky, d is the physical size of the

object and DA is the angular diameter distance. Having θ from CMB observations

and d from theory, it is possible to work out DA. This can tell us about the geometry

of the Universe. DA for a flat Universe is just the physical distance, aχ . However,

for a closed or open Universe, it is

DA =
a

H0

√

|ΩK |







sinh[
√

ΩKH0χ] ΩK > 0

sin[
√
−ΩKH0χ] ΩK < 0

(1.36)

where χ is the comoving distance. In a closed Universe, patterns in the CMB map

is expected to look bigger and the opposite in an open Universe. What we see from

the CMB seems to match with a flat Universe — Figure 1.6.

From roughly the third peak onwards, there is less power in the spectrum. This

is due to Silk Damping. Silk damping occurs because the photons have a non-zero

mean free path. This means they can stream out of the over-densities on small scales

and make them decay. This scale turns out to approximately match the position of
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Figure 1.6: CMB map for closed/flat/open Universes — http://find.

uchicago.edu/~pryke/teaching/natsci102/spring-2005/cmbmaplab/.

the third peak. The slope of the power spectrum here can also provide information

about the neutrinos; their streaming length can put a limit on their mass [22, 23].

1.4.2 Polarisation Power Spectrum

Apart from the temperature anisotropy, the CMB radiation is polarised. This polar-

isation is due to the Compton scattering at the time of decoupling which thermalizes

the CMB radiation. The polarisation of the CMB is not a scalar field; light travel-

ling in the z direction has electric and magnetic fields oscillating in the x− y plane

(perpendicular to the propagation direction). If the intensities along the two trans-

verse directions are not equal, then the light is linearly polarised — this is a spin-2

field. This sort of polarisation is best represented by a tensor field.

The Stokes parameters, Q and U , are used to measure the polarisation of the CMB

radiation2. These parameters represent modes oscillating at 90◦ to each other; at

(0, π/2) and (π/4, 3π/4) with respect to the reference direction. Q is positive if the

temperature anisotropy is larger along the x axis (i.e. along 0) relative to the y axis

(i.e. along π/2) and U is positive if the perturbation is large along the π/4 direction

2Compton scattering cannot produce any circular polarisation. Hence the stokes parameter
V = 0.
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relative to the 3π/4 direction. Maps of the Q and U polarisation are not physical

quantities (i.e. are basis-dependent) and are components of the polarisation tensor:

Pab(n̂) =
1

2

(

Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

)

, (1.37)

in spherical polar coordinates. We then decompose this field onto a complete set of

orthonormal basis functions, using the spin-weighted spherical harmonics:

Pab

T0

=
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

(aE
ℓmY

E
ℓm−ab + aB

ℓmY
B
ℓm−ab) , (1.38)

where T0 is the mean CMB temperature and E and B represent the curl and di-

vergence free modes respectively. The basis functions Y E/B can be given in terms

covariant derivative (on a sphere) of the spherical harmonics:

Y E
ab =

√
2(∇a∇bYℓm − 1

2
gab∇c∇cYℓm) , (1.39)

Y B
ab =

1√
2
(ǫcb∇a∇cYℓm − 1

2
ǫac∇b∇cYℓm) , (1.40)

where gab = diag(1, sin2 θ) and ǫab is a completely antisymmetric tensor. The de-

composition into E and B modes are particularly helpful because scalar/density

fluctuations cannot produce B modes (B modes are only produced by directed

quantities such as gravitational waves or lensing). Hence a B type detection is a

direct signature of the presence of a stochastic background of gravitational waves.

This would provide an invaluable information about inflation. Figure 1.7 shows a

polarisation pattern on sky for E and B modes.

The three types of aE , aB and aT can form six types of power spectra;

〈

aX
ℓma

Y
ℓm

〉

= δℓℓ′δmm′CXY
ℓ , (1.41)

where X, Y ∈ {T, B, E}. The CTT
ℓ power spectrum is the temperature power spec-

trum obtained in the previous section. We expect CBE
ℓ = CBT

ℓ = 0 as any correlation

between B and T or E would correspond to parity violation at decoupling. Figure

1.8, 1.9, 1.10 and 1.11 show some of these power spectra from WMAP5 [24].
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Figure 1.7: Examples of E (left) and B (right) modes of polarisation. Vectors
show the direction and magnitude of the polarisation — Courtesy Joe Zuntz.

1.5 Weak Lensing Power Spectrum

A powerful probe of the total matter (dark and baryonic) in the Universe is gravi-

tational lensing. Most other surveys, such as galaxy surveys, probe galaxies in the

Universe. However, the early Universe models predict the inhomogeneities in the

total matter. This deficiency in the galaxy surveys introduces an extra parameter in

our models, the bias, which can be avoided in lensing surveys. A gravitational lens

distorts light from a background galaxy by its total mass. Therefore, gravitational

lensing surveys are of great importance and would be great help if included in the

analysis here. The first thing to do is to obtain an observable related to the matter

power spectrum. To do this we define a power spectrum of convergence, κ. The

convergence is the weighted integral of mass density along the line of sight:

κ ≃ 3

2
H2

0Ωm

∫

dχ g(χ)
δ

a
(1.42)

where δ is the over-density, χ is the comoving distance and g(χ) is the lensing weight

defined as

g(χ) ≡
∫ χ∞

χ

dχs
χ(χs − χ)

χs
p(χs) , (1.43)

for sources with distributions p(χs), normalised to
∫

dp = 1. Using Limber and

Born approximations [30] we write the dimensionless convergence power spectrum
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Figure 1.8: The WMAP5 TT power spectrum along with recent results from the
ACBAR ([25], purple), Boomerang ([4], green) and CBI ([7], red) experiments.
The red line is the best-fit ΛCDM model. Figure from http://map.gsfc.nasa.

gov/.

as an integral over the mass power spectrum

∆2
κ(ℓ) =

9π

4ℓ
Ω2

δH
4
0

∫

χ′dχ′

[

g(χ′)

a(χ′)

]2

∆2
m(k =

ℓ

χ
, a) , (1.44)

where ∆2
κ(ℓ) is the contribution to κrms per logarithmic interval in angular wavenum-

ber ℓ. Just like the other power spectra, this power spectrum depends in the pri-

mordial power spectrum through the dimensionless matter power spectrum [31].

1.6 Peculiar Velocity Field and Matter Power

Spectrum

A galaxy’s velocity measured away from us is composed of two effects. One is

the general Hubble expansion, and the other is the peculiar velocity component,
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Figure 1.9: The WMAP5 TE power spectrum. The green curve is the best-
fit theory spectrum from the ΛCDM/WMAP Markov chain ([24]). The clear
anticorrelation between the primordial density (T) and velocity (E) in causally
disconnected regions of the sky indicates that the primordial perturbations must
have been on a super-horizon scale. Figure from http://map.gsfc.nasa.gov/.

superimposed on the Hubble expansion. Therefore the total velocity of a galaxy is

v = vpec + x̂vH , (1.45)

where vH = Hx, with H = Hubble Constant, and x is the radial distance of the

galaxy from us. In redshift surveys, the total v is measured and this can be used to

correct for the distortions induced. This distortion caused by the peculiar velocity

component is of great importance for probing the total (dark and baryonic) matter

distribution. This is because, in linear theory, the peculiar velocities are determined

by the surrounding density field. Therefore, it is worth investigating how a matter

power spectrum can be obtained from redshift surveys.

The Continuity Equation can be used to relate the velocity and the density fields.

On scales well within the horizon, the continuity equation has the form

ρ̇+ ∇ · (ρv) = 0 , (1.46)
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Figure 1.10: The WMAP5 EE power spectrum along with results from the
Boomerang ([26], green), CBI ([27], red), CAPMAP ([28], orange), QUAD ([29],
purple), and DASI ([6], blue) experiments. The pink curve is the best-fit theory
spectrum from the ΛCDM/WMAP Markov chain ([24]). Figure from http://

map.gsfc.nasa.gov/.

where v = vpec. In Fourier space ∇ = −ık and again defining perturbations like

ρ = ρ̄(1 + δ) and v = 0 + δv (where the mean velocity perturbation, v̄ = 0) and

ignoring quadratic terms, we get

δ̇ + ıkv = 0 . (1.47)

Therefore,

v(k, η) =
ı

k

dδ

dη
, (1.48)

where η is the conformal time. To relate velocity to density, the dimensionless linear

growth rate function is used

f =
a

δ

dδ

da
, (1.49)

and using d/dη = (a2H)d/da, the velocity is related to density like

v(k, η) =
ıaHfδ(k, η)

k
. (1.50)
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Figure 1.11: The WMAP5 TB power spectrum, showing no evidence of cosmo-
logical signal. Figure from http://map.gsfc.nasa.gov/.

This is just a proportionality relation and defining Pv(k) = 〈v(k)v∗(k)〉, we can

relate the matter power spectrum to the velocity power spectrum as

k2Pv(k) ∝ Pδ(k) . (1.51)

As can be seen all the above power spectra are a convolution of the primordial power

spectrum with some type of transfer function. This just shows the importance of

the primordial power spectrum. In Chapters 2 and 3 the primordial power spectrum

will be under investigation from two different aspects.

1.7 Data Analysis — Bayesian Statistics

To understand our Universe, we have to observe it in great detail. This has been

possible only recently through different experiments such as COBE [2], WMAP [32],

SDSS [33], 2dF [34], etc.. As a result, data analysis has been one of the important

subjects of the recent years with huge improvements, alongside the improvement of
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our experiments. The aim of data analysis is to get the most information out of

data. The new surveys, such as Planck [35], SDSS, etc., are expected to produce

large amounts of data. Tackling these large data sets is a big challenge in cosmology.

Below, I will explain how some data analysis is done for cosmology.

The approach here is based on Bayesian Statistics, which suggests that the concept

of probability can take into account any prior knowledge about the hypothesis or

its parameters. The probability law P [A∩B] = P [A|B]P [B] = P [B|A]P [A], where

P [x|y] is the probability of x given y, can be applied here and so we obtain

P [H|DI] =
P [D|HI]P [H|I]

P [D|I] , (1.52)

where D = data, I = other information we have about our experiment (eg. back-

ground, etc.) and H = hypothesis. The terms in the above equation are

• P [H|I] is the prior probability, which represents our state of knowledge about

the hypothesis. This is known without having any data. We often assume

a uniform prior if we do not know anything about the hypothesis, so that

P [H|I] = constant.

• P [D|HI] is the likelihood function, which is defined as the probability of getting

the data in an experiment given a theory.

• P [H|DI] is the posterior distribution which, according to the Bayesian theo-

rem, has all the information about our hypothesis and its parameters.

• P [D|I] is the evidence. This can be thought of as the normalisation factor, re-

alising that the posterior distribution should have a probability of 1 integrated

over the parameters of the hypothesis. Therefore, it is the integration of the

numerator over the parameter space. This is important as we can then ignore

this term, as it shouldn’t have any effect on where the likelihood function

peaks in the parameter space.

This makes the equation above a proportionality relation

P [H|DI] ∝ P [D|HI] = L . (1.53)

However, care needs to be taken, as ignoring the prior is not always appropriate — it

can only be ignored if the data is very informative about the parameters. This means
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that the likelihood function peaks at the same place as the posterior distribution in

the parameter space, which indicates the best values of the parameters. Below, the

likelihood function for CMB and galaxy surveys will be derived.3

1.7.1 CMB

In the case of the CMB, the noise is assumed Gaussian. Also, the CMB temperature

at a given spot on the sky has a Gaussian distribution. This is predicted by most

early Universe models like inflation theory [18, 17]. To get the likelihood function,

we need to convolve the equations for the noise and the signal. The probability that

a given spot on the sky has a temperature between s and s + ds is

P (s)ds =
1√

2πCS

exp{−s
2

2CS
}ds , (1.54)

where CS is the signal variance only. The probability distribution for the noise is

P (∆) =
1√

2πCN

exp{−(∆ − s)2

2CN

} , (1.55)

where CN is the noise variance only and ∆ is the estimated value for the temperature

on the sky. To combine the two equations, we use P [∆|CS] =
∑

s P [∆|s]P [s|CS] to

get

L =

∫ ∞

−∞

1√
2πCN

exp{−(∆ − s)2

2CN
} 1√

2πCS

exp{−s
2

2CS
}ds . (1.56)

Going through the calculation and having C = CN + CS leads to

L =

√

1

2πC
exp

−∆2

2C
. (1.57)

This is the likelihood function for 1 pixel and it looks as expected; a Gaussian in

∆, with a variance that is the sum of the two variances. We need to generalise the

above equation to account for all the pixels. This leads to

L =
1

(2π)Np/2|C|1/2
exp{−∆TC−1∆

2
} , (1.58)

where ∆ is now a data vector which contains all the estimated values of the tem-

perature for all the Np pixels, C is the full covariance matrix; CN is often diagonal

3Discussion here is from Modern Cosmology book of Scott Dodelson [16].
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(white noise), but CS is not. CS is related to theory, Cℓ;

(CS)ij =
∑

ℓ

2ℓ+ 1

4π
CℓBℓPℓ(n̂i · n̂j) , (1.59)

where Bℓ is the beam pattern and Pℓ(n̂i · n̂j) is the Legendre polynomial.

1.7.2 Galaxy Surveys

There are some differences between galaxy survey analysis and the CMB;

• In the galaxy surveys, we are dealing with a 3D map, while in the CMB case,

we deal with a 2D projection of a 3D map.

• There are discrete objects in the galaxy surveys, while the temperature field

in the CMB case is continuous.

• The CMB temperatures are assumed Gaussian, while in the galaxy survey

case, we are looking at non-linearities which induce non-Gaussianity.

However, it is still possible to apply the same methods. The first step is to define a

pixel for these surveys. From [36], a generalised data pixel i in galaxy surveys can

be defined as

∆i ≡
∫

d3x ψi(x)

(

n(x) − n̄(x)

n̄(x)

)

, (1.60)

where n̄(x) is the expected number of galaxies at position x; it is the selection

function of the survey and it is a constant for volume-limited surveys (= Ntot/V

— Ntot = total number of galaxies in the survey, V = total volume of the survey).

n(x) is the actual galaxy number density at that position. There are two choices

for the weighting function, ψi(x);

• CIC, counts-in-cells; ψCIC
i (x) =







n̄(x) if within a subvolume

0 otherwise

• Fourier ; ψFourier
i (x) = eıki.x

V







1 inside survey volume

0 outside survey volume

where V is the total volume of the survey.
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In both cases, ∆i is the fractional over-density in the pixel. A pixel in this case refers

to a sub-volume in the surveys that contains some number of galaxies — should have

enough galaxies so that a Gaussian approach is reliable45. A complete expression for

the likelihood function is too complicated in the case of galaxy surveys. The only

progress in this case is to realise that, exactly like the CMB case, the covariance

matrix is

〈∆i∆j〉 = (CS)ij + (CN)ij . (1.61)

The signal covariance matrix can be found by setting the term in brackets in Equa-

tion 1.60 to δ(x). This leads to

(CS)ij =
〈

∆i∆
∗
j

〉

∣

∣

∣

∣

no noise =

∫

d3xd3x′ ψi(x)ψj(x
′)ξ(x − x′) . (1.62)

Remembering the correlation function is just the Fourier transform of the power

spectrum, it is possible to obtain

(CS)ij =

∫

d3k

(2π)3
Pg(k)ψ̃i(k)ψ̃∗

j (k) , (1.63)

where Pg(k) is the galaxy power spectrum. We will also assume that the galaxy

power spectrum is linearly related to the underlying matter power spectrum via

bias, Pg(k) = b2Pδ(k), where bias is scale/colour-independent. A window function

can be defined as the angular part of the above integral

Wij(k) ≡
∫

dΩk

4π
ψ̃i(k)ψ̃∗

j (k) , (1.64)

so that

(CS)ij =

∫ ∞

0

dk

k

[

k3Pg(k)

2π2

]

Wij , (1.65)

where the term in the brackets is the dimensionless power spectrum, ∆2
g(k). For a

volume-limited survey, which observes galaxies out to the radius of R, the Fourier

transform of the weighting function is defined as

ψ̃i(k) =

∫

|x|<R

d3x

V
e−ık.xeıki.x . (1.66)

4By the central limit theorem, any variable that is the sum of a large number of independent
factors is likely to obey the Gaussian distribution.

5A Poisson distribution (which is the case here as we have discrete galaxies) with parameters n
approaches a Gaussian distribution for large n.
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In the case where the wavelengths are much smaller than the survey volume, it is

possible to obtain

(CS)ii ≃
Pg(ki)

V
, (1.67)

for the signal covariance matrix and for the noise covariance matrix we obtain

(CN)ii =
1

n̄V
, (1.68)

with 1/n̄ being the Poissonian shot noise. Note that in the above calculation, any

non-linear clustering and redshift distortion has been ignored. It is assumed that

all the information about the parameters is given by the galaxy power spectrum. In

Chapter 4 we will present an extensive data analysis for galaxy surveys and how a

Fisher matrix is obtained for them. At this point, this simplified version suffices.

1.7.3 Optimal Quadratic Estimator

This is a root finding algorithm and is a fast way of performing likelihood calcu-

lations. Approximating the likelihood function as a multivariate Gaussian leads to

the quadratic estimator; if we think of the likelihood function as being continuous,

having a peak at the maximum and also make sure that it is structure-less (to avoid

getting trapped in a local extremum), then we can think of it as a Gaussian near

the peak. This is a good approximation only for a well-constrained parameter. The

likelihood function is a maximum in the parameter space where the parameters have

the best estimated values. Therefore,

∂ lnL
∂λ

|λ=λ̄ = 0 , (1.69)

where lnL is maximised at the same position in the parameter space as L. We can

use a Taylor expansion

(lnL),λ(λ̄) = (lnL),λ(λ
(0)) + (lnL),λλ(λ

(0))(λ̄− λ(0)) + · · · , (1.70)

where λ(0) is some trial point, λ̄ is the value of the parameter at the maximum of the

likelihood function and ,λ means derivative with respect to λ. The estimated value

is λ̂ = λ̄. Truncating the expansion above is justified if the error bars are small; lnL
’s drop is quite fast and therefore the third-order terms can be ignored. This also

says that Gaussianity is a good approximation for L. Calculating the derivatives
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above and going through the calculation, we get

λ̂ = λ(0) + F−1
λλ

∆C−1C,λC
−1∆ − Tr[C−1C,λ]

2
, (1.71)

where ∆∆ → 〈∆∆〉 = C. F is called the Fisher Matrix and is the ensemble average

of the curvature of a function (i.e. it is the average of the curvature over many

realisations of signal and noise)

Fλλ = 〈F〉 =
1

2
Tr[C,λC

−1C,λC
−1] , (1.72)

where F is the curvature of the likelihood function defined as

F = −∂
2 lnL
∂λ2

. (1.73)

It is worth emphasising that this is only possible if the likelihood function approx-

imates to a Gaussian near the peak. F is inversely proportional to the radius of

curvature. The curvature of the likelihood function is very important; it tells us

how rapidly the function is moving away from the maximum point (since the first

derivative vanishes, as it measures the change of likelihood function at the peak).

For instance, if the curvature is small it means the function is changing slowly at the

peak which, means data is not very constraining (this is where the prior information

is important and cannot be ignored), and vice versa. Generalising the Fisher matrix

to a many parameter case we have

Fαβ =

〈

− ∂2 lnL
∂λα∂λβ

〉

=
1

2
Tr[C,αC

−1C,βC
−1] . (1.74)

The Fisher matrix allows us to estimate the errors on parameters without having

to cover the whole parameter space. Authors of [37] have compared the Fisher

matrix analysis with the full likelihood function analysis and found there was perfect

agreement between the two methods if the likelihood function is Gaussian.

1.7.4 Fisher Matrix/Covariance matrix

The aim here is to find out how well the future experiments can measure the cosmo-

logical parameters, especially the primordial power spectrum. This can be achieved

by a Fisher matrix analysis. Fisher matrices can be computed analytically and
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they are suitable for forecasting how well the future experiments can constrain the

cosmological parameters as they do not depend on data. All we need to feed into

a Fisher matrix is the theory and the experimental specifications, such as beam,

survey volume/sky coverage etc..

There is a large motivation to include galaxy surveys in estimating errors on cos-

mological parameters. There are huge degeneracies between parameters from the

CMB alone and it is hoped to break this degeneracy by including galaxy surveys —

the degeneracies between parameters will be more discussed in Section 1.8 and also

in Chapter 2. Galaxy surveys are as important as CMB experiments and a way of

analysing these large amounts of data sets that they produce is certainly needed.

Also, more accuracy can be obtained if other surveys such as weak lensing, peculiar

velocity, Lyman α forest surveys are included too (although, Lyman α forest may

be probing too small a scale to be suitable for Fisher matrix analysis). They each

probe different scales and all together can give great accuracies on parameters.

The Gaussianity assumption of the likelihood function made above is still a very

good approximation for galaxy surveys as well. On large scales they are Gaussian,

but even on small scales where things have gone non-linear (and therefore non-

Gaussian), this method is quite competitive to other traditional estimators of error

calculations.

The inverse of the Fisher matrix is an approximation of the covariance matrix of

the parameters, by analogy with a Gaussian distribution in the θα, for which this

would be exact. Some powerful theorems have been proved6;

• The maximum likelihood estimator is asymptotically the best unbiased esti-

mator (〈Θ〉 = Θ0). This gives the errors on the parameters which are equal to

1/
√
F .

• The Cramer-Rao inequality7 states that the smallest error measured, for θα,

by any unbiased estimator (such as the maximum likelihood) is 1/
√
Fαα and

√

(F−1)αα, for non-marginalised and marginalised8 one-sigma errors respec-

tively. This does make sense as the errors obtained from a full likelihood

analysis could not be smaller than the width of the likelihood function.

6For instance, Kenney, J. F. & Keeping, E. S. 1951 Mathematics of Statistics, Part II.
7It should be noted that the Cramer-Rao inequality is a statement about the so-called “Fre-

quentist” confidence intervals and is not strictly applicable to “Bayesian” errors.
8Integration of the joint probability over other parameters.
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All the Fisher matrices from different surveys can be added to account for all the

information

F = Fgalaxy + FCMB + Flensing + . . . . (1.75)

This can be then inverted to give the total covariance matrix, where data from

different experiments are included. Below, I will explain how the general formalism

of the Fisher matrix above can be turned into the useful form for the CMB and

Galaxy surveys.

1.7.4.1 CMB

To calculate the Fisher matrix explicitly for the CMB we need to know the total

covariance matrix C = CN + CS and what parameters we want the Fisher matrix

for. The easiest choice for the parameters would be the Cℓs themselves, as they have

dependence on other parameters of the theory and therefore it is easy to get the

Fisher matrix for other parameters using the Jacobian.

CS is the signal covariance matrix and is related to the Cℓs, as explained above.

Therefore, we need the coefficients of the spherical harmonic functions defined as

aℓm =
∫

dΩY ∗
ℓm(n̂)Θ(n̂), remembering the definition of Cℓs from Equation 1.25. To

take the effect of window function in, we need to multiply these Cℓs by e−ℓ2σ2

, where

σ is the beam size in the experiment. This is the signal covariance matrix.

Next, we need the noise covariance matrix. One way to obtain this is to specify an

error for the pixels in the map, σpix. Assuming the errors are uncorrelated and have

uniform variance, σ2
pixδij is the variance in the noise with i and j referring to the

pixels. The observing time per pixel is inversely proportional to the pixel size. The

pixel solid angle can be defined as Ωpix = θ2
fwhm, where θfwhm is the full-width at

half-maximum of the Gaussian beam in the experiment. The best way to express

noise is in weight per solid angle [38], which gives

w = (σ2
pixΩpix)

−1 . (1.76)

So, now we have as the total covariance matrix

Cℓmℓ′m′ = δℓℓ′δmm′ [Cℓe
−ℓ2σ2

+ w−1] , (1.77)

where C on the left hand side is the total covariance matrix and the C on the right

hand side indicates the signal covariance matrix (= Cℓ). Insert this in Equation 1.74
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and what we get is

Fℓℓ′ =
2ℓ+ 1

2
δℓℓ′e

−2ℓ2σ2

[Cℓe
−ℓ2σ2

+ w−1]−2 . (1.78)

In an all sky survey, F above is diagonal and there are no correlations between Cℓ.

The error on Cℓ is then

δCℓ =

√

2

2ℓ+ 1
[Cℓ + w−1e−ℓ2σ2

] . (1.79)

This equation looks as expected:

• 2ℓ + 1 in the number independent measurement for a specific scale ℓ. This is

related to the sampling variance, which means no matter how precisely each

realisation is measured, i.e. w = ∞, δCℓ never goes to zero due to the finite

number of samples.

• 2 in the numerator of the square root comes due to taking difference of the

variances. The sampling variance for a Gaussian distribution is twice the

square of the variance divided by the number of independent measurements.

• In general, there are two sources of error; one is from the sampling variance,

Cℓ/2ℓ + 1, and the other is the noise, rising from atmospheric/instrumental

limitations.

Figure 1.12 shows an angular power spectrum, its Fisher matrix and errors for

Planck type survey. The large error on large scales is due to cosmic variance and

on small scales is due to the resolution limit of the experiment. Planck is almost

cosmic-variance limited up to a very large ℓ.

It is important to note that in reality, an all-sky survey is not really possible, at least

in the near future. This induces a factor of f sky in the equation above, multiplying

the sampling variance term. Another effect is that the different phases, ms (on a

particular scale ℓ), will not be completely independent, and there is a leakage of

power from one mode to another. It also causes a lack of power as the whole of

the sky is not taken into account. How much these effect the equation above need

to be investigated and corrected for any specific experiment. However, they will be

ignored in this report as they are not expected to have large effects.

As can be seen, experiments themselves introduce three characteristic effects into

the errors; the sky coverage, the weight and beam width. These are all shortfalls
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of our experiments, which affect all the scales. We are also limited by the cosmic

variance on large scales. Therefore, there is only a finite range where cosmology can

be probed at the moment, and we need to make the most of this.

The Fisher matrix for other parameters, λα, is obtained by using the Jacobian as

follows

Fαβ =
∑

ℓ

1

(δCℓ)2

∂Cℓ

∂λα

∂Cℓ

∂λβ
. (1.80)

Note that the above Fisher matrix formula does not account for the systematic errors

arising from Galactic/extra-Galactic foregrounds, scanning strategy etc. (although

some work has been done to account for these, for example in [39, 40, 41]).

This analytical Fisher matrix will be used in Chapters 2 and 3 for our analysis.

1.7.4.2 Galaxy Surveys

A similar approach is taken for galaxy surveys. A volume-limited galaxy survey is

an analogue of the all-sky CMB survey. The signal and noise covariance matrices

are given in Equations 1.67 and 1.68. The inverses and derivatives are obtained and

inserted into Equation 1.74. This leads to

Fnn′ = δnn′

k2
n∆kV

(2π)2(Pn + 1
n̄
)2
, (1.81)

where n and n′ refer to the bins and Pn is the average power in the nth bin. This has

a similar form to Equation 1.78, where the numerator is the number of independent

modes measured in the survey. To get the Fisher matrix for other parameters, the

Jacobian is used again, as

Fαβ =
∑

n

k2
n∆kV

(2π)2(Pn + 1
n̄
)2

∂Pn

∂λα

∂Pn

∂λβ
. (1.82)

Note that the sum is over n, which is associated with the bins. Using d lnP = dP/P ,

and turning sum to an integral it is possible to obtain

Fαβ = 2π

∫ kmax

kmin

d ln k
V

λ3

(

Pn

Pn + 1
n̄

)2
∂ lnPn

∂λα

∂ lnPn

∂λβ
, (1.83)

where Veff = V
(

Pn/(Pn + 1
n̄
)
)2

is the effective volume for a volume-limited survey,

and w(k) = Veff/λ
3 is the weight function. This is shown in Figure 1.13, taken
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from [36]. This shows the weight function for the main northern part and BRG

sample of SDSS. Note how small wavenumbers are not weighted much. The approach

above has assumed a volume-limited survey, for which n̄ is constant. This means

the volume of the survey is the only free parameter. If the survey is flux limited,

the selection function is much more complicated. Also, it has been assumed that

P (k) & 1/n̄ (the Poissonian shot noise) in the region of the survey so that the

effective volume available for the survey is the survey volume itself. At large scales

this assumption breaks down, but these scales get the least weighting anyways —

Figure 1.13. The weight function, w(k) = Veff/λ
3 , gives the number of independent

Fourier modes available. This is just like the fsky(2ℓ+ 1) factor in the CMB case.

The above formula assumes that there are no features in the power spectrum that are

smaller than kmin (inverse scale of survey). Also, the choice of kmax is of importance

as the above formula assumes Gaussianity. This will be explained in detail later.

Note also that edge effects have been ignored here. The author of [36] has tested

the edge effects in the equation and have concluded that it is accurate to within a

factor of two, if the survey size, λ≫ 200h−1Mpc. In case of SDSS, as it is deep and

wide, the features in the power spectrum (such as baryonic oscillations) should be

accessible and also, the edge effects can be resolved [42, 43].

The above calculations are taken from Modern Cosmology of Scott Dodelson [16].

However [36] is the first author to attempt to get the equation above.

This analytical version of the galaxy Fisher matrix will be used for the analysis

in Chapter 2. In Chapter 4 we will present an extension of the Bayesian statistics;

Bayesian Experimental Design, and also a full numerical version of the galaxy Fisher

matrix, used to optimise galaxy surveys.

1.8 Measuring Cosmological Parameters

Different sets of experiments such as the CMB (Planck), galaxy (SDSS) and gravita-

tional lensing (DUNE) surveys are underway to probe the Universe. These surveys

probe different scales and constrain different parameters and all together they would

provide a great handle on cosmology. On their own they may not be able to con-

strain the parameters due to the degeneracies amongst them. However, as different

surveys constrain parameters in different directions, they can constrain more pa-

rameters when put together. For example, it has been pointed out by authors, such
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as [44, 45], that CMB power spectra on their own cannot provide enough constrains

on parameters due to degeneracies. This means altering the model parameters in

certain combinations produces power spectra that are indistinguishable. One con-

sequence of these degeneracies is that they break the Gaussianity assumption about

the likelihood function. This means, for example, that the Fisher matrix analysis

is not reliable in these cases and we might get biased results using this technique

blindly! One way of breaking the degeneracies is to include other experiments as

explained above.

Efstathiou and Bond in [46] refer to the degeneracy between the parameters in the

CMB anisotropies as ”cosmic confusion”. They analyse the degeneracies between

parameters for WMAP and Planck. They perform an exact likelihood analysis for a

ΛCDM Universe with an adiabatic power spectrum and show that the usual Fisher

matrix analysis overestimates the errors on the parameters. Their work shows that

’significant biases’ are induced on the parameters due to correlated errors that exist

in estimation of CMB power spectra. There are generally two types of correlations

that exist in parameter estimations from CMB; One is the ’geometrical’ degeneracy

which means that CMB anisotropies are exactly the same for Universes with the

same baryonic and cold dark matter densities, identical primordial power spectrum

and identical values of the parameter [47, 48]

ℜ =
ω

1/2
m

ω
1/2
k

sinh(ω
1/2
k y) ,

where ωi = Ωih
2 = ρi8πG/(3 × (100kms-1Mpc-1)2) (physical densities of different

contents) and

y =

∫ 1

arad

da

(ωma + ωka2 + ωΛa4)1/2
.

Figure 1.14 shows five models with identical Cℓs. In linear theory, no matter how

precisely experiments are done, observations of primary anisotropy cannot break

this degeneracy. This introduces a limit on measuring the curvature of the Universe

and the Hubble constant, just from CMB anisotropies. The other parameter degen-

eracies, to some extent, depend on how well experiments can be done. For instance,

for a cut sky experiment, there are correlations between Cℓ of neighbouring ℓs. The

authors conclude that including external information, such as measurements of the

Hubble constant, measurements of the ΩΛ from supernovae experiments, etc. are

indeed needed to break the degeneracies.
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On this note, some have started combining CMB data with large scale structure data

[49, 50, 51, 52, 53]. An important example is [53], where the authors performed an

intensive Fisher matrix analysis on thirteen cosmological parameters of the adiabatic

CDM model. A consequence of having a large parameter space is to get weaker

constraints on the parameters. Indeed, the errors obtained form their work is larger

than any previous work that has been done with smaller parameter spaces, such as

[45, 44]. They explain this difference by numerical differences, such as derivative

methodology or fiducial models, that is different in previous works. In this work,

they have assumed a typical HZ primordial power spectrum having the usual power

law form Pp = Akns and they have included these parameters as part of their

parameter space. They start by measuring the errors on the parameters from CMB

data alone and show the decrease in the errors when the redshift survey data is

added. It is shown that good constraints can be achieved on some parameters, such

as Ωbh
2, Ωmh

2, ns, α (= d lnns/dk — running of spectral index) and a combination

of ΩΛ and ΩK from CMB data alone. But other parameters such as h and Ωm

are not constrained very well due to the degeneracies, such as the angular diameter

degeneracy. A combination of ΩΛ and ΩK at fixed Ωbh
2 and Ωmh

2 keep the height

and the position of the acoustic oscillations same; having Ωm = 1−ΩK −ΩΛ, we can

multiply the equation by h2, to get the physical densities of the parameters, which is

really what defines the CMB power spectrum. We then get ωm = h2−ωK−ωΛ. Now,

ωm and ωb are enough to fix the shape and the position of the acoustic peaks as ωΛ

and ωK do not have much effect at the time of recombination. This means that CMB

data alone cannot constrain h, Ωm and Ωmh very well. By adding redshift surveys,

the angular diameter degeneracy is lifted. This is because in the case of CMB, what

we see is the apparent size of the scales on the sky and, as explained previously, this

depends on the angular diameter distance to last scattering surface. A combination

of ΩΛ and ΩK can have the same angular diameter distance [45, 46, 44], which means

we can only know about certain combination of the two parameters — Figure 1.14

shows this degeneracy [46]. Once ωm and ωb are known from the CMB data, the

matter power spectrum is known as well. Comparing the features (eg. the baryonic

oscillations) in the real matter power spectrum with those in the redshift space gives

an estimation of h and therefore, the degeneracy is lifted.

All the authors above have used Fisher matrix analysis for their analysis and there

are some questions about the reliability of this technique; as mentioned previously

the Fisher matrix analysis is only reliable when L, the likelihood function, has

approximately a Gaussian distribution in the parameters. Authors of [54] have

tested the reliability of the Fisher matrix technique against a Markov Chain Monte
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Carlo (MCMC) simulation. They use synthetic data that can be obtained from

the experiment under consideration. The errors on the parameters are expected

to be more reliable as they do not assume any Gaussianity about the parameters.

They also investigate the whole range of the likelihood function instead of using

information at only the best fit point, which makes the technique even more reliable.

They perform this investigation on eleven parameters for Planck. Their results show

that indeed for some parameters (for instance neutrinos) the likelihood function is

not Gaussian, and therefore the MCMC results can be as different as a factor of

two from the Fisher matrix approach. This definitely indicates that other external

information should indeed be included to break the degeneracies (and make the

likelihood function Gaussian for the Fisher matrix analysis to be reliable).

A very important set of cosmological parameters is the one parametrising primor-

dial power spectrum. The inflationary model of the Big Bang [17, 18] and other

models of the early Universe (such as ekpyrotic models [55]) predict an adiabatic

scalar primordial perturbations, with an almost Gaussian distribution. The shape

of the primordial power spectrum depends on the model and its parameters. How-

ever, there are quite a lot of complications involved in this. For example, there is a

degeneracy between the shape of the primordial power spectrum and the cosmolog-

ical parameters, such as the densities of the different components of the Universe,

and constraints on the geometry of the Universe. It has been shown by [56, 57]

that changing the cosmological parameters can have the same effect as changing the

shape of the primordial power spectrum. This alone has a great impact on deter-

mining the shape of the primordial power spectrum; it means that it is possible to

completely misinterpret the cosmological parameters and be totally biased. This

leads us to rethink the assumptions made about the early Universe and investigate

more about the physics of the CMB rather than making assumptions that just fit

the data. Understanding the shape of the primordial power spectrum helps to nar-

row down the set of broad models of the early Universe. It helps to understand the

physics of the early Universe and the initial conditions of the structure formation,

which reflect on the shape of the primordial power spectrum. This will in turn help

in determining other cosmological parameters [58, 59]. All this makes the primordial

power spectrum one of the hot topics in cosmology.

For example a low power of the quadruple of CMB data has been detected by WMAP

[32], which is not predicted by the standard model. While other possibilities of this

observation is under investigation, such as [60, 61, 62], it might really be an indi-

cation of deviation from the assumed scale-invariant (HZ) initial power spectrum.
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The quadrupole corresponds to the largest observable scales in the Universe, and it

is not expected to have changed much from the early Universe, reflecting the pri-

mordial power spectrum. These issues make the extraction of the primordial power

spectrum one of the leading problems in cosmology. Observing the Universe today

is the only handle we have on determining the primordial power spectrum.

The authors of [59] have used the data from WMAP and 2dfGRF to construct the

shape of the primordial power spectrum. They have applied a model-independent

parametrisation with 16 bands in wavenumber. They have investigated four different

approaches to construct the shape; power law spectra with or without a running

spectral index, power spectrum having a cut-off scale, above which there is no power,

power spectrum in wavenumber bands and broken power spectrum, in which, the

effect of a double inflation has been investigated. They conclude that in each of

above cases, a scale-invariant spectrum still fits the data perfectly well. A red tilt is

slightly preferred and there is some marginal signature for a drop in power on the

largest scales. Although, generally, over their 16 wavebands, the primordial power

spectrum seems featureless and scale-invariant. They have also shown that allowing

the shape of the primordial power spectrum to change significantly amplifies the

errors on other parameters.

Another approach is taken by [63] to reconstruct the shape of the primordial power

spectrum. They use the wavelet band power method of [64] and the top-hat binning

method of [65] to reconstruct Pp(k) as a free function. They use both CMB and

LSS data. In this approach, both a scale-invariant and a power law form of Pp(k)

is consistent with data and they conclude that there is indeed a need for a more

stringent and independent way of constraining parameters so that Pp(k) can be

constrained without making any assumptions about the inflationary models. The

thing to note here is that binning the data have some advantages (reduces the errors

in each bin) and disadvantages (there might be features smaller that the bin size

and they get completely lost). Therefore, we need to find a compromise between

the two to arrange the bins optimally.

Knox, in [38], has used the Fisher matrix technique to analyse parameters of initial

power spectrum (as opposed to a non-parametric approach by the previously men-

tioned authors). These parameters include the scalar and tensor spectral indices, ns

and nt, and the amplitude of the spectra, As and At. Therefore, he has assumed a
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HZ initial power spectra defined as

P s
p (k) = Ask

ns

P t
p(k) = Atk

nt−3 . (1.84)

Knox tries to constrain these parameters for different sets of θfwhm and w-

specifications (noise) of CMB experiments. He concludes that in getting acceptable

errors on the above parameters, the angular resolution is the most important fac-

tor (especially in an open Universe where, apparent sizes of objects on the sky are

smaller, a very narrow beam is of great interest). For example, to be able to measure

ns with an accuracy of 0.016, an experiment with θfwhm = 20′ and w−1 = 6.85×10−14

is necessary (cf. Planck: θfwhm = 10.7′ and w = 5.4 × 10−15 for ν = 100GHz chan-

nel). However, trying to constrain parameters other than ns might mean that other

specifications of the experiments might become more important. For instance, if we

want to measure Ωb as well as ns, sky coverage might be more important than the

angular resolution [66]. This is because of the degeneracy between ns and Ωb; ns

affects the tilt of the whole spectrum and so its slope, even at very large ℓs, is of

great importance. Therefore a narrow beam is most desired for the determinations

of ns only.

On the other hand, Hu & Okamoto in [58], show that there are physical limitations

on how best it is possible to probe the primordial power spectrum from CMB ex-

periments alone. This is the case even if the experiments give perfect results. These

limitations are imposed due to

• Geometric projection (projection of a 3D reality onto the 2D surface of a sphere

around us),

• Acoustic physics (trajectory of photon from the last scattering surface to us

and how they are effected on the way, eg. by ISW effect),

• Gravitational lensing,

• Degeneracy of cosmological parameters.

They suggest the best way to tackle the degeneracy of the cosmological parameters,

and especially measuring the deviations from the scale-invariant initial power spec-

trum is to parametrise the deviations from a simple power law and to expand them in

an orthonormal basis. This is based on the principal components of the covariance
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matrix of the deviation parameters. These modes are like the Fourier expansion

of the initial spectrum, which is localised to the acoustic regime. This provides

a reliable platform to find out about the deviations from the assumed primordial

spectrum.

The rest of the thesis is organised in this format:

• In Chapter 2 we will investigate the best scales upon which the primordial

power spectrum can be probed, in accordance with the knowledge about other

cosmological parameters such as Ωb, Ωc, ΩΛ, h and τ . We will find the optimal

binning of the primordial power spectrum, by making use of the Fisher matrix

formalism. To investigate the correlations between the cosmological parame-

ters, mentioned above, and a set of primordial power spectrum bins, we make

use of principal component analysis (PCA) and Hermitian square root of the

Fisher matrix. The surveys used in this project are Planck and SDSS (BRG),

but the formalism can easily be extended to any windowed measurements of

the perturbation spectrum.

• In Chapter 3 we introduce a new method for reconstructing the primordial

power spectrum directly from the observations of the CMB. We employ Sin-

gular Value Decomposition (SVD) to invert the radiation perturbation transfer

function. We present best–fit P (k) obtained with this method along with other

cosmological parameters. Only the vectors associated with the strongest signal

in the decomposition are used, this assumption allows the ‘pseudo-inversion’

of a singular transfer function.

• In Chapter 4 we will investigate the advantages and disadvantages of a sparse

sampling strategy for galaxy surveys using Bayesian Experimental Design.

Measuring the galaxy/matter power spectrum is of great importance in cos-

mology and measuring this spectrum will enable us to measure other cosmo-

logical parameters. If we are only interested in the large scale of the power

spectrum then it might be a good idea to sparsely observe a larger patch of

sky, for the same observing time, rather than observing a smaller contiguous

area.

• In Chapter 5 we summarise and conclude.
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Figure 1.12: a)Angular power spectrum of the fiducial model. b)Fisher matrix
of Cℓ. c)Absolute error on Cℓ. d)Relative error on Cℓ.
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Figure 1.13: Weight function for the main part and the BRG sample of SDSS
— Figure taken from [36].
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Figure 1.14: Solid lines show constant values of ℜ in the wΛ − wk plane for
wm = 0.250. The five dots show the location of five models with nearly identical
Cℓs for one particular ℜ — Figure taken fron [46].
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Chapter 2

Optimal Binning of the Primordial

Power Spectrum

2.1 Introduction

The primordial power spectrum encodes the physics of the early Universe and its

measurement is one of the key research areas in modern cosmology. There are many

proposed models that try to describe the early Universe, out of which the theory of

inflation [18, 67] is currently the most favoured. The simplest models of inflation pre-

dict almost purely adiabatic primordial perturbations with a nearly scale-invariant

power spectrum (i.e., P (k) ∝ k) — the so-called Harrison-Zeldovich spectrum. In-

deed this form of power spectrum fits the current observations very well. However,

there are various models for the generation of the perturbations with deviations from

the perfectly scale-invariant power spectrum. The simplest are the slow-roll infla-

tionary models which describe the deviations through a minimal scale dependence

(‘running’) of the power law index of the power spectrum. Other models generating

deviations from scale-invariance include, for example, multiple scalar fields during

inflation [59, 62], multiple inflation, and various phenomenological models resulting

in features such as an exponential cut-off on large scales or a power law with super-

imposed harmonic wiggles (due to features in the inflation potential for example)

— refer to [68] and references therein. Determining the primordial power spectrum

will therefore give us a better intuition into the conditions of the early Universe and

help us choose from the many proposed models of the early Universe.

The drawback, however, is that we cannot measure the primordial power spectrum
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directly, and our path to its measurement is through different experimental tech-

niques such as cosmic microwave background (CMB) measurements and large scale

structure (LSS) surveys. The outcome of such surveys is a convolution of the pri-

mordial power spectrum and (the square of) a transfer function which, in turn,

depends on the cosmological parameters (which we will collectively call θi). Here

we list some examples;

• For galaxy surveys, the observable power spectrum is related to the primordial

power spectrum through the matter power spectrum, Pδ(k) as

Pg(k) = b2(k)Pδ(k) ≃ b2(k)2π2kT 2(k)∆2
Φ(k) , (2.1)

where ∆2
Φ is the primordial power spectrum and T (k) is the matter transfer

function and b(k) is the bias.

• For CMB surveys, the angular power spectrum is

Cℓ = 4π

∫ ∞

0

d ln k ∆2
ℓ(k)∆

2
Φ(k) , (2.2)

where ℓ is the angular wavenumber on the sky and roughly corresponds to an

angular scale on sky via ℓ ∼ 1800/θ and ∆ℓ(k) is the angular transfer function

of the radiation anisotropies.

As explained in the previous chapter, the primordial curvature power spectrum is

defined as ∆2
Φ(k) = (k3/2π)PΦ(k) = A(k/0.05)ns−1, where A is the amplitude and

ns is the spectral index. Other types of power spectra, such as the weak lensing and

peculiar velocity power spectra, have similar forms; they depend on the cosmological

parameters, through a transfer function, as well as the primordial power spectrum.

As these power spectra are jointly sensitive to the primordial power spectrum and

θi, there is an induced statistical degeneracy between them.

To recover the continuous primordial power spectrum, we need to deconvolve it

from discrete data such as the CMB power spectrum Cℓ or the band powers of the

LSS power spectrum. This deconvolution, along with our lack of knowledge of the

cosmological parameters that determine the transfer function, induces a correlation

between those parameters and those that determine the primordial power spectrum,

which limits our ability to recover the primordial power spectrum completely. In

some cases, such as measurements of the CMB, even a perfect survey cannot recover

the primordial power spectrum completely [58]. However, the transfer function
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of different techniques vary in the scales and parameters that they measure and

this means the induced degeneracy between the parameters is different for different

surveys. Therefore, one survey can help fill the gaps of others and together they can

make significant improvements. Hence, combining surveys will enable us to improve,

for example, the resolution of our measurements of the primordial power spectrum.

One method to recover the primordial power spectrum is to measure its amplitude

in a series of bins. The more bins with high signal-to-noise (S/N), the more accu-

rately the power spectrum can be reconstructed. The aim of this work is to find

an optimal binning for the primordial power spectrum based on the knowledge (or,

better, lack of knowledge) of other cosmological parameters from some specific sur-

veys, such as SDSS [33] and Planck [40]. We then want to quantify the correlations

between these carefully chosen bins. Therefore, the aim is to explore, as the data

improve, what new information can be learnt about the primordial power spectrum

and what exactly needs to be improved to better constrain the primordial power

spectrum. The motivation is to test the assumptions about the initial conditions

and get better constraints on parameters based on the same set of assumptions.

Acknowledging the degeneracy between the cosmological parameters and the pri-

mordial power spectrum, we want to investigate the scales the primordial power

spectrum can be probed best with future experiments.

One common method for error estimation is to use a Fisher matrix analysis. The

Fisher matrix is generally used to determine the sensitivity of a particular survey

to a set of parameters and has been largely used for forecasting and optimisation.

It is defined as the ensemble average of the curvature of a function F (i.e., it is the

average of the curvature over many realisations of signal and noise);

Fαβ = 〈F〉 =

〈

− ∂2 lnL
∂θα∂θβ

〉

, (2.3)

where L is the likelihood function. Its inverse is an approximation of the covariance

matrix of the parameters, by analogy with a Gaussian distribution in the θα, for

which this would be exact. Therefore, it allows us to estimate the errors on param-

eters without having to cover the whole parameter space. The authors of [37] have

compared the Fisher matrix analysis with the full likelihood function analysis and

found there was great agreement between the two methods if the likelihood function

is approximately Gaussian near the peak.
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The Cramer-Rao inequality1 states that the smallest error measured, for θα, by any

unbiased estimator (such as the maximum likelihood) is 1/
√
Fαα and

√

(F−1)αα, for

non-marginalised and marginalised2 one-sigma errors respectively.

We further note, as in all uses of the Fisher matrix, that any results thus obtained

must be taken with the caveat that these relations only map onto realistic error

bars in the case of a Gaussian distribution, usually most appropriate in the limit

of high signal-to-noise ratio and/or relatively small scales, so that the conditions of

the central limit theorem apply. As long as we do not find extremely degenerate

parameter directions, we expect that our results will certainly be indicative of a full

analysis, using simulations and techniques such as Bayesian Experimental Design

[69, 70] (and P. Paykari & A. H. Jaffe (2009, in preparation)).

The Fisher matrix for CMB surveys is given by

Fℓℓ′ = fsky
2ℓ+ 1

2
δℓℓ′ [Cℓ + w−1eℓ2σ2

]−2 , (2.4)

where Cℓ is the angular power spectrum, w is the weight defined as (∆Ωσ2
n)−1 with

∆Ω being the real space pixel size and σ2
n being the noise per pixel, e−ℓ2σ2

is the

window function3 for a Gaussian beam (where σ = θfwhm/
√

8 ln 2) and fsky is the

fraction of the sky observed. The factor fsky(2ℓ+1) gives the number of independent

modes at a given wavenumber; the term proportional to Cℓ is the sample (or cosmic)

variance contribution, and the w−1eℓ2σ2

term is the noise contribution. Note that

the diagonal form for the matrix implies diagonal (uncorrelated) errors on the Cℓs.

The Fℓℓ′ gives the errors on the Cℓs. Therefore, to find the errors on other parame-

ters, we use the Jacobian

Fαβ =
∑

ℓℓ′

Fℓℓ′
∂Cℓ

∂θα

∂Cℓ′

∂θβ
, (2.5)

where θα and θβ are different parameters.

1It should be noted that the Cramer-Rao inequality is a statement about the so-called “Fre-
quentist” confidence intervals and is not strictly applicable to “Bayesian” errors.

2Integration of the joint probability over other parameters.
3This damps power on larger ℓs; as we get closer to the resolution limit of the survey Cℓs start

to correlate.
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For a volume-limited galaxy survey the Fisher matrix [36] is 4

Fnn′ = δnn′

k2
n∆kV

(2π)2(Pn + 1/n̄)2
, (2.6)

where V is the total volume of the survey, n̄ is the number density of the survey

(Ntot/V ), Pn is the galaxy power spectrum in each kn bin and ∆k is the binwidth.

Similar to the CMB power spectrum case, k2
n∆kV counts the number of independent

modes, Pn gives the sample variance, and 1/n̄ the noise variance due to Poisson

counting errors. This, again, gives us the errors on the galaxy power spectrum and

we use the Jacobian to get the errors on other parameters

Fαβ =
∑

nn′

Fnn′

∂P (kn)

∂θα

∂P (kn′)

∂θβ
. (2.7)

Fisher matrices for different surveys can easily be combined by simple summation:

F = Fgalaxy + FCMB; they are proportional to the log of the likelihood function

and this is equivalent to the multiplication of independent likelihoods to combine

them. Equivalently, we can think of them as the weights (inverse noise variance)

of the experiments, which add for a Gaussian distribution. The nonzero correlation

between the parameters in the covariance matrix makes interpreting the errors some-

what more difficult than the uncorrelated case. We will discuss various methods for

decorrelating the power spectra and cosmological parameters.

2.2 Method

The aim is to investigate the primordial power spectrum in a “non-parametric”

way (we use quotations remarks to remind the reader that “non-parametric” merely

means that we use a very general model, potentially with a very large number of

parameters). For this purpose, we define the primordial power spectrum as a series

of top-hat bins:

∆2
Φ(k) =

∑

B

wB(k)QB , (2.8)

where QB is the power in each bin B and wB = 1 if k ∈ B and 0 otherwise.

The cosmological parameters under investigation are (and of the form) Ωc, Ωb, ΩΛ,

4Note that this equation only applies to linear regime, as non-linearities impose non-
Gaussianities.
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h and τ . We will choose a geometrically flat ΛCDM model with adiabatic per-

turbations and the WMAP5 [24] values for the parameters: Ωm = 0.214 ± 0.027,

Ωb = 0.044 ± 0.003, ΩΛ = 0.742 ± 0.03, τ = 0.087 ± 0.017 and h = 0.719 ± 0.0265,

where H0 = 100hkm−1Mpc−1. Ων = 0.0 was chosen, as massive neutrinos intro-

duce some difficulties in the Fisher matrix analysis [53] and therefore were ignored

for now. A CMB temperature of 2.726 and He fraction of 0.24 were chosen. The

CMBfast software [21] was used to generate the matter and CMB power spectra.

The surveys chosen for this initial investigation are the projected results from the

SDSS Bright Red Galaxies (BRG)5 sample and the Planck Surveyor CMB Power

Spectrum6.

2.2.1 Application to Surveys

2.2.1.1 Galaxy Surveys — SDSS(BRG)

A galaxy power spectrum is related to the matter power spectrum via a parameter

called bias — Equation 2.1. For the BRG sample of SDSS, this is assumed linear

and scale-independent with the form Pg(k) = b2Pδ(k), where the bias is b ≃ 2.0

[71, 72, 73, 74]. The survey specifications for BRG sample are n̄ = 105/V and

V = (1h−1Gpc)3[33].

For the θi the derivatives in the Jacobian were obtained numerically using the Taylor

expansion

P (θi) = P (θ0) + (
∂P

∂θi
)∆(θi) . (2.9)

The width and direction of the step are quite important here. A two-sided derivative

was chosen, so that the derivative is centred on the default value θ0, with a step

size of ∆(θi)/2 on each side. This is accurate to 2nd order in ∆(θi) (a one-sided

derivative would be at a slightly shifted place of θi + ∆(θi)/2, and is only accurate

to 1st order [53]). The width of the step should be small enough to give accurate

results and yet big enough to avoid numerical difficulties. This was taken to be a

5% variation, therefore a 2.5% width on each side. Other studies have shown that

this turns out to be the best step size, giving the most accurate results [53].

5These are bright galaxies, which means the survey will be quite deep, with z ∼ 0.25−0.5. Also,
these trace the elliptical galaxies, which are thought to be better tracers of mass at this redshift
range.

6http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI\textbackslash{}\

%282005\textbackslash{}\%291\textbackslash{}\_V2.pdf
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For the primordial power spectrum bins, the derivative is proportional to the matter

transfer function
∂Pg(kn)

∂∆2
Φ(kn′)

= 4 × 2π2kT 2(k)δnn′ , (2.10)

where n and n′ refer to the bins. The k-range for SDSS is 0.006 . k/(hMpc−1) . 0.1.

The minimum value for the wavenumber, kmin, is obtained from the largest scale of

the survey — (2π/V 1/3). Its maximum value, kmax, is chosen to avoid non-linearities

— scale at which ∆2 ∼ 1. Simulations of a very similar flat model [75] suggested

a kmax of 0.1hMpc−1. This is also very close to the scale at which departures from

linear theory was seen by [76].

The derivatives in the Jacobian need to be averaged into bins. In Section 2.2.2 we

will explain the criteria for choosing the widths and locations of the bins.

2.2.1.2 CMB Surveys — Planck

One thing to note in the case of CMB power spectra is that the output of CMBfast

is of the form Cℓ = [ℓ(ℓ + 1)/2π]Cℓ, so the CMB Fisher matrix, Equation 2.4, is

multiplied by this traditional factor ℓ(ℓ+ 1)/2π. The specifications for Planck HFI

(we use the ν = 100GHz channel and conservatively assume that other frequencies

are used for foreground cleaning) are θfwhm = 10.7′ = 0.003115 radians, σpix =

1.7 × 10−6, w−1 = 0.028 × 10−15 [40]. The derivatives in the Jacobian were again

obtained numerically by the Taylor expansion

Cℓ(θi) = Cℓ(θ0) + (
∂Cℓ

∂θi

)∆(θi) . (2.11)

The same arguments as in the SDSS case applies for the width and direction of the

step here. In the case of the primordial power spectrum bins, the derivative becomes
7.

∂Cℓ

∂∆2
Φ(k)

= 2ℓ(ℓ+ 1)

∫ kB
max

kB
min

dk |∆ℓ(k)|2 . (2.12)

This needs to be averaged into k bins, as discussed in Section 2.2.2. The chosen

k-range for Planck is 0.0001 . k/(hMpc−1) . 0.1, where kmin was obtained from

kmin = ℓmin/dA = 2/dA, where dA is the angular diameter distance to the surface of

last scattering obtained to be ∼ 14Gpc [24].

7To obtain ∆ℓ(k), CMBfast needed to be altered to give the radiation transfer functions at all
ℓs. Then, for each ℓ, this was interpolated in k.
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As explained above, to combine data from different surveys, we can add the Fisher

matrices obtained for each of them. We expect to see an improvement on the errors

of both the bins and cosmological parameters. Equivalently, this will enable us to

have narrower bins without sacrificing Signal-to-Noise per bin.

2.2.2 Optimal Binning

As explained before, a set of primordial power spectrum bins form part of our

parameter space. In this section we will explain how these bins are chosen. We

construct the bins to have the same contribution to the Fisher matrix; that is, they

each have the same S/N . We take the signal in each bin to be the amplitude of the

primordial power spectrum in that bin and the noise to be given by the inverse of

the square root of the diagonal elements of the Fisher matrix. For this, we construct

a diagonal signal matrix, S, which contains the amplitude of the primordial power

spectrum for all the bins and the values of the cosmological parameters as its diagonal

elements. We weight our Fisher matrix by this matrix

F ′
αβ = SαFαβSβ . (2.13)

This now gives us a (S/N)2 matrix, where the square root of its diagonal elements

are the S/N for the bins, and the weighted errors for θi. It is worth emphasising

that it is this (S/N)2 Fisher matrix that will be diagonalised later on.

Our algorithm will result in more bins where the signal-to-noise ratio is greater,

sampling more finely where the signal is strongest (we will see this explicitly in our

discussion of the CMB power spectrum in Section 2.3.1.2, which has considerable

structure and therefore varying S/N). There are circumstances in which we might

instead want to place bins by hand if we are looking for specific features (but of

course we will always be limited by the S/N of our measurements).

For SDSS, we start with the maximum number of bins possible in our k-range, set

by the usual properties of the Fourier transform. These imply that the scale of the

survey not only determines kmin, but also limits our resolution: kmin = (∆k)min =

(2π/V 1/3); narrower bins would become highly correlated. Therefore, we set up a

series of bins with this minimum width in our k-range. We then construct a Fisher

matrix for this set of bins (and θi) and weight it by the signal matrix, S, for this set.

With this binning adopted, the S/N values range from 3.7 in the first bin to 35.1 in

the last bin. Knowing that the binwidths chosen are the minimum possible and that
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increasing binwidths will increase the S/N value, we conclude that the bin with the

maximum S/N cannot be changed and hence we make other bins wide enough to

reach the S/N in this bin. To obtain this “optimal” binning we add small bins until

their S/N is within 15% of the maximum S/N :

Max(S/N) − (S/N)i

Max(S/N)
= 0.15 , (2.14)

where i refers to the bins. This finally gives us 8 bins with their S/N ranging 30−35.

For Planck, the bins are obtained so that their S/N matches that of SDSS. The

reason for applying this criteria to Planck is to allow for a fair comparison between

the results from SDSS and Planck. This criteria gives us a total of 23 bins for

Planck.

In the case of the combined Planck and SDSS we require only that the S/N of

the bins are equal within 50%. This now gives us the optimal resolution of the

primordial power spectrum we can achieve from SDSS and Planck. We have a total

of 48 bins with S/N being in the vicinity of ∼ 20.0 and, therefore, still comparable

to the S/N values in the other cases.

An alternative, and perhaps more appropriate, way to determine the binning would

be to take the marginalised errors as the noise. This would be obtained by inverting

the Fisher matrix in each iteration to get the covariance matrix, which gives the

marginalised covariances of the bins and θi. We would then take the sub-block of

this covariance matrix that refers to the bins only, and invert it to get a marginalised

Fisher matrix for the bins. We would then feed this Fisher matrix into Equation

2.13. However, this method could not be implemented because the SDSS Fisher

matrix is not invertible; the SDSS Fisher matrix is not a positive definite matrix

because it is asked to estimate too many parameters. There are a total of n data

points (n galaxy power spectrum bins) and we are asking these to predict n + m

parameters (n primordial power spectrum bins and m θi). Also, note that whichever

of the methods presented uses the correlated errors as the noise. We now discuss

the decorrelation of the parameters.
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2.2.3 Decorrelating the Parameters

2.2.3.1 Principal Component Analysis

Having obtained a set of bins, and therefore parameters we wish to estimate (or,

in this case, forecast), we of course find that for these realistic experiments the

parameter errors are often highly correlated (i.e., the Fisher matrix has significant

off-diagonal components). To overcome this problem, we make use of principal

component analysis (PCA) to obtain an orthogonal basis (onto which the original

parameters will be projected); the covariance(/Fisher) matrix is a symmetric n× n

matrix and therefore, can be diagonalised using its eigenvectors. This has the form

C = ETΛE, where C is the covariance matrix, E is an orthogonal matrix with

the eigenvectors of C as its rows and Λ is the diagonal matrix with the eigenvalues

of C as its diagonal elements8. This constructs a new set of variables X that are

orthogonal to each other and are a linear combination of the original parameters O,

through the eigenvectors

X = EO . (2.15)

TheXi are called the principal components of the experiment and are ordered so that

so that X1 has the smallest eigenvalue and Xn the largest. In this construction, the

eigenvalues are the variances of the new parameters, so X1 and Xn are the best- and

worst-measured components respectively. The eigenvectors have been normalised so

that
∑

j e
2
j = 1, where ej are the elements of Ei. We list some properties of PCA

below:

• The main point of PCA is to assess the degeneracies (correlations) amongst

the parameters that are not resolved by the experiments, be they fundamental

as from cosmic variance or due to the noise and coverage of the experiment.

In our case, it will especially help us to see the correlation amongst the bins

of the primordial power spectrum, and between the bins and the cosmological

parameters.

• The eigenvalues obtained measure the performance of the experiment — a

larger number of small eigenvalues means a better experiment. Another mea-

sure of the performance of the experiments is to see how they mix physically

independent parameters such as, say, ns, the spectral index, and Ωb. This sort

8It is common to construct the covariance matrix for PCA. However, the Fisher matrix can be
used instead; the eigenvectors stay the same, but eigenvalues are reciprocals.
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of mixture may be improved by improving the experiment’s noise properties

or increasing its area or volume9.

All the above points may be summed up to conclude that in a perfect setting (if we

could resolve cosmic variance and the geometrical degeneracy) we would expect a

one-to-one relation between the old and the new parameters — the Fisher matrix

would be diagonal. Each of the original parameters would contribute to one and

only one of the new parameters, with zero contribution from the others.

Note that the principal components obtained are not strictly unique and depend on

the form of the variables (e.g., whether we use Ωb or log Ωb), as well as where they

are evaluated.

2.2.3.2 Hermitian Square Root

Another approach to remove the correlations between the uncertainties is to use

the Hermitian square root of the Fisher matrix as a linear transformation on the

parameter space [37, 77, 78]. This transformation is obtained by

F1/2 = ETΛ1/2E , (2.16)

where, like before, E is the eigenvector matrix and Λ is a diagonal matrix containing

the eigenvalues. It has the property F = F1/2F1/2 = (F1/2)TF1/2 and therefore the

condition (F−1/2)F(F−1/2) = (F−1/2)TF(F−1/2) = diag is satisfied. Unlike PCA,

F1/2 does not give us an orthogonal basis and instead can be thought of as giving

“window functions” for the primordial power spectrum resulting in uncorrelated

parameters (in the Gaussian limit). We define a window matrix by

Hnm =
(F 1/2)nm
∑

n(F
1/2)nm

, (2.17)

which satisfies the normalisation condition
∑

nHnm = 1. Hence the windowed power

spectrum is defined as

P̃m =
∑

n

HnmP (kn) , (2.18)

9However, the so-called “geometrical degeneracy” [47, 48] cannot be improved by improving the
experiments; two models with same primordial power spectrum, the same matter content, and the
same comoving distance to the surface of last scattering produce identical CMB power spectrum.
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where P (kn) is the original primordial power spectrum. Note that this windowed

power spectrum is constructed for a visual presentation and understanding of the

underlying correlations (indeed, it can be manifestly unphysical if, as we will see, the

window function is negative). Again, in a perfect setting — a diagonal Fisher matrix

— we would expect this windowed power spectrum to be equal to the primordial

power spectrum (i.e., with each window function comprising a single bin).

We obtain this window matrix for the marginalised Fisher matrix of the bins and

hence it can only be applied to the Fisher matrices of Planck and the combination

of Planck and SDSS, which are invertible.

2.3 Results

2.3.1 PCA

The principal components,Xi, obtained for SDSS, Planck and their combination are

shown as colour-coded matrix plots; Xi are shown from left to right with increasing

errors (which is equal to 1/Λ
1/2
i , as the eigenvalues are constructed for the Fisher

matrix). The original parameters, Oi, are shown vertically starting with the bins

on the bottom to θi on the top. For the bins, the vertical width of the box is an

indication of the binwidth. The colour coding is shown at the bottom of Figure 2.1;

the plots are showing Xi =
∑

j EijOj, where jth element in Eij is shown as a colour

according to the colour plot.

2.3.1.1 SDSS

The result is shown in Figure 2.1. There are a total of 8 bins that could be obtained

to meet the S/N criteria as explained above. Together with the 5 θi, we have a total

of 13 original parameters, Oi, and 13 principal components, Xi. The last 5 principal

components are not measured well (they have large/negative eigenvalues — Table

2.1). This is because, as explained before, the SDSS Fisher matrix is not a positive

definite matrix; we have a total of 8 data points and this means only 8 parameters

(or 8 different combinations of the parameters, i.e., Xi) can be measured.

The best measured principal component, X1, has contributions from the cosmolog-

ical parameters (θi) only, with h dominating. The fact that there is more than one

cosmological parameter contributing to this principal component means that SDSS
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can only measure a [linear] combination of them — evincing a degeneracy between

these parameters. X2 measures a combination of the bins and θi, which suggests a

degeneracy between the highlighted bins, h and Ωc. Other principal components,

X3 −X8, measure the bins only, with no contribution from θi at all, and the corre-

lation amongst the bins is between neighbouring ones only. Intuitively, one expects

more correlation between the bins and the cosmological parameters. The errors for

the bins are related to the matter transfer function — Equation 2.10. Therefore, one

might expect a change in θi would induce a change in the matter transfer function

and hence a correlation between bins and θi. However, consider Figure 2.4 showing

the individual derivatives that contribute to the Jacobian. The derivatives with re-

spect to θi are of similar magnitudes (apart from τ which was multiplied by 200 for

presentation). However, the derivative with respect to the primordial power spec-

trum bins is rescaled by 10−8 to fit in the same range as the rest of the derivatives.

This suggests that perhaps the changes in θi are not large enough in this setting to

have a significant effect on the matter transfer function and therefore the correlation

is not that significant to show effects in the PCA.

Note that the correlation between the bins shows the limits to what we can learn

about the primordial power spectrum. This correlation arises due to our lack of

knowledge of the cosmological parameters. If we knew the parameters perfectly,

we would have what is shown in Figure 2.3 (which is in fact the Fisher matrix

itself). Generally it seems that SDSS measures cosmological parameters better than

the primordial power spectrum and considering the primordial power spectrum,

measures small scales better than large.

We also investigated what improvements we would see given better — realistic —

knowledge of the cosmological parameters. Hence, WMAP5 priors [24] were added

to constrain the θi in the Fisher matrix, by adding the inverse variance of each pa-

rameter to the Fisher matrix, i.e., ignoring the WMAP5 correlations. The result is

shown in Figure 2.2. Note that the errors on the principal components have reduced

and now all Xi can be measured well — Table 2.1. Some of the degeneracies between

the cosmological parameters have been broken. For example, Ωb and τ dominate

completely in X10 and X12 respectively, with no contribution from any other param-

eter. This is expected as WMAP5 does a good job measuring these cosmological

parameters. With respect to the primordial spectrum, these improved constraints

on cosmological parameters have only helped to measure linear combinations of the

bins better and have not been able to break the degeneracy between them.
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2.3.1.2 Planck

For Planck there are a total of 23 bins and, with the 5 θi, we have 28 principal

components, shown in Figure 2.5. They are all measured well and better than SDSS

— Table 2.1. The reflection of the acoustic peaks of Cℓs on the bin sizes can clearly

be seen; those corresponding to the peaks are measured with better resolution (see

Figure 2.9 to see a pictorial version of the contributions to the Jacobian. The

summation over ℓ in the Fisher matrix gives the oscillatory feature seen in k space.)

Just like SDSS, Planck measures the cosmological parameters better than the pri-

mordial power spectrum and overall, gives smaller errors and smaller correlations

between them than SDSS. This is not surprising as we already know Planck does a

good job measuring the cosmological parameters; it measures ΩΛ and h very well,

with only slight correlation with other cosmological parameters.

The rest of principal components contain the highly-correlated bins only, with no sin-

gle large contribution from any of them. Intuitively one might expect the correlation

to be between neighbouring bins only. The reason for the longer-range correlation

lies in the form of the radiation transfer function; for each ℓ, this transfer function

spans a k-range around k = ℓ/dA, where dA is the angular-diameter distance to the

last-scattering surface. This is due to the projection of a 3D Universe onto a 2D

sphere around us. Equation 2.12 shows the contribution to the Jacobian for the

Fisher matrix analysis. For each ℓ, this derivative integrates the radiation transfer

function over the k-range of the bins. This would be reflected as correlation between

neighbouring bins. However, remember that in the Fisher matrix analysis the ℓs are

summed over (equation 2.5) and this induces correlation between all bins; Figure

2.9 shows a pictorial version of Equation 2.12, weighted by the primordial power

spectrum. Note how each ℓ spans a range of k. The summation over all ℓs means

that, for example, the bin with ℓ = 400 dominating has contributions from all ℓs

from 100 to 500, with each spanning a different range of k. This induces correlation

between bins of all scales.

This correlation between small and large scales might even be worse when there is a

degeneracy between the measured cosmological parameters. For example, consider

an experiment with which we attempt to measure two parameters, such as the

spectral index ns and Ωb, where ns is dominant on large scales and Ωb is dominant

on small scales — Figure 2.8. The degeneracy between these parameters could

induce a degeneracy between large and small scale bins.
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Figure 2.6 shows the principal components for the bins with no θi — i.e., assuming

cosmological parameters are known perfectly. Since Planck measures the cosmo-

logical parameters very well, we might expect little change. Indeed, not much is

changed. Note, however, that the smallest error for this set is still larger than

the smallest error for the set including θi. This is because the θi are individually

measured better than the primordial power spectrum bins and hence they reduce

the errors; instead, comparing the largest errors of both sets shows the improve-

ments. Despite the smaller errors for this set, the correlation between the bins is

not significantly improved.

We now consider the correlation between the bins for the marginalised Fisher ma-

trix (that is, marginalised over the other cosmological parameters, θi). This is ob-

tained by inverting the parent Fisher matrix to get a covariance matrix, giving the

marginalised errors for all the parameters (in the Gaussian limit). We can further

take the sub-block of this matrix which holds the errors for the bins and invert it to

obtain a marginalised Fisher matrix for the bins alone. The principal components

for this Fisher matrix are shown in Figure 2.7. The first thing to note is that bins

contribute more significantly to some of the principal components. In particular

there are some mid-scale bins which seem to be measured well. For example, con-

sider X19 - X22; the marginalisation has uncorrelated some mid-scale bins from the

rest of the bins.

Another interesting result is that very large and very small scales never really dom-

inate in the principal components with large errors. They only contribute to them

at levels of . 0.01. Recall that Xi with large errors are the most highly-correlated

and therefore the fact that mid-scale bins do not contribute to these principal com-

ponents means that they are measured quite well.

In conclusion, Planck will largely decorrelate the primordial power spectrum from

the θi (and therefore the transfer function) but cannot completely uncorrelate the

bins themselves.

2.3.1.3 Planck & SDSS

The results are shown in Figure 2.10. Combining surveys has clearly helped to im-

prove the resolution of the primordial power spectrum. The data now support a total

of 48 bins in the same k-range. Again the cosmological parameters are measured

better than the primordial power spectrum and there is also smaller correlation be-

tween the cosmological parameters compared to the previous cases. There is also
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smaller correlation between the bins themselves. Features of both SDSS and Planck

can clearly be seen here. For example, acoustic oscillations in the Cℓs still influence

the bin sizes and resolution of the primordial power spectrum. It also seems like

small scales are measured better than large scales, which is a feature seen in the

SDSS case.

Figure 2.11 shows the results for the marginalised Fisher matrix of the bins for SDSS

and Planck combined. Compare to Figure 2.10; not much change can be seen.

2.3.2 Hermitian Square Root of Fisher Matrix

Figure 2.12 shows the window functions for Planck derived from the Hermitian

square root decorrelation. Note that only the magnitude of the components of Hms

are important and not their sign. However, it is worth mentioning that for the

non-marginalised Fisher matrix (both for Planck and its combination with SDSS),

the window functions have only positive values. Therefore, the lack of knowledge of

the cosmological parameters (and the induced correlation between the bins) induces

non-physical negative values into the window functions. The window functions,

Hms, are plotted in the order of increasing errors, so that H1 is the best-measured

and H23 the worst-measured vector, respectively. Here, small scales are measured

best and large scales worst, contributing to Hms with the lowest and highest errors

respectively. Planck cannot decorrelate the bins completely and some correlations

between neighbouring bins can be seen. In addition, large scales (i.e., bins in the

range of k ∼ 0.02− 0.04hMpc−1) have a large contribution to the Hm, compared to

the bins on smaller scales. These window functions clearly show the influence of cos-

mic variance. Compare this to Figure 2.13, where we diagonalised the marginalised

Fisher matrix through its eigenvectors (This is exactly Figure 2.7 plotted in this

form for easier comparison). In the PCA case, the correlations seem not to be only

between neighbouring bins, but between bins of all scales, which is not seen in this

case. Also, the compactness seen here (i.e. more of a traditional window-function

feature) is not seen in the PCA case; there is no particular scale that contributes

significantly to the principal components.

Figure 2.16 shows the windowed power spectrum for Planck. It is plotted so that

each P̃m is placed at the kn from which it receives the largest contribution. The

vertical errors bars shown are ∆2
Φ(kn)(HF−1HT ), where ∆2

Φ(kn) is the amplitude of

the primordial power spectrum in the bins and (HF−1HT ) is the errors propagated

through the Hm distribution. The horizontal error bars are the half-width at half-
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SDSS X1 X2 X3 X5 X7 X9 X11 X13 —

No priors 0.0038 0.0196 0.0288 0.0331 0.0349 3E5 NaN NaN —
No θi 0.0282 0.0299 0.0317 0.0340 0.0359 — — — —
WMAP5 priors 0.0037 0.0189 0.0287 0.0330 0.0344 0.0423 0.1233 0.5871 —

Planck X1 X2 X3 X5 X10 X15 X20 X25 X28

PCA-No priors 0.0004 0.0022 0.0094 0.0209 0.0300 0.0402 0.0516 0.0716 0.2576
PCA-No θi 0.0110 0.0149 0.0181 0.0224 0.0333 0.0422 0.0572 — —
PCA-Margin. 0.0181 0.0210 0.0250 0.0297 0.0384 0.0514 0.0679 — —
Hermitian Sqrt 0.0165 0.0184 0.0188 0.0190 0.0218 0.0496 0.1164 — —

Planck & SDSS X1 X2 X3 X10 X20 X30 X40 X50 X54

PCA-No priors 0.0004 0.0020 0.0073 0.0353 0.0469 0.0552 0.0643 0.1135 0.2068
PCA-No θi 0.0561 0.0568 0.0575 0.0624 0.0729 0.0891 0.1003 — —
PCA-Margin. 0.0227 0.0288 0.0304 0.0408 0.0514 0.0578 0.0734 — —
Hermitian Sqrt 0.0233 0.0234 0.0235 0.0243 0.0384 0.0736 0.5616 — —

Table 2.1: Errors for different sets for SDSS, Planck and combination of Planck
and SDSS.

maximum in each direction of the main peak of each Hm. The original primordial

power spectrum is plotted for comparison. Remember that P̃m is not a physical

power spectrum per se. However, the observed differences from the original power

spectrum arise due to the induced correlations between the bins. In a perfect setting,

where there are no correlations between bins, we expect P̃m = ∆2
Φ(k). Note that

the main feature of this plot is that vertical errors, unlike those for the original

primordial power spectrum, are not correlated. The correlation between the errors

has been transferred to overlaps between the window functions — as shown in Figure

2.12.

Figures 2.14 and 2.17 show the same set of results for combination of Planck and

SDSS. Again large scales contribute to Hm with the largest errors. There is less

correlation between neighbouring bins compared to the Planck case. Also, note

that bins in this case are narrower and therefore correlation between neighbouring

bins still means correlation between a narrower range of k. Compare Figure 2.14 to

Figure 2.15 (same as Figure 2.11). Again, the PCA case has wider effective bins,

more than observed for Planck on its own. Figure 2.14 indicates that bins in the

vicinity of k ∼ 0.02−0.025hMpc−1 contribute very strongly to the Hm compared to

other bins, in particular the last window function, H48. This effect is shown in P̃m,

with P̃11 having a very large amplitude — Figure 2.17.
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2.4 Conclusions

The primordial power spectrum holds precious information about the physics of the

early Universe and constraining it is one of the key goals of modern cosmology.

However, the induced degeneracy between the cosmological parameters determining

the matter/radiation transfer functions and the primordial power spectrum limit

our ability to recover the primordial power spectrum, even from a perfect survey,

especially in the case of CMB measurements [58]. Different surveys probe different

scales with different accuracies and might not be able to constrain the primordial

power spectrum to a desired resolution on their own. In combination, however, they

make significant improvements. In this paper we have investigated these limits and

improvements for CMB and large-scale structure surveys, exemplified by Planck

and the SDSS BRG sample. For this purpose, we have assumed a non-parametric

form for the primordial power spectrum and have constructed a parameter space

containing a set of carefully chosen bins of the primordial power spectrum along with

a set of cosmological parameters. We constructed a Fisher matrix for this parameter

space for the two different surveys separately and combined. By diagonalising these

Fisher matrices, via two different methods of eigenvector decomposition (PCA) and

the Hermitian square root, we have investigated the induced correlation between

the primordial power spectrum bins and the cosmological parameters.

In the PCA case, we conclude that SDSS and Planck together measure the cosmo-

logical parameters to a better extent, and even break the degeneracy between them.

More importantly for our purposes, they can increase the obtainable resolution of

the primordial power spectrum by a factor of two and can also condense the cor-

relation between bins to be only amongst neighbouring ones. On the whole these

experiments combined will constrain small scales better than large scales.

By the use of Hermitian square root of the Fisher matrix we managed to divert the

correlation amongst the marginalised errors of the bins to the correlation between

the bins themselves. In this case, the combination of SDSS and Planck helped to

decrease the level of correlation between neighbouring bins, but also, because it has

helped to increase the resolution of the bins, correlation between neighbouring bins

means correlation between a smaller range of k.

Clearly combining the two surveys will constrain the primordial power spectrum

better than current measurements, and better than each experiment on its own.

Obviously, further surveys of other phenomena related to the evolution of fluctua-

tions, such as Ly-α (e.g., SDSS LyαF power spectrum), weak lensing (e.g., Euclid),
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peculiar velocities (e.g., Cluster Imaging Experiment (CIX)), etc. will help further

measure the primordial power spectrum.
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Figure 2.1: The principal components of SDSS with no priors on θi. Xi are
shown from left to right with increasing errors (= 1/

√
Λi). Original parameters,

Oi, are shown vertically starting with the bins on the bottom to θi on the top. For
the bins, the vertical width of the box is an indication of the binwidth. The last 5
principal components can be ignored as they are not measured — refer to Table
2.1 and text for more details. At the bottom we show the colour plot indicating
different levels of contribution to the principal components.
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SDSS with priors
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Figure 2.2: The principal components of SDSS with WMAP5 priors. The priors
have helped to reduce the errors on Xi and now all of them can be measured
well — Table 2.1. Some of the degeneracies between θi have also been broken;
for example, Ωb and τ dominate completely in X10 and X12 respectively, with no
contribution from any other parameter. With respect to the primordial spectrum,
these improved constraints on cosmological parameters have only helped to mea-
sure linear combinations of the bins better and have not been able to break the
degeneracy between them.
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Figure 2.3: The principal components of SDSS for the primordial power spec-
trum bins only, assuming θi are known perfectly. No correlation exists between the
bins at all. Compare to Figures 2.1 and 2.2, and see how the lack of knowledge
of the cosmological parameters induce correlation between (neighboring) bins.
This shows our limits in recovering the primordial power spectrum due to the
uncertainties in the cosmological parameters.
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Figure 2.4: The derivative of galaxy power spectrum with respect to the pri-
mordial power spectrum bins and θi, weighted by the parameters values — this is
exactly what goes in the Jacobian. It shows that, in the k-range we have chosen,
much of the variation is on large scales and Hence there is no surprise that SDSS
measures small scales better.
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Figure 2.5: The principal components of Planck. Again bins are shown on the
bottom and θi on the top, ordered in the same way shown in previous figures.
Just like SDSS, Planck measures θi better than the primordial power spectrum
and overall, gives smaller errors and smaller correlations between them. The rest
of principal components contain the highly-correlated bins only, with no single
large contribution from any of them.
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Figure 2.6: The principal components of Planck for the primordial power spec-
trum bins only, assuming θi are known perfectly. Compare to Figure 2.5. It seems
like lack of knowledge of cosmological parameters does not have much of an effect
in measuring the primordial power spectrum bins in this case. This is because
Planck measures θi very well.
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Planck - Marginalised
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Figure 2.7: The principal components of the ’marginalised’ Fisher matrix of
Planck. Compare to Figure 2.5 where the non-marginalised case is shown.
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Figure 2.8: The derivative of radiation power spectrum with respect to θi.
Note how different parameters dominate on different scales. For example, ns

dominates on large scales and Ωb dominates on small scales. If an experiment can
only measure a linear combination of ns and Ωb, the degeneracy between these
parameters could induce a degeneracy between large and small scale bins!
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Figure 2.9: The derivative of radiation power spectrum with respect to the
primordial power spectrum bins, Equation 2.12, weighted by the primordial power
spectrum. Note that the bin with ℓ = 400 dominating, gets contributions from
all ℓs from 100 to 500. This makes the correlation between the bins on all scales
possible.
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Figure 2.10: The principal components of Planck & SDSS. Clearly, resolution
of the primordial power spectrum has improved, now having 48 bins in the same
k range. An almost diagonal trend can be seen now, showing small scales are
measured better than the large scales. There is also less correlation between θi.
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Planck & SDSS - Marginalised
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Figure 2.11: The principal components of the marginalised Fisher matrix of
Planck & SDSS. Compare to Figure 2.10 where the non-marginalised case is
shown.
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Planck
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Figure 2.12: The row vectors of H for the marginalised Fisher matrix of Planck.
These “window functions” are ordered with increasing errors, so that H1 is the
best and H23 is the worst measured vector. This shows that correlation is only
between neighboring bins and, that bins on small scales are measured better than
the ones on large scales (just like the PCA case).
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Figure 2.13: Showing Figure 2.7 — plotted in this way for easier comparison
with Figure 2.12.
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Planck & SDSS
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Figure 2.14: The row vectors of H (“window functions”) for the marginalised
Fisher matrix of Planck & SDSS. Like before, they are ordered with increasing
errors. The correlation between neighboring bins still exists but to a lesser extent.
Also, note that the bins are narrower here so that correlation between neighboring
bins still means a correlation within a narrower k-range.
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Planck & SDSS
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Figure 2.15: Showing Figure 2.11 — plotted in this way for easier comparison
with Figure 2.14.
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Planck
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Figure 2.16: The windowed power spectrum obtained from Planck. The original
primordial power spectrum is plotted for comparison. Remember that P̃m is not
a physical power spectrum per se. However, the observed differences from the
original power spectrum arise due to the induced correlations between the bins.
In a perfect setting, where there are no correlations between bins, we expect
P̃m = ∆2

ζ(k). Note that the main feature of this plot is that vertical errors, unlike
those for the original primordial power spectrum, are not correlated.
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Figure 2.17: The windowed power spectrum obtained from Planck & SDSS.
There is a better match between the two power spectrum on small scales compared
to Planck on its own. However, the differences on large scales still remain.
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Chapter 3

Reconstruction of the Primordial

Power Spectrum by Direct

Inversion

The work presented in this chapter was in collboration with Carlo Contaldi and

Gavin Nicholson. My contribution to this work is presented in Section 3.3.

3.1 Introduction

As explained in the previous chapters, the primordial power spectrum of curvature

perturbations Φ(k) is defined by,

P (k) = ∆2
Φ ≡ k3

2π2
δ3(k − k′)〈Φ(k)Φ∗(k′)〉, (3.1)

where k is the wavenumber. We will call the primordial power spectrum P (k) for

simplicity. This spectrum represents the initial conditions set by some high-energy

physical processes in the early universe. Most commonly it is thought that this

process is inflation.

There are very few probes of the physics of the early universe. Other probes include

non-Gaussianity, the primordial tensor power spectrum, a cosmic gravitational wave

background and a cosmic neutrino background, none of which have been observed.

Although there have been hints of a detection of non-Gaussianity [79], further studies

disagree with this analysis [80].
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On the other hand we can observe P (k) through the windows of the Cosmic Mi-

crowave Background (CMB) and Large Scale Structure (LSS). It is therefore an

incredibly important and powerful insight into the early universe. The simplest in-

flationary models predict that P (k) takes the form of a power law ∝ kns−1 over the

observable range in k, as opposed to the Harrison-Zeldovich spectrum parametrised

by a single amplitude over all k. The spectral index ns is predicted to be close to 1,

current limits agree with this predication placing ns = 0.963 ± 0.015 [8].

Now that we have strong evidence suggesting inflation did indeed occur we would

like to distinguish between different inflationary models. Many in fact propose

alterations to the standard power law parametrisation. This includes those with

features on the potential [81, 82, 83, 84, 85, 86, 87, 88], a small number of e-folds

[89, 90, 91], or other exotic inflationary models [92, 93, 94, 95, 96].

There are two approaches to reconstructing P (k), parametrisation and direct inver-

sion. None of the various methods have shown conclusive evidence for a departure

from near scale-invariance of P (k). Despite this there have been tantalising hints of

anomalous features in the CMB. One example of this is that the first year WMAP

results gave an indication of a cut-off in P (k) on large scales. With subsequent data

releases the significance of this feature has been reduced, although future observa-

tions of the polarisation of the CMB may provide more conclusive evidence [91, 97].

In [98] we also showed evidence for a dip in power at k ≈ 0.002Mpc−1.

Numerous parametric searches for features with a similar form to those in complex

inflationary models have been performed along with simple binning of P (k) [99, 89,

100, 101, 102, 103, 104, 105, 106, 107, 108]. Methods of direct inversion which make

no assumptions about the early universe model being probed [109, 110, 111, 112,

99, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 98] are hampered by the

singular nature of the transfer function that takes P (k) and transfers it onto the

CMB or LSS. In general this causes the process of estimation to be prohibitively

slow so as not to allow joint estimation of a free P (k) with cosmological parameters.

This hides any degeneracies between cosmological parameters and the form of P (k).

Thus it is not clear what the significance of any features found in the reconstructed

P (k) should be. It has been pointed out [124, 98, 125] that adding polarisation

information or LSS data can help break any degeneracies.

We propose a new method for direct inversion of P (k) using Singular Value Decom-

position (SVD), which is fast enough to allow us to carry out a joint estimation of

P (k) and the cosmological parameters. The form of P (k) is derived from the SVD
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inversion. We also show that there are regions of k for which polarisation data has

the potential to more accurately constrain P (k).

3.2 Direct Inversion of Pk by Singular Value De-

composition

The theorem of SVD [126] states that for anym-by-nmatrix, Σ, with real or complex

entries there exists a factorisation of the form

Σ = UΛV∗, (3.2)

where U is an m-by-m unitary matrix, Λ is a m-by-n non-negative diagonal real

matrix and V∗ is the conjugate transpose of V, an n-by-n unitary matrix. The

diagonal entries of Λ are the singular values which can be loosely thought of as

eigenvalues. The columns of U form a set of orthonormal ‘output’ basis vectors for

Σ, whilst the columns of V form a set of orthonormal ‘input’ basis vector directions

for Σ.

The factorisation is ‘almost’ unique in that making the same permutation of columns

of U, elements of Λ and columns of V will not change the result of the multiplica-

tion. Neither will forming linear combinations of any columns of U and V whose

corresponding elements of Λ happen to be exactly equal.

In the case where there are fewer equations than unknowns, m < n, there is not a

unique solution. It then becomes important to ensure that n−m zero λis are found,

where the λi are the diagonal entries of Λ. If degeneracies exist in the equations to

be solved then the number of λi that should be zero or negligible will correspond

to the number of degeneracies. In practice this is normally achieved by setting the

smallest λi to zero. However in the case where it is not clear how many degeneracies

exist it is possible that information may be lost by doing this.

The properties of SVD allow an ‘inverse’ to be calculated for any Σ. In the case of

singular matrices the inverse is not well defined, there is in fact a solution space of

‘pseudo-inverse’ matrices given by all the permutations that maintain the validity

of the factorisation. Where m 6= n there is both a ‘right-inverse’ and ‘left-inverse’ of

Σ, although these are simply the conjugate transpose of each other. The ‘inverses’
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are given by

Σ−1
left = U∗Λ−1V and

Σ−1
right = VΛ−1U∗, (3.3)

Λ−1 = [diag(1/λi)], where any of the λi are 0 we replace diag(1/λi) by 0.

Direct primordial power spectrum reconstruction requires the inversion of the fol-

lowing relations

CXY
ℓ =

∞
∫

0

dk

k
∆X

ℓ (k)∆Y
ℓ (k)P (k), (3.4)

where X and Y represent T , E, or B-type anisotropies, CXY
ℓ are the angular

power spectra for the XY combination and the ∆X
ℓ (k) are the photon perturba-

tion transfer functions. The transfer functions are obtained by integrating the full

Einstein-Boltzmann system of differential equations. These describe the evolution

of perturbations in the photon distribution functions in the presence of gravity and

other sources of stress-energy. The functions determine all of the structure in the

anisotropy spectra which arises after the initial conditions are set. Most notably

the CXY
ℓ contain distinct peaks due to the acoustic oscillation of the tightly coupled

photon-baryon fluid in gravitational potential wells at the time of last scattering.

The aim of any inversion method is to distinguish such features from any structure

in the initial perturbation spectrum.

For a finite sampling of the wavenumber space k Equation 3.4 can be recast as an

operator acting on the primordial spectrum Pk

Cℓ =
∑

k

MℓkPk, (3.5)

with operator

MXY
ℓk = ∆ ln k∆X

ℓk∆
Y
ℓk, (3.6)

where ∆ ln k are the logarithmic k intervals for the discrete sampling chosen in the

integration of the system of equations.

A solution for Pk cannot be obtained from a traditional direct inversion of the MXY
ℓk

as it is numerically singular. This is due to the high level of degeneracy in the

transfer functions relating the power at any wavenumber k to angular multipoles ℓ.

We instead approximate the inversion by using the SVD method, first reducing the

degeneracy of the system and then inverting using the remaining orthogonal modes.
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The transfer functions can be factorised using SVD,

Mℓk =
∑

ℓ′k′

Uℓℓ′Λℓ′k′V ∗
k′k , (3.7)

where the matrices U and V are unitary and of dimensions nℓ and nk respectively,

and Λ is a non-negative, diagonal matrix with elements λk. For this application,

the dimensions of the matrices are that nℓ < nk i.e. there are more equations than

modes of interest. This results in some of the diagonal elements of Λ being singular

(numerically zero) which prevent the inversion of the transfer matrix. The SVD

method allows one to invert such a system by nulling the singular modes. This is

achieved by creating an inverse Λ−1 where the diagonal elements are 1/λk except

where the value of λk is singular in which case it is replaced by 0.

In practice we rank order the factorised modes in descending order of λk and all

modes with condition number less than a threshold ǫmax(λk) are nulled, ǫ ≈ 0.038

for this work. Thus the method is a ‘k-to-ℓ’ compression of the system where we

keep the least degenerate modes connecting the 3d Fourier space to the 2d angular

multipole space. This is not to be confused with a signal-to-noise compression of

the data, which aims to select with respect to orthogonal modes of the covariance

of the observations [37].

It is instructive to look at the first few orthogonal modes given by the columns

of the U matrix. We plot the first six in Figure 3.1. These ℓ-space modes are

the least degenerate (or best determined) in the mapping provided by the CMB

physics. In other words, in the absence of sample and noise variance, these modes

pick out the ℓ-range where observing the CMB will have the highest impact upon

the reconstructed P (k). Not surprisingly, the first few modes are peaked around

the angular scales where the acoustic signal from each polarisation combination is

maximised. As these are the best constrained vectors in ℓ space in the absence of

all errors, they are not necessarily the basis vectors of Pk which are most accurately

constrained — [124] show what they are for WMAP. We assume that this ordering

of singular values is the optimal method for sorting the columns in U and V.

Once Λ−1 has been computed the primordial power spectrum can be reconstructed

by inverting a set of observed Cℓ using

Pk =
∑

ℓ′k′ℓ

Vkk′Λ−1
k′ℓ′U

†
ℓ′ℓCℓ ,

≈
∑

ℓ

M−1
kℓ Cℓ . (3.8)
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Our choice of ǫ ≈ 0.038 is a conservative one with approximately 200 non-singular

modes for a typical transfer matrix. Reconstructing the primordial power spectrum

in this way means that we are not using any degenerate modes which carry no

information in k space but can increase the scatter in the reconstructed spectrum.

However we are still susceptible to the scatter in the observed Cℓ since we have not

used any noise weighting in this scheme.

In practice we start our inversion process with a guess input spectrum, parametrised

by the usual form Ask
ns−1. From this and our fiducial cosmological model we obtain

a Cmodel
ℓ spectrum. We use this to calculate the residual spectrum,

Cres
ℓ = Cobs

ℓ − Cmodel
ℓ , (3.9)

so as to minimise the error induced in k-space by the cut-offs in ℓ, both on large

and small scales.

To remove high frequency oscillations in the data we apply a low-pass filter to the

resultant Pk. The following algorithm was used,

P low-pass
k = αPk + (1 − α)Pk−1, (3.10)

where α was taken to be 0.05. This method of smoothing leaves the first few points

in the series strongly influenced by P1. Therefore one should take any effects seen

at low k with a pinch of salt as these points are highly correlated. The covariance

matrix was altered appropriately by a lower-triangular matrix representing this filter.

3.3 Optimal Binning

We then proceed to bin the reconstructed power spectrum using the optimal binning

method of [127]. This binning method estimates a series of ranges in k over which the

signal-to-noise in the measured primordial power spectrum is constant. Many of the

data points are highly correlated with their nearest neighbours and optimal binning

gives a clear indication of the scales on which we have independent information.

The centre of the k bins chosen by the cosmological tool CAMB [128] change when

the input cosmological parameters are altered. This is a problem when it is run over

many realizations as in the case of a Markov Chain. We choose the optimal binning

method to find the standardised output of centres and sizes of k bins for each call

of the CAMB routine.

96



To find the optimal binning of the reconstructed power spectrum we investigate

how the uncertainty in the Cℓs transfers into uncertainty in the primordial power

spectrum. For this purpose, we need to define the primordial power spectrum as a

series of top-hat bins:

P (k) =
∑

B

wB(k)QB , (3.11)

where QB is the power in each bin B and wB = 1 if k ∈ B and 0 otherwise. To

obtain the errors for these bins we define the Fisher matrix for the Cℓs by

Fℓℓ′ = (δCℓℓ′)
−1 , (3.12)

where δCℓℓ′ is the diagonal matrix of the squares of the variances in each mea-

surement of Cℓ. We assume symmetrical errors and ignore the correlation between

multipoles. To transfer the given errors from the Cℓs to other parameters we need

to use the Jacobian,

Fαβ =
∑

ℓℓ′

Fℓℓ′
∂Cℓ

∂θα

∂Cℓ′

∂θβ

, (3.13)

where here θα and θβ represent the bins of the primordial power spectrum. The

derivative of the Cℓs with respect to the primordial power spectrum is the average

radiation transfer function in each bin:

∂Cℓ

∂P (k)
=

∫ kB
max

kB
min

dk

k
∆X

ℓ (k)∆Y
ℓ (k) . (3.14)

To calculate the signal-to-noise ratio in each bin we take the inverse square root of

the diagonal elements of Fαβ to be the noise and the amplitude of the primordial

power spectrum to be the signal. We will then arrange the bins to have the same

S/N over our k range: as the reconstructed spectrum seems to be featureless, we do

not favour a particular k range and hence, will treat the whole range equally. There

are cases in which we might want to place the bins by hand if we are looking for

specific features in a particular k range (but of course we will always be limited by

the S/N of our measurements). Our algorithm will result in more bins where the

signal-to-noise ratio is greater, sampling more finely where the signal is strongest.

We construct a diagonal signal matrix, S, which contains the amplitude of the

primordial power spectrum for all the bins as its diagonal elements and with which
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we weight our Fisher matrix as

(

S

N

)2

αβ

= SαFαβSβ . (3.15)

The square root of the diagonal elements of this matrix are the S/N of the bins.

We start our algorithm with the maximum number of bins possible in our k range.

This is set by the usual properties of the Fourier transform. These imply that the

scale of the survey not only determines kmin, but also gives a lower bound upon the

resolution, ∆kmin: narrower bins would become highly correlated. Therefore, we set

up a series of bins with the properties

kmin =
ℓmin

dA
=

2

dA
and (∆k)min =

∆ℓ

dA
=

1

dA
, (3.16)

where dA = 14.12Gpc (value given by WMAP5) is the angular diameter distance

to the surface of last scattering. We set kmax = 0.08Mpc−1 as the reconstruction

process is limited past this regime due to the cut-off in ℓ at 1000. A Fisher matrix is

then constructed for this set of bins and weighted by the signal matrix. We choose

the maximum S/N in this set to be the target S/N . We iterate until the bins with

smaller S/N are increased until they reach within 5% of the target value at each

bin.

In the case where the intrinsic error in estimating the inverse operator, Mℓk, is

accounted for, the above procedure could be repeated while a set of cosmological

parameters (the ones for which their change on the inverse operator was investigated

for) form part of out parameter space, along with the primordial power spectrum

bins. A Fisher matrix is constructed for this parameter space, where the same

arguments as above are applied to get the initial binning. We then invert this

Fisher matrix to get a covariance matrix, take the sub-block of this matrix that

refers to the bins only and invert it back to get a marginalised Fisher matrix (the

errors for the bins are marginalised over the cosmological parameters — assuming

Gaussian errors). We then start an iteration to obtain a set of bins with equal S/N .

Therefore, the cosmological parameters participate in choosing the bins. However,

the reconstruction method adopted in this work induces errors and correlations that

are so much larger than the ones induced due to the inclusion of parameters in the

parameters space. Hence this method was ignored.

Ideally we would need to perform PCA (as in Chapter 2) on this set of bins to

analyse the correlation between bins and combine the ones with strong correlations.
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However, the correlations induced between the bins when the primordial power

spectrum is reconstructed using our method is so much stronger than what is picked

up by our binning method and hence this procedure was not pursued.

3.4 Reconstruction with cosmological parameter

fitting

The reconstruction method described above is fast and can be carried out at each

random sample of a MCMC exploration of the cosmological parameter space. In-

serting the reconstruction as part of a MCMC exploration we can account for the

variance induced in the primordial power spectrum due to the dependence of the

radiation transfer function on the cosmology.

We have modified the cosmomc [129] package by introducing the reconstruction at

each chain evaluation using the inverse of the transfer function computed for each

combination of parameters acting on the ’observed’ CMB angular power spectrum.

The reconstructed spectrum is then itself used to compute the final Cℓ which are

used to calculate the likelihood at the chain step.

In principle the chains would probe the reduced set of parameters; the physical

densities of baryons Ωbh
2, and of cold dark matter Ωch

2, the angular diameter dis-

tance parameter θ, and optical depth parameter τ . The primordial power spectrum

parameters ns and As become irrelevant and need not be probed since the power

spectrum is being reconstructed directly. However, in practice, we do include power

law spectral parameters which determined the shape of the template model and then

marginalise over the spectral parameters in order to account for any sensitivity of

the reconstruction to the assumed Cmodel
ℓ .

The immediate advantage of combining the reconstruction with an MCMC method is

that we can then calculate the variance in the resulting spectrum due to the random

nature of the transfer function. We do this by including the binned amplitudes

for the reconstructed spectrum as ‘derived’ parameters when analysing the chains.

The covariance of the chains is then mapped into a covariance for the binned power

spectrum.

We also need to account for the variance due to the errors in the observed CMB

data. This is not accounted for in the MCMC chains since we always use the same

observed Cℓ data to reconstruct the spectrum. In principle this contribution to the
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variance and that from the transfer function are correlated, however this is difficult

to quantify without including MCMC steps over realisations of the observations.

We therefore make a conservative estimate of the final error in the reconstructed

spectrum by adding the covariance matrix obtained from the MCMC chain and that

obtained by rotating the error matrix of the observed Cℓ as

δPBB′ =
∑

ℓℓ′

M−1
Bℓ δCℓℓ′M

−1
B′ℓ′ (3.17)

where M−1
Bℓ is the bin-averaged contribution from M−1

kℓ .

3.5 Application of the SVD Inversion

3.5.1 Tests on simulated CMB data

We start by testing the reconstruction algorithm on a set of input spectra with

known features. We used a fiducial cosmological model of Ωbh
2 = 0.0226, Ωch

2 =

0.108, θ = 1.041 and τ = 0.076. The starting guess spectrum used to obtain Cℓ

model is shown by the black dot-dashed line in Figure 3.2. We assume there are

no errors on the input Cobs
ℓ s (between ℓ = 2 and ℓ = 1000) and observe that the

reconstructed Pk generally picks out the input features. We limit our method to

fit between k = 0.0013 and k = 0.08 as this is the range with the highest signal-

to-noise in the WMAP data. The features chosen are the same as in [98] to allow

comparisons with this method. They are a standard power law with ns = 0.96

but with an amplitude 90% of that of the best-fit WMAP model, a running ns

model with dns/d ln k = −0.037, a power law with a sharp, compensated feature at

k = 0.02 Mpc−1 [81, 92, 82, 93, 94, 85, 86, 95, 88] and a power law with superimposed

sinusoidal oscillations [83, 130, 131, 87, 96]. All four features are clearly recovered

to varying degrees when using TT , TE or EE, however we find a phase offset

between the reconstructed and the input spectrum for the case where the input

spectrum includes oscillations as in the lower panels of Figure 3.2. The offset is

stable with respect to the presence of the smoothing kernel, the number of singular

values cut from the inversion, and with respect to the number of k bins and range.

The reconstructed Pk given by both TE and EE contains ‘glitches’ not present in

the TT reconstruction. These regions correspond to regions where there is little

information in the TE and EE spectra and the reconstruction is still degenerate.
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The cosmological parameters obtained from a traditional MCMC search are used

to give us our fiducial operator, Mℓk. The parameters however have errors present

upon them, which are not usually incorporated into errors on the final reconstructed

Pk. If the wrong parameters have been used to calculate the fiducial operator very

specific signatures would be expected to show up in the reconstructed form of Pk.

We show in Figure 3.3 how these signatures appear in TT for four cosmological

parameters, Ωbh
2, Ωch

2, h and τ . If any features with this form are observed one

should attribute this to an incorrect estimation of the parameters and not some

fundamental physics. A check for this would be if the corresponding features also

show up in the reconstructed TE and EE spectra.

We have also tested the inversion on simulated CMB data with similar experimental

properties as the recently launched Planck satellite mission [9]. We assume a total

of 12 detectors with NETs (Noise-Equivalent Temperature) of 64µK/
√
s observing

80% of the sky over 12 months with a resolution of 7 arcminutes FWHM. We cal-

culate errors around our fiducial CMB best-fit models in both total intensity and

polarisation spectra for this experimental setup and use these together with Cℓ sam-

ples on the fiducial model to test the inversion method’s properties. We consider

multipoles of ℓ < 1000 for both total intensity spectra and polarisation. We have not

taken into account any residual error from foreground subtraction in our forecasts.

Thus our forecast are on the optimistic side of the accuracy achievable in the case

of polarisation where foreground removal will certainly have a significant impact on

errors at ℓ < 1000. In the case of total intensity spectra we are significantly under-

estimating the accuracy achievable by Planck as we expect to obtain well measured

Cℓs well above ℓ of 1000. We do not consider these modes as it significantly increases

the time required to perform the SVD. Consideration of total-intensity modes past

ℓ of 1000 will increase the accuracy obtainable for Planck on Pk, it also allows one

to probe k past 0.08. It would be desirable to perform this process with a greater ℓ

range when the Planck data becomes available.

To compare the accuracy obtainable with each of the anisotropy types we show the

degree to which they each reconstruct a simple power law Pk in Figure 3.4. We use

the same fiducial cosmological model as in Figure 3.2 with a standard power law

input Pk equal to the spectra being reconstructed. All the Cobs
ℓ were placed on the

fiducial model. Over the whole range of k total-intensity modes best constrain Pk.

But it is also true that there are regions in k-space, for example between k = 0.022

and k = 0.035, where considering only the TE measurements can give us a more

accurate estimation of Pk. EE measurements approach the accuracy of TT at a
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number of points, there are however regions where the errors become so large that

any reconstructed Pk is meaningless (these correspond to the troughs of the EE

spectrum). The regions of ℓ-space corresponding to the most accurately measured k

regions are the peaks of the spectra. Both TE and EE spectra are not significantly

affected by changes to Pk at very low k, so errors in this region are artificially small.

We also tested the combined P (k) and parameter estimation MCMC search as de-

scribed in the previous section. The optimal binning method found 128 bins for

the Planck experiment, where our target signal-to-noise value in each bin is 10. We

choose this value so as to have approximately the same number of bins across the

range 0.01 < k < 0.03 where WMAP best probes Pk.

In Figure 3.5 we show the results of a cosmological parameter estimation from this

process for a simulated Planck experiment. We find that the input parameters

were accurately recovered after this process. We show the final reconstructed Pk in

Figure 3.6. The red line is the reconstructed Pk at its best-fit point. The error bars

we show are obtained from combining the error from the marginalised distributions

with the reconstruction errors given the observed CMB data. The errors are centred

around the mean of the marginalised distribution for each bin. It is important to

note that the errors are highly correlated. This explains the reduced scatter in the

mean values compared to the size of the plotted errors. As was seen in Figure 3.3

changing a single parameter by a small amount (in the manner a MCMC search

does) creates a very specific signature on Pk for each parameter, where changing it

slightly has a correlated effect upon the whole range of k. This explains the very

high correlations observed across the whole k range. It is at odds with the errors

on P (k) associated with those of Cℓ at any best-fit point which are not correlated

across large ranges of k.

3.5.2 Constraints from current CMB observations

We used two sets of currently available data to estimate the cosmological parameters

in conjunction with a free unparametrised Pk. The first is the WMAP 5-year data

alone [8], in the second we combine this with that of SNIa, HST and BBN [132, 133,

134, 135, 136, 137]. The second set of datasets were chosen because the non-CMB

sets do not depend upon the form of Pk and can therefore give us an independent

and tighter constraint on most of the cosmological parameters. We run this data

through the MCMC tool COSMOMC in the same manner as we did for the test Planck

data.
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In Figure 3.7 we show the current constraints on Ωbh
2, Ωch

2, θ and τ . The solid red

vertical lines indicates the WMAP only best fit values when P (k) is parametrised

in the usual fashion, the black solid curves represent the marginalised probability

distribution of the WMAP only data. There is no disagreement between this and

the WMAP bestfit model. The blue dotted line shows the marginalised probability

distribution of WMAP including the other datasets. Here we observe some tension

at around the 1σ level in Ωch
2. The inclusion of this data does not move the position

of the likelihood peak significantly for each parameter.

The optimal binning method gave us 86 bins in our k range for WMAP. We used the

minimum ∆k as described previously, this gave a target signal-to-noise ratio of 6.

The binned reconstructed Pk are shown in Figs. 3.8 and 3.9 for each of the two data

sets. As in the Planck case, the results of the MCMC are highly correlated across

the whole k range, in contrast to a single reconstruction which is not. We have

similarly added the errors from the MCMC to a single reconstruction in each bin in

quadrature. The red lines are the reconstructed Pk at their best-fit points. The error

bars are centred around the best-fit marginalised value of each bin. For the WMAP

only run we find that the limiting errors on Pk in the range 0.0075 < k < 0.05

come from uncertainty in the cosmological parameters, whereas this limiting range

is around 0.0075 < k < 0.04 when we include the other datasets. No significant

deviation from the standard power-law case is observed in either run.

3.6 Discussion

The SVD process provides a uniquely fast method of reconstructing the primordial

power spectrum and so has been incorporated into full MCMC parameter fitting

runs. We have tested the method and shown that it recovers the overall features of

input spectra. We have applied the method to forecasted Planck data and current

WMAP 5-year results. These results allow for the consistent combination of a

reconstruction method with a full exploration of the parameter likelihoods for the

first time.

We have seen that the limiting factor in constraining the primordial spectrum over

a large range of wavenumbers k comes from the uncertainty in cosmological param-

eters. Any claims of a detection of a feature in Pk must necessarily confront the

degeneracy with the cosmological parameter space. This effect will be less impor-

tant when the Planck data is released, however it must still be considered as the

103



unprecedented accuracy offered by future data may lead to premature claims of a

detection of an interesting feature.

We observed some tension between the WMAP only best-fit model, when P (k)

is parametrised with the normal amplitude and tilt, and our method in the

marginalised probability distribution of Ωch
2. The SVD method disagrees very

mildly (at 1σ) with the WMAP only best-fit model in the value of Ωch
2. This is

not overly significant, however it may be an indication of some departure from a

standard power law in P (k).

There are other currently available CMB datasets, which could expand the range

of k probed. There however exist difficulties in incorporating these into the current

method. By expanding the range of k you stand to increase the amount of time

required to perform the inversion. Also, when considering binned Cℓ data and non-

binned data (WMAP) it is not clear how the terms in Mℓk should be weighted.

In the future as CMB polarisation data becomes increasingly accurate it will be

desirable to perform a joint inversion of total intensity data along with polarisation

data. It is not clear how to extend the SVD based method to include all polarisation

modes simultaneously since a HOSVD (Higher-Order SVD) step would probably be

required. On the other hand this would give the best estimate of Pk given any

dataset and would help to reduce the correlations found in the reconstructed Pk by

increasing the degrees of freedom that can be effectively constrained.

There are further extensions of the both methods that could increase their effec-

tiveness. The addition of other observables with different transfer functions such as

galaxy redshift surveys or cosmic shear surveys will provide complementary infor-

mation in the reconstruction.
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Figure 3.1: We plot the vectors in the matrix U associated with the 6 highest
singular values. The vector corresponding to the highest singular value is shown
in the top left panel, the second highest is shown in the top right panel, etc..
These vectors are the modes best constrained in Cℓ in the absence of all sources
of error. We decomposed Mkℓ for a cosmology of Ωbh

2 = 0.0226, Ωch
2 = 0.108,

θ = 1.041 and τ = 0.076. The blue/solid line is the TT mode, red/dashed is the
TE mode and green/dotted is the EE mode.
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Figure 3.2: The reconstruction of several test spectra. The test models used
to generate the simulated Cℓ, shown in black (thick/solid) curves, are (a) A 10%
decrease in power from the WMAP5 best fit amplitude, (b) the WMAP5 best fit
model including running dns/d ln k = −0.037, (c) a localised feature at around k =
0.02 Mpc−1, and (d) a model with sinusoidal oscillations superimposed on the best
fit power law spectrum. The black (long-dashed) curves show the best fit spectrum
used to minimise any cut-off effects at the ends of the ℓ regions. The blue (solid)
curves are the reconstructions using total intensity data whereas the red (dashed)
curves and magenta (dot-dashed) curves use TE and EE data respectively. The
Cℓ forecasts assumed an experiment with no noise and an ℓmax = 1000.
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Figure 3.3: The reconstruction of several spectra when the incorrect parameters
are used for the fiducial cosmological model. The black (solid) line is the correct
input spectrum. In each panel we change a single parameter in the the fiducial
model (Ωbh

2 = 0.0226, Ωch
2 = 0.108, θ = 1.041 and τ = 0.076). The red (dot-

dashed) line shows the effect of changing a parameter by 1σ in a positive direction
from the WMAP best fit model, the magenta (dashed) line shows the effect of a
1σ shift in a negative direction. The top left panel shows the effect of varying
Ωbh

2, top right of Ωch
2, bottom left of θ and the bottom right of τ .
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Figure 3.4: We show the unbinned errors on a reconstructed P (k) for a forecasted
Planck dataset. The cosmological parameters have been fixed. The blue (solid)
lines show the 1σ confidence regions obtained from TT measurements, with red
(dashed) and magenta (dot-dashed) showing the same 1σ bounds for TE and EE
respectively.
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Figure 3.5: Predicted constraints on Ωbh
2, Ωch

2, θ and τ from Planck, when Pk

is given total freedom. The solid red vertical lines indicates the input values for
each of the parameters. The black solid curves show the marginalised probability
distribution.
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Figure 3.6: Predicted constraints on the form of Pk from Planck. The red line
is the reconstructed Pk at the best-fit point. We show in black the marginalised
values of each bin, the error bars represent the 1σ error.
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Figure 3.7: The current constraints on Ωbh
2, Ωch

2, θ and τ , when Pk is given
total freedom. The solid red vertical lines indicates the WMAP only best fit values
when P (k) is parametrised in the usual fashion, the black solid curves represent
the marginalised probability distribution of the WMAP only data. The blue
dotted line shows the marginalised probability distribution of WMAP including
the other datasets.
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Figure 3.8: The current constraints on the form of Pk from WMAP data only.
The red line is the reconstructed Pk at the best-fit point. We show in black the
marginalised values of each bin, the error bars represent the 1σ error. Neighbour-
ing points have a covariance value of > 0.95.
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Figure 3.9: The current constraints on the form of Pk from WMAP and the
other datasets. The red line is the reconstructed Pk at the best-fit point. We
show in black the marginalised values of each bin, the error bars represent the 1σ
error.
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Chapter 4

Bayesian Experimental Design for

Sparse Sampling

4.1 Introduction

As seen in the previous chapters measuring the primordial power spectrum (and

indeed some of the cosmological parameters) relies heavily on measurements of the

galaxy/CMB/etc. power spectra. Therefore, an accurate measurements of these

power spectra would mean more accurate measurements of the primordial power

spectrum. In this chapter we investigate the optimisation of the measurements of

one of these power spectra: the galaxy power spectrum.

The form of the galaxy power spectrum on large scales provides us with unique

information about galaxy clustering. On very large scales one is probing structure

which is less affected by clustering and hence it is still in the linear regime and

therefore, has a memory of the initial state. The information from these regimes are

therefore the cleanest since the Big Bang and any knowledge on these large scales

would shed light on the questions about the primordial power spectrum.

To investigate larger scales, it may be more efficient to observe a larger, but sparsely

sampled, area of sky instead of a smaller contiguous area. In this case we would

gather a larger density of states in Fourier space, but at the expense of an increased

correlation between different scales — aliasing. This would smooth out features on

these scales and decrease its significance if any observed. However, a common feature

amongst many models is that the power spectrum should be smooth over these scales

anyways: approaching a Harrison-Zeldovich form, proportional to the wavenumber,
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k. In this era of cosmology where the statistical errors have reduced greatly and

are now comparable with systematics, observing, for example, a greater number of

galaxies may not necessarily improve our results. We need to devise more strategic

ways to make our observations and take control of our systematics. Some previous

work on sparse sampling include [138, 139]. They try to constrain a parameter,

such as the dark energy parameters, from sparse sampling observation. Here, by

making use of Bayesian Experimental Design we will investigate the advantages and

disadvantages of the sparse sampling and see if a complete contiguous survey is

indeed the most efficient way of observing the sky for our purposes. The parameter

of interest here is the galaxy power spectrum itself.

4.2 Bayesian Experimental Design and Figure-of-

Merit

In Section 1.7 we presented an introduction to the Bayesian statistics. As mentioned

in that section, Bayesian methods have recently been used in cosmology for model

comparison and for deriving posterior probability distributions for parameters of

different models. However, Bayesian statistics can do even more by handling ques-

tions about the performance of future experiments, based on our current knowledge

[140, 141, 142]. Authors of [70] use a Bayesian approach to constrain the Baryon

Acoustic Oscillations (BAO) from a survey parameter space. Here we will use this

strength of the Bayesian statistics for optimising the strategy to observe the sky for

galaxy surveys. For this, we need to define a quantity of interest, generally called

the figure of merit (FoM), associated with the proposed experiment. The choice of

FoM depends on the questions being asked. We then want to maximise/minimise

(depending on the definition of the FoM) the FoM subject to constraints imposed

by the experiment or by our knowledge about the nature of the universe. Below, we

will explain the procedure.

Assume e denotes the different experimental designs that we can build and M i are

the different models under consideration with their parameters θi. Assume that

experiment o has been performed, so that this experiment’s posterior P (θ|o) forms

our prior probability function for the new experiment. The FoM — let’s now call it

U (for Utility function) — will depend on the set of parameters under investigation,

the performed experiment (data) and the characteristics of the future experiment;
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U(θ, e, o). From the utility function we can build the expected utility

E[U |e, o] =
∑

i

P (M i|o)
∫

dθ̂i U(θ̂i, e, o)P (θ̂i|o,M i) , (4.1)

where θ̂i represent the fiducial parameters for model M i. This says: If a set of

fiducial parameters, θ̂, correctly describe the universe and we build an experiment e,

then we can compute the utility function for that experiment, U(θ̂, e, o). However,

our knowledge of the universe is described by the current posterior distribution

P (θ̂|o). Averaging the utility over the posterior accounts for the present uncertainty

in the parameters and summing over all the available models would account for the

uncertainty in the underlying true model.

The aim is to select an experiment that maximises/minimises the expected utility

E. The utility function takes into account the current models and the uncertain-

ties in their parameters and therefore maximising it takes into account the lack of

knowledge of the true model of the universe.

One of the common choices for a utility is some form of function of the Fisher matrix

(We will explain in the next section how a Fisher matrix is obtained). The three

most common utility functions are

• A-optimality: trace of the Fisher matrix (or its log) and is proportional to sum

of the variances. This prefers a spherical error region, but may not necessarily

select the smallest volume.

• D-optimality: determinant of the Fisher matrix (or its log), which is inversely

proportional to the square of the parameters volume enclosed by the posterior.

This is a good indicator of the overall size of the error over all parameter space,

but is not sensitive to any degeneracies amongst the parameters.

• Entropy (also called the Kullback-Leibler divergence):

E =

∫

dθ P (θ|θ̂, e, o) log
P (θ|θ̂, e, o)
P (θ|o)

= −1

2

[

log |F| − log |Π| − trace(1 −ΠF−1)
]

, (4.2)

where P (θ|θ̂, e, o) is the posterior distribution with Fisher matrix F and P (θ|o)
is the prior distribution with the Fisher matrix Π. The entropy forms a nice

compromise between the A-optimality and D-optimality.
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In the next section we will explain how a Fisher matrix is formulated.

4.3 Fisher Matrix Analysis

The Fisher matrix is generally used to determine the sensitivity of a particular survey

to a set of parameters and has been largely used for optimisation (and forecasting).

Consider the likelihood function for a future experiment with experimental parame-

ters e, L(θ|e) ≡ P (Dθ̂|θ, e), where Dθ̂ are simulated data from the future experiment

assuming that θ̂ are the true parameters in the given model. We Taylor expand the

log-likelihood around its maximum value:

lnL(θ|e) = lnL(θML) +
1

2

∑

ij

(θi − θML
i )

∂2 lnL
∂θi∂θj

(θj − θML
j ) , (4.3)

where the first term is a constant and only affects the height of the function, the

second term describes how fast the likelihood function falls around the maximum.

Fisher matrix is defined as the ensemble average of the curvature of a function F
(i.e., it is the average of the curvature over many realizations of signal and noise);

Fij = 〈F〉 =

〈

−∂
2 lnL
∂θi∂θj

〉

(4.4)

=
1

2
trace[C,iC

−1C,jC
−1] (4.5)

where C is the total covariance matrix, θi/θj are the different parameters and L is

the likelihood function. Its inverse is an approximation of the covariance matrix of

the parameters, by analogy with a Gaussian distribution in the θi/θj , for which this

would be exact. The Cramer-Rao inequality1 states that the smallest error mea-

sured, for θi, by any unbiased estimator (such as the maximum likelihood) is 1/
√
Fii

and
√

(F−1)ii, for non-marginalised and marginalised2 one-sigma errors respectively.

The derivatives in Equation 4.4 generally depend on where in the parameter space

they are calculated and hence it is clear that the Fisher matrix is function of the

fiducial parameters.

The Fisher matrix allows us to estimate the errors on parameters without having

1It should be noted that the Cramer-Rao inequality is a statement about the so-called “Fre-
quentist” confidence intervals and is not strictly applicable to “Bayesian” errors.

2Integration of the joint probability over other parameters.
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to cover the whole parameter space. The authors of [37] have compared the Fisher

matrix analysis with the full likelihood function analysis and found there was great

agreement between the two methods if the likelihood function is approximately

Gaussian near the peak. It also makes the calculations easier. For example, if we

are only interested in a subset of parameters, then marginalising over unwanted

parameters is just the same as inverting the Fisher matrix, taking only the rows and

columns of the wanted parameters and inverting the smaller matrix back. It is also

very straightforward to combine constraints from different independent parameters:

we just sum over the Fisher matrices of the experiments (remember Fisher matrix

is the log of the likelihood function).

We further note, as in all uses of the Fisher matrix, that any results thus obtained

must be taken with the caveat that these relations only map onto realistic error

bars in the case of a Gaussian distribution, usually most appropriate in the limit

of high signal-to-noise ratio and/or relatively small scales, so that the conditions of

the central limit theorem obtain. As long as we do not find extremely degenerate

parameter directions, we expect that our results will certainly be indicative of a full

analysis, using simulations and techniques such as Bayesian Experimental Design

[69].

4.3.1 Fisher Matrix for Galaxy Surveys

We follow the approach of [36] to define the pixelisation for galaxy surveys. First

we define the data in pixel i as

∆i ≡
∫

d3x ψi(x)

[

n(x) − n̄

n̄

]

, (4.6)

where n(x) is the galaxy density at x and n̄ is the expected number of galaxies at

x. The weighting function, ψi(x), which determines the pixelisation, is defined as a

set of Fourier pixels

ψi(x) =
eiki·x

V







1 x inside survey volume

0 otherwise
, (4.7)

where V is the volume of the survey. Here we have divided the volume into sub-

volumes, each being much smaller than the total volume of the survey, but being

large enough to contain many galaxies. This means ∆i is the fractional over-density
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in pixel i. Using this pixelisation we can define a covariance matrix as

〈

∆i∆
∗
j

〉

= C = (CS)ij + (CN)ij , (4.8)

where CS and CN are the signal and noise covariance matrices respectively. The

signal covariance matrix can be defined as (assuming noise and signal are indepen-

dent)

(CS)ij =
〈

∆i∆
∗
j

〉

=

∫

d3xd3x′ ψi(x)ψ∗
j (x

′)

〈

n(x) − n̄

n̄
· n(x′) − n̄

n̄

〉

. (4.9)

By setting the term in the brackets to δ(x) — the continuous over-density described

in Equation 1.6 — we obtain

(CS)ij =

∫

d3k

(2π)3
P (k)ψ̃i(k)ψ̃∗

j (k)

=

∫

dk

(2π)3
k2P (k)

∫

dΩk ψ̃i(k)ψ̃∗
j (k)

=

∫

dk

(2π)3
k2P (k)Wij(k) , (4.10)

where we have defined the window function, Wij(k), as the angular average of the

square of the Fourier transform of the weighting function.

The design of the survey will shape the form of the weighting function in Equation

4.7. For simplicity, we will approximate the design of the sparsely sampled area of

the sky as a regular grid of square patches of size M ×M . This design is shown in

Figure 4.1. We therefore define the structure on the sky as a square wave in both x

and y directions

∑

i

Π(x− xi) =







1 0 < |x− xi| < M/2

0 otherwise
, (4.11)

∑

j

Π(y − yj) =







1 0 < |y − yj| < M/2

0 otherwise
, (4.12)

where xi and yj mark the centres of the steps in our coordinate system. In the z
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Figure 4.1: Design of the sparsely sampled area of the sky. We assume a series
of top-hat functions (of size 100Mpc) in x and y directions on the surface of the
sky — flat-sky approximation has been assumed.

direction we use the step function, which is defined as:

Θ(z) =







1 z > 0

0 otherwise
. (4.13)

Using these the weight function takes the form:

ψ̃i(k) =
1

V

∫

d3x eı(ki−k).x · Θ(z +
L

2
)Θ(

L

2
− z) ·

∑

n

Π(x− xn) ·
∑

m

Π(y − ym)

=
1

V

∫

dx eıqxx
∑

n

Π(x− xn)

∫

dy eıqyy
∑

m

Π(y − ym)

∫

dz eıqzzΘ(z +
L

2
)Θ(

L

2
− z)

=
M2L

V
sinc(qx

M

2
)
∑

n

2 cos(qxxn) · sinc(qy
M

2
)
∑

m

2 cos(qyym) · sinc(qz
L

2
) , (4.14)

where q = ki − k and V is the total sparsely sampled volume, M is the size of

the observed patch on the surface of the sky and L is the observed depth. The last

equality is obtained by using the symmetry in the design and using the Dirichlet
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Kernel defined as:

Dn(x) =

n
∑

k=−n

eikx = 1 + 2

n
∑

k=1

cos(kx) . (4.15)

The first term on the right hand side of this equation can be removed if there is

no step at the origin of the coordinate. Therefore the window function, defined in

Equation 4.10, takes the form

Wij(k) =

∫ 1

−1

dµ

∫ 2π

0

dφ ψ̃(ki − k)ψ̃∗(kj − k)

=

∫ 1

−1

dµ

∫ 2π

0

dφ
M4L2

V 6

[

sinc(qx
M

2
)
∑

n

2 cos(qxxn) · sinc(q′x
M

2
)
∑

n′

2 cos(q′xxn′)

]

[

sinc(qy
M

2
)
∑

m

2 cos(qym) · sinc(q′y
M

2
)
∑

m′

2 cos(q′yym′)

]

[

sinc(qz
L

2
) · sinc(q′z

L

2
)

]

, (4.16)

where qx = q sin θ cosφ, qy = q sin θ sinφ, qz = q cosφ and dµ = d cos θ.

[Aside: In case of the contiguous sampling of the sky where we are observing through

a contiguous square, the window function takes the form:

Wij(k) =

∫ 1

−1

dµ

∫ 2π

0

dφ ψ̃(ki − k)ψ̃∗(kj − k)

=

∫ 1

−1

dµ

∫ 2π

0

dφ
M4L2

V 2

[

sinc(qx
M

2
) · sinc(q′x

M

2
)

]

[

sinc(qy
M

2
) · sinc(q′y

M

2
)

]

[

sinc(qz
L

2
) · sinc(q′z

L

2
)

]

, (4.17)

which is a square tube.]
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The noise covariance matrix — which is due to Poisson shot noise — is given by

(CN)ij =

∫

d3x
ψi(x)ψ∗

j (x)

n̄

=
1

n̄V 2

∫

d3x eı(ki−kj).xΘ(z +
L

2
)Θ(

L

2
− z)

∑

n

Π(x− xn)
∑

m

Π(y − ym)

=
4M2L

V Ng
· sinc(lz

L

2
)

sinc(lx
M

2
)
∑

i

cos(lxxi) · sinc(ly
M

2
)
∑

j

cos(lyyj) , (4.18)

where l = ki − kj , Ng is the total number of galaxies in the survey, M is the width

of the steps in x and y directions and L is the width of the step in the z direction

just like above.

This prescription gives us a data covariance matrix for a galaxy survey. What we

actually need is a Fisher matrix for the parameters we are interested in. For this we

will use Equation 4.4 above, which defines the Fisher matrix of parameters in terms

of the inverse of the data covariance matrix and its differentiation with respect to the

parameters of interest. We are interested in the galaxy power spectrum and hence

the differentiation of the covariance matrix in Equation 4.4 is taken with respect to

the bins of this power spectrum. As the noise covariance matrix does not depend on

the power spectrum, we differentiate the signal covariance matrix of Equation 4.10.

Taking the galaxy power spectrum as a series of top-hat bins

P (k) =
∑

B

wB(k)PB , (4.19)

where PB is the power in each bin B and wB = 1 if k ∈ B and 0 otherwise, the

differentiation takes the form

∂(CS)ij

∂P (k)
=

∫ kmax
B

kmin
B

dk

(2π)3
k2Wij(k) . (4.20)

The bins are arranged using the total volume of the survey: kmin = (2π/V )1/3 = dk.

Therefore, a larger volume gives more number of bins. We take this and the inverse

of the data covariance matrix and insert into Equation 4.4 to get a Fisher matrix

for the galaxy power spectrum bins.
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4.4 Results

We will choose a geometrically flat ΛCDM model with adiabatic perturbations and

the WMAP5 [24] values for the parameters: Ωm = 0.214 ± 0.027, Ωb = 0.044 ±
0.003, ΩΛ = 0.742 ± 0.03, τ = 0.087 ± 0.017 and h = 0.719 ± 0.0265, where H0 =

100hkm−1Mpc−1. The utility functions used are

Entropy = −
[

−1

2
[log |F| − nB]

]

, (4.21)

A-optimality = log(trace(F)) , (4.22)

D-optimality = log(|F|) , (4.23)

where nB is the number of bins of the galaxy power spectrum. These functions are

defined so that they need to be maximised for an optimal design.

4.4.1 Sparse Vs Contiguous: Constant Observing Time

We first compare the two observing designs for the same investment of observing

time. In case of the sparse sampling we can observe a larger area of the sky for the

same observing time, which means larger Fourier density. However, due to the sparse

nature of the observation the correlation between the Fourier states is expected to

increase.

Galaxy surveys contain a list of galaxies with their positions, where the positions

are obtained through measuring the redshift of these galaxies. The further away

or the fainter a galaxy is, the more time will be needed to observe the galaxy and

obtain its redshift. A galaxy with an intrinsic luminosity L∗ at redshift z has a flux

F lux = L∗4πdL(z) , (4.24)

where dL(z) is the luminosity distance to the galaxy. If this galaxy is observed in

time t, with energy E, with a telescope of an area Atel, we have a flux given by

F lux =
E

Atel · t
. (4.25)

From Equations 4.24 and 4.25, we can see that we need an observing time of

time =
E

L∗4πdL(z) · Atel
, (4.26)
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to observe a galaxy with luminosity L∗ at redshift z. We will assume that galaxies

with this luminosity are randomly distributed in the universe with number density n̄

(i.e. no clustering assumed — we will look far away enough so that this assumption

is valid). This means within each redshift bin there are N = n̄Vbin (Vbin = volume

of each redshift bin) galaxies that need to be observed and therefore we need a total

time of t × N to observe all the galaxies in that redshift bin. The further away

the redshift bin is the larger t and hence the larger t×N is. Summing over all the

redshift bins gives the total observing time T of the survey. It is then our choice how

to spend this observing time T in depth and area. We can observe closer galaxies

but on a larger surface area on the sky or we can observe far away galaxies but

through a smaller area. This depends on what we are trying to measure. Here we

investigate the two choices for both sparse and contiguous sampling and find the

optimal design for measuring the galaxy power spectrum.

We start by having 4 redshift bins in the range z = 0.3−1.1, each having a binwidth

of δz = 0.2. We therefore have; z = 0.3 − 0.5, 0.5 − 0.7, 0.7 − 0.9, 0.9 − 1.1. For

this initial redshift range we have 400 patches on the surface of sky (20 in each

direction), each having a size 100Mpc × 100Mpc. The grid, shown in Figure 4.1, is

designed so that the patches are placed at 100Mpc from each other. We then start

to remove the last redshift bins (one at a time) and observe a larger area of the sky

in the remaining redshift bins for the same observing time. The different cases are

summarised in Table 4.1. It would be useful to compare the values given in this

Table with some of the real surveys — given in Figure 4.2 .

z range Patches Aobs/Mpc2 Asps/Mpc2 Aobs/sps Vobs/Mpc3 Vsps/Mpc3 Ng

1 0.3 − 1.1 20 × 20 4 × 106 1.5 × 107 0.263 2.4 × 1010 8.9 × 1010 1.74 × 108

2 0.3 − 0.9 30 × 30 9 × 106 3.5 × 107 0.259 3.8 × 1010 1.5 × 1011 3.24 × 108

3 0.3 − 0.7 46 × 46 2.1 × 107 8.3 × 107 0.256 5.7 × 1010 2.2 × 1011 5.09 × 108

Table 4.1: Summarising the three different designs explained in Section 4.4.1 for
a constant observing time. The total observed area is shown in the 4th column
and the 5th column shows the total sparsely sampled area. In the 6th column
we show the ratio of different areas. In the 7th and 8th columns we show the
volumes observed. Note that in the case of the contiguous sampling Aobs = Asps

and Vobs = Vsps. In the 9th column we show the total number of galaxies observed
in each case.

Figures 4.3-4.8 show the diagonal elements of the window functions, i.e. Wii(k),

for the sparse and contiguous sampling for the three different cases of Table 4.1.

To compare the aliasing of scales between the sparse and contiguous sampling, we

zoom in in Figures 4.4, 4.6 and 4.8. The sparse sampling seems to have a more
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Figure 4.2: Geometries of some of the redshift surveys [14].

complex behaviour in all three cases, and hence is expected to have a more complex

aliasing between the scales. This will cause correlation between k scales in the

power spectrum. The utility functions will show the extent of the importance of this

aliasing and will decide if this can be forgiven for what we are trying to measure.

The variations seen in where the maximum of the window functions lie, especially

apparent in the sparse cases, are a result of the choice of the Fourier pixels, kis.

Remember that the window functions are a function of q = ki −k — Equation 4.16.

These variations are a reflection of sinc(q) ·cos(q); for example in case 1 of the sparse

sampling q varies in a sinusoidal way. Also note that the window functions suffer

from edge effect, where they have cut off at both small and large k in the range.

Therefore, any features at the far ends of the k-range should be ignored.

The utility functions are shown in Figure 4.9. In all three cases sparse sampling

does a better job than the contiguous sampling. Also, all the utility functions seem

to rise from case 1 to case 3. This means to measure the galaxy power spectrum we

would gain more by observing near galaxies but observing a larger surface area. This

might be completely different if we were to measure other parameters. For example,
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to constrain the running of dark energy parameters, we would require a large z range

instead of large surface area. The entropy, which is a nice summary of the other two

utility functions, shows that overall the sparse sampling is the preferred observing

design for galaxy power spectrum measurements. The power spectrum is indeed

resolved better due to the larger volume in the case of the sparse sampling, and is

also measured more accurately. And for the sparse sampling, case 3 is preferred over

the other cases.

The marginalised errors, i.e. (F−1)ii, for all cases are shown in Figure 4.10. Note

that the features at the very far ends should be ignored due to edge effects. As

explained above sparse sampling measures the bins of power spectrum with a better

accuracy for all cases. Also, note how case 3 resolves the power spectrum better

while decreasing the errors of the bins.

4.4.2 Sparse: varying step sizes

Here we investigate the influence of step sizes and the extent they could improve the

performance of the survey. For the sparse sampling of case 1 above, we will vary the

step sizes in the range M = 10 − 150Mpc and monitor the variation of the utility

functions as M is increased. Here we do not try to keep the observing time constant,

knowing the observing time will be higher for larger steps anyways. Instead we want

to see the gain for spending more time observing larger steps. The results are shown

in Figures 4.11 and 4.12. These Figures are the same but plotted with different x

axes: Figure 4.11 shows the utility functions against Aobs/Asparse (which might be

thought of as the information gain) and Figure 4.12 shows the same results against

the step sizes. An overall but slow rise is seen in both D-optimality and entropy.

In the mid ranges, it seems like a saturation limit is reached where larger patches

don’t gain much more. The A-optimality shows a more interesting behaviour where

it seems that having larger patches may even increase the errors of the bins of the

power spectrum. Therefore, depending on what we are more interested in, larger

patches might be improving or worsening the performance of the survey.

4.4.3 Sparse: a power law spectrum instead of galaxy power

spectrum

Since the parameters of interest are bins of the galaxy power spectrum we wanted to

see how the shape of this power spectrum influences the performance. Hence we have
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-Entropy A-optimality D-optimality

Contig: galaxy PS 15.78 3.50 74.66
Contig: primordial PS 9.37 3.08 61.73
Sparse: galaxy PS 25.98 3.73 119.95
Sparse: primordial PS 15.62 3.30 99.23

Table 4.2: Utility functions for a power law spectrum compared to the galaxy
power spectrum.

repeated case 1 for both sparse and contiguous sampling for a power law spectrum

with the form P (k) = Bk0.96, which is the primordial power spectrum—normalized

so that it has the same as the galaxy power spectrum at k = 0.05hMpc−1 as this is

our pivot scale.. The marginalised errors are shown in Figure 4.13. The influence

of the shape of the power spectrum is clearly seen in the errors. Depending solely

on the shape of the spectrum the same survey measures some scales better for one

spectrum and other scales better for the other spectrum. The utility functions are

shown in Table 4.2. It seems the survey measures the galaxy power spectrum much

better than the primordial power spectrum for both sparse and contiguous sampling.

4.4.4 Sampling Pixels

One set of parameters that have great influence on the final results in all the above

cases is the choice of the sampling pixels; ki in Equation 4.7. In theory we would

prefer an infinite number of sampling pixels, however in reality, we are limited to

these Fourier pixels — Equation 4.7. Here we investigate how the number and

range of the sampling pixels influence our results. So far, we have let the largest

scales of the survey choose the pixeling, i.e. from the usual properties of the Fourier

transform, the largest scales of the survey determines the minimum k, kmin, and

the minimum binwidth, (dk)min. This was then applied to both the binning of the

power spectrum and the sampling pixels, i.e. ki = kB for all the cases. Here we

investigate other choices of the sampling pixels and compare the utility functions to

previous cases.

We will focus on case 1 above for both contiguous and sparse sampling and monitor

the variation in the utility functions as ki is changed. Previously, we had 43 and 68

bins for the contiguous and sparse sampling respectively. We will now try

ki = 0.00001, 0.00101, 0.00201, · · · , 0.10001 hMpc−1, having 101 pixels, and

ki = 0.00001, 0.00068, 0.00134, · · · , 0.10001 hMpc−1, having 151 pixels.
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Another interesting choice would be to extend the k-range to beyond the current

limits. So far we have limited ourselves to kmax < 0.1hMpc−1 as we did not want to

enter the non-linear regime. Here we want to the extend the range of the sampling

pixels to beyond this limit and investigate how much information we can actually

recover from the non-linear regime. For this, we use kmin, (dk)min as obtained by

the largest scales of the surveys (just like the previous cases) but extend kmax to

0.15hMpc−1. This means the number of pixels would now be 66 and 103 for the

contiguous and sparse sampling cases respectively (compared to 43 and 68 pixels in

the previous cases).

The utility functions are shown in Figures 4.14. As the sampling pixels increase for

the same k-range, more information is fed into the measurements of the bins (Equa-

tion 4.4) and hence the utility functions also increase. Generally, the improvement

is milder for the sparse sampling. This is because a change from 68 pixels to 101 and

151 pixels is less effective than from 43 pixels in the contiguous case. Note that in

the last case, where kmax = 0.15hMpc−1, the utility functions have only a slight rise

from the fiducial case even though there is more number of sampling pixels. This

suggests that not much information lies in the non-linear regime that can help us

measure the bins in the linear regime.

The errors are shown in Figure 4.15 for different number of pixels in the same k-

range. The errors decrease for the larger number of pixels as expected.

4.5 Discussion

The importance of an accurate measurements of the galaxy power spectrum has

been pointed out many times in this thesis. In this chapter we have investigated

the optimisation of the galaxy surveys to improve the measurements of the galaxy

power spectrum. The galaxy power spectrum on large scales probes structures that

are less affected by clustering and therefore retain more memory about the initial

state. Hence the information from these regimes are the cleanest since the Big Bang

and any knowledge on these large scales would give us more information about the

initial state of the Universe. In the case where we are mostly interested in the

large scales, we might benefit more by investing our money to observe a larger,

but sparsely sampled, area of the sky. In this chapter, by making use of Bayesian

Experimental Design, we have investigated the advantages and disadvantages of the

sparse sampling of sky as opposed to the contiguous sampling and ways of enhancing
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the performance of the sparse sampling. Overall it seems like sparse sampling could

be the way forward for future observations and measurements of the galaxy power

spectrum. We have seen that sparse sampling improves the resolution of the power

spectrum while measuring these bins more accurately. However, note that these

results could be different if we were to measure a parameter other than the galaxy

power spectrum itself.

We would still like to extend our analysis further; a project that we have begun to

undertake is the investigation of the performance of the sparse sampling strategy in

the BAO measurements and hence the measurements of the dark energy parameters.
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Figure 4.3: Diagonal elements of the window Function for the sparse and con-
tiguous design for case 1. The sinusoidal feature in the sparse case is due to the
cos term — see Equation 4.16.
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Figure 4.4: The same as Figure 4.3, where we have zoomed to compare the
aliasing of scales between sparse and contiguous sampling. The dotted lines show
the power spectrum bins.
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Figure 4.5: Diagonal elements of the window Function for the sparse and con-
tiguous design for case 2. The sinusoidal feature in the sparse case is due to the
cos term — see Equation 4.16.
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Figure 4.6: The same as Figure 4.5, where we have zoomed to compare the
aliasing of scales between sparse and contiguous sampling. The dotted lines show
the power spectrum bins.
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Figure 4.7: Diagonal elements of the window Function for the sparse and con-
tiguous design for case 3. The sinusoidal feature in the sparse case is due to the
cos term — see Equation 4.16.
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Figure 4.8: The same as Figure 4.7, where we have zoomed to compare the
aliasing of scales between sparse and contiguous sampling. The dotted lines show
the power spectrum bins.
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Figure 4.9: Utility functions for the three cases explained.

136



      
0.00

0.01

0.02

0.03

0.04

E
rr

or
s

      
0.00

0.01

0.02

0.03

0.04

E
rr

or
s

0.00 0.02 0.04 0.06 0.08 0.10
k/Mpc

0.00

0.01

0.02

0.03

0.04

E
rr

or
s

Sparse
Contiguous

CASE 3

CASE 2

CASE 1
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and contiguous designs in each case. Any features on k < 0.005 and k > 0.095
should be ignored due to edge effects.
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Figure 4.11: The variation of the utility functions as the step sizes vary in case
1 of the sparse sampling. This is shown against Aobs/Asparse.
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Figure 4.12: The same as Figure 4.11, but shown against the step sizes instead.
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As the sampling pixels increase, the errors measured on the parameters of interest
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Chapter 5

Conclusions

We have presented work on different aspects of the measurement of the primordial

and galaxy power spectra. The primordial power spectrum encodes precious infor-

mation about the physics of the early Universe and constraining it is one of the key

goals of modern cosmology. However, we cannot measure the primordial power spec-

trum directly and our path to its measurement is through different surveys (CMB,

galaxy surveys, etc.). The outcome of such surveys is a convolution of the primordial

power spectrum and a transfer function (which holds the cosmological parameters)

— discussed in Chapter 1; galaxy power spectrum, CMB angular power spectrum,

etc.. Hence the primordial power spectrum is reconstructed by deconvolving it from

these power spectra: this shows the importance of the accurate measurements of

the different types of power spectra. Also, the deconvolution induces degeneracy

between the cosmological parameters determining the transfer functions and the

primordial power spectrum.

In this thesis we first investigated the induced degeneracy between the cosmological

parameters and the primordial power spectrum in Chapter 2. Then in Chapter 3

we presented a new method for deconvolving the primordial power spectrum from

the WMAP5 CMB power spectrum. And finally in Chapter 4 we investigated the

optimisation of galaxy surveys for the measurements of the galaxy power spectrum

in the hope of measuring the primordial power spectrum more accurately.

In Chapter 2 we have investigated these degeneracies using the Planck and SDSS

surveys. The induced degeneracy limits our ability to recover the primordial power

spectrum, even from a perfect survey, especially in the case of CMB measurements

[58]. We have constructed a parameter space containing a set of carefully chosen

bins of the primordial power spectrum along with a set of cosmological parameters.
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We then constructed a Fisher matrix for this parameter space for the two different

surveys separately and combined. By diagonalising these Fisher matrices, via two

different methods of eigenvector decomposition (PCA) and the Hermitian square

root, we have investigated the induced correlation between the primordial power

spectrum bins and the cosmological parameters. In the PCA case, we conclude

that SDSS and Planck together measure the cosmological parameters to a better

extent than each separately, and even break the degeneracy between them. More

importantly for our purposes, they can increase the obtainable resolution of the

primordial power spectrum by a factor of two and can also condense the correlation

between bins to be only amongst neighbouring ones. By the use of the Hermitian

square root of the Fisher matrix we managed to divert the correlation amongst

the marginalised errors of the bins to the correlation between the bins themselves.

In this case, the combination of SDSS and Planck helped to decrease the level of

correlation between neighbouring bins, but also, because it has helped to increase

the resolution of the bins, decreasing the correlation between neighbouring bins

results in a correlation over a smaller range of k. We have shown that combining

the two surveys will constrain the primordial power spectrum better than current

measurements, and better than each experiment on its own.

In Chapter 3 we have employed the SVD process to reconstruct the primordial power

spectrum directly from WMAP data. We have applied the method to forecasted

Planck data and current WMAP5 results. These results allow for the consistent

combination of a reconstruction method with a full exploration of the parameter

likelihoods for the first time. We have seen that the limiting factor in constraining

the primordial spectrum over a large range of wavenumbers k comes from the uncer-

tainty in cosmological parameters. In the future as CMB polarisation data becomes

increasingly accurate it will be desirable to perform a joint inversion of total inten-

sity data along with polarisation data. It is not clear how to extend the SVD based

method to include all polarisation modes simultaneously since a HOSVD (Higher-

Order SVD) step would probably be required. On the other hand this would give

the best estimate of Pk (the reconstructed primordial power spectrum) given any

dataset and would help to reduce the correlations found in the reconstructed Pk by

increasing the degrees of freedom that can be effectively constrained.

As thoroughly presented in the previous chapters, measurements of the primor-

dial power spectrum heavily relies on the measurements of the galaxy/CMB power

spectra. This is due to lack of a direct access to the primordial power spectrum

measurements. In Chapter 4 we focus on galaxy surveys, and try to improve their
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performance. In this Chapter we investigate the performance of the sparse sampling

of sky to measure the galaxy power spectrum. This power spectrum on large scales

probes structure that is less affected by clustering and therefore, has a memory of the

initial state. In the case where we are mostly interested in the large scales, a sparse

sampling design seems more advantageous. By making use of Bayesian Experimen-

tal Design, we have investigated the advantages and disadvantages of the sparse

sampling of sky as opposed to contiguous sampling. Overall it seems like sparse

sampling could be the way forward for future observations and measurements of the

galaxy power spectrum. We have seen that sparse sampling enhances the resolution

of the power spectrum while measuring the bins more accurately. However, these

results may be totally different if we were to measure a parameter other than the

galaxy power spectrum. We would still like to extend our analysis further; a project

that we have begun to undertake is the investigation of the performance of the sparse

sampling strategy in the BAO measurements and hence the measurements of the

dark energy parameters.
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