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CHANGES OF VARIABLES IN MODULATION AND WIENER

AMALGAM SPACES

MICHAEL RUZHANSKY, MITSURU SUGIMOTO, JOACHIM TOFT,
AND NAOHITO TOMITA

Abstract. In this paper various properties of global and local changes of vari-
ables as well as properties of canonical transforms are investigated on modulation
and Wiener amalgam spaces. We establish several relations among localisations of
modulation and Wiener amalgam spaces and, as a consequence, we obtain several
versions of local and global Beurling–Helson type theorems. We also establish a
number of positive results such as local boundedness of canonical transforms on
modulation spaces, properties of homogeneous changes of variables, and local con-
tinuity of Fourier integral operators on FLq. Finally, counterparts of these results
are discussed for spaces on the torus as well as for weighted spaces.

1. Introduction

The main purpose of this paper is to investigate the invariance properties of modu-
lation spaces and certain types of Wiener amalgam spaces under changes of variables.
We establish different positive and negative results in these spaces as well as in closely
related Fourier Lebesgue spaces. Let us point out that a natural ingredient of our
analysis is to consider also the canonical transforms which are changes of variables on
the Fourier transform side. The canonical transforms play an important role in the
analysis of partial differential equations because they allow to transform operators
into each other by changes of variables on the Fourier transform side (e.g. [8]). Reg-
ularity properties of canonical transforms are important for various applications, for
example in recent applications to global smoothing problems for evolution equations
(e.g. [23, 24]).

Since the Fourier image of a modulation space is a Wiener amalgam space it is
natural to consider invariance properties of changes of variables and canonical trans-
forms on both spaces. Another space of interest is the space FLq, 1 ≤ q ≤ ∞,
which is the image of the Lebesgue space Lq(Rn) under the Fourier transform. In
fact, when localised in space, this space coincides with modulation spaces Mp,q and
Wiener amalgam spaces W p,q, so the question of continuity in FLq(Rn) is related
to the question of continuity in its image under the Fourier transform, which is the
usual Lq(Rn). For example, when investigating a property of the local bounded-
ness of canonical transforms in Lq(Rn), we can reduce the analysis to an equivalent
question of the Fourier-local boundedness of changes of variables in FLq(Rn). We
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note that these questions are usually quite delicate since there is a loss of regular-
ity of Fourier integral operators in Lq–spaces (cf. [28]), which is dependent on the
underlying geometry (cf. [22]).

The question of the invariance of function spaces under changes of variables is of
fundamental importance since it allows to introduce counterparts of these spaces on
manifolds via localisations. Thus, both local and global invariance properties are of
importance. Unfortunately, many spaces of interest have a so-called Beurling–Helson
property which means that a C1 change of variables which leaves the space invariant
must be affine (for space FL1 on the torus this goes back to Beurling and Helson [5]).
For example, this property was established in FLq in [19, 29], and in modulation
spaces in [20]. In Theorem 2.4 we also establish it for Wiener amalgam spaces. Our
analysis is based on the fact that when localised in space, function spaces Mp,q,
W p,q and FLq all coincide (see Theorem 2.1). This will follow from the fact that
when localised in frequency, function spaces Mp,q, W p,q and Lp also coincide. This
observation puts the study of the Beurling–Helson property on Wiener type spaces in
a unified setting, as well as simplifies the proof in the case of modulation spaces given
in [20]. In Corollary 2.3 we state various equalities of localisations of these spaces
and Theorem 2.4 gives the Beurling–Helson properties for both changes of variables
and canonical transforms.

However, it turns out that we can still prove some positive results. For example, in
Theorem 2.5 we will show that if the pullback by a change of variables ψ : R

n → R
n

is bounded on Lq(Rn) then the corresponding canonical transform Iψ (which is the
pullback by ψ on the Fourier transform side) is locally continuous on Mp,q, W p,q

and FLq. On the Fourier transform side this gives a Fourier-local continuity of the
change of variables induced by such ψ (see Theorem 2.5 for a precise statement).

On the other hand, phase functions which come from the theory of Fourier integral
operators are positively homogeneous of order one ([18]). This means that the analysis
of the invariance properties is important also outside of the C1 category. In Theorem
2.6 we give a result to this end which shows that different types of properties are
possible. In particular, we establish a Beurling–Helson type result in this case as well
by using the theory of Fourier integral operators in an essential way.

At the same time, positive results will allow us to improve the continuity proper-
ties of Fourier integral operators related to canonical transforms in FLq–spaces. In
particular, in [7], it was shown that Fourier integral operators are locally bounded on

FLq(Rn) provided that the amplitude is in the symbol class S
−n|1/2−1/q|
1,0 . In Theorem

2.7 we remove the decay condition in the case of canonical transforms and show that
the corresponding operators with amplitudes in S0

0,0 (or even in M∞,1) are still locally
bounded in FLq(Rn).

Finally, in Theorem 2.8 we investigate other homogeneous changes of variables
which may have singularities on sets of different dimensions. For them, we show
continuity in modulation and Wiener amalgam spaces. In the proof of this theorem we
use Gabor theory of modulation spaces and certain decompositions of homogeneous
mappings (cf. Chapter 12 in [17]). This result extend previously known properties
on FLq and on Mp,q with p = q.

Modulation spaces were introduced by Feichtinger in [12] and [13] during the period
1980–1983. The basic theory of such spaces was thereafter established and extended
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by Feichtinger and Gröchenig (see e. g. [13, 14, 15, 17], and references therein).
Roughly speaking, the (classical) modulation space Mp,q is obtained by imposing a
mixed Lp,q norm on the short-time Fourier transform of a tempered distribution.

A major idea behind these spaces is to find useful Banach spaces, which are defined
in a way similar to Besov spaces, in the sense of replacing the dyadic decomposition
on the Fourier transform side, characteristic to Besov spaces, with a uniform de-
composition. From the construction of these spaces, it turns out that modulation
spaces and Besov spaces in some sense are rather similar (see [1, 30, 31, 32] for sharp
embeddings).

It appears that in some respects these spaces have better properties from the point
of view of evolution partial differential equations. For example, it was shown in [4]
that propagators for the wave and Schrödinger equations are bounded on modulation
spaces, compared to the usual loss of derivatives in Sobolev spaces (see e.g. [28]).
We point out in Remark 2.2 that propagators of the form eit|D|α are actually locally
continuous on Mp,q(Rn) and W p,q(Rn) for all p, q and all t, α ∈ R (compared to the
case of 0 ≤ α ≤ 2 onMp,q(Rn) analysed in [4] and to the well-known loss of derivatives
in local Lp spaces, e.g. for α = 1 for the wave equation or for the KdV equation for
α = 3, etc).

Counterparts of these properties as well as of other results of this paper for spaces
on the torus are discussed in the last section. In particular, we observe the equality
Mp,q(Tn) = W p,q(Tn) = F ℓq(Tn) for all 1 ≤ p, q ≤ ∞. This immediately reduce the
analysis of the Beurling–Helson property to the original paper of Beurling and Helson
[5] as well as to the extensions in [19]. In particular, in the case of q = 1 the above
equality can be viewed as a characterisation of absolutely convergent Fourier series.

Moreover, we show the boundedness of canonical transforms on these spaces. Fi-
nally, we will remark that propagators of the form eit|D|α are actually isometries on
Mp,q(Tn) for all p, q and all α ∈ R, and will discuss periodic weighted spaces.

We note that Theorem 2.1 emphasizes difficulties with the definition of modulation
and Wiener amalgam spaces on manifolds. However, the global definition is still
possible in the presence of the group structure. For example, modulation spaces
on locally compact abelian groups were investigated in [13]. It is also possible to
introduce these spaces on general compact Lie groups with the global interpretation
of pseudo-differential operators as in [27]. In this case results of Section 5 can be
extended to the setting of general compact Lie groups.

In Section 2 we state our results. Section 3 will introduce necessary definitions and
terminology. Proofs and further comments of various nature will be given in Section
4. Section 5 are devoted to giving some remarks on counterparts of our results for
spaces on the torus. In the appendix we will discuss weighted spaces.

2. Results

First of all we remark some fundamental identities, which show that in the E ′

and FE ′ categories, modulation, Wiener amalgam, and FLq (or Lq) spaces coincide
(the relation between Mp,q and FLq spaces has been known before, see further for
references). In all sections except for Section 5 we deal with spaces on R

n.
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Theorem 2.1. Let 1 ≤ p, q ≤ ∞. Then the following equalities hold:

(2.1)
Mp,q ∩ E

′ = W p,q ∩ E
′ = FLq ∩ E

′,

Mp,q ∩ FE
′ = W p,q ∩ FE

′ = Lp ∩ FE
′,

with equivalence of norms. Moreover, let Ω ⊂ R
n be compact. Then the estimates

(2.2)
‖f‖Mp,q ≤ C|Ω̃|max(0,1/q−1/p)‖f‖W p,q ,

‖f‖W p,q ≤ C|Ω̃|max(0,1/p−1/q)‖f‖Mp,q

hold for all f ∈ S ′ with supp f ⊂ Ω, where constant C > 0 is independent of Ω and

f , Ω̃ = {x ∈ R
n : dist(x,Ω) < 1}, and |Ω̃| is the Lebesgue measure of Ω̃.

We note that (2.2) is equivalent to

C−1|Ω̃|min(0,1/q−1/p)‖f‖W p,q ≤ ‖f‖Mp,q ≤ C|Ω̃|max(0,1/q−1/p)‖f‖W p,q .

We note also that a weighted version of equalities (2.1) will be given in Remark 4.2.

Remark 2.2. In [31] it was proved that ei|D|2 is bounded on each modulation space,
and in [4] it was shown that for 0 ≤ α ≤ 2, operators ei|D|α are bounded on modulation
spaces Mp,q(Rn), 1 ≤ p, q ≤ ∞ (for the definition of Mp,q(Rn) see Remark 3.1). In
particular, this covers wave and Schrödinger propagators.

On the other hand, Theorem 2.1 can be used to establish local continuity properties
for a broader class of Fourier multipliers. More precisely, assume that m ∈ L∞(Rn).
Then m(D) from S (Rn) to S ′(Rn) extends uniquely to a locally continuous map on
Mp,q(Rn) and on W p,q(Rn) for all 1 ≤ p, q ≤ ∞. Indeed, if χ1, χ2 ∈ C∞

0 (Rn), then

‖χ1m(D)χ2f‖Mp,q(Rn) ≍ ‖χ1m(D)χ2f‖FLq(Rn) =
∥∥∥χ1(D)m(ξ)χ2(D)f̂

∥∥∥
Lq(Rn)

≤ C‖m‖L∞

∥∥∥χ2(D)f̂
∥∥∥
Lq(Rn)

= C‖m‖L∞‖χ2f‖FLq(Rn) ≍ C‖m‖L∞‖χ2f‖Mp,q(Rn),

using the fact that χ1(D) is bounded on Lq(Rn) for all 1 ≤ q ≤ ∞ by Young’s
inequality.

In particular we may choose m(ξ) = ei|ξ|
α

, for any α ∈ R, and this observation
together with the corresponding results on the torus (see Section 5) increase the
expectation that Fourier multipliers ei|D|α should be bounded on Mp,q(Rn) also for α
outside of the interval [0, 2].

Since we are going to investigate properties of operators in localisations of function
spaces both in space and in frequency, it is convenient to introduce the following
notation. Let X ⊂ S ′(Rn) be a normed linear spaces. Then we introduce the
following notation for functions which are compactly supported either in space or in
frequency

(2.3) Xcomp := X ∩ E
′, XFcomp := X ∩ FE

′,

as well as localisations of these spaces

(2.4)
Xloc := {u ∈ S

′ : χu ∈ X for all χ ∈ C∞
0 (Rn)},

XF loc := {u ∈ S
′ : χ(D)u ∈ X for all χ ∈ C∞

0 (Rn)}.
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All these spaces inherit the metric fromX and from FX in a natural way. We will say
that for normed linear spaces X, Y ⊂ S ′, a mapping T : X → Y is locally bounded (or
locally continuous) if it is continuous from Xcomp to Yloc, and that it is Fourier–locally

bounded (or Fourier–locally continuous) if it is continuous from XFcomp to YF loc.
Since

Mp,q
comp = W p,q

comp = (FLq)comp, Mp,q
Fcomp = W p,q

Fcomp = Lp
Fcomp,

by Theorem 2.1, and since trivially

F (Mp,q
comp) = W q,p

Fcomp, F (W p,q
comp) = M q,p

Fcomp

we obtain the following corollary to Theorem 2.1:

Corollary 2.3. Let 1 ≤ p, q ≤ ∞. Then the equalities

F (Mp,q
comp) = W q,p

Fcomp = Lq
Fcomp = M q,p

Fcomp = F (W p,q
comp)

and

F (Mp,q
Fcomp) = W q,p

comp = (FLp)comp = M q,p
comp = F (W p,q

Fcomp)

hold.

Now we introduce two important operators. Given a mapping ψ from R
n to itself,

we define the change of variables ψ∗ by

(ψ∗f)(x) = f(ψ(x))

and the canonical transform Iψ by

Iψf(x) = F
−1[(Ff)(ψ(ξ))](x)

for functions f on R
n. Clearly, we have the equality

(2.5) Iψ = F
−1 ◦ ψ∗ ◦ F .

The combination of Theorem 2.1 and known Beurling–Helson type theorems give the
following Beurling–Helson local and global type theorems for modulation and Wiener
amalgam spaces:

Theorem 2.4. Let 1 ≤ p, q ≤ ∞, 2 6= q <∞, and let ψ : R
n → R

n be a C1-function.

Assume that one of the following conditions are fulfilled:

(i) operator ψ∗ is bounded on either Mp,q(Rn), W p,q(Rn) or FLq(Rn);
(ii) operator ψ∗ is locally bounded on either Mp,q(Rn), W p,q(Rn) or FLq(Rn);
(iii) operator Iψ is bounded on either M q,p(Rn), W q,p(Rn) or Lq(Rn);
(iv) operator Iψ is Fourier–locally bounded on either M q,p(Rn), W q,p(Rn) or Lq(Rn);

Then ψ is an affine function.

It was pointed out in [20] that in the case of Mp,q in condition (i) the statement
essentially reduces to the Beurling–Helson type theorem on FLq which was treated
earlier in [5, 19, 29]. We will give a simplified proof of such reduction using Theorem
2.1, with a simple proof of equalities (2.1), at least in the case when one does not
need to keep track of constants in (2.2). Theorem 2.1 also allows us to treat the
Wiener amalgam spaces (so we formulate Theorem 2.4 in a unified way).
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We note that pairs of assumptions (i)-(ii) and (iii)-(iv) in Theorem 2.4 are obviously
equivalent in view of (2.5). However, we choose to write all of them explicitly because
of the following result that shows that non-affine transforms can be allowed if we just
consider the local boundedness of Iψ on modulation spaces, or if we localise a change
of variables on the Fourier transform side in Wiener amalgam spaces:

Theorem 2.5. Let 1 ≤ p, q ≤ ∞, and let ψ : R
n → R

n be such that ψ∗ is bounded

on Lq(Rn). Then the following is true:

(i) Iψ is locally continuous on Mp,q(Rn), W p,q(Rn) and FLq(Rn);
(ii) ψ∗ is Fourier-locally continuous on Mp,q(Rn), W p,q(Rn) and Lp(Rn).

Another important class of canonical transforms that arises in applications to par-
tial differential equations and in the theory of Fourier integral operators is the class of
functions ψ positively homogeneous of order one, which means that ψ(λx) = λψ(x)
for all λ > 0 and all x ∈ R

n. In this case, this function is no longer C1 everywhere,
and we have mixed results already on the space FLq(Rn):

Theorem 2.6. Let ψ : R
n → R

n be positively homogeneous of order one and let q be

such that 1 ≤ q ≤ ∞. Then the following is true:

(i) assume that the inverse ψ−1 exists on R
n\0 and satisfies ψ−1 ∈ C1(Rn\0).

Then ψ∗ is Fourier-locally continuous on Lq(Rn);
(ii) assume that ψ ∈ C∞(Rn\0). Assume also that ψ∗ is continuous or Fourier-

locally continuous on FLq(Rn) and q 6= 2. Then ψ is linear.

If q = 2, then clearly ψ∗ is continuous (and hence also Fourier-locally continuous)
on FL2(Rn) = L2(Rn). By using relation (2.5) we can easily obtain a counterpart of
this theorem for canonical transforms Iψ. We note that part (i) is a straightforward
consequence of Theorem 2.5, (ii). The main statement is part (ii), and (i) serves to
highlight a difference between Lq and FLq for such problems. The proof of (ii) will
rely on some properties of Fourier integral operators in an essential way.

Let us now discuss an implication of the boundedness result for the regularity
properties of Fourier integral operators. We note that since ψ∗ is bounded on Lq(Rn)
in the assumptions of Theorem 2.5, it follows that Iψ is bounded on FLq(Rn). By
an argument similar to the one that we will give in the proof of Theorem 2.5 this
implies that Iψ is continuous from (FLq)comp to (FLq)loc, so that Theorem 2.5 also
follows if we use the equalities from Theorem 2.1. This is related to the question of
the local boundedness of Fourier integral operators on FLq. Let T be defined by

Tf(x) =

∫

Rn

eiΦ(x,ξ)a(x, ξ)f̂(ξ)dξ,

where Φ is a non-degenerate real-valued phase function. In [7], it was shown that if the
phase function is non-degenerate and homogeneous of order one and if the amplitude
a(x, ξ) is compactly supported in x and belongs to the symbol class Sm1,0 with m ≤
−n|1/q − 1/2|, then T is bounded on (FLq)comp. Moreover, they showed the order
m to be sharp for a special choice of the phase function Φ(x, ξ). However, Theorem
2.5 implies that if we take the amplitude a in the class S0

0,0, and the phase function
corresponding to the canonical transforms, operator T is still locally continuous on
FLq, i.e. continuous from (FLq)comp to (FLq)loc. We note the inclusion S0

0,0(R
n) ⊂
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M∞,1(R2n) (here always S0
0,0(R

n×R
n) is defined as the set of all smooth a ∈ C∞(R2n)

such that |∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ for all multi-indices α, β and all x, ξ ∈ R

n). Thus, we
have the following result:

Theorem 2.7. Let ψ : R
n → R

n be such that ψ∗ is bounded on Lq(Rn) and let

a ∈M∞,1(R2n). Then the operator

Tf(x) =

∫

Rn

∫

Rn

ei(x·ξ−y·ψ(ξ))a(x, ξ)f(y)dydξ

is locally continuous on FLq, Mp,q and W p,q, for all 1 ≤ p, q <∞.

We note that this result is also true for p = ∞ and q = ∞ if we use the modification
as in Remark 3.1.

We will also discuss non-affine transforms which induce the globally bounded
changes of variables on Mp,q or W p,q. Note that such transforms must not be a
C1-mappings in view of Theorem 2.4. Moreover, we will show that the Beurling–
Helson type theorem fails if we allow derivatives of ψ to have singularities of types
important for applications to partial differential equations. One example of this is
Theorem 2.6. In fact, to prove the conclusion of part (ii) of Theorem 2.6 we will use
the sharpness results on the Lq boundedness of Fourier integral operators established
in [21].

Finally, we establish several positive results for homogeneous changes of variable
which may have more singularities than only at the origin. We investigate properties
for mappings of the form

(2.6) f(x) 7→ f(S(x) + T (|x1|, . . . |xn|)),

when acting on modulation spaces or Wiener amalgam spaces. Here S and T are
linear mappings on R

n such that

(2.7) x 7→ S(x) + T ((−1)j1x1, . . . , (−1)jnxn)

is a bijection on R
n, for each choice of j1, . . . jn ∈ {0, 1}. In particular, the following

situations are covered by (2.6):

(i) f(x) 7→ f(|x1|, . . . , |xn|), which follows by choosing

S = 0 and T = IdRn ;

(ii) f(x) 7→ f(x1, . . . , xn−1, |xn|), which follows by choosing

S(x) = (x1, . . . , xn−1, 0) and T = IdRn −S;

(iii) f(x) 7→ f(x1, . . . , xn−1, |x1| + · · ·+ |xn|), which follows by choosing

S(x) = (x1, . . . , xn−1, 0) and T (x) = (0, . . . , 0, x1 + · · ·+ xn).

For such mappings we have the following result:

Theorem 2.8. Assume that p, q ∈ (1,∞), and assume that S and T are linear

mappings on R
n such that for each j1, . . . jn ∈ {0, 1}, the map (2.7) is bijective. Then

the map (2.6) from S (Rn) to S ′(Rn) extends uniquely to continuous mappings on

Mp,q(Rn) and on W p,q(Rn).
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Theorem 2.8 says in particular that if a homogeneous of order one function ψ has
more singularities than only at the origin, then ψ∗ may still be bounded on modulation
and Wiener amalgam spaces Mp,q and W p,q. We note that this type of statement on
FLq appeared in [19] while the case of Mp,p was analysed in [20].

All these results will be proved in Section 4. Some results of this paper were
partially announced by authors in [25].

3. Preliminaries

Let S (Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing smooth
functions and tempered distributions, respectively. We define the Fourier transform
Ff and the inverse Fourier transform F−1f of f ∈ S (Rn) by

Ff(ξ) = f̂(ξ) =

∫

Rn

e−ix·ξ f(x) dx and F
−1f(x) =

1

(2π)n

∫

Rn

eix·ξ f(ξ) dξ.

We introduce modulation spaces based on Gröchenig in [17]. Fix a function ϕ ∈
S (Rn) \ 0 (called the window function). Then the short-time Fourier transform Vϕf
of f ∈ S ′(Rn) with respect to ϕ is defined by

Vϕf(x, ξ) = 〈f,MξTxϕ〉 =

∫

Rn

f(t)ϕ(t− x) e−iξ·t dt

for x, ξ ∈ R
n, where Mξϕ(t) = eiξ·tϕ(t) and Txϕ(t) = ϕ(t − x). We note that, for

f ∈ S ′(Rn), Vϕf is continuous on R
2n and |Vϕf(x, ξ)| ≤ C(1 + |x| + |ξ|)N for some

constants C,N ≥ 0 ([17, Theorem 11.2.3]).
Let 1 ≤ p, q ≤ ∞. Then we let Lp,q1 (R2n) be the set of all F ∈ L1

loc(R
2n) such that

‖F‖Lp,q
1
<∞, where

‖F‖Lp,q
1

=

{∫

Rn

(∫

Rn

|F (x, ξ)|p dx

)q/p
dξ

}1/q

, 1 ≤ p, q <∞,

‖F‖L∞,q
1

=

{∫

Rn

(
ess sup
x∈Rn

|F (x, ξ)|

)q
dξ

}1/q

, 1 ≤ q <∞,

‖F‖Lp,∞
1

= ess sup
x∈Rn

(∫

Rn

|F (x, ξ)|p dx

)1/p

, 1 ≤ p <∞,

‖F‖L∞,∞
1

= ess sup
x,ξ∈Rn

|F (x, ξ)|.

The modulation space Mp,q(Rn) consists of all f ∈ S ′(Rn) such that Vϕf(x, ξ) ∈
Lp,q1 (R2n), i. e. Mp,q(Rn) consists of all f ∈ S ′(Rn) such that ‖f‖Mp,q ≡ ‖Vϕf‖Lp,q

1

is finite. If p = q, we simply write Mp instead of Mp,p. We note that M2,2(Rn) =
L2(Rn), Mp,q(Rn) is a Banach space under the norm ‖ · ‖Mp,q , S (Rn) is dense in
Mp,q(Rn) if 1 ≤ p, q < ∞, and Mp1,q1(Rn) →֒ Mp2,q2(Rn) if p1 ≤ p2 and q1 ≤ q2
(cf. Propositions 11.3.1, 11.3.4, 11.3.5 and Theorem 12.2.2 in [17]). The definition of
Mp,q(Rn) is independent of the choice of the window function ϕ ∈ S (Rn) \ 0, that
is, different window functions yield equivalent norms ([17, Proposition 11.3.2]). We
denote by p′ ∈ [1,∞] the conjugate exponent of p ∈ [1,∞], i. e. 1/p+ 1/p′ = 1.
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Remark 3.1 ([3, Lemma 2.2], [31, Lemma 3.2]). Let 1 ≤ p, q ≤ ∞, and let Mp,q(Rn)
be the completion of S (Rn) under the norm ‖ · ‖Mp,q . Then the following are true:

(i) if 1 ≤ p, q <∞, then Mp,q = Mp,q;
(ii) if 1 ≤ p, q < ∞ then (M∞,q)′ = M1,q′ and (Mp,∞)′ = Mp′,1, and (M∞,∞)′ =

M1,1.

Next, we discuss Wiener amalgam spaces. We let Lp,q2 (R2n) be the set of all F ∈
L1
loc(R

2n) such that ‖F‖Lp,q
2
<∞, where

‖F‖Lp,q
2

=

{∫

Rn

(∫

Rn

|F (x, ξ)|q dξ

)p/q
dx

}1/p

, 1 ≤ p, q <∞,

‖F‖L∞,q
2

= ess sup
x∈Rn

(∫

Rn

|F (x, ξ)|q dξ

)1/q

, 1 ≤ q <∞,

‖F‖Lp,∞
2

=

{∫

Rn

(
ess sup
ξ∈Rn

|F (x, ξ)|

)p
dx

}1/p

, 1 ≤ p <∞,

‖F‖L∞,∞
2

= ess sup
x,ξ∈Rn

|F (x, ξ)|.

Obviously, if F (x, ξ) = G(ξ, x), then F ∈ Lp,q1 if and only if G ∈ Lq,p2 . We set
‖f‖W p,q = ‖Vϕf‖Lp,q

2
. The Wiener amalgam space W p,q(Rn) consists of all f ∈

S ′(Rn) such that ‖f‖W p,q <∞. (Note that the general definition of Wiener amalgam
spaces in [12] permits function and distribution spaces which are not considered here.)
Since

(3.1) |Vϕf(x, ξ)| = (2π)−n
∣∣∣V

bϕf̂(ξ,−x)
∣∣∣ ,

we see that

(3.2) ‖f‖W p,q ≍ ‖f̂‖Mq,p.

This implies that the definition ofW p,q(Rn) is independent of the choice of the window
function ϕ ∈ S (Rn) \ 0, since the modulation space M q,p(Rn) is so. By the same
reason, we also have W p1,q1(Rn) →֒ W p2,q2(Rn) if p1 ≤ p2 and q1 ≤ q2, and other
properties similar to those of Mp,q.

In Appendix A, we consider general modulation spaces and weighted versions of
Wiener amalgam spaces.

4. Proofs of the main results, and some further remarks

In this section we prove our results. The following proposition is needed in the
proof of Theorem 2.1.

Proposition 4.1. Let 1 ≤ p, q ≤ ∞ and Ω be a compact subset of R
n. Then the

following are true:

(i) there exists a constant C > 0 such that

‖f‖Mp,q ≤ C|Ω̃|max(0,1/q−1/p)‖f‖W p,q for all f ∈W p,q(Rn) with supp f ⊂ Ω;
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(ii) there exists a constant C > 0 such that

‖f‖W p,q ≤ C|Ω̃|max(0,1/p−1/q)‖f‖Mp,q for all f ∈Mp,q(Rn) with supp f ⊂ Ω,

where Ω̃ = {x ∈ R
n : dist(x,Ω) < 1}, and C > 0 is independent of Ω.

Proof. Let Ω be a compact subset of R
n, and let ϕ ∈ S (Rn)\0 with suppϕ ⊂ B(0, 1),

where B(0, 1) is the open ball with radius 1 centred at the origin. Assume that
f ∈ S ′(Rn) with supp f ⊂ Ω. Then,

supp Vϕf(·, ξ) ⊂ Ω̃ = Ω +B(0, 1) = {x ∈ R
n : dist(x,Ω) < 1}

for all ξ ∈ R
n.

We first consider the case p ≤ q. By Minkowski’s inequality,

‖f‖Mp,q =

{∫

Rn

(∫

Rn

|Vϕf(x, ξ)|p dx

)q/p
dξ

}1/q

≤

{∫

Rn

(∫

Rn

|Vϕf(x, ξ)|q dξ

)p/q
dx

}1/p

= ‖f‖W p,q .

On the other hand, by Hölder’s inequality,

‖f‖W p,q =

{∫

eΩ

(∫

Rn

|Vϕf(x, ξ)|q dξ

)p/q
dx

}1/p

≤

[{∫

eΩ

(∫

Rn

|Vϕf(x, ξ)|q dξ

)
dx

}p/q
|Ω̃|1−p/q

]1/p

= |Ω̃|1/p−1/q‖f‖Mq,q .

Since Mp,q →֒ M q,q, we see that

‖f‖W p,q ≤ |Ω̃|1/p−1/q‖f‖Mq,q ≤ C|Ω̃|1/p−1/q‖f‖Mp,q .

We next consider the case p ≥ q. In the same way as in the case p ≤ q, by
Minkowski’s inequality, we have ‖f‖W p,q ≤ ‖f‖Mp,q . On the other hand, by Hölder’s
inequality, we see that

‖f‖Mq,q = ‖f‖W q,q =

{∫

eΩ

(∫

Rn

|Vϕf(x, ξ)|q dξ

)
dx

}1/q

≤



{∫

eΩ

(∫

Rn

|Vϕf(x, ξ)|q dξ

)p/q
dx

}q/p

|Ω̃|1−q/p




1/q

= |Ω̃|1/q−1/p‖f‖W p,q .

Hence, it follows from the embedding M q,q →֒ Mp,q that

‖f‖Mp,q ≤ C‖f‖Mq,q ≤ C|Ω̃|1/q−1/p‖f‖W p,q .

The proof is complete. �

We are now ready to prove Theorems 2.1–2.5.
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Proof of Theorem 2.1. The proof of (2.1) is simple if we use the following expressions
for norms in modulation and Wiener amalgam spaces:

(4.1) ‖f‖Mp,q ≍ ‖‖Φ(D − k)u‖Lp
x
‖
lq
k

, ‖f‖W p,q ≍
∥∥∥‖Φ(D − k)u‖lq

k

∥∥∥
Lp

x

,

where Φ ∈ C∞
0 (Rn) satisfies supp Φ ⊂ [−1, 1]n and

∑
k∈Zn Φ(ξ−k) ≡ 1. Now, we can

observe that if Ω ∈ R
n is a compact set contained in an open cube with side-length

2 (but centred at any point) and if f̂ ∈ E ′(Ω) then we get

‖f‖Mp,q ≍
∑

|kj−k0,j |≤2
j=1,...,n

‖Φ(D − k0)u‖Lp, ‖f‖W p,q ≍
∑

|kj−k0,j |≤2
j=1,...,n

‖Φ(D − k0)u‖Lp

for some k0, where k = (k1, . . . , kn) ∈ Z
n and k0 = (k0,1, . . . , k0,n) ∈ Z

n. Moreover, if

the support of f̂ is an arbitrary compact set, we get finite sums of these expressions,
implying the second line in (2.1). The first line follows from the second one by taking
the Fourier transform. Finally, estimates in (2.2) follow from Proposition 4.1. �

We note that the identity

Mp,q ∩ E
′ = FLq ∩ E

′

in (2.1) also follows from Remark 1.3 (4) in [6], and it was announced in several
conferences by the authors, including “Mathematical modeling of wave phenomena
05”, in Växjö, Sweden (see also Remark 4.2 below). A more recent alternative proof
of the latter equality can be found in [20, Lemma 1]. In this context we pay attention
to the simplicity of the proof of Theorem 2.1 here as above, based on our choice of
using the norm (4.1) instead of short time Fourier transforms. The equality

W p,q ∩ E
′ = FLq ∩ E

′

concerning Wiener amalgam spaces W p,q appears to be new.
In Remark 4.2 below we give an extension of (2.1), based on a different technique

compared to the proof of Theorem 2.1, and which involves weighted spaces. These
considerations are dependent on some multiplication and convolution properties for
modulation spaces which we shall discuss now.

Remark 4.2. In addition to two proofs contained in this paper, there are also other
ways to obtain the inclusion (2.1). In fact, we can use the multiplication properties
for modulation spaces in Appendix A to obtain the latter inclusion in a more general
context involving spaces of the form Mp,q

(ω) and W p,q
(ω), which are now dependent of the

weight function ω ∈ P(R2n) (cf. Appendix A for precise definitions of P(R2n), Mp,q
(ω)

and W p,q
(ω).) We claim that

(2.1)′
Mp,q

(ω) ∩ E
′ = W p,q

(ω) ∩ E
′ = FLq(ω0) ∩ E

′, ω(x, ξ) = ω0(ξ) ∈ P(Rn),

Mp,q
(ω) ∩ FE

′ = W p,q
(ω) ∩ FE

′ = Lp(ω) ∩ FE
′, ω(x, ξ)= ω(x) ∈ P0(R

n),

with equivalence of norms.
Indeed, assume that f ∈M∞,q

(ω) ∩ E ′, χ ∈ C∞
0 is equal to 1 in the support of f , and

v0 ∈ P(Rn) is such that ω0 is v0-moderate. Then χ ∈ M1,1
(v) , where v(x, ξ) = v0(ξ).
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Hence Proposition A.1 gives

f = f χ ∈M∞,q
(ω) ·M1,1

v ⊆M1,q
(ω).

This proves that Mp,q
(ω) ∩ E ′ is independent of p. By similar arguments it follows that

W p,q
(ω) ∩ E ′ is independent of p. The first two equalities in (2.1)′ is now a consequence

of (A.1).
The last part of (2.1)′ follows by similar arguments, using Proposition A.2 instead

of Proposition A.1. Alternatively, the second line in (2.1)′ follows from the first line
and the Fourier inversion formula.

Before proving Theorem 2.4, let us point out the following immediate consequence
of Proposition A.1 in Appendix, which we will use to investigate localisation proper-
ties.

Proposition 4.3. Assume that pj , qj ∈ [1,∞] for j = 0, 1, 2 satisfy

1

p1

+
1

p2

=
1

p0

and
1

q1
+

1

q2
= 1 +

1

q0
.

Then the map (f1, f2) 7→ f1 · f2 on S (Rn) extends to continuous mappings from

Mp1,q1(Rn)×Mp2,q2(Rn) to Mp0,q0(Rn), and from W p1,q1(Rn)×W p2,q2(Rn) to W p0,q0(Rn).
Furthermore, each modulation space or Wiener amalgam space is an M∞,1-module

under multiplication.

Proof. The asserted mapping property follows from Proposition A.1, or from Theorem
3 in [11] for modulation spaces and from Theorem 2.4 in [31] for Wiener amalgam
spaces. By letting p1 = ∞ and q1 = 1, it follows that p2 = p0 and q2 = q0. Hence
Mp2,q2 is an M∞,1 module and W p2,q2 is an W∞,1 module. The asserted module
properties now follows from these relations and the fact that M∞,1 ⊆W∞,1. �

In what follows we let Mψ denote the multiplication operator Mψf = ψ · f , for
appropriate functions or distributions f and ψ.

Proposition 4.4. Let 1 ≤ p, q <∞ and ψ ∈ S ′(Rn). Then the following is true:

(i) Mψ is bounded on Mp,q(Rn) if and only if ψ(D) is bounded on W q,p(Rn);
(ii) ψ(D) is bounded on Mp,q(Rn) if and only if Mψ is bounded on W q,p(Rn).

Proof. Assume that ψ(D) is bounded on W q,p(Rn). By (3.2), we see that

‖Mψf‖Mp,q ≍ ‖F−1[Mψf ]‖W q,p = ‖ψ(D)[F−1f ]‖W q,p.

Hence,

‖Mψf‖Mp,q ≤ C‖ψ(D)[F−1f ]‖W q,p

≤ C‖ψ(D)‖L(W q,p)‖F
−1f‖W q,p ≤ C‖ψ(D)‖L(W q,p)‖f‖Mp,q .

In the same way, we can prove the others in Proposition 4.4. �

Remark 4.5. Propositions 4.3 and 4.4 with p = ∞ or q = ∞ hold under the
modification as in Remark 3.1.
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Remark 4.6. We note that Mψ in Proposition 4.4 is bounded on Mp,q and on
W p,q when ψ ∈ M∞,1 by Proposition 4.4. In this context we note that if ψ is a
characteristic function for sets with non-zero Lebesgue measure, then ψ /∈M∞,1 and
ψ /∈ W∞,1, since M∞,1 ⊆ W∞,1 are contained in the set of continuous functions (in
the distributional sense, see Remark 4.7 for the proof).

On the other hand, χ[−1,1]n(D) is bounded on Lp(Rn) and on Mp,q with 1 < p <∞,
but χ[−1,1]n 6∈M∞,1(Rn) (cf. [9, Proposition 3.6] and [2]).

Remark 4.7. We note that W∞,1 is contained in the set of continuous functions (in
the distributional sense). Since M∞,1 ⊆W∞,1 the same is automatically true for the
space M∞,1.

Since we were not able to find this statement in the literature, we will now give a
simple justifying argument. Assume that f ∈ W∞,1 and choose a window function
χ ∈ C∞ such that χ(0) = 1. Then function

ξ 7→ F (fχ(· − x0))(ξ)

belongs to L1 for every fixed x0. Hence its inverse Fourier transform

y 7→ F
−1(F (fχ(· − x0)))(y) = f(y)χ(y − x0)

is continuous. Since χ(y − x0) is smooth and non-zero around y = x0, it follows that
f(y) is continuous around x0. Since x0 was arbitrarily chosen it follows that f is
continuous everywhere.

Proof of Theorem 2.4. Let us first consider condition (ii) in which case the statement
is a straightforward consequence of the same statement for FLq (Beurling–Helson
type theorem; see also [5, 19, 29] for the case of FLq and [20] for the case of Mp,q).
The case of W p,q in (ii) follows if we use the equality (2.1) for the localised versions.

Now, since conditions (i) and (iii) as well as (ii) and (iv) are equivalent, respectively,
in view of relation (2.5), it is enough to show that assumption (i) implies (ii). But
this follows immediately from Proposition 4.3 and the inclusion C∞

0 ⊂M∞,1. �

Proof of Theorem 2.5. Here, because (i) and (ii) are equivalent in view of (2.5), all we
need to show is the boundedness of χ1(x)Iψχ2(x) on Mp,q, where χ1, χ2 ∈ C∞

0 (Rn).
Equivalently, we may show the boundedness of χ1(D)ψ∗χ2(D) on W p,q if we use the
relation (3.2). The latter is induced by the Lq(Rn)–boundedness of χ1(D) and χ2(D)
(1 ≤ q ≤ ∞) due to Young’s inequality (note that the kernels are in L1). �

Proof of Theorem 2.7. Indeed, since pseudo-differential operator a(x,D) with symbol
a ∈M∞,1 is bounded on the modulation space Mp,q(Rn), it is also locally continuous
onMp,q(Rn) in view of Proposition 4.3. But then T = a(x,D)◦Iψ is locally continuous
on Mp,q(Rn) by Theorem 2.5, and hence also on FLq and W p,q by Theorem 2.1. �

Proof of Theorem 2.6. (i) It follows that ψ−1 ∈ C∞(Rn\0) is also positively homo-
geneous or order one. Hence its derivative Dψ−1 is homogeneous of order zero and
hence bounded on R

n. Consequently, ψ∗ is bounded on Lq(Rn) for all 1 ≤ q ≤ ∞
and statement (i) follows from Theorem 2.5.

(ii) Suppose now that ψ∗ is continuous on L(FLq(Rn)) for 1 ≤ q ≤ ∞, q 6= 2.
Then it follows that Iψ is bounded (and hence also locally bounded) on Lq(Rn) (the
conclusion that Iψ is locally bounded on Lq(Rn) is also true if ψ∗ is Fourier-locally
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continuous on L(FLq(Rn))). In turn, this implies that ψ must be a linear function,
if we use the critical orders for the Lq–boundedness of Fourier integral operators
obtained in [21]. For completeness (and also to include boundary cases q = 1 and
q = ∞), let us give this argument in more detail. We can assume that 1 ≤ q < 2
since the case 2 < q ≤ ∞ follows by considering the adjoints.

Let ψ : R
n → R

n and assume that ψ ∈ C∞(Rn\0) and that it is positively homo-
geneous of order one. Let us define k by setting

max
ξ∈Rn\0, y∈Rn

rank∇2ψ(ξ)y = n− k.

First we observe that the canonical relation of the Fourier integral operator Iψ is
given by

Λ = {(∇ψ(ξ)y, ξ, y, ψ(ξ)) : y ∈ R
n, ξ ∈ R

n\0}.

Its projection Σ = π(Λ) to the base space R
n×R

n is a set of dimension ≤ 2n−k. At
points where rank∇2ψ(ξ)y = n−k this is a smooth manifold of dimension 2n−k (with
its conormal bundle equal to Λ). Let it be locally given by the set of defining equations
hj(x, y) = 0, j = 1, . . . , k, with ∇h1, · · · ,∇hk linearly independent. By Hörmander’s
equivalence of phase functions theorem ([18]) we can microlocally rewrite Iψ in the
form

(4.2) Iψf(x) =

∫

Rn

(∫

Rk

ei
Pk

j=1 λjhj(x,y)a(x, λ)f(y)dλ

)
dy,

where λ = (λ1, . . . , λk) and a ∈ S
(n−k)/2
1,0 (Rn × R

k) is (microlocally) elliptic. Now, let

us take f in the form f = (I − ∆)−s/2δy0 for some y0 in the smooth part of the set

Σy = {y ∈ R
n : (x, y) ∈ Σ for some x}.

It follows that f ∈ Lqloc if and only if s > n(1−1/q). Now, let b(x, λ) ∈ S
−s+(n−k)/2
1,0 (Rn×

R
k) be the amplitude of the Fourier integral operator Iψ ◦ (I − ∆)−s. Denoting

h = (h1, . . . , hk), we easily find that

Iψf(x) = (2π)kF−1

λ
b(x, h(x, y0)) ≈ |dist (x,Σy0)|

−k+s−(n−k)/2,

locally uniformly in x, where Σy0 is the set of all x ∈ R
n such that (x, y0) ∈ Σ.

Since Iψf is smooth along Σy0 , we find that Iψf 6∈ Lqloc(R
n) if and only if s ≤

k(1 − 1/q) + (n − k)/2. Thus, if n(1 − 1/q) < k(1 − 1/q) + (n − k)/2, operator Iψ
is not locally continuous on Lq(Rn). Since we assumed that 1 ≤ q < 2 and that Iψ
is locally continuous on Lq(Rn), it follows that k = 0, which means that ψ must be
linear. �

Remark 4.8. Theorem 2.5 has another interesting relation with the Lp–properties
of Fourier integral operators. Suppose that the inverse ψ−1 of ψ ∈ C∞(Rn) can be
written in the form

ψ−1(x) = Ax+ δ(x),

for some real-valued non-degenerate matrix A and δ ∈ S0(Rn) with ‖Dδ‖ ≪ 1. Then
using the expression (4.1) for norms we have

‖Iψf‖Mp,q

loc
=
∥∥∥‖Φ(D − k)Iψf‖Lp

x,loc

∥∥∥
lq
k

.
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Taking f ∈ Mp,q
comp, we have

‖Φ(D − k)Iψf‖Lp

x,loc
= ‖Φ(D − k)

∫∫
ei(x·ψ

−1(ξ)−y·ξ)| detDψ−1(ξ)|f(y)dξdy‖Lp

x,loc

= ‖Φ(D − k)eixδ(D)| detDψ−1(D)| | detA−1| f‖Lp

x,loc
.

Now, we observe the estimate

‖Φ(D − k)eixδ(D)g‖Lp

loc
=

∥∥∥∥∥Φ(D − k)

∞∑

j=0

(ixδ(D))j

j!
g(x)

∥∥∥∥∥
Lp

loc

≤ C‖Φ(D − k)g‖Lp

loc
,

which holds since x is bounded and δ is of order zero. Combining these estimates
together and using the boundedness of | detDψ−1(D)| on Lp, we get that Iψ is locally
bounded on Mp,q for 1 < p <∞.

Before proving Theorem 2.8, we first consider the simple case of it allowing a
harmonic analysis interpretation.

Remark 4.9. Let us prove that

(4.3) ‖f(| · |)‖Mp,q ≤ C‖f‖Mp,q for all f ∈Mp,q(R),

where 1 < p, q <∞. Since

f(|x|) = f(|x|)χ(−∞,0)(x) + f(|x|)χ[0,∞)(x)

= f(−x)χ(−∞,0)(x) + f(x)χ[0,∞)(x),

if Mχ(−∞,0)
and Mχ[0,∞)

are bounded on Mp,q(Rn), then

‖f(| · |)‖Mp,q ≤ ‖Mχ(−∞,0)
(f(−·))‖Mp,q + ‖Mχ[0,∞)

f‖Mp,q

≤
(
‖Mχ(−∞,0)

‖L(Mp,q) + ‖Mχ[0,∞)
‖L(Mp,q)

)
‖f‖Mp,q ,

that is, we obtain (4.3), where Mχ is the operator of multiplication by χ (see Propo-
sition 4.3). Hence, it is enough to prove the boundedness of Mχ(−∞,0)

and Mχ[0,∞)
on

Mp,q(R). By Proposition 4.4, if χ(−∞,0)(D) and χ[0,∞)(D) are bounded on W q,p(R),
then Mχ(−∞,0)

and Mχ[0,∞)
are also bounded on Mp,q(R). Let us prove the bound-

edness of χ(−∞,0)(D) and χ[0,∞)(D) on W p,q(R) for all 1 < p, q < ∞. We recall
that

(4.4) ‖f‖W p,q(R) ≍

∥∥∥∥∥∥

(
∑

k∈Z

|Φ(D − k)f |q

)1/q
∥∥∥∥∥∥
Lp(R)

,

(see the proof of Theorem 2.1). On the other hand, it is known that, for all 1 <
p, q <∞,

(4.5)

∥∥∥∥∥∥

(
∑

k

|Hfk|
q

)1/q
∥∥∥∥∥∥
Lp(R)

≤ Cp,q

∥∥∥∥∥∥

(
∑

k

|fk|
q

)1/q
∥∥∥∥∥∥
Lp(R)

,
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where H is the Hilbert transform,

Hf(x) = F−1[(−i sgn ξ)f̂ ], sgn ξ =






1, ξ > 0

0, ξ = 0

−1, ξ < 0.

(see [9, Theorem 8.1]). Since

χ(−∞,0)(ξ) = −(sgn ξ − 1)/2 and χ[0,∞)(ξ) = (sgn ξ + 1)/2

for all ξ 6= 0, we have

(4.6) χ(−∞,0)(D) = −(iH − I)/2 and χ[0,∞)(D) = (iH + I)/2

where If = f . Combining (4.4), (4.5) and (4.6), we see that χ(−∞,0)(D) and χ[0,∞)(D)
are bounded on W p,q(R).

In the general case of Theorem 2.8, the proof is based on some investigations of
Gabor expansions of elements in Mp,q and W p,q. More precisely, let {xj}j∈I and
{ξk}k∈I be lattices in R

n, and consider functions or distributions of the form

f(x) =
∑

j,k∈I

cj,ke
i〈x,ξk〉χ(x− xj),

for some sequences c = {cj,k}j,k∈I and χ ∈ Mp0 \ 0, where 1 ≤ p0 ≤ 2. We note that
f makes sense as an element in Mp0 when c belongs to l10, the set of all sequences
d = {dj,k}j,k∈I such that dj,k = 0, except for a finite numbers of j and k. We are
especially concerned with finding conditions on p ∈ [1,∞] and q ∈ [1,∞] such that
f still makes sense when c belongs to lp,q1 or lp,q2 . Here lp,q1 consists of all sequences
d = {dj,k}j,k∈I such that

‖d‖lp,q
1

≡
(∑

k∈I

(∑

j∈I

|cj,k|
p
)q/p)1/q

<∞

(with obvious interpretation when p = ∞ or q = ∞), and lp,q2 consists of all sequences
d = {dj,k}j,k∈I such that

‖d‖lp,q
2

≡
(∑

j∈I

(∑

k∈I

|cj,k|
q
)p/q)1/p

<∞

We have the following proposition.

Proposition 4.10. Assume that p, p0, q ∈ [1,∞] satisfy 1 ≤ p0 ≤ min(p, p′, q, q′),
and let {xj}j∈I and {ξk}k∈I be lattices in R

n. Then the map

( {cj,k}j,k∈I , χ) 7→
∑

j,k∈I

cj,ke
i〈x,ξk〉χ(x− xj)

from l10 ×M1 to M1 extends uniquely to a continuous map from lp,q1 ×Mp0 to Mp,q,

and from lp,q2 ×Mp0 to W p,q. Furthermore, for some constant C it holds
∥∥∥
∑

j,k∈I

cj,ke
i〈x,ξk〉χ(x− xj)

∥∥∥
Mp,q

≤ C‖{cj,k}j,k∈I‖lp,q
1
‖χ‖Mp0(4.7)
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and
∥∥∥
∑

j,k∈I

cj,ke
i〈x,ξk〉χ(x− xj)

∥∥∥
W p,q

≤ C‖{cj,k}j,k∈I‖lp,q
2
‖χ‖Mp0 .(4.8)

Proof. We only prove the mapping properties for lp,q1 . The other case follows by
similar arguments and is left for the reader.

We may assume that p0 = min(p, p′, q, q′). First we observe that the result holds in
the case p0 = 1 or p0 = 2, in view of the general Gabor theory on modulation spaces
(cf. Chapters 6 and 12 in [17]). The result now follows for general p0, by multi-linear
interpolation between these cases. The proof is complete. �

Next we consider multiplication properties of Mp,q spaces and W p,q with certain
types of step functions. For this reason it is convenient to make the following defini-
tion.

Definition 4.11. Let

(1) Σ0(R
n) be the set of all functions ψ such that

ψ =
∑

j∈Λ

cjχxj+Q

for some cube Q ⊆ R
n, lattice {xj}j∈Λ ⊆ R

n and sequence {cj}j∈Λ ∈ l∞;

(2) Σ(Rn) be the set of all functions ψ such that

ψ =
∑

j∈Λ

ϕjχxj+Q

for some cube Q ⊆ R
n, lattice {xj}j∈Λ ⊆ R

n and sequence {ϕj}j∈Λ ⊆ C∞(Rn)
such that {∂αϕj}j∈Λ is a bounded sequence in L∞ for every multi-index α.

We have now the following result.

Proposition 4.12. Assume that ψ ∈ Σ(Rn) and 1 < p, q < ∞. Then the map Mψ

from S (Rn) to S ′(Rn) extends uniquely to a continuous map on Mp,q(Rn) and on

W p,q(Rn).

Proof. It is no restriction to assume that ψ is as in Definition 4.11 with {xj}j∈J = Z
n

and

Q = { x ∈ R
n ; 0 ≤ x1, . . . , xn ≤ 1 }.

We only prove the assertion for Mp,q. The other case follows by similar arguments
and is left for the reader.

First we assume that ψ ∈ Σ0, and we let χj(t) for j = 0, 1, 2 and t ∈ R be defined
by the formulas

χ0(t) = max(1 − |t|, 0), χ1(t) = χ0(t)χ(−1,0)(t), and χ2(t) = χ0(t)χ(0,1)(t),

where χ(a,b) is the characteristic function of the interval (a, b). By straight-forward
computations it follows that χ0 ∈ M1(R), and that χ(−1,0), χ(0,1) ∈ M1,q for every
q > 1. Hence Proposition 4.3 gives

χ1, χ2 ∈M1 ·M1,p0 ⊆M∞,1 ·M1,p0 ⊆M1,p0 ⊆Mp0 ,
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when p0 = min(p, p′, q, q′) > 1, and if

κ0 ≡ χ0 ⊗ · · · ⊗ χ0, κl ≡ χl1 ⊗ · · · ⊗ χln , l = (l1, . . . , ln) ∈ {1, 2}n,

with n factors in the tensor products, then κ0 ∈ M1(Rn), κl ∈ Mp0(Rn) when l ∈
{1, 2}n, and

(4.9) κ0 =
∑

l

κl.

Next assume that f ∈Mp,q is arbitrary, and let {xj}j∈J = Z
n. Then

f(x) =
∑

j,k∈J

cj,ke
i〈x,ξk〉κ0(x− xj),

for some lattice {ξk}k∈J and sequence {cj,k} ∈ lp,q1 . This follows from the general
Gabor theory for modulation spaces (cf. Chapter 12 in [17]). Furthermore, by Propo-
sition 4.10 it follows that

fl(x) ≡
∑

j,k∈J

cj,ke
i〈x,ξk〉κl(x− xj)

makes sense as an element in Mp,q for every l ∈ {1, 2}n, and, hence

f =
∑

l

fl

in view of (4.9). It therefore suffices to prove that ψ · fl ∈Mp,q for every l.
First assume that {cj,k} ∈ l10. From the assumptions if follows that

ψ(x) =
∑

j∈J

djχQ(x− xj),

where χQ is the characteristic function of the unit cube [0, 1]n, and {dj} ∈ l∞.
Then ψ · fl ∈Mp,q is well-defined, and by the definitions we have

ψ(x) · fl(x) =
∑

j,k∈J

c̃j,ke
i〈x,ξk〉κl(x− xj),

where

c̃j,k = cj,kdj .

Since {dj} ∈ l∞, it follows that

‖{c̃j,k}‖lp,q
1

≤ ‖{cj,k}‖lp,q
1
‖{dj}‖l∞ <∞.

Hence ψfl ∈Mp,q in view of Proposition 4.10, and the result follows in this case.
Next assume that ψ ∈ Σ is arbitrary, ϕj as in Definition 4.11 (2), and let C > 0.

Then we may split up {xj}j∈Λ into sublattices {xj}j∈Λ1,. . . ,{xj}j∈ΛN
such that if

j1, j2 ∈ Λm and j1 6= j2 for some 1 ≤ m ≤ N , then the distance dj1,j2 between xj1 +Q
and xj2 +Q is larger than C. Now set

ψm =
∑

j∈Λm

ϕjχxj+Q.

Since ψ =
∑

mψm, the result follows if we prove that the map f 7→ ψm · f extends
uniquely to a continuous map on Mp,q and on W p,q for every 1 ≤ m ≤ N .
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From the fact that dj1,j2 ≥ C it follows that there is a non-negative function
φ ∈ C∞

0 (Rn) such that φ = 1 on Q and suppφj1 ∩ supp φj2 = ∅ when j1, j2 ∈ Λm for
some m and j1 6= j2. Here φj = φ(· − xj). This gives ψm = b c where

b =
∑

j∈Λm

χxj+Q and c =
∑

j∈Λm

φjϕj

In particular, c is a smooth function on R
n and bounded together with all its deriva-

tives, and b ∈ Σ0(R
n), which imply that

c ∈M∞,1 ⊆W∞,1.

By the first part of the proof, and Proposition 4.3, it follows that Mb and Mc are
bounded on Mp,q and on W p,q.

Hence

‖ψm · f‖Mp,q = ‖MbMcf‖Mp,q ≤ C1‖f‖Mp,q , f ∈ S ,

for some constant C1, and similarly when the Mp,q norms are replaced by W p,q norms.
This proves that Mψ extends to continuous mappings on Mp,q and on W p,q. It also
follows that these extensions are unique since S is dense in Mp,q and W p,q. The
proof is complete. �

Proof of Theorem 2.8. Assume that f ∈ S . For any θ ∈ {0, 1}n, set

gθ(x1, . . . , xn) = f(S(x) + T ((−1)θ1x1, . . . , (−1)θnxn))χ((−1)θ1x1, . . . , (−1)θnxn),

where χ is the characteristic function of the set

{ x ∈ R
n ; xj > 0 }.

Since compositions by affine mappings are continuous operations on modulation
spaces, Proposition 4.12 shows that the map f 7→ gθ from S to S ′ is uniquely
extendable to a continuous map on Mp,q and on W p,q. The assertions is now a
consequence of the fact that

f(S(x) + T (|x1|, . . . , |xn|)) =
∑

θ∈{0,1}n

gθ, in S
′(Rn),

when f ∈ S (Rn). The proof is complete. �

5. Wiener type spaces on the torus, and properties of periodic

distributions

In this section we will indicate counterparts of our results in the case of spaces
on the torus as well as make several related observations. Some of these remarks
concern Wiener type properties for periodic distributions. In fact, there is a one-to-
one corresponding between periodic distributions (periodic continuous functions) and
distributions (continuous functions), respectively, on the torus.

We fix the notation T
n = (R/2πZ)n as well as the Fourier transform and its inverse

given by

(Ff)(ξ) = f̂(ξ) = (2π)−n
∫

Tn

e−ix·ξf(x)dx, f(x) =
∑

ξ∈Zn

eix·ξf̂(ξ).
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For the analysis of pseudo-differential operators on the torus using the Fourier series
and for the justification of operators below we refer to [26]. We note also that canoni-
cal transforms on the torus can be viewed as a special case of Fourier series operators
considered in [26].

A straightforward modification of the definitions of the modulation and Wiener
amalgam spaces from (4.1) is

‖f‖Mp,q(Tn) ≍
∥∥‖Φ(D − k)f‖Lp

x(Tn)

∥∥
lq
k
(Zn)

,

‖f‖W p,q(Tn) ≍
∥∥∥‖Φ(D − k)f‖lq

k
(Zn)

∥∥∥
Lp

x(Tn)
,

for some Φ with compact support in Z
n (in the discreet topology). Then we can

easily observe the equalities (which can be regarded as a counterpart of Theorem 2.1
in the local setting)

(5.1) Mp,q(Tn) = W p,q(Tn) = F lq(Tn) for all 1 ≤ p, q ≤ ∞.

In particular, in the case of q = 1 this equality can be viewed as a characterisation
of absolutely convergent Fourier series.

Further, as a counterpart of Theorem 2.4 the Beurling–Helson property automat-
ically holds on Mp,q(Tn) and W p,q(Tn) because of the original Beurling and Helson
theorem [5] (q = 1) as well as extensions for other q ([19, 29]).

As a counterpart of Theorem 2.5 we observe that if ψ : Z
n → Z

n is a bijection then
the canonical transform Iψ is bounded on Mp,q(Tn) for all 1 ≤ p, q ≤ ∞. Indeed, let

f ∈Mp,q(Tn). Then f̂ ∈ lq(Zn) and hence

‖Iψf‖Mp,q(Tn) =
∥∥∥ψ∗f̂

∥∥∥
lq(Zn)

=

(
∑

ξ∈Zn

∣∣∣f̂(ψ(ξ))
∣∣∣
q
)1/q

=
∥∥∥f̂
∥∥∥
lq(Zn)

≍ ‖f‖Mp,q(Tn).

Next, we recall the result of [4] that for 0 ≤ α ≤ 2 operators ei|D|α are bounded on
modulation spaces Mp,q(Rn), 1 ≤ p, q ≤ ∞ (for the definition see Remark 3.1). In
particular, this covers wave and Schrödinger propagators.

To give a counterpart of Remark 2.2 on the torus, using (5.1) we easily conclude
that propagators ei|D|α are bounded on Mp,q(Tn) and W p,q(Tn) for all 1 ≤ p, q ≤ ∞
and all α ∈ R. Moreover, they are isometries on these spaces if we induce their norms
from the space F lq(Tn).

We also note that results of this section can be extended to general compact Lie
groups G if we use a natural extension of the global definition of modulation and
Wiener amalgam spaces using the duality between G and the space of its continuous
irreducible unitary representations Ĝ (as in [27]).

We finish this section with the following proposition for periodic distributions,
parallel to (5.1). Here we refer to Appendix A for the definition of the weighted
spaces Mp,q

(ω) and W p,q
(ω).

Proposition 5.1. Assume that p, q ∈ [1,∞], f ∈ S ′(Rn) is periodic, and that

ω ∈ P(R2n) is such that ω(x, ξ) = ω0(ξ), for some ω0 ∈ P(Rn). Then the following

conditions are equivalent:

(1) f ∈M∞,q
(ω) (Rn);
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(2) χ · f ∈Mp,q
(ω)(R

n), for each χ ∈ S (Rn);

(3) f ∈W∞,q
(ω) (Rn);

(4) χ · f ∈W p,q
(ω)(R

n), for each χ ∈ S (Rn);

(5) χ · f ∈ FLq(ω0)(R
n), for each χ ∈ S (Rn).

Proof. Since S (Rn) is contained in each space of the form Mp,q
(v) (R

n) and W p,q
(v) (R

n),

when v ∈ P(R2n), it follows from Proposition A.1 in Appendix A that (1) implies
(2) and (3) implies (4).

Next assume that (2) is fulfilled, and consider F (x, ξ) = Vϕf(x, ξ), where ϕ ∈
C∞

0 \0. Then F (x, ξ) is a smooth function and period in the x-variable, with the same
period t ∈ R

n as f . Let Q ⊆ R
n be a cube with side length t, and let χ ∈ C∞

0 (Rn)
be equal to 1 in the set Q+ suppϕ. Then we have

‖f‖M∞,q

(ω)
=
(∫

ess sup
x∈Rn

|Vϕf(x, ξ)|q dξ
)1/q

=
(∫

ess sup
x∈Q

|Vϕf(x, ξ)|q dξ
)1/q

=
(∫

ess sup
x∈Q

|(Vϕ(χ · f))(x, ξ)|q dξ
)1/q

= ‖χf‖M∞,q

(ω)
≤ C‖χf‖Mp,q

(ω)
<∞.

This proves that (2) is equivalent to (1).
In the same way it follows that (3) is equivalent to (4). In particular, if (2) or (4)

are fulfilled for a particular p, then they are fulfilled for any p ∈ [1,∞]. Hence, (A.1)
in Appendix A gives that (2), (4) and (5) are equivalent. This proves the result. �

Appendix A, Some remarks on weighted Wiener type spaces

In this appendix we make some reviews of general (or weighted) modulation spaces
and weighted versions of W p,q, and some multiplication and convolution proerties
of such spaces. We start to consider appropriate conditions on the involved weight
functions.

Assume that 0 < ω, v ∈ L∞
loc(R

n). Then ω is called v-moderate, if ω(x + y) ≤
Cω(x)v(y), for some constant C which is independent of x, y ∈ R

n. If in addition,
v can be chosen as a polynomial, then ω is called polynomial moderated. We let
P(Rn) be the set of polynomial moderated functions on R

n. For any ω ∈ P(Rn), it
follows that

P (x)−1 ≤ ω(x) ≤ P (x),

for some polynomial P on R
n.

Next assume that ϕ ∈ S (Rn) \ 0 and ω ∈ P(R2n) are fixed. Then the modulation
space Mp,q

(ω)(R
n) consists of all f ∈ S ′(Rn) such that Vϕf(x, ξ)ω(x, ξ) ∈ Lp,q1 (R2n),

and with equipp by the norm ‖f‖Mp,q

(ω)
≡ ‖Vϕf ω‖Lp,q

1
is finite. We also let the Wiener

amalgam related space W p,q
(ω)(R

n) be the set of f ∈ S ′(Rn) such that ‖f‖Mp,q

(ω)
≡

‖Vϕf ω‖Lp,q
2

is finite.

If ω ∈ P(Rn), then we let Lp(ω)(R
n) be the set of all f ∈ L1

loc(R
n) such that

‖f ω‖Lp <∞, and we let FLq(ω)(R
n) be the set of all f ∈ S ′(Rn) such that ‖f̂ ω‖Lq <
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∞. By Proposition 1.7 in [31] and Theorem 3.2 in [32] it follows that the embeddings

(A.1)

Mp,q1
(ω) (Rn) ⊆ Lp(ω0)(R

n) ⊆ Mp,q2
(ω) (Rn), ω(x, ξ) = ω0(x) ∈ P(Rn),

Mp1,q
(ω) (Rn) ⊆ FLq(ω0)(R

n) ⊆Mp2,q
(ω) (Rn), ω(x, ξ) = ω0(ξ) ∈ P(Rn),

W p,q1
(ω) (Rn) ⊆ Lp(ω0)(R

n) ⊆ W p,q2
(ω) (Rn), ω(x, ξ) = ω0(x) ∈ P(Rn),

W p1,q
(ω) (Rn) ⊆ FLq(ω0)(R

n) ⊆W p2,q
(ω) (Rn), ω(x, ξ) = ω0(ξ) ∈ P(Rn),

hold for each p, pj, q, qj ∈ [1,∞] for j = 1, 2 such that

p1 ≤ min(q, q′), p2 ≥ max(q, q′), q1 ≤ min(p, p′), q2 ≥ max(p, p′).

Almost all properties for non-weighted modulation spaces and Wiener amalgam
spaces can be generalised to spaces of the form Mp,q

(ω) and W p,q
(ω). For example these

spaces are Banach spaces, and independent of the choice of window function ϕ ∈
S (Rn)\0, where different choices of ϕ give rise to equivalent norms. Furthermore, if
p1 ≤ p2, q1 ≤ q2 and ω2 ≤ Cω1 for some constant C, then Mp1,q1

(ω1) ⊆ Mp2,q2
(ω2) . We also

have that

(3.2)′ ‖f‖W p,q

(ω)
≍ ‖f̂‖Mq,p

(ω0)
, ω0(ξ,−x) = ω(x, ξ),

and we note that

Mp,q
(ω)(R

n) ⊆W p,q
(ω)(R

n) when q ≤ p

and

W p,q
(ω)(R

n) ⊆Mp,q
(ω)(R

n) when p ≤ q.

Next we discuss multiplication and convolution properties for modulation spaces.
Assume that ω0, . . . , ωN ∈ P(R2n), p0, . . . , pN ∈ [1,∞] and q0, . . . , qN ∈ [1,∞] satisfy

(A.2)

ω0(x, ξ1 + · · · + ξN) ≤ Cω1(x, ξ1) · · ·ωN(x, ξN),

1

p1
+ · · ·+

1

pN
=

1

p0
and

1

q1
+ · · ·+

1

qN
= N − 1 +

1

q0
,

for some constant C which is independent of x, ξ1, . . . , ξN ∈ R
n. Then

‖f1 · · · fN‖Mp0,q0
(ω0)

≤ CN‖f1‖Mp1,q1
(ω1)

· · · ‖fN‖MpN ,qN
(ωN )

(A.3)

and

‖f1 · · · fN‖W p0,q0
(ω0)

≤ CN‖f1‖W p1,q1
(ω1)

· · · ‖fN‖W pN,qN
(ωN )

,(A.4)

for some constant C which is independent of N and f1, . . . fN ∈ S (Rn). Here the first
inequality is a consequence of [11, Theorem 3] and its proof. The second inequality
is an immediate consequence of [32, Theorem 5.5]. By Hahn-Banach’s theorem it
follows that the map

(f1, . . . , fN) 7→ f1 · · · fN

from S × · · · × S to S extends to a continuous multiplication from Mp1,q1
(ω1) × · · · ×

MpN ,qN
(ωN ) to Mp0,q0

(ω0) , and from W p1,q1
(ω1) × · · · ×W pN ,qN

(ωN ) to W p0,q0
(ω0) .
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If instead ω0, . . . , ωN ∈ P(R2n), p0, . . . , pN ∈ [1,∞] and q0, . . . , qN ∈ [1,∞] satisfy

(A.5)

ω0(x1 + · · · + xN , ξ) ≤ Cω1(x1, ξ) · · ·ωN(xN , ξ),

1

p1
+ · · ·+

1

pN
= N − 1 +

1

p0
and

1

q1
+ · · ·+

1

qN
=

1

q0
,

for some constant C which is independent of x1, . . . , xN , ξ ∈ R
n, then we have

‖f1 ∗ · · · ∗ fN‖Mp0,q0
(ω0)

≤ CN‖f1‖Mp1,q1
(ω1)

· · · ‖fN‖MpN ,qN
(ωN )

,(A.6)

‖f1 ∗ · · · ∗ fN‖W p0,q0
(ω0)

≤ CN‖f1‖W p1,q1
(ω1)

· · · ‖fN‖W pN ,qN
(ωN )

,(A.7)

for some constant C which is independent of N and f1, . . . fN ∈ S (Rn). By Hahn-
Banach’s theorem it follows that the convolution map

(f1, . . . , fN) 7→ f1 ∗ · · · ∗ fN

from S × · · · × S to S extends to a continuous multiplication from Mp1,q1
(ω1) × · · · ×

MpN ,qN
(ωN ) to Mp,q

(ω), and from W p1,q1
(ω1) × · · · ×W pN ,qN

(ωN ) to W p,q
(ω).

A problem here concerns the uniqueness for the extensions of multiplications and
convolutions, since it easily appears that there may be situations where more than
one of those pj or qj are allowed to be equal to ∞. Consequently, S might fail to be
dense in more than one of the involved modulation or Wiener amalgam related spaces.
In these situations, we define multiplications and convolutions between elements in
modulation spaces in the same way as in [31, 32], using the formulae

(A.8)

(f1 · · · fN , g) =

∫∫ (
Vϕ1f1(x, · ) ∗ · · · ∗ VϕN

fN(x, · )
)
(ξ)Vϕ0g(x, ξ)dxdξ,

where ϕ0, . . . , ϕN ∈ S (Rn) satisfy

∫
ϕ1(x) · · ·ϕN(x)ϕ0(x) dx = (2π)−Nn.

and

(A.9)

(f1 ∗ · · · ∗ fN , ϕ) =

∫∫ (
Vϕ1f1( · , ξ) ∗ · · · ∗ VϕN

fN( · , ξ)
)
(x)Vϕ0g(x, ξ) dxdξ,

where ϕ0, . . . , ϕN ∈ S (Rn) satisfy

∫
(ϕ1 ∗ · · · ∗ ϕN)(x)ϕ0(x) dx = (2π)−n,

when f1, . . . , fN , g ∈ S (Rn) (cf. (2.3) in [31] and (5.4) in [32]). Theorem 5.5 in [32]
and its proof then shows that the following propositions are true:

Proposition A.1. Assume that pj, qj ∈ [1,∞] and ωj ∈ P(R2n) for j = 0, . . . , N
satisfy (A.2) for some constant C, independent of x, ξ1, . . . , ξN ∈ R

n. Then the

following is true:

(1) (f1, . . . , fN) 7→ f1 · · · fN is a continuous, symmetric and associative map from

Mp1,q1
(ω1) (Rn) × · · · × MpN ,qN

(ωN ) (Rn) to Mp0,q0
(ω0) (Rn), which is independent of the

choice of ϕ0, . . . , ϕN in (A.8). Furthermore, (A.3) holds for some constant C
which is independent of fj ∈M

pj ,qj
(ωj ) (Rn) for j = 1, . . . , N ;
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(2) (f1, . . . , fN) 7→ f1 · · · fN is a continuous, symmetric and associative map from

W p1,q1
(ω1) (Rn) × · · · × W pN ,qN

(ωN ) (Rn) to W p0,q0
(ω0) (Rn), which is independent of the

choice of ϕ0, . . . , ϕN in (A.8). Furthermore, (A.4) holds for some constant C
which is independent of fj ∈M

pj ,qj
(ωj ) (Rn) for j = 1, . . . , N .

Proposition A.2. Assume that pj, qj ∈ [1,∞] and ωj ∈ P(R2n) for j = 0, . . . , N
satisfy (A.5) for some constant C, independent of x1, . . . , xN , ξ ∈ R

n. Then the

following is true:

(1) (f1, . . . , fN) 7→ f1 ∗ · · · ∗ fN is a continuous, symmetric and associative map

from Mp1,q1
(ω1) (Rn) × · · · ×MpN ,qN

(ωN ) (Rn) to Mp0,q0
(ω0) (Rn), which is independent of

the choice of ϕ0, . . . , ϕN in (A.9). Furthermore, (A.6) holds for some constant

C which is independent of fj ∈M
pj ,qj
(ωj)

(Rn) for j = 1, . . . , N ;

(2) (f1, . . . , fN) 7→ f1 ∗ · · · ∗ fN is a continuous, symmetric and associative map

from W p1,q1
(ω1) (Rn) × · · · ×W pN ,qN

(ωN ) (Rn) to W p0,q0
(ω0) (Rn), which is independent of

the choice of ϕ0, . . . , ϕN in (A.9). Furthermore, (A.7) holds for some constant

C which is independent of fj ∈M
pj ,qj
(ωj)

(Rn) for j = 1, . . . , N .
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Stuttgart, 1981, pp. 153–165.

[13] H. G. Feichtinger, Modulation spaces on locally compact abelian groups. Technical report,
University of Vienna, Vienna, 1983; also in: M. Krishna, R. Radha, S. Thangavelu (Eds)
Wavelets and their applications, Allied Publishers Private Limited, NewDehli Mumbai Kolkata
Chennai Hagpur Ahmedabad Bangalore Hyderbad Lucknow, 2003, pp.99–140.

http://arxiv.org/abs/0801.1444


CHANGES OF VARIABLES IN MODULATION AND WIENER AMALGAM SPACES 25
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