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Abstract. In this note we formulate recent stability results for Hardy inequalities
in the language of Folland and Stein’s homogeneous groups. Consequently, we
obtain remainder estimates for Rellich type inequalities on homogeneous groups.
Main differences from the Eucledian results are that the obtained stability estimates
hold for any homogeneous quasi-norm.

1. Introduction

Recall the Lp-Hardy inequality∫
Rn

|∇f(x)|pdx ≥
(
n− p
p

)p ∫
Rn

|f(x)|p

|x|p
dx (1.1)

for every function f ∈ C∞0 (Rn), where 2 ≤ p < n.
Cianchi and Ferone [CF08] showed that for all 1 < p < n there exists a constant

C = C(p, n) such that∫
Rn

|∇f |pdx ≥
(
n− p
p

)p ∫
Rn

|f |p

|x|p
dx (1 + Cdp(f)2p

∗
)

holds for all real-valued weakly differentiable functions f in Rn such that f and
|∇f | ∈ Lp(Rn) go to zero at infinity. Here

dp(f) = inf
c∈R

‖f − c|x|−
n−p
p ‖Lp∗,∞(Rn)

‖f‖Lp∗,p(Rn)

with p∗ = np
n−p , where Lτ,σ(Rn) is the Lorentz space for 0 < τ ≤ ∞ and 1 ≤ σ ≤ ∞.

Sometimes the improved versions of different inequalities, or remainder estimates,
are called stability of the inequality if the estimates depend on certain distances:
see, e.g. [BJOS16] for stability of trace theorems, [CFW13] for stability of Sobolev
inequalities, etc. For more general Lie group discussions of above inequalities we refer
to recent papers [RS17a], [RS17b], [RS17c] and [RS17] as well as references therein.

Recently Sano and Takahashi obtained interesting improved versions of (1.1) in
their works [S17], [ST17a], [ST17b] and [ST15]. The aim of this note is to formulate
their results for one of the largest classes of nilpotent Lie groups on Rn, namely,
homogeneous Lie groups since obtained results give new insights even for the Abelian
groups in term of arbitrariness of homogeneous quasi-norms.
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2. Preliminaries

First let us shortly review some main concepts of homogeneous groups following
Folland and Stein [FS82] as well as a recent treatise [FR16]. We also recall a few
other facts that will be used in the proofs. A connected simply connected Lie group
G is called a homogeneous group if its Lie algebra g is equipped with a family of the
following dilations:

Dλ = Exp(A lnλ) =
∞∑
k=0

1

k!
(ln(λ)A)k,

where A is a diagonalisable positive linear operator on g, and every Dλ is a morphism
of g, that is,

∀X, Y ∈ g, λ > 0, [DλX,DλY ] = Dλ[X, Y ],

holds. We recall that Q := TrA is called the homogeneous dimension of G. The
Haar measure on a homogeneous group G is the standard Lebesgue measure for Rn

(see, for example [FR16, Proposition 1.6.6]).
Let | · | be a homogeneous quasi-norm on G. Then the quasi-ball centred at x ∈ G

with radius R > 0 is defined by

B(x,R) := {y ∈ G : |x−1y| < R}.
We refer to [FS82] for the proof of the following important polar decomposition on
homogeneous Lie groups, which can be also found in [FR16, Section 3.1.7]: there is
a (unique) positive Borel measure σ on the unit quasi-sphere

S := {x ∈ G : |x| = 1}, (2.1)

so that for every f ∈ L1(G) we have∫
G
f(x)dx =

∫ ∞
0

∫
S

f(ry)rQ−1dσ(y)dr. (2.2)

We use the notation

Rf(x) := R|x|f(x) =
d

d|x|
f(x) = Rf(x), ∀x ∈ G, (2.3)

for any homogeneous quasi-norm |x| on G.
The following result (see [ORS16] and [RS16a]) with an anisotropic Caffarelli-Kohn-

Nirenberg inequality will play an important role in our analysis:

Lemma 2.1 ([ORS16]). Let G be a homogeneous group of homogeneous dimension
Q. Then for f ∈ C∞0 (G\{0}) we have∥∥∥∥∥∥ f − fR

|x|
Q
p log R

|x|

∥∥∥∥∥∥
Lp(G)

≤ p

p− 1

∥∥∥|x| p−Q
p Rf

∥∥∥
Lp(G)

, 1 < p <∞, (2.4)

for all R > 0, and the constant p
p−1 is sharp.

In the abelian isotropic case, the following result was obtained in [MOW15]. In
the case γ = p this result on the homogeneous group was proved in [RS16b].

We will also use the following known relations

Lemma 2.2. Let a, b ∈ R. Then
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i. We have

|a− b|p − |a|p ≥ −p|a|p−2ab, p ≥ 1.

ii. There exists a constant C = C(p) > 0 such that

|a− b|p − |a|p ≥ −p|a|p−2ab+ C|b|p, p ≥ 2.

iii. If a ≥ 0 and a− b ≥ 0. Then

(a− b)p + pap−1b− ap ≥ |b|p, p ≥ 2.

3. Stability of Lp-Hardy inequalities

Let us set

dH(u;R) :=

∫
G

∣∣∣u(x)−R
Q−p
p u

(
R x
|x|

)
|x|−

Q−p
p

∣∣∣p
|x|p| log R

|x| |p
dx


1
p

, x ∈ G, R > 0.

Theorem 3.1. Let G be a homogeneous group of homogeneous dimension Q. Let | · |
be any homogeneous quasi-norm on G. Then there exists a constant C > 0 such that
for all real-valued functions u ∈ C∞0 (G) we have∫

G
|Ru|p dx−

(
Q− p
p

)p ∫
G

|u|p

|x|p
dx ≥ C sup

R>0
dpH(u;R), 2 ≤ p < Q, (3.1)

where R := d
d|x| is the radial derivative.

Proof of Theorem 3.1. Let us introduce polar coordinates x = (r, y) = (|x|, x|x|) ∈
(0,∞)×S on G, where S is the unit quasi-sphere

S := {x ∈ G : |x| = 1}, (3.2)

and

v(ry) := r
Q−p
p u(ry), (3.3)

where u ∈ C∞0 (G). This follows that v(0) = 0 and lim
r→∞

v(ry) = 0 for y ∈ S since u

is compactly supported. Using the polar decomposition on homogeneous groups (see
(2.2)) and integrating by parts, we get

D : =

∫
G
|Ru|p dx−

(
Q− p
p

)p ∫
G

|u|p

|x|p
dx

=

∫
S

∫ ∞
0

∣∣∣∣− ∂

∂r
u(ry)

∣∣∣∣p rQ−1 − (Q− pp

)p
|u(ry)|prQ−p−1drdy

=

∫
S

∫ ∞
0

∣∣∣∣Q− pp
r−

Q
p v(ry)− r−

Q−p
p

∂

∂r
v(ry)

∣∣∣∣p rQ−1 − (Q− pp

)p
|v(ry)|pr−1drdy.
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Now using the second relation in Lemma 2.2 with the choice a = Q−p
p
r−

Q
p v(ry) and

b = r−
Q−p
p ∂

∂r
v(ry), and using the fact

∫∞
0
|v|p−2v

(
∂
∂r
v
)
dr = 0, we obtain

D ≥
∫
S

∫ ∞
0

−p
(
Q− p
p

)p−1
|v(ry)|p−2v(ry)

∂

∂r
v(ry) + C

∣∣∣∣ ∂∂rv(ry)

∣∣∣∣p rp−1drdy (3.4)

= C

∫
G
|x|p−Q |Rv|p dx.

Finally, combining (3.4) and Lemma 2.1, we arrive at

D ≥ C

∫
G

|v(x)− v(R x
|x|)|

p

|x|Q| log R
|x| |p

dx = C

∫
S

∫ ∞
0

|v(ry)− v(Ry)|p

r
∣∣log R

r

∣∣p drdy (3.5)

= C

∫
S

∫ ∞
0

|u(ry)−R
Q−p
p u(Ry)r−

Q−p
p |p

r1+p−Q| log R
r
|p

drdy

for any R > 0. This proves the desired result. �

4. Stability of critical Hardy inequalities

In this section we establish a stability estimate for the critical Hardy inequality
involving the distance to the set of extremisers: Let us denote

fT,R(x) = T
Q−1
Q u

(
Re−

1
T
x

|x|

)(
log

R

|x|

)Q−1
Q

(4.1)

and the following ’distance’

dcH(u;T,R) :=

∫
B(0,R)

|u(x)− fT,R(x)|Q

|x|Q
∣∣∣log R

|x|

∣∣∣Q ∣∣∣T log R
|x|

∣∣∣Qdx


1
Q

, (4.2)

for some parameter T > 0, functions u and fT,R for which the integral in (4.2) is
finite.

Theorem 4.1. Let G be a homogeneous group of homogeneous dimension Q ≥ 2.
Let | · | be any homogeneous quasi-norm on G. Then there exists a constant C > 0
such that for all real-valued functions u ∈ C∞0 (B(0, R)) we have∫

B(0,R)

|Ru(x)|Q dx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u(x)|Q

|x|Q(log R
|x|)

Q
dx ≥ C sup

T>0
dQcH(u;T,R) (4.3)

where R := d
d|x| is the radial derivative.

Proof of Theorem 4.1. Introducing polar coordinates (r, y) = (|x|, x|x|) ∈ (0,∞) × S

on G, where S is the sphere as in (3.2), we have u(x) = u(ry) ∈ C∞0 (B(0, R)). In
addition, let us set

v(sy) :=

(
log

R

r

)−Q−1
Q

u(ry), y ∈ S, (4.4)
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where

s = s(r) :=

(
log

R

r

)−1
.

Since u ∈ C∞0 (B(0, R)) we have v(0) = 0 and v has a compact support. Moreover, it
is straightforward that

∂

∂r
u(ry) = −

(
Q− 1

Q

)(
log

R

r

)− 1
Q v(sy)

r
+

(
log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r).

A direct calculation gives

S : =

∫
B(0,R)

|Ru|Q dx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u|Q

|x|Q
(

log R
|x|

)Qdx
=

∫
S

∫ R

0

∣∣∣∣ ∂∂ru(ry)

∣∣∣∣Q rQ−1 − (Q− 1

Q

)Q |u(ry)|Q

r
(
log R

r

)Qdrdy
=

∫
S

∫ R

0

∣∣∣∣∣
(
Q− 1

Q

)(
r log

R

r

)− 1
Q

v(sy) +

(
r log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r)

∣∣∣∣∣
Q

−
(
Q− 1

Q

)Q |v(sy)|Q

r log R
r

drdy.

Now by applying the second relation in Lemma 2.2 with the choice

a =
Q− 1

Q

(
r log

R

r

)− 1
Q

v(sy) and b =

(
r log

R

r

)Q−1
Q ∂

∂s
v(sy)s′(r),
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and by using the facts v(0) = 0 and lim
r→∞

v(ry) = 0, we obtain

S ≥
∫
S

∫ R

0

−Q
(
Q− 1

Q

)Q−1
|v(sy)|Q−2v(sy)

∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)

∣∣∣∣Q (s′(r))Q
(
r log

R

r

)Q−1
drdy

=

∫
S

∫ R

0

−Q
(
Q− 1

Q

)Q−1
|v(sy)|Q−2v(sy)

∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)

∣∣∣∣Q 1

rQ
(
log R

r

)2Q (r log
R

r

)Q−1
drdy

=

∫
S

∫ R

0

−Q
(
Q− 1

Q

)Q−1
|v(sy)|Q−2v(sy)

∂

∂s
v(sy)s′(r)

+ C

∣∣∣∣ ∂∂sv(sy)

∣∣∣∣Q 1(
log R

r

)Q−1 s′(r)drdy
=

∫
S

∫ R

0

−Q
(
Q− 1

Q

)Q−1
|v(sy)|Q−2v(sy)

∂

∂s
v(s) + C

∣∣∣∣ ∂∂sv(sy)

∣∣∣∣Q sQ−1dsdy
= C

∫
G
|Rv|Q dx,

that is,

S ≥ C

∫
G
|Rv|Q dx. (4.5)

According to Lemma 2.1 with v ∈ C∞0 (G\{0}) with p = Q and (4.5), it implies
that

S ≥ C

∫
G

|v(x)− v(T x
|x|)|

Q

|x|Q| log T
|x| |Q

dx = C

∫
S

∫ ∞
0

|v(sy)− v(Ty)|Q

s| log T
s
|Q

dsdy

= C

∫
S

∫ R

0

∣∣∣(log R
r

)−Q−1
Q u(ry)− T

Q−1
Q u(Re−

1
T y)
∣∣∣Q

r(log R
r
)| log(T log R

r
)|Q

drdy

= C

∫
S

∫ R

0

∣∣∣u(ry)− T
Q−1
Q u(Re−

1
T y)(log R

r
)
Q−1
Q

∣∣∣Q
r(log R

r
)Q| log(T log R

r
)|Q

drdy.

Thus, we arrive at

S ≥ C

∫
B(0,R)

∣∣∣∣u(x)− T
Q−1
Q u

(
Re−

1
T
x
|x|

)(
log R

|x|

)Q−1
Q

∣∣∣∣Q
|x|Q

∣∣∣log R
|x|

∣∣∣Q ∣∣∣log
(
T log R

|x|

)∣∣∣Q dx

for all T > 0. The proof is complete. �
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5. Improved critical Hardy and Rellich inequalities for radial
functions

Proposition 5.1. Let G be a homogeneous group of homogeneous dimension Q ≥ 2.
Let | · | be a homogeneous quasi-norm on G. Let q > 0 be such that

α = α(q, L) :=
Q− 1

Q
q + L+ 2 ≤ Q, (5.1)

for −1 < L < Q− 2. Then for all real-valued positive non-increasing radial functions
u ∈ C∞0 (B(0, R)) we have∫

B(0,R)

|Ru|Qdx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u(x)|Q

|x|Q
(

log Re
|x|

)Qdx (5.2)

≥ |S|1−
Q
q C

Q
q

∫
B(0,R)

|u(x)|q

|x|Q
(

log Re
|x|

)αdx


Q
q

,

where |S| is the measure of the unit quasi-sphere in G and

C−1 = C(L,Q, q)−1 :=

∫ 1

0

sL
(

log
1

s

)Q−1
Q

q

ds = (L+ 1)−(Q−1
Q

q+1)Γ

(
Q− 1

Q
q + 1

)
here Γ(·) is the Gamma function.

Proof of Proposition 5.1. As in previous proofs we set

v(s) =

(
log

Re

r

)−Q−1
Q

u(r), where r = |x|, s = s(r) =

(
log

Re

r

)−1
, (5.3)

s′(r) =
s(r)

r log Re
r

≥ 0.

Simply we have v(0) = v(1) = 0 since u(R) = 0, moreover,

u′(r) = −
(
Q− 1

Q

)(
log

Re

r

)− 1
Q v(s(r))

r
+

(
log

Re

r

)Q−1
Q

v′(s(r))s′(r) ≤ 0. (5.4)

It is straightforward that

I : =

∫
B(0,R)

|Ru|Qdx−
(
Q− 1

Q

)Q ∫
B(0,R)

|u|Q

|x|Q
(

log Re
|x|

)Qdx
= |S|

∫ R

0

|u′(r)|QrQ−1dr −
(
Q− 1

Q

)Q
|S|
∫ R

0

|u(r)|Q

r
(
log Re

r

)Qdr
= |S|

∫ R

0

(
Q− 1

Q

(
log

Re

r

)− 1
Q v(s(r))

r
−
(

log
Re

r

)Q−1
Q

v′(s(r))s′(r)

)Q

rQ−1dr

−
(
Q− 1

Q

)Q
|S|
∫ R

0

|u(r)|Q

r
(
log Re

r

)Qdr.
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By applying the third relation in Lemma 2.2 with

a =
Q− 1

Q

(
log

Re

r

)− 1
Q v(s(r))

r
and b =

(
log

Re

r

)Q−1
Q

v′(s(r))s′(r),

and dropping aQ ≥ 0 as well as using the boundary conditions v(0) = v(1) = 0, we
get

I ≥ −|S|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr (5.5)

+ |S|
∫ R

0

|v′(s(r))|Q(s′(r))Q
(
r log

Re

r

)Q−1
dr

= −|S|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr (5.6)

+ |S|
∫ R

0

|v′(s(r))|Q 1

rQ
(
log Re

r

)2Q (r log
Re

r

)Q−1
dr

= −|S|Q
(
Q− 1

Q

)Q−1 ∫ R

0

v(s(r))Q−1v′(s(r))s′(r)dr (5.7)

+ |S|
∫ R

0

|v′(s(r))|Qs(r)Q−1s′(r)dr

= −|S|Q
(
Q− 1

Q

)Q−1 ∫ 1

0

v(s)Q−1v′(s)ds+ |S|
∫ 1

0

|v′(s)|QsQ−1ds

= |S|
∫ 1

0

|v′(s)|QsQ−1ds.

Moreover, by using the inequality

|v(s)| =
∣∣∣∣∫ 1

s

v′(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1

s

v′(t)t
Q−1
Q
−Q−1

Q dt

∣∣∣∣ ≤ (∫ 1

0

|v′(t)|QtQ−1dt
) 1

Q
(

log
1

s

)Q−1
Q

,

we obtain

∫ 1

0

|v(s)|qsLds ≤
(∫ 1

0

|v′(s)|QsQ−1ds
) q

Q
∫ 1

0

sL
(

log
1

s

)Q−1
Q

q

ds

for −1 < L < Q− 2. Thus, we have

∫ 1

0

|v′(s)|QsQ−1ds ≥ C
q
Q

(∫ 1

0

|v(s)|qsLds
)Q

q

. (5.8)
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Now it follows from (5.5) and (5.8) that

I ≥ |S|C
Q
q

(∫ 1

0

|v(s)|qsLds
)Q

q

= |S|C
Q
q

(∫ R

0

|u(r)|q

r
(
log Re

r

)αdr
)Q

q

= |S|1−
Q
q C

Q
q

∫ R

0

|u(x)|q

|x|Q
(

log Re
|x|

)αdx


Q
q

.

where α = α(q, L) = Q−1
Q
q + L+ 2. The proof is complete. �

The method used in the previous section also allows one to obtain the following
stability inequality for Rellich type inequalities:

Proposition 5.2. Let G be a homogeneous group of homogeneous dimension Q. Let
| · | be a homogeneous quasi-norm on G and p ≥ 1. Let k ≥ 2, k ∈ N be such that
kp < Q. Then for all real-valued radial functions u ∈ C∞0 (G) we have

∫
G

|R̃u|p

|x|(k−2)p
dx−Kp

k,p

∫
G

|u|p

|x|kp
dx

≥ C sup
R>0

∫
G

∣∣∣|u(x)| p−2
2 u(x)−RQ−kp

2 |u(R)| p−2
2 u(R)|x|−Q−kp

2

∣∣∣2
|x|kp

∣∣∣log R
|x|

∣∣∣2 dx, (5.9)

where

R̃f = R2f +
Q− 1

|x|
Rf

is the Rellich type operator on G and Kk,p = (Q−kp)[(k−2)p+(p−1)Q]
p2

.

Proof of Proposition 5.2. For k ≥ 2, k ∈ N and kp < Q let us set

v(r) := r
Q−kp

p u(r), where r ∈ [0,∞). (5.10)

Thus, v(0) = 0 and v(∞) = 0.
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We have

−R̃u = −R2
(
r

kp−Q
p v(r)

)
− Q− 1

r
R
(
r

kp−Q
p v(r)

)
= −R

(
kp−Q
p

r
kp−Q

p
−1v(r) + r

kp−Q
p Rv(r)

)
− Q− 1

r

kp−Q
p

r
kp−Q

p
−1v(r)− Q− 1

r
r

kp−Q
p Rv(r)

= −kp−Q
p

(
kp−Q
p

− 1

)
r

kp−Q
p
−2v(r)− kp−Q

p
r

kp−Q
p
−1Rv(r)

− kp−Q
p

r
kp−Q

p
−1Rv(r)− r

kp−Q
p R2v(r)

− Q− 1

r

kp−Q
p

r
kp−Q

p
−1v(r)− Q− 1

r
r

kp−Q
p Rv(r)

= −r
kp−Q

p
−2
(

(kp−Q)(kp−Q− p)
p2

+
(Q− 1)(kp−Q)

p

)
v(r)

− r
kp−Q

p
−2r2

(
R2v(r) +

1

r

(
2(kp−Q)

p
+ (Q− 1)

)
Rv(r)

)
= rk−2−

Q
p (Kk,pv(r)− r2R̃kv(r)),

where

R̃kf = R2f +
2k + Q(p−2)

p
− 1

r
Rf

and Kk,p = (Q−kp)[(k−2)p+(p−1)Q]
p2

. By using the first inequality in Lemma 2.2 with

a = Kk,pv(r) and b = r2R̃kv(r), and the fact
∫∞
0
|v|p−2vv′dr = 0 since v(0) = 0 and

v(∞) = 0, we obtain

J :=

∫
G

|R̃u|p

|x|(k−2)p
dx−Kp

k,p

∫
G

|u|p

|x|kp
dx

= |S|
∫ ∞
0

| − R̃u(r)|prQ−1−(k−2)pdr −Kp
k,p|S|

∫ ∞
0

|u(r)|prQ−kp−1dr

= |S|
∫ ∞
0

(
|Kk,pv(r)− r2R̃kv(r)|p − (Kk,pv(r))p

)
r−1dr

≥ −p|S|Kp−1
k,p

∫ ∞
0

|v|p−2vR̃kvrdr

= −p|S|Kp−1
k,p

∫ ∞
0

|v|p−2v

(
v′′ +

2k + Q(p−2)
p
− 1

r
v′

)
rdr

= −p|S|Kp−1
k,p

∫ ∞
0

|v|p−2vv′′rdr.
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On the other hand, we have

−
∫ ∞
0

|v|p−2vv′′rdr

= (p− 1)

∫ ∞
0

|v|p−2(v′)2rdr +

∫ ∞
0

|v|p−2vv′dr

= (p− 1)

∫ ∞
0

|v|p−2(v′)2rdr

=
4(p− 1)

p2

∫ ∞
0

((
p− 2

2

)2

|v|p−2(v′)2 + (p− 2)|v|p−2(v′)2 + |v|p−2(v′)2
)
rdr

=
4(p− 1)

p2

∫ ∞
0

((
|v|

p−2
2

)′
v + |v|

p−2
2 v′

)2

rdr

=
4(p− 1)

p2

∫ ∞
0

|(|v|
p−2
2 v)′|2rdr

=
4(p− 1)

|S2|p2

∫
G2

∣∣∣R(|v|
p−2
2 v)

∣∣∣2 dx,
where G2 is a homogeneous group of homogeneous degree 2 and |S2| is the measure of

the corresponding unit 2-quasi-ball. By using Lemma 2.1 for |v| p−2
2 v ∈ C∞0 (G2\{0})

in p = Q = 2 case, and combining above equalities, we obtain

J ≥ C1

∫
G2

∣∣∣|v(x)| p−2
2 v(x)− |v(R x

|x|)|
p−2
2 v(R x

|x|)
∣∣∣2

|x|2
∣∣∣log R

|x|

∣∣∣2 dx

= C1

∫ ∞
0

∣∣∣|v(r)| p−2
2 v(r)− |v(R)| p−2

2 v(R)
∣∣∣2

r
∣∣log R

r

∣∣2 dr

= C1

∫ ∞
0

∣∣∣|u(r)| p−2
2 u(r)−RQ−kp

2 |u(R)| p−2
2 u(R)r−

Q−kp
2

∣∣∣2
r1−Q+kp

∣∣log R
r

∣∣2 dr

for any R > 0. That is,

J ≥ C sup
R>0

∫
G

∣∣∣|u(x)| p−2
2 u(x)−RQ−kp

2 |u(R)| p−2
2 u(R)|x|−Q−kp

2

∣∣∣2
|x|kp

∣∣∣log R
|x|

∣∣∣2 dx.

The proof is complete. �
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