
Eur. Phys. J. C (2017) 77:795
https://doi.org/10.1140/epjc/s10052-017-5285-8

Special Article - Tools for Experiment and Theory

ColliderBit: a GAMBIT module for the calculation of high-energy
collider observables and likelihoods

TheGAMBIT ScannerWorkgroup: Csaba Balázs1,2, Andy Buckley3,a, Lars A. Dal4, Ben Farmer5, Paul Jackson2,6,
Abram Krislock4, Anders Kvellestad7,b, Daniel Murnane2,6, Antje Putze8, Are Raklev4,c, Christopher Rogan9,
Aldo Saavedra2,10, Pat Scott11,d, Christoph Weniger12, Martin White2,6,e

1 School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
2 Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia, http://www.coepp.org.au/
3 SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
4 Department of Physics, University of Oslo, 0316 Oslo, Norway
5 Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, 10691 Stockholm, Sweden
6 Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
7 NORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden
8 LAPTh,Université de Savoie, CNRS, 9 chemin de Bellevue B.P.110, 74941 Annecy-le-Vieux, France
9 Department of Physics, Harvard University, Cambridge, MA 02138, USA

10 Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, The University of Sydney,
Sydney, NSW 2006, Australia

11 Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
12 GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Received: 15 March 2017 / Accepted: 6 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract We describe ColliderBit, a new code for the cal-
culation of high energy collider observables in theories of
physics beyond the Standard Model (BSM). ColliderBit fea-
tures a generic interface to BSM models, a unique parallelised
Monte Carlo event generation scheme suitable for large-scale
supercomputer applications, and a number of LHC analyses,
covering a reasonable range of the BSM signatures currently
sought by ATLAS and CMS.ColliderBit also calculates like-
lihoods for Higgs sector observables, and LEP searches for
BSM particles. These features are provided by a combination
of new code unique to ColliderBit, and interfaces to existing
state-of-the-art public codes. ColliderBit is both an impor-
tant part of the GAMBIT framework for BSM inference, and
a standalone tool for efficiently applying collider constraints
to theories of new physics.

a e-mail: andy.buckley@glasgow.ac.uk
b e-mail: anders.kvellestad@nordita.org
c e-mail: ahye@fys.uio.no
d e-mail: p.scott@imperial.ac.uk
e e-mail: martin.white@adelaide.edu.au

Contents

1 Introduction .
2 Physics and implementation

2.1 LHC likelihood calculation
2.1.1 Overview of LHC constraints included in

ColliderBit
2.1.2 Strategy for applying LHC constraints

without model-dependent assumptions . . .
2.1.3 Cross-section calculations
2.1.4 Monte Carlo event generation
2.1.5 Event record
2.1.6 Detector simulation
2.1.7 LHC event analysis framework
2.1.8 LHC statistics calculations
2.1.9 Validation of ColliderBit LHC constraints .

2.2 LEP likelihood calculation
2.3 Higgs likelihood calculation

3 User interface .
3.1 GAMBIT interface

3.1.1 LHC simulation capabilities
3.1.2 LEP supersymmetry limit capabilities . . .
3.1.3 Higgs likelihood capabilities

3.2 Standalone interface
4 Examples .

4.1 CMSSM example

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5285-8&domain=pdf
http://www.coepp.org.au/
mailto:andy.buckley@glasgow.ac.uk
mailto:anders.kvellestad@nordita.org
mailto:ahye@fys.uio.no
mailto:p.scott@imperial.ac.uk
mailto:martin.white@adelaide.edu.au

 795 Page 2 of 36 Eur. Phys. J. C (2017) 77:795

4.2 Generic Pythia model example
5 Conclusions .
Appendix A: Quick start guide

A.1: Building and running the standalone example . .
A.2: Running the ColliderBit example in GAMBIT . .

Appendix B: ColliderBit classes
Appendix C: Glossary
References .

1 Introduction

Despite decades of searches for physics beyond the Standard
Model (BSM), we still lack an unambiguous discovery of
such physics. The many null results from the Large Hadron
Collider (LHC) and other experiments allow us to constrain,
to various degrees, the parameter spaces of many extensions
of the Standard Model (SM). These include effective theo-
ries and simplified models of dark matter, supersymmetric
theories, theories with extra space dimensions and compos-
ite Higgs models. Because even the most minimal realistic
theories of BSM physics have observable consequences in
multiple experiments, it is particularly important to combine
collider exclusions with other experiments in a statistically
rigorous way if one is to draw sound conclusions on the via-
bility of a theory.

Rigorously taking into account the sum of data relevant to
a given model from the many disparate experimental sources
has become a challenging task. This problem is addressed in
GAMBIT (the Global And Modular Beyond-the-Standard-
Model Inference Tool) [1], which combines calculations of
observables and likelihoods in collider, flavour, dark matter
and precision physics with a model database, a flexible sys-
tem for interfacing to external codes, and a wide selection
of different statistical methods and parameter scanning algo-
rithms that can be applied to the models [1]. In this paper,
we introduce ColliderBit, a GAMBIT module for the appli-
cation of high-energy collider constraints to BSM physics
theories.

The ATLAS and CMS experiments [2,3] have made great
progress in the search for evidence of BSM physics at high
energies, but applying these constraints to a generic theory
of such physics remains challenging. Searches for new par-
ticles at the LHC are typically presented either in specific
planes of a restrictive high scale physics hypothesis, e.g.
the constrained minimal supersymmetric model (CMSSM),
or in simplified models that strictly apply only to a very
small volume of the total allowed space of particle masses
and branching ratios. The computational expense of simu-
lating signal processes for hundreds of thousands of points
in a candidate model prevents an extended treatment by the
experiments. In addition, some LEP results remain useful [4–
15], and are not always rigorously applied in the literature.

Finally, the discovery of an SM-like Higgs boson [16,17] by
the ATLAS and CMS experiments in 2012 – and the sub-
sequent measurement of its properties – provides tight con-
straints on variations in the Higgs branching ratios, which
must be included in any thorough exploration of a BSM
physics model. Given the ever-growing list of constraints on
BSM physics from experiments at the LHC, the need to rig-
orously test those limits against various models is ever more
pressing.

Partial solutions to each of these issues exist, but there
is as yet no comprehensive tool that tackles all of them.
The package SModelS applies constraints to supersym-
metric (SUSY) models based on a combination of simpli-
fied model results [18]. FastLim provides similar function-
ality for SUSY models, but is extendible (in principle) to
non-SUSY models through the use of user-supplied effi-
ciency tables [19]. Both of these tools will provide limits
that are much more conservative than a more rigorous cal-
culation, due to the limitations of simplified models. SUSY-
AI [20] provides a random forest classifier for SUSY mod-
els based on LHC exclusions, but as seen in earlier applica-
tions of machine learning to this problem [21–25], accuracy
concerns exist when applying the method to large-volume
parameter spaces, due to the relative sparsity of the training
data [26] in the model parameter space. Other approaches
to SUSY model exclusion based on machine learning can
be found in [27,28]. CheckMATE provides a customised
version of the Delphes detector simulation, an event analy-
sis framework and a list of ATLAS and CMS analyses that
can be used to apply LHC limits, and includes an interface
to MadGraph5_aMC@NLO for event generation [29–32].
However, the time required to run a single BSM param-
eter combination through CheckMATE makes large-scale
parameter scans a difficult prospect, and integration with
a global fitting framework is not within the scope of the
package. To the best of our knowledge, no general purpose
tool exists to apply LEP BSM search limits, although many
theorists have implemented their own local codes over the
years. Packages such as HiggsBounds [33–36], HiggsSig-
nals [37] and Lilith [38] allow the user to apply constraints
on Higgs physics.

As ColliderBit is designed within the GAMBIT frame-
work [1], it offers seamless integration with modules that pro-
vide statistical fitting [1,39], the ability to impose constraints
from electroweak precision data [40], flavour physics [41]
and a large range of astrophysical observations [42]. For LHC
physics, we use a combination of parallelised Monte Carlo
(MC) simulation and fast detector simulation to recast LHC
limits without the approximations of the simplified model
approach. The first release of the code comes with a list of
ATLAS and CMS analyses that collectively present strong
constraints on supersymmetry and dark matter scenarios [43–
53]. It contains interfaces to the Pythia8 MC event gener-

123

Eur. Phys. J. C (2017) 77:795 Page 3 of 36 795

ator [54,55], to the Delphes detector simulation [30,31],
and a customised detector simulation based on four-vector
smearing (BuckFast). In this paper we show that that Buck-
Fast gives comparable results to Delphes, but at a dramat-
ically lower CPU cost. We also supply custom routines for
re-evaluating LEP limits on supersymmetric particle produc-
tion, and include interfaces toHiggsBounds and HiggsSig-
nals for calculating Higgs observables. ColliderBit follows
the modular design of GAMBIT, thus enabling the user to
easily swap components (e.g. choose a different detector sim-
ulation without affecting the LHC analysis framework), add
new collider analyses, or provide interfaces to standard par-
ticle physics tools.

This paper serves as both a description of the physics and
design strategy of ColliderBit, and a user manual for the first
code release. In Appendix A, we provide a quick start guide
for users keen to compile and use the software out of the box.
Sect. 2 describes the physics and implementation of the Col-
liderBit software. The ColliderBit user interface is outlined
in Sect. 3. In Sect. 4 we cover two use cases: first, we point to
an annotated GAMBIT input file that details the application
of collider constraints in a scan of the constrained minimal
supersymmetric standard model (CMSSM). Second, we pro-
vide a detailed example of how the user can add their own
model to the ColliderBit code. The second of these examples
shows the flexibility of ColliderBit in tackling generic theo-
ries supplied by the user, using existing codes for automatic
generation of matrix elements. After summarising in Sect.
5, we also provide Appendices B and C, where we detail
the C++ classes defined by ColliderBit, and a glossary of
common GAMBIT terms, respectively.

ColliderBit is released under the terms of the 3-clause
BSD license,1 and can be obtained from gambit.hepforge.org.

2 Physics and implementation

To perform any calculations, ColliderBit requires numerical
values for the free parameters of a theory for new physics. If
ColliderBit is run with other GAMBIT modules, these will
come from a scanning algorithm implemented in the Scan-
nerBit [39] module, and other GAMBIT modules will then
perform the necessary spectrum generation and decay rate
calculations. The user may also run ColliderBit as a stan-
dalone code, in which case the parameters can be supplied
via a model description, such as an SLHA file for supersym-

1 http://opensource.org/licenses/BSD-3-Clause. Note that fjcore [56]
and some outputs of FlexibleSUSY [57] (incorporating routines from
SOFTSUSY [58]) are also shipped with GAMBIT 1.0. These code
snippets are distributed under the GNU General Public License (GPL;
http://opensource.org/licenses/GPL-3.0), with the special exception,
granted to GAMBIT by the authors, that they do not require the rest
of GAMBIT to inherit the GPL.

metric models [59,60]. In this case, the user must supply
spectrum and/or decay calculations as appropriate. The Col-
liderBit output is a series of signal event rate predictions and
likelihood terms derived from BSM searches at the LHC, as
well as likelihood terms from SUSY searches at LEP and
Higgs searches at LEP, the Tevatron and the LHC. The terms
may then be combined according to the user’s request, to
form a composite likelihood. Here we describe the strategy
for calculating each individual likelihood term, along with
the code implementation.

2.1 LHC likelihood calculation

2.1.1 Overview of LHC constraints included in ColliderBit

As the flagship collider at the energy frontier, the LHC pro-
vides the most stringent constraints on BSM physics models
in the majority of cases. The search groups of the ATLAS
and CMS experiments provide long lists of results using data
from LHC proton–proton collisions taken at

√
s = 7, 8 and

13 TeV, including searches for specific particles encountered
in BSM physics models, and generic resonances in a multi-
tude of final states [61–64].

Implementing the full list of LHC constraints is a daunting
task. The initial approach taken in ColliderBit is to provide a
representative set of searches that run out-of-the-box, supple-
mented by a framework that makes it easy to add new LHC
analyses.ColliderBit includes a selection of Run I and Run II
LHC analyses, chosen for their relevance to supersymmetry
and dark matter simplified model applications.

The Run I analyses included are:

– ATLAS 0-lepton supersymmetry search This targets
squark and gluino production, and is the most constrain-
ing single ATLAS SUSY analysis in cases where the
gluino, some or all squarks are expected to be light. The
analysis looks for an excess of events in various signal
regions defined by the jet multiplicity, the missing energy
and other kinematic variables [49].

– ATLAS and CMS third generation squark searches It is
possible for supersymmetry to remain a natural theory
with only the third generation squarks accessible at LHC
energies. In the limit of large stop mixing, only one squark
may be light enough to be observed. Increasing theoret-
ical interest in naturalness has prompted a series of opti-
mised searches for top squarks in recent years, focussing
primarily on stop decays to a top quark and the light-
est neutralino, or to b quarks and charginos with subse-
quent chargino decay via an on- or off-shell gauge boson.
ColliderBit includes ATLAS searches for top squarks in
0-lepton, 1-lepton and 2-lepton final states [44,45,48],
and the CMS 1- and 2-lepton searches [51,52]. We also
include the ATLAS b-jets plus MET search [43], which

123

http://gambit.hepforge.org
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/GPL-3.0

 795 Page 4 of 36 Eur. Phys. J. C (2017) 77:795

targets direct sbottom production. All of these searches
are also expected to strongly constrain simplified dark
matter models with a mediator that couples preferen-
tially to third generation fermions. These models, which
have gained popularity as explanations of the Fermi-LAT
Galactic Centre excess [65], give rise to similar final
states and, indeed, the CMS searches that we implement
have already been used in a non-supersymmetric dark
matter context [66].

– ATLAS and CMS multilepton supersymmetry searches In
the case that all coloured superpartners are too heavy to
observe at the LHC, electroweak gaugino searches are the
only hope of finding evidence for supersymmetry. Even if
coloured superpartners are accessible, direct searches for
the electroweak gauginos would provide extra informa-
tion on the parameters of the neutralino and chargino mix-
ing matrices, in addition to telling us whether the weak
gaugino sector is that of the MSSM, or an expanded sec-
tor from an exotic supersymmetric scenario. ColliderBit
includes the 2- and 3-lepton ATLAS electroweak gaug-
ino searches [46,47] and the CMS 3-lepton electroweak
gaugino search [50], which should provide the dominant
constraints on the electroweak sector of the MSSM.

– Dark matter searches The classic technique for search-
ing for dark matter at colliders is to look for events with
a monojet plus missing energy. This signature results
from pair production of a dark matter candidate, with the
jet arising from QCD radiation. ColliderBit includes the
CMS monojet search [53], which provides a constraint
on various dark matter scenarios, in addition to super-
symmetric scenarios with compressed spectra. Some cau-
tion must be taken when applying this to e.g. dark matter
effective field theories. In cases where NLO QCD effects
are significant, the user will need to interface GAMBIT
to a suitable Monte Carlo generator capable of modelling
these effects.

We also provide the ATLAS and CMS Run II (13 TeV)
0-lepton supersymmetry searches, based on 13 fb−1 of anal-
ysed data [67,68]. More Run II analyses will be added to
ColliderBit in the near future, including searches sensitive to
R-parity violating supersymmetry such as Ref. [69].

We consider this a reasonable minimum of LHC searches
for covering a wide range of LHC phenomenology, but the
average user will no doubt be keen to expand the collection.
New analyses will be continuously added to the code repos-
itory, and information on how the user can add a new LHC
analysis to ColliderBit is given in Sect. 3.1.1. It is worth not-
ing, however, that the general treatment of the LHC analyses
in ColliderBit means that even the LHC Run I results can
provide previously unavailable insights when used to con-
strain models with large parameter spaces. We also empha-
sise that the above list does not contain searches for SUSY

scenarios with compressed sparticle spectra. Since we use the
LO Pythia generator in the current ColliderBit release, we
would obtain less precise results than the ATLAS and CMS
publications that use MadGraph5_aMC@NLO to explic-
itly model initial state jet radiation through the addition of
the relevant diagrams to the tree-level sparticle production
process.

In the rest of this section, we describe the process by which
LHC analysis constraints are derived without employing any
model-dependent assumptions, following a full simulation
of proton–proton collisions, including detector effects and
an approximation of the ATLAS and CMS statistical proce-
dures.

2.1.2 Strategy for applying LHC constraints without
model-dependent assumptions

A parameter point of a specified BSM model can in principle
be expected to show up in a variety of LHC BSM searches.
For counting analyses, the relevant data to model are the
number of events that pass kinematic selection criteria (for
brevity referred to in what follows as ‘cuts’) imposed in each
analysis. If a model predicts that s signal events will pass
the cuts for a given signal region, and b background events
are expected from known SM processes, the likelihood of
observing n events is given by the standard Poisson formula,

L = e−(s+b)(s + b)n

n! . (1)

For now, we neglect effects of systematic uncertainties in the
signal and background yields – but we return to this point
in Sect. 2.1.8. LHC BSM search papers provide details of
b and n for each signal region, along with the background
uncertainty, and some estimate of the signal uncertainty for
representative models.

Calculating the likelihood for a given model thus requires
an accurate estimate of s. This is given by

s = σεAL , (2)

where σ , ε and A are the process-specific production cross-
section, detector efficiency and acceptance, respectively. L
is the integrated luminosity of data used in the search.

The rigorous way to calculate s is to perform a cross-
section calculation at the highest practically achievable level
of accuracy in perturbation theory, before evaluating the
acceptance and efficiency via a Monte Carlo simulation of
the LHC collisions. This is usually augmented by simulat-
ing the reconstructed signatures of the Monte Carlo events in
the relevant detector – ATLAS or CMS in the case of direct
BSM searches at the LHC. One can then apply the analysis
cuts for a given LHC search to the results of the detector

123

Eur. Phys. J. C (2017) 77:795 Page 5 of 36 795

Fig. 1 Schematic diagram of theColliderBit processing chain for LHC
likelihoods

simulation. An approach using look-up tables for efficien-
cies and extrapolations from simplified models removes the
need for time consuming simulation, but tends to give very
conservative results as a consequence. This is because the
approach misses models that do not resemble the simplified
models under consideration, but still have some acceptance
to the analysis cuts that are used to generate the simplified
model results. Furthermore, generating look-up tables must
be repeated for the parameter space of every physics model
of interest, making it hard to produce a generic code for the
application of LHC constraints.

The core strategy of the ColliderBit LHC module is
instead to make each step of the simulation chain faster, using
a combination of custom speed increases and parallel com-
puting. The package thus performs a cross-section calcula-
tion, generates Monte Carlo events, performs an LHC detec-
tor simulation and then applies the analysis cuts for a range
of LHC analyses, using a custom event analysis framework.
The user can then utilise the GAMBIT statistical routines to
return LHC likelihoods. The basic processing chain is illus-
trated in Fig. 1. The code is designed so that the user can
choose, among available options, which software performs
each step of this process, or, as an alternative, add an inter-
face to an external code in place of an implemented option.
Nevertheless, ColliderBit has a default chain implemented,
and the current version contains the elements summarised in
the following subsections.

2.1.3 Cross-section calculations

ColliderBit uses the LO + LL cross-sections calculated
numerically by the Pythia8 event generator [54,55]. For
many models, these are the state-of-the-art. For models where
an NLO (or better) calculation exists, e.g the MSSM, this is
a conservative approximation, as the K -factors are predomi-
nantly greater than one. The LO + LL MSSM cross-sections
are considerably quicker to evaluate than the full NLO results
obtained using e.g. Prospino [70–72]. A single evaluation
of just the strong production cross-sections for a CMSSM
benchmark point, with all relevant processes kinematically
available, takes around 15 minutes of CPU time on a mod-
ern processor using Prospino 2.1 (Intel Core i5 at 2.6 GHz).
This is clearly unusable in a scan where the evaluation of a
single parameter point must be done in times on the order of a
few seconds. For strong production there exist pre-computed
grids of NLO cross-sections with added (N)NLL corrections,
which in combination with fast interpolation routines allow
accurate cross-sections to be obtained within fractions of a
second [73–79]. However, these interpolations are limited to
models where all squarks except the stops are mass degen-
erate. While this approximation is suitable for many lower-
dimensional parametrisations of the MSSM, it is not suf-
ficiently general to serve as a default MSSM cross-section
calculator for ColliderBit.

With the improvement to NLO + NLL, the error from
the factorisation and renormalisation scales has been shown
to be as low as 10% [76] for a wide range of processes and
masses; however, PDF and αs uncertainties must be included
in the total error budget. These increase with the sparticle
masses because the PDFs are most poorly constrained at
large scales and at large parton x . As an example, at 8 TeV
NLL-fast 2.1 [75–79] gives errors of (+24.3,−22.2%) and
(+8.3,−7.3%), for the PDF and αs , respectively, using the
MSTW2008 NLO PDF set [80], with gluino and squark
masses set to 1.5 TeV. Because 1.5 TeV is at the edge of
the LHC reach at that energy, the total error budget here will
not drop much below 25% even with NLO + NLL cross-
sections.2

In light of the above, we take the conservative path of cal-
culating likelihoods with the LO Pythia8 cross-sections for
the LHC. Assigning errors to these cross-sections is rather
meaningless, considering the monotonic nature of LO scale-
dependence, and the fact that the LO cross-sections in BSM
models are known to almost always lie significantly below
the NLO and higher order cross-section, sometimes by as

2 With the CTEQ 6.6M PDF set [81], the errors increase to
(+63.1,−38.5%) and (+15.6,−10.3%); these uncertainties will
reduce somewhat as PDF fits including higher-x LHC data become
available.

123

 795 Page 6 of 36 Eur. Phys. J. C (2017) 77:795

Table 1 Time taken for the ColliderBit LHC likelihood calculation
as a function of the number of cores, for 100,000 SUSY events at the
SPS1a parameter point [83,84], including all sub-processes. The pro-
cesses were run on a single computer node, with ISR, FSR, and full
hadronisation enabled, but multiple parton interactions and tau decay
spin correlations disabled. GAMBIT was compiled with full optimisa-
tion settings (cf. Sect. 11 of Ref. [1])

Num. cores t (105 events) (s) Speed-up

1 421 1

4 128 3.3

8 67 6.3

16 38 11.1

20 33 12.8

much as a factor of two.3 The LO cross-sections are hence
nearly always more conservative than the lower edge of the
most pessimistic NLO uncertainty band due to renormali-
sation scale systematics. Accordingly, we do not apply any
systematic theory error to our cross-sections, as any error due
to finite statistics in the event generation is dwarfed by the
systematic underestimation of the cross-sections due to the
LO approximation. We have verified that these choices, com-
bined with the approximations used in the event and detec-
tor simulation, result in limits equal to or more conservative
than those in the included ATLAS and CMS analyses (see
Sect. 2.1.7).

In future releases, we will allow the user to supply cross-
sections and associated uncertainties as input to the LHC
likelihood calculation, making it possible to calculate them
using any preferred choice of external code (known in GAM-
BIT as a backend).

2.1.4 Monte Carlo event generation

For the ColliderBit event generation, we supply an interface
to the Pythia8 [54,55] event generator, alongside custom
code that parallelises the main event loop of Pythia using
OpenMP.4 This substantially reduces the runtime, as seen
in Table 1. In a parameter scan with GAMBIT the parameter
sampling is parallelised usingMPI. The additional OpenMP
parallelisation of the LHC likelihood calculation in Collid-
erBit, along with similarly parallelised calculations in other
GAMBIT modules, helps GAMBIT’s overall scan perfor-
mance to scale beyond the number of cores that the sampling
algorithm alone can make efficient use of.

For the purposes of BSM searches, many time-consuming
generator components also add little to the quality of rele-
vant physics modelling, and can therefore be safely disabled.
The single-threaded timing effects of sequentially disabling

3 For a recent thorough exploration of K -factors in the MSSM up to
approximate NNLO+NNLL order see [74] and Fig. 2 within.
4 For an earlier similar approach, see Ref. [82].

Table 2 Single-thread CPU effects of sequentially disabling event sim-
ulation components, for 100,000 SUSY events at the SPS1a parameter
point [83,84], including all sub-processes. The disabled components
have a major effect on CPU, and a minor (sometimes even positive)
effect on physics performance. The third row corresponds to the first
row in Table 1. Note that the few percent difference is typical of the
variation with local CPU load on the cluster on which this was tested

Configuration t (105 events) (s) Speed-up

All 1529 1

↪→ −MPI 516 3.0

↪→ −τ correlations 434 3.5

↪→ −FSR 195 7.8

↪→ −hadrons 102 15.0

“soft physics” modelling such as multi-parton interactions
(MPI), τ polarisation, QCD final-state radiation (FSR), and
hadronisation are shown for a typical SUSY model point in
Table 2. Of the model components shown, removal of MPI
and tau correlations give the clearest gains. The detailed tau
decay correlation mechanism is not generally relevant for
BSM hard processes. LHC jet reconstruction includes a jet
area correction [85] that removes the effects of pile-up and
MPI on average, so disabling MPI is actually a more appro-
priate physical configuration than enabling it – and delivers
a 60% CPU cost saving to boot.

The choices for FSR and hadronisation are less clear: these
are responsible for production of realistic track and cluster
multiplicities and energies on which detector simulation can
be run. Completely disabling FSR – which mainly produces
internal jet structure, not relevant to most BSM analyses – and
all hadron-level processes including both hadronisation and
decays, are both rather drastic options. In practice there are
intermediate alternatives, such as raising the low-pT cutoff of
FSR evolution to balance CPU cost against physical accuracy,
or to produce physical primary hadrons but elide simulation
of their decays.

By default ColliderBit runs in the mode with MPI and
“sophisticated” tau decays disabled; there is potential for
further significant speed-up if the hadron-level or FSR sim-
ulation steps can be reduced, perhaps by use of specialised
detector smearing to compensate for the biased final state
particle distributions.

This combination of multi-threading and reduced genera-
tor functionality allows generation of 20,000 all-subprocess
SUSY events in about 7 s on an Intel Core i7 processor using
8 cores, provided that the compilation makes use of the gcc
option --ffast-math, or a suitable equivalent. Generating
100,000 events with the same settings and number of cores
takes 19 s. When including FSR and hadronisation, as per the
ColliderBit default, the time required to generate 20,000 and
100,000 events increase to 17 and 67 s, respectively.

In the above examples a factor 5 increase in the number
of generated events only lead to a factor 2.5–4 increase in

123

Eur. Phys. J. C (2017) 77:795 Page 7 of 36 795

the evaluation time. This illustrates that when the number of
generated events is fairly low, other parts of the calculation
besides the event loop itself account for a noticable fraction
of the total evaluation time. The most important contribution
comes from the initialisation of Pythia8. While this step
has not been parallelised, we have optimised the ColliderBit
Pythia8 initialisation so that per-thread copies of the Pythia
objects are only constructed at the beginning of a GAM-
BIT sampling run, only requiring re-initialisation of process-
specific physics components for each new model point. This
produces a further speed increase in realistic applications.

In addition, in a GAMBIT-driven global fit, the event gen-
eration for a point can be skipped on the basis of the initial
estimated maximum cross-section. If this is already too low
to lead to observable consequences at the LHC, running the
event generator is pointless, so skipping that step for some
fraction of parameter points gives a further average speed
increase. Event generation is also aborted if Pythia returns
an error from the pythia.next() call. In both cases the con-
tribution to the log likelihood, see Sect. 2.1.8, is set to zero.

Taken together, these routines make it computationally
tractable to run a full Monte Carlo simulation in a global fit.

The choice of the Pythia generator is an acceptable com-
promise between generality and ease of use for the first Col-
liderBit release. It is sufficient for many BSM models, and
is easily extendable with matrix elements for new models
via the existing MadGraph5_aMC@NLO interface [32].
For an example, see Sect. 4.2. Pythia will prove insufficient,
however, in cases where NLO corrections are significant –
for example in the accurate treatment of some effective field
theories of dark matter, where top quark loops become impor-
tant [66]. These deficiencies can be addressed in the current
release via a user-supplied interface to an appropriate Monte
Carlo tool, and such interfaces will be supplied in future Col-
liderBit releases.

2.1.5 Event record

ColliderBit provides a custom set of event record classes that
are independent of the particular choice of event generator
or detector simulation. These are: a P4 momentum 4-vector;
Particle and Jet, which respectively add particle ID and
flavour-tagging information to P4; and an Event container.
The latter is used to store the particles in discrete categories
of photons, electrons, muons, taus and invisibles, as well as
a jet container and a missing momentum vector.

These event objects should be populated by conversion
routines attached to the interface to each MC generator,
allowing the different event structure conventions of each
generator to be treated correctly. The conversion may be done
either at parton or particle level. Parton-level conversion is
primarily intended for speed, as it allows the most CPU-
intensive parts of the event generation to be skipped, at some

cost to physical accuracy. The description below concerns the
complete particle-level variant, but the parton-level version
only differs from it in a few minor details.

First, ColliderBit loops over the contents of each event,
looking separately for decayed and stable particles. The for-
mer are only used to find b quarks5 and hadronic taus for later
jet tagging; following the established RivetMC analysis sys-
tem [87], only stable particles are used for constructing the
kinematics of truth-level events, making the detector simu-
lation and analysis more robust.

We require identified final-state leptons and photons to be
“prompt”, i.e. their ancestry is recursively checked to ensure
that they have not been produced (even indirectly) in hadron
decays. All final-state particles other than muons and invis-
ibles are used as inputs to jet finding, which is performed
using the FastJet [56] implementation of the anti-kt jet algo-
rithm [88]. We set the anti-kt R parameter to 0.4 for Run I
ATLAS BSM searches, 0.5 for corresponding CMS analyses,
and 0.4 for both ATLAS and CMS Run II analyses. We use
ΔR matching between jets and the unstable tagging objects
to set appropriate jet attributes. ColliderBit computes miss-
ing momentum from the vector sum of the momenta of the
invisible final-state particles within a geometric acceptance
of |η| < 5.

The resulting Event is then passed on down theColliderBit
chain: first for modification by detector simulation, and then
in read-only form to the analysis routines.

2.1.6 Detector simulation

ColliderBit is structured so that the detector simulation is run
during the main parallelised event loop, implicitly speeding
up the simulation step. The user has several options for this
step.

No detector simulation The user can choose not to perform
any detector simulation, in which case the truth-level MC
events described above are passed directly to the event anal-
ysis framework without modification. Jets may be defined
directly at the parton level, or at the hadron level. The for-
mer is only really sufficient for analyses in which leptons
are the main species of interest, in which case turning off
hadronisation can lead to a large speed increase, as seen in
Table 2.

Delphes We provide an interface to the Delphes 3.1.2
detector simulation [30,31], which provides simulations of
the ATLAS and CMS detectors. Delphes includes a simu-
lation of track propagation in the magnetic field of an LHC

5 We also tested final b-hadrons during validation, and found that their
identification with ColliderBit differed significantly from the known
performance of ATLAS [86]. As experimental flavour-tagging algo-
rithms evolve, it will become necessary for the tagging algorithms in
ColliderBit to be made more configurable.

123

 795 Page 8 of 36 Eur. Phys. J. C (2017) 77:795

detector, along with a simulation of the electron and hadron
calorimeters, and the muon chambers. The user can configure
the parameters of the simulation using the normal Delphes
mechanism, but it should be noted that b- and τ -tagging,
and the ATLAS lepton ID selection efficiencies (“medium”,
“tight”, etc.), are controlled explicitly within the Collider-
Bit event analysis codes, to allow different analyses to use
different calibration settings. Delphes has been interfaced
with ColliderBit such that it can be passed single events via
memory, rather than performing several passes over a large
sample of MC events in pre-produced files, as in its usual
mode of operation.

BuckFast For most purposes, a more approximate approach
based on four-vector smearing is sufficient. We supply an
internal ColliderBit detector simulation, BuckFast, which
uses particle and jet resolution and efficiency functions based
on those in Delphes, plus parametrised ATLAS electron
identification efficiencies. New parametrisations are being
added as Run 2 performance data becomes public.

The components of the BuckFast simulation are:

Electrons: We apply the Delphes functions for electron
tracking efficiency, electron energy resolution and elec-
tron reconstruction efficiency (in that order) to the truth-
level electron four-vectors. In the analysis step, we apply
parametrisations of the ATLAS electron identification
efficiencies as appropriate, taken from Refs. [89,90].

Muons: We apply the Delphes functions for the muon
tracking efficiency, the muon momentum resolution and
the muon reconstruction efficiency (in that order) to the
truth-level muon four-vectors.

Taus: Hadronic taus are identified at truth level. Lep-
tonic taus are discarded. For both ATLAS and CMS
the hadronic tau momentum is smeared by a 3% Gaus-
sian resolution. Tau tags are applied to jets found within
ΔR < 0.5 of the true hadronic taus. Flat efficiencies are
applied to tau tagging in the analysis code to allow use
of different tagging configurations within the analyses of
each experiment.

Jets: Jets are reconstructed at hadron level using the anti-kt
algorithm, implemented in theFastJet package. All fidu-
cial final-state particles other than invisibles and muons
are used in jet finding, mimicking typical LHC jet cal-
ibration. For both ATLAS and CMS the jet momentum
is smeared by a 3% Gaussian resolution chosen for com-
patibility with Delphes’ constituent-level smearing.

b-jets: Truth-level jet tags are obtained by matching jets to
final b-partons for ΔR < 0.4; a more robust approach
using finalb-hadrons is also available, but by construction
agrees less well with the parton-basedDelphes and LHC
Run 1 tagging calibrations. As for taus, tagging efficien-
cies and mistag rates parametrised in η–pT are applied

in each analysis code to allow the use of different tagger
configurations in different analyses.

Missing energy (MET): MET is constructed at generator
level by summing the transverse momenta of invisible
particles within the acceptance of the detector, and all
particles outside the acceptance. No “soft-term” MET
smearing is currently applied, since for events with real
hard-process invisible particles the ATLAS reconstruc-
tion of Emiss

T is within a few percent of the true value at
all scales, and within 1% above 70 GeV [91]. The same
approach is taken to define the “truth MET” in the “no
simulation” mode.

Figure 2 shows example performance of BuckFast, with
comparisons to Delphes and no-simulation processing. For
this example, we choose a CMSSM point close to the cur-
rent ATLAS 95% exclusion contour, consistent with the
measured Higgs boson mass: m0 = 2000 GeV,m1/2 =
600 GeV, A0 = −4000 GeV, tan β = 30, μ > 0.

The major effects of detector simulation are seen to be due
to lepton efficiencies, with explicit resolution modelling pro-
ducing relatively minor effects.BuckFast andDelphes typi-
cally agree to within a few percent for leptons, but some larger
differences remain for b-jets (due to truth-tag definition) and
missing ET. The latter is currently unsmeared in BuckFast,
but the origin of the deviation at high-Emiss

T is unclear since
the reconstructed ATLAS Emiss

T closely matches the truth
value in the BSM search region above 70 GeV [91]. The
impact of these discrepancies on an ATLAS analysis domi-
nated by b jets and Emiss

T is shown in Table 4.
BuckFast is significantly faster than Delphes. One rea-

son for this is that the operations it performs are computa-
tionally simpler, and should complete in fractions of a sec-
ond. The other, more signficant, reason is that the ROOT
framework on which Delphes is based is not thread-safe, so
must be run serially within an OpenMP critical block.
In contrast, BuckFast can be run in parallel along with our
parallelised version of Pythia8 (cf. Sect. 2.1.4), as it has no
dependence on ROOT.

2.1.7 LHC event analysis framework

ColliderBit provides a simple analysis framework, built on
the event record classes described in Sect. 2.1.5. Each analy-
sis routine is aC++ class derived from the BaseAnalysis class,
which provides the usual interface of a pre-run init method
and an in-run analyze method to be called on each event. The
user can choose which analyses to run in a given scan directly
from the GAMBIT configuration file. Using the generic Col-
liderBit event record classes means that the analyses can be
automatically run on either unsmeared truth records or ones
to which detector effects (other than jet tagging rates) have
been applied.

123

Eur. Phys. J. C (2017) 77:795 Page 9 of 36 795

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Comparisons of ATLAS event observables between the no-
detector “truth” configuration, ColliderBit’s BuckFast 4-vector smear-
ing simulation, and the Delphes fast simulation code, for a CMSSM

point near the current ATLAS search limit (see main text). The ratio plots
are computed relative to Delphes, to best evaluate the performance of
BuckFast

123

 795 Page 10 of 36 Eur. Phys. J. C (2017) 77:795

The result of an analysis is a set of SignalRegionData

objects. Each of these encodes the predicted event counts in a
particular signal region of the analysis, from both signal and
background processes. The signal numbers are obtained by
normalising the yields of simulated events to the integrated
luminosity of the original experimental data analysis. The
BaseAnalysis class provides additional methods for statisti-
cally combining analyses (either equivalent or orthogonal),
and for specifying the effective luminosity simulated in the
Monte Carlo step.

2.1.8 LHC statistics calculations

To determine the basic likelihood of observing n events in
a certain signal region, given a signal prediction s, we use
the marginalised form of Eq. (1) [92–94]. This allows us to
incorporate systematic uncertainties on the signal prediction
(σs)6 and background estimate (σb) into the calculation, by
marginalising over the probability distribution of a rescaling
parameter ξ :

L(n|s, b) =
∫ ∞

0

[ξ(s + b)]n e−ξ(b+s)

n! P(ξ)dξ . (3)

Note that the use of a single rescaling parameter is an approx-
imation to avoid the need for a time-consuming 2D integra-
tion. The probability distribution for ξ is peaked at ξ = 1,
and has a width characterised by σ 2

ξ = σ 2
s +σ 2

b . The user can
choose whether to assume a Gaussian form for this function,

P(ξ |σξ) = 1√
2πσξ

exp

[
−1

2

(
1 − ξ

σξ

)2
]

, (4)

or a log-normal form,

P(ξ |σξ) = 1√
2πσξ

1

ξ
exp

[
−1

2

(
ln ξ

σξ

)2
]

. (5)

The ColliderBit default is to use the log-normal version. This
is slower but more correct, as it does not permit a finite proba-
bility for ξ = 0. In the limit of small σξ , both likelihoods give
extremely similar results. We use the highly optimised imple-
mentations of these functions contained in nulike [94,95].

The steps we have described so far allow ColliderBit to
calculate the predicted number of events in any given signal
region, defined by a specific set of observables and kinematic

6 We choose to set this term to zero in all analyses in ColliderBit 1.0.0,
owing to our already conservative use of LO cross-sections, the error
from which dwarfs uncertainties arising from finite statistics in event
generation; see Sect. 2.1.3 for more details. Future versions, employing
alternative cross-section calculations, will make more extended use of
σs .

cuts, and to compute the likelihood for that region. However,
certain ATLAS and CMS analyses make use of multiple sig-
nal regions, allowing analysis cuts to be optimised according
to the specific characteristics of each model being tested.
These signal regions may overlap, and so contain events in
common. The likelihood functions from overlapping signal
regions are therefore not independent. Ideally, information
would be available from the experiments about the degree
to which this overlap occurs, which would allow GAMBIT
analyses to include all signal regions and their correlations
in the final likelihood for a given analysis.

As this information is not presently available for most
analyses, ColliderBit computes the likelihood for a given
analysis on the basis of the signal region expected to give the
strongest limit. It does this individually for each model, by
calculating the expected number of events for every possible
signal region considered in the the original ATLAS or CMS
analysis. It then chooses the signal region with the maximally
negative log-likelihood difference

Δ lnLpred = lnL(n = b|s, b) − lnL(n = b|s = 0, b). (6)

This difference is the log of the likelihood ratio between the
signal plus background and background-only predictions,
assuming that the observed counts match the background
expectation. To calculate the likelihood for the analysis in
question, ColliderBit then computes the likelihood of the
actual data in the chosen signal region, and takes the differ-
ence with respect to the background-only expectation in that
region, giving an effective log-likelihood

lnLeff ≡ Δ lnLtrue = lnL(n|s, b) − lnL(n|s = 0, b) . (7)

It is necessary to define the effective log-likelihood in this
way because of the selection step between different sig-
nal regions. Signal regions can in principle differ markedly
in their number of analysis bins and expected numbers of
events, leading to very different effective likelihood normal-
isations. Because of this, choosing the signal region on a
per-model basis and then adopting the raw log-likelihood
from the selected signal region would introduce erroneous
model-to-model likelihood fluctuations. Taking the differ-
ence with respect to the background prediction not only
removes the differing (but model-independent) offsets to the
log-likelihood from the different signal regions’ typical count
rates, but also reduces the effective degrees of freedom of the
resulting likelihood, from N (the number of analysis bins)
to just one. This puts effective likelihoods from all signal
regions on the same footing, and allows them to be com-
pared correctly across different points in parameter space.

This is a conservative approach, but it is the best possi-
ble treatment when one lacks sufficient information to han-
dle correlated data and systematic uncertainties. When such

123

Eur. Phys. J. C (2017) 77:795 Page 11 of 36 795

Table 3 The published ATLAS cutflow for the 2 j t signal region taken
from Ref. [49], which searched for squarks and gluinos in events with
jets and missing transverse momentum. The cutflow is generated for a
squark pair-production simplified model (in which a pair of squarks is
produced with direct decay to a quark and a lightest neutralino, all other
sparticles being decoupled), withmq̃ = 1000 GeV andmχ̃0

1
= 100 GeV.

This is compared with the GAMBIT cutflow obtained using Pythia8
and BuckFast. Shown are the efficiencies for passing each cut (second
and third columns), and the ratio of efficiencies (fourth column). For
reference, we also show the cutflow results obtained using the Check-
MATE package (taken from their public validation results) [29]

Cut ATLAS (%) GAMBIT (%) Ratio CheckMATE (%)

Emiss
T + jet pT cuts 89.6 91.0 1.02 90.8

Δφmin > 0.4 81.0 82.5 1.02 82.1

Emiss
T /

√
HT >15 GeV−1/2 56.0 56.8 1.01 54.2

mincl
eff > 1600 GeV 31.6 33.4 1.06 31.9

Table 4 The published ATLAS cutflow for SR A in Ref. [43], a search
for new physics in events with two b jets and missing transverse momen-
tum. The cutflow is generated for a bottom squark pair-production sim-
plified model (in which a pair of bottom squarks is produced with direct
decay to a b-quark and a lightest neutralino, all other sparticles being
decoupled), with mb̃ = 500 GeV and mχ̃0

1
= 1 GeV. This is com-

pared with the GAMBIT cutflow obtained using Pythia8 and Buck-
Fast. Shown are the percentages of the initial event sample after each
cut, and the ratio of theGAMBIT and ATLAS numbers. We also provide
the CheckMATE cutflow in the final column, taken from their public
validation results

Cut ATLAS (%) GAMBIT (%) Ratio CheckMATE (%)

Emiss
T > 80 GeV 92.4 92.6 1.00 93.1

Lepton veto 86.6 92.6 1.07 90.7

Emiss
T > 150 GeV 76.1 79.1 1.04 76.8

Jet selection 6.85 8.79 1.28 6.46

mbb > 200 GeV 5.52 7.40 1.34 4.60

MCT > 150 GeV 4.72 5.93 1.26 4.01

MCT > 200 GeV 3.86 4.76 1.24 3.32

MCT > 250 GeV 2.93 3.46 1.18 2.50

MCT > 300 GeV 2.01 2.34 1.16 1.69

information is made available (ideally in a standardised for-
mat), ColliderBit will use it for a more complete likelihood
calculation. Refs. [96,97] are indeed very welcome recent
steps in this direction.

To construct a compound likelihood from different anal-
yses, we assume that all analyses have been chosen to be
orthogonal, in the sense that they have disjoint selection cri-
teria and no single event could contribute to the signal region
counts of multiple analyses. This means that their effective
log-likelihoods can be straightforwardly summed; Collider-
Bit does this for all analyses selected by the user, and returns
the result to the GAMBIT Core as a final, combined LHC
log-likelihood. It is the responsibility of the user to ensure
that they only select mutually orthogonal analyses for com-
bination in a ColliderBit run.

2.1.9 Validation of ColliderBit LHC constraints

We verified the ColliderBit LHC simulation and analysis
chain by comparing cutflows for representative model param-
eter points against those published by the LHC experiments.
Note that we use Pythia8 and BuckFast for these compar-

isons, so we expect to see the agreement degrade in cases
where effects not included in this chain become important,
e.g. for compressed spectra, where a more appropriate treat-
ment of initial state radiation is important.

Three sample cutflows are presented in Tables 3, 4 and
5, for a jets + MET search, 2b + MET search and a dilep-
ton + MET search, respectively. These show close agree-
ment for most signal regions, rising to no more than ∼ 50%
discrepancy in the worst case. These are a representative
choice of sample cutflows for all signal regions considered.
For reference, we also show the publically available Check-
MATE cutflows where these are available. These confirm the
expectation that BuckFast gives respectable performance,
but does not match the ATLAS cutflows as closely as the
CheckMATE package, which runs a heavily tuned version
of the Delphes detector simulation. The compromise in per-
formance in BuckFast is of course compensated for by the
two-fold increase in speed, resulting from the quicker sim-
ulation step, plus the fact that it can be parallelised since it
does not rely on the ROOT framework.

To illustrate the effect of changing thePythia8 settings on
the physics performance of ColliderBit, we show the ATLAS

123

 795 Page 12 of 36 Eur. Phys. J. C (2017) 77:795

Table 5 The published ATLAS cutflow for Model 1 in Ref. [46], a
search for new physics in events with two leptons and missing transverse
momentum. This is compared with theGAMBIT cutflow obtained using
Pythia8 and BuckFast. Shown are the numbers of events expected in
20.1 fb−1 of 8 TeV ATLAS data, and the ratio of the GAMBIT and
ATLAS numbers. Note that for the GAMBIT numbers, we used the
same value of the SUSY production cross-section as that assumed in
the ATLAS cutflow (and thus our cutflow does not include the effect of
the LO cross-section that we use in our SUSY scans)

Cut ATLAS GAMBIT Ratio

e + e−
Two leptons 52.0 48.2 0.93

Jet veto 22.4 23.2 1.04

Z veto 21.2 21.6 1.02

SR MT2 90 12.7 12.6 0.99

SR MT2 120 9.4 9.5 1.01

SR MT2 150 6.2 6.3 1.02

μ+μ−

Two leptons 47.8 51.2 1.07

Jet veto 20.7 25.5 1.23

Z veto 19.3 23.8 1.23

SR MT2 90 11.5 13.8 1.20

SR MT2 120 8.7 9.8 1.12

SR MT2 150 5.7 6.6 1.16

e±μ∓

Two leptons 77.7 102.7 1.32

Jet veto 32.4 50.8 1.6

Z veto 32.4 42.1 1.49

SR MT2 90 19.1 27.2 1.42

SR MT2 120 14.7 20.1 1.37

SR MT2 150 10.1 13.6 1.34

0 lepton cutflow for four different Pythia8 configurations
in Table 6. This should be the most strongly affected cut-
flow, since the settings are all relevant for jet physics. In
fact, we observe only a slight degradation of the cutflow per-
formance as various approximations (e.g. removing hadro-

nisation and FSR) are made, which validates the removal of
certain Pythia8 features in the interests of speed. We caution
that for models with compressed particle decays where the
effects of final state radiation may become more important,
this conclusion is not expected to hold, but a thorough inves-
tigation is clearly physics-dependent and beyond the scope
of this paper.

In Fig. 3, we compare the observed ATLAS Run 1 zero
lepton CMSSM 95% CL exclusion limit in the m0–m1/2

plane from [49] with a GAMBIT ColliderBit scan performed
with the same model. Here m0 and m1/2 are free parame-
ters, tan β = 30, A0 = −2m0 and μ > 0. Since there are
only two free parameters we perform a simple grid scan with
50×50 grid points. The ColliderBit likelihood includes only
the LHC likelihood contribution, which in turn uses only the
ATLAS zero lepton analysis, with 20,000 MC events gen-
erated per parameter point. The white solid line show the
95% CL exclusion contour, defined by the likelihood ratio
L/Lmax = 0.05. For comparison, the observed limit from the
ATLAS analysis is plotted as a solid blue line, with dashed
blue lines showing the reported ±1σ theoretical uncertainty
on this limit.

The ColliderBit exclusion limit is more conservative than
the ATLAS result, as expected from the different cross-
sections used (LO for ColliderBit, NLO + NLL for the
ATLAS result). We have checked how our limit would change
with NLO + NLL cross-sections from NLL-fast 2.1 for a
number of points close to the observed ATLAS limit. In the
region where m0 � m1/2 we find close agreement with the
ATLAS limit; the rescaled ColliderBit limit ends within the
uncertainty band of the ATLAS limit. In the low-m0 part
of the plane, where m0 ∼ m1/2, we see a somewhat larger
discrepancy with the observed ATLAS limit also after rescal-
ing our results with NLO + NLL cross-sections. The reason
for this discrepancy is that ColliderBit here differ from the
ATLAS analysis in what signal region is predicted to have
the best expected sensitivity. ATLAS uses the 4-jet region
4jt while ColliderBit chooses the 3-jet region 3j. Coinciden-

Table 6 Reproduction of the same ATLAS 0 lepton cutflow as Table 3,
with each column representing different Pythia8 settings. The baseline
in the final “None” column has tau spin correlations turned off (since
they have no effect for SUSY models in any case), ISR turned on,
and hadronisation (HAD), FSR and multiple parton interactions (MPI)
turned off. Pythia8 is configured to produce light squark pairs only,

and the parton-level events are reconstructed with the parton BuckFast
settings. The first three columns add hadronization, FSR and multiple
parton interactions. It is worth noting that none of these configurations
match the cutflow configuration in Table 3, which includes a tuning of
the minimum pT threshold for the Pythia8 TimeShower

Cut MPI+FSR+HAD (%) FSR+HAD (%) HAD (%) None (%)

Emiss
T + jet pT cuts 91.0 90.7 91.4 91.0

Δφmin > 0.4 82.4 82.4 82.7 81.7

Emiss
T /

√
HT >15 GeV−1/2 56.8 57.1 57.7 57.0

mincl
eff > 1600 GeV 33.0 32.7 33.7 34.2

123

Eur. Phys. J. C (2017) 77:795 Page 13 of 36 795

GAMBIT 1.0.0

400

500

600

700

800

900
m

1 2
(G

eV
)

P
rofile likelihood ratio Λ

 =
L
/L

m
ax

1000 2000 3000 4000 5000 6000

m0 (GeV)

0.2

0.4

0.6

0.8

1.0

Fig. 3 Output from a ColliderBit CMSSM grid scan overm0 andm1/2
with tan β = 30, A0 = −2m0 and μ > 0, using 50 grid points
in each direction. The likelihood only includes the ATLAS zero lep-
ton SUSY search, with 20,000 MC events generated per point. The
colour map shows the profile likelihood ratio L/Lmax and the solid
white line indicates the GAMBIT 95% CL exclusion contour, defined
by L/Lmax = 0.05. The blue solid line shows the ATLAS 95% CL
observed exclusion limit, taken from Ref. [49], with the blue dashed
lines showing the reported ±1σ theoretical (cross section) uncertainty

tally, the 4jt region observes a small downwards fluctuation
relative to the background expectation, leading ATLAS to set
stronger limits than expected, while at the same time there is
a small upwards fluctuation in the event count for the region
3j, giving a weaker ColliderBit limit than expected. In this
part of parameter space the squarks and gluinos are rather
close in mass, implying that some of the jets will be soft. The
choice between a 3-jet and a 4-jet signal region is therefore
likely to be sensitive to the details of jet handling in the differ-
ent event generators used (HERWIG++2.5.2 for the ATLAS
result and Pythia8.212 for ColliderBit). We note that if we
by hand force ColliderBit to use the 4jt region, our limit
again agrees nicely with the ATLAS limit after NLO + NLL
scaling. For instance, our rescaled limit at m0 = 800 GeV
moves up to m1/2 = 780 GeV.

In the above 50 × 50 grid scan of the m0–m1/2 plane
we only generated 20,000 MC events per parameter point.
This scan completed in less than 80 minutes using 48 CPUs.
Clearly, for a low-dimensional scan like this one can afford
a much higher number of events per point to reduce the MC
uncertainty. But for large global fits in many-dimensional
parameter spaces 20,000 events may be a realistic trade-off
between speed and accuracy. In Fig. 4 we show a colour
map of the relative MC uncertainty,

√
ns/ns , across the m0–

m1/2 plane for the ColliderBit simulation of the ATLAS zero
lepton search using 20,000 events per point. Here ns is the
number of accepted MC events for the signal region chosen

GAMBIT 1.0.0

ns = 0

400

500

600

700

800

900

m
1 2

(G
eV

)

R
elative M

C
 uncertainty (√

n
s /n

s)

1000 2000 3000 4000 5000 6000
m0 (GeV)

0.05

0.10

0.15

0.20

0.25

Fig. 4 The relative MC uncertainty
√
ns/ns for ColliderBit simula-

tions of the ATLAS zero lepton SUSY search across the plane of m0
and m1/2, using 20,000 MC events per parameter point. Here ns is
the number of accepted MC signal events. As in Fig. 3, the remaining
CMSSM parameters are given by tan β = 30, A0 = −2m0 and μ > 0.
The solid lines show theGAMBIT 95% CL exclusion contours obtained
using 20,000 (white) and 100,000 (cyan) MC events

by ColliderBit for the given parameter point. As in Fig. 3,
the white line depicts the 95% CL exclusion contour obtained
with 20,000 generated events. For comparison the cyan line
shows the limit obtained when generating 100,000 events per
point. We see that for the signal regions used to calculate the
likelihood for this analysis, the relative MC uncertainty stays
below 13% in the parameter regions around the exclusion
limit. At large m0 and m1/2 the uncertainty increases as we
approach the production threshold. (The apparent cut-off at√
ns/ns ∼ 0.25 is due to the grid step size).
In contrast to the simple grid scan presented in Figs. 3

and 4, a large global fit will typically involve sampling mil-
lions of parameter points. Limited MC event statistics then
increases the chance of a few points ending up with a spu-
rious good likelihood due to MC fluctuations. This may in
particular affect the result of a frequentist analysis where the
preferred parameter regions are determined relative to the
best-fit point, as with the likelihood ratioL/Lmax used above.
A spurious good likelihood Lmax for the best-fit point will
result in a falsly strong constraint on the preferred parameter
regions. One simple way to ensure conservative and more
stable limits in a large scan is to cap the ColliderBit effective
log-likehood in Eq. (7) at the value given by the background-
only expectation (s = 0), i.e. to force lnLeff ≤ 0. This then
becomes an “exclusion only” likelihood, as all points where
s > 0 gives an improved fit to the data are assigned the like-
lihood corresponding to s = 0. Of course, this method is not
appropriate if the aim of the parameter scan is to fit the model
to a potential new signal in the data.

123

 795 Page 14 of 36 Eur. Phys. J. C (2017) 77:795

GAMBIT 1.0.0

200

400

600

800
m

1 2
(G

eV
)

P
rofile likelihood ratio Λ

 =
L
/ L

m
ax

2000 4000 6000 8000

m0 (GeV)

0.2

0.4

0.6

0.8

1.0

Fig. 5 Output from a ColliderBit CMSSM scan over m0, m1/2, tan β,
and A0, with SM parameters set to default values, using Diver with
GAMBIT production settings (convthresh = 10−5 and NP = 19200).
The likelihood includes all of the ATLAS and CMS Run I analyses sum-
marised in the text, but no other contributions. The colour map shows
the profile likelihood ratio L/Lmax and the solid white line indicate the
GAMBIT 95% CL exclusion contours at L/Lmax = 0.05

The approach of capping the effective likelihood was used
for the result shown in Fig. 3. We also apply it in the analysis
shown in Fig. 5. This gives an example of a typical use-case
for ColliderBit, in which multiple LHC searches are included
in the combined LHC likelihood and a larger parameter space
is scanned. Here we show the CMSSM 95% CL exclusion
limit in the m0–m1/2 plane, following a scan of m0, m1/2,
tan β, and A0 using Diver [39] with GAMBIT production
settings (convthresh = 10−5 and NP = 19200), with the SM
parameters held to their default values. All of the LHC Run
I analyses listed above are included in the LHC combined
likelihood, and no other likelihoods are used. One obtains an
exclusion contour of similar shape to the ATLAS zero lepton
limit for fixed A0 and tan β, but it is shifted to lower values
of m1/2.

2.2 LEP likelihood calculation

Despite the huge improvement in lower limits provided by
high-energy LHC data, limits from direct searches at the LEP
experiments are still important for some BSM models. This
is true in particular for SUSY models that only have signifi-
cant production of slepton or neutralino/chargino pairs with
masses below half the maximum LEP centre-of-mass energy.
In most available codes, LEP limits from direct searches take
the form of hard lower limits on sparticle masses, at e.g.
95% CL. This is how such limits are implemented in Dark-
SUSY [98] and micrOMEGAs [99], for example. Such lim-

its generally rely on model-dependent assumptions, which
are not always clearly stated.

As an example, in DarkSUSY 5.1.3 the selectron mass is
bounded by mẽR

> 95 GeV if mẽR
−mχ̃0

1
> 15 GeV, based

on a search by the ALEPH experiment [8], and mẽR
> 87.1

GeV ifmẽR
−mχ̃0

1
> 5 GeV, based on results from the OPAL

experiment [100]. However, if one looks closely at the details
of these limits there are indeed remaining model assump-
tions, e.g. the ALEPH experiment assumes μ = −200 GeV
and tan β = 2 for the production cross-section, and a branch-
ing ratio BR(ẽR → eχ̃0

1) = 1. In contrast, in an analysis of
the same data using a more general MSSM parameter space
(but still assuming gaugino mass unification, scalar mass uni-
fication, no slepton mixing, and negligible squark mixing),
the selectron mass limit becomes 73 GeV [9]. The weaken-
ing of this limit is due to possibile cascade decays of the
selectron.

In ColliderBit we take a different approach, which is free
from model-dependent assumptions, using the direct cross-
section limits for sparticle pair production of sleptons, neu-
tralinos and charginos at LEP. Our approach includes not
only model-dependent effects in the cross section, but also
in the decay rates, where we make no assumptions on the
branching ratios, relying instead on an explicit calculation.

Continuing the example of the selectron case, we now dis-
cuss how we model the cross-section limit for slepton pair
production and decay into the lightest neutralino from the L3
experiment. This has been given as a function of the selectron
and neutralino mass in Fig. 2a of Ref. [6], which we repro-
duce here in Fig. 6 for demonstration. Corresponding results
for smuons and staus are used in the same manner. These
results cover slepton masses from 45 GeV up to the kine-
matic limit of 104 GeV, with neutralino masses from zero up
to the slepton mass. For a particular model point the theoret-
ical slepton pair production cross-section is calculated in a
separate routine. This uses leading order results on the cross-
section taken from Refs. [101,102], which includes t-channel
contributions from neutralinos. We treat contributions to a
possible signal cross-section from ẽ∗

L ẽL and ẽ∗
RẽR pair pro-

duction separately, taking into account the relevant branching
ratios for the decay to the lightest neutralino using Decay-
Bit [40], which can be interfaced to, e.g., SUSY-HIT [103].
Hereafter, we refer to this cross-section times branching ratio
as σ × BR.

We estimate the dominant theoretical uncertainty on σ ×
BR using the mass uncertainties of the sleptons, as reported
by SpecBit [40]. For slepton mass values of m1 ± δ1 and
m2 ±δ2, we calculate the central value of σ ×BR for m1 and
m2. Then, we recalculate σ × BR with the upper and lower
mass values and use the maximum and minimum of these as
estimates for the overall σ × BR uncertainty.

Once the σ ×BR has been calculated this way, we can look
up the appropriate limit with which to compare from Fig. 6.

123

Eur. Phys. J. C (2017) 77:795 Page 15 of 36 795

Fig. 6 Example of the limit interpolation process, based upon Fig. 2a
of Ref. [6]. The line segment OP is used to find the intersection points
A1, A2, and A3, which determine that P is within the 0.06 pb limit. Then,
for each angle α ∈ [0, 2π], the line segments PQ1 and PQ2 contribute to
the weighted average limit at the point P. More details of this procedure
are described in the main body of text

We do this by digitising each cross-section limit contour,
and using inverse distance-weighted interpolation [104] to
estimate the cross-section limits in regions between contours.
The weighted averaging prevents the noisiness of the LEP
limit curves from strongly influencing the interpolant (an
advantage over e.g. spline or bilinear interpolation), whilst
at the same time forcing the interpolant to exactly reproduce
the published cross-section contours (an advantage over e.g.
data smoothing algorithms).

Our algorithm works as follows. Given a point on the mẽ–
mχ̃0

1
plane, such as point P in Fig. 6, we first determine which

contours contain this point. This can be achieved by drawing
a line segment from this point to any point O outside of the
plot. Then, for each contour, if this line segment OP inter-
sects the contour an odd number of times, say at A1, A2, and
A3, then the point lies within the contour. Using this method,
we find the two limit contours, 0.06 pb and 0.03 pb, between
which the point P lies. Next, for a large number of angles
α ∈ [0, 2π], we draw a line segment PQ2 from P to where it
intersects the outer limit of 0.06 pb. We also note if this line
segment intersects the 0.03 pb contour, such as at Q1. If the
point lies directly on top of one of the contours, we simply
take that contour as the correct limit. If not, we calculate the
limit as a weighted average of all bounding cross-section lim-
its over all angles. We weight each cross-section limit sample
by PQ

−p
, where PQ is the length of the line segment PQ, and

p is the so-called ‘power’ parameter of the inverse distance-
weighted interpolation algorithm. We choose p = 0.5, to
avoid artificially endowing the interpolating functions with

local minima and maxima around the sample points, a known
shortcoming of the algorithm for choices of p greater than or
equal to 1. The results of this interpolation proceedure can
be seen in Fig. 7, which shows the interpolated 95% confi-
dence limits for all of the results from the L3 experiment that
we use here. In particular the top left plot can be compared
directly to Fig. 6.

Comparing the values of σ × BR to the 95% confidence
interpolated limit drawn from the digitised limit plot, we can
now calculate the likelihood using the error function and the
estimated theoretical uncertainty on σ × BR.

To increase the constraining power of the direct LEP
searches, we also use the corresponding cross-section limits
set by the ALEPH experiment, calculating a second likeli-
hood in the same manner. For this, we consider the searches
for scalar leptons in the same mass range, using the model-
independent results of Fig. 3 in Ref. [8]. We treat the data of
the two experiments as independent.7

In Fig. 8 we show the ColliderBit exclusion limits from
the combination of ALEPH and L3 searches for slepton pair
production, in the CMSSM (m0,m1/2)-mass plane for two
different values of tan β. The results in Fig. 8 can be com-
pared to the corresponding CMSSM exclusion limits from
ALEPH alone given in [9] (dashed lines). We have checked
that the observed differences are mainly due to the higher
constraining power of the two experiments combined, with
some remaining unavoidable differences caused by the RGE
codes used for the spectrum generation.

We take similar limits for the neutralino and chargino pair
production cross-sections, with decays into the lightest neu-
tralino, from searches by the OPAL and L3 experiments.
The corresponding theoretical leading-order cross-sections
are from Refs. [105] and [106], again taking into account
the relevant branching ratio for each model point. For neu-
tralino pairs, the limits are set on χ̃0

2 χ̃0
1 production with sub-

sequent decay of the χ̃0
2 . We take OPAL results from Fig. 9 in

Ref. [12], which applies to hadronic decays, giving bounds
for mχ̃0

2
from 100 GeV to the kinematic limit of 204 GeV,

whilemχ̃0
1

ranges from zero tomχ̃0
2
. The regionmχ̃0

1
+mχ̃0

2
<

100 GeV is not bounded. From L3 we have limits on leptonic
decays χ̃0

2 → llχ̃0
1 from Fig. 3b of Ref. [4] for mχ̃0

2
from

91 GeV to the kinematic limit of 189 GeV. Again, no limit
applies in the low mass region mχ̃0

1
+ mχ̃0

2
< 91 GeV. Our

interpolation from the L3 results is shown in Fig. 7 (bottom
right).8

7 This should be a good approximation; common uncertainties across
the experiments, such as luminosity, are subdominant to the systematic
uncertainty from Monte Carlo statistics in the experimental result.
8 In this region limits from the decay of the Z -boson would apply unless
the neutralinos are purely bino/wino combinations. In that case there
must also be a light chargino (wino), for which the limits below apply.

123

 795 Page 16 of 36 Eur. Phys. J. C (2017) 77:795

Fig. 7 Interpolated 95% CL on the cross section for pair production
of selectrons (upper left), smuons (upper centre), staus (upper right),
charginos (lower left) and the next-to-lightest neutralino (lower right),

as a function of the produced sparticle mass and the mass of the lightest
neutralino. This interpolation is based on results by the L3 experiment
at LEP [4,6]

For chargino pair production, the OPAL experiment [12]
sets limits on hadronic, semi-leptonic and leptonic decays
separately in Figs. 5, 6 and 7 of that article. The limits are
set from a chargino mass of 75 GeV up to the kinematical
limit of 104 GeV, and for neutralino masses from zero up to
the chargino mass. For each channel we take into account the
branching ratios BR(χ̃±

1 → qq̄ ′χ̃0
1) and BR(χ̃±

1 → lνχ̃0
1)

of the model point. We use an older, compatible, limit from
the L3 experiment on fully leptonic decays taken from Fig. 2b
of Ref. [4]. This extends from 45 GeV chargino masses up to
a kinematic limit of 94.5 GeV. Unfortunately, the L3 experi-
ment does not give separate model-independent cross-section
limits for the other two channels. Our interpolation from the
L3 results is again shown in Fig. 7 (bottom left).

We also include results on chargino and neutralino pair
production from both OPAL (Fig. 8 in Ref. [12]) and L3
(Figs. 2a and 3a in Ref. [4]), where the limits assume that
the fermions in χ̃±

1 → f f ′χ̃0
1 and χ̃0

2 → f f̄ χ̃0
1 are rep-

resented as per the normal W and Z branching ratios into
two fermions. This must be used with some care, as light
sfermions may affect the assumption.

We note that while the experimental limits have been set
on χ̃0

2 χ̃0
1 and χ̃+

1 χ̃−
1 production, the ColliderBit likelihood

can be calculated for production of any χ̃0
i χ̃0

1 and χ̃+
i χ̃−

i , as

long as we consider the same experimental signature in the
decay. Again, we show the resulting exclusion limits in the
CMSSM in Fig. 8. Here we observe very good agreement
with earlier ALEPH results on chargino pair production [9],
and we have checked that the difference is dominated by
differences in the RGE codes used. GAMBIT relies on Flex-
ibleSUSY [57], while the ALEPH analysis was carried out
with ISASUSY 7.51 [107].

2.3 Higgs likelihood calculation

ColliderBit includes likelihoods relating to constraints on
extended Higgs sectors from collider experiments, and to
measurements of the SM-like Higgs mass and production
cross-sections at the LHC. These likelihoods are provided
through an interface to HiggsBounds [33,34] and Hig-
gsSignals [35].

Although constructing a likelihood from null search
results at colliders generally requires event simulation, the
information provided by the combined LEP Higgs search
results [108] allows for the construction of an approximate
likelihood for neutral Higgs bosons. HiggsBounds interpo-
lates the full CLs+b distribution from the combined model-
independent LEP searches, for all Higgs mass combinations,

123

Eur. Phys. J. C (2017) 77:795 Page 17 of 36 795

Fig. 8 Limits from direct sparticle pair production searches at LEP
shown in the CMSSM (m0,m1/2)-mass plane with fixed tan β = 15
(left) and tan β = 30 (right), A0 = 0 GeV and μ > 0. The 95% CL
excluded areas from chargino searches (green), stau searches (blue),
and selectron searches (red) are shown separately and overlaid in the

sequence listed here. Theoretically forbidden regions are shown in yel-
low. Included for comparison are the corresponding results from the
ALEPH experiment alone taken from Fig. 6 of [9], indicated by the
dashed lines

over varying production cross sections. Using a Gaussian
approximation valid in the asymptotic limit, it employs the
CLs+b distribution to calculate an approximate likelihood.

With the direct observation of an SM-like Higgs boson [16,
17], measurements of the new particle’s mass, production
cross section, and branching ratios can be used to constrain
the neutral Higgs sector of BSM models. In channels where
measurements of the neutral boson’s mass are available,Hig-
gsSignals calculates contributions to the mass likelihood as
a χ2, taking into account both experimental and theoretical
uncertainties. For each channel, it minimises the χ2 indepen-
dently over the possibility of each neutral state in the Higgs
sector being responsible for the signal, including the simul-
taneous appearance of multiple resonances if they are nearly
degenerate in mass. For signal strengths, it uses measure-
ments over all available channels to construct a single χ2,
using the associated Nmeas-dimensional covariance matrix
to account for reported experimental uncertainties, including
correlations due to common channels between experiments
and the uncertainty in the integrated luminosity. It then com-
bines this signal-strength likelihood with the mass likelihood
to form a combined LHC neutral Higgs sector likelihood.

For both the LEP and LHC likelihoods implemented in
ColliderBit, the theoretical masses (with uncertainties, when
available), couplings and branching ratios come from other
GAMBIT modules, namely DecayBit and SpecBit [40].
In particular, we use the Higgs couplings provided via
HiggsCouplingsTable objects from SpecBit to estimate the
neutral Higgs boson production cross sections. We calculate
the ratios of the production cross-sections for each Higgs in a
given BSM theory to an SM Higgs of the same mass, assum-
ing them to be given by the ratio of squared couplings for the
relevant processes.

3 User interface

The GAMBIT code consists of a series of separate code
modules that calculate likelihoods for new physics mod-
els using data from flavour physics [41], astrophysics [42],
electroweak precision physics [40] and collider physics (the
present paper). These modules can be used as standalone
tools (using a custom C++ driving code), or they can be used
via the GAMBIT core framework that resolves dependencies
between calculations, and steers scans with the aid of a ded-
icated scanning and statistics module [39]. The advantage of
using the latter is that it is by far the easiest way to define
models, calculate spectra and perform decay width calcula-
tions.

There are thus two ways to take advantage of the high-
energy collider likelihoods provided by ColliderBit: either
via the GAMBIT framework or by interfacing to ColliderBit
as a standalone tool. Here we describe each in turn.

3.1 GAMBIT interface

The GAMBIT framework [1] defines two sorts of function
that can be used by each module within the framework:

– Module functions: C++ functions within the GAMBIT
code itself.

– Backend functions: functions that live within an external
code, such as Pythia8.

In GAMBIT, each module function is given a tag, called
a capability, that describes what it can calculate, be it an
observable, e.g. the number of events expected at the LHC,
or a likelihood, e.g. the combined likelihood of a set of LHC

123

 795 Page 18 of 36 Eur. Phys. J. C (2017) 77:795

searches. Module functions may also have dependencies
on other module functions – which may live either in the
same module or in another GAMBIT module – or backend
requirements that are satisfied by backend functions or
backend variables. A concrete example from ColliderBit is
the capability of the combined LHC likelihood calculation
(Table 7), which has dependencies on the numbers of events
expected in CMS and ATLAS searches, and has a backend
requirement relating to the functional form of the likelihood
required.

ColliderBit interfaces with the GAMBIT Core to commu-
nicate its capabilities, dependencies, and backend require-
ments. The Core then runs its dependency resolution routine
to connect and execute the module functions in the order
that fulfils all the dependencies. As most of this machinery
is described in the main GAMBIT paper [1], in this section
we shall simply describe each of the ColliderBit capabilities
and as their uses.

3.1.1 LHC simulation capabilities

These capabilities are grouped within ColliderBit into three
categories, which correspond to the three main steps of sim-
ulation: collider, detector, and analysis. There are also two
additional capabilities needed to complete a collider sim-
ulation. One is a capability meant simply to control the
parallelisation and execution of the event generation loop
(ColliderOperator), and the other calculates the likelihood
as a final result (LHC_Combined_LogLike). These two capa-
bilities are shown in Table 7. Tables 8, 9, and 10 show the
collider, detector, and analysis capabilities, respectively.

Since there can be a variety of configurations for col-
lider simulation and a variety of experimental analyses, we
designed these components so new configurations and anal-
yses could be easily added.

For instance, a user who wishes to add a new Pythia8
configuration must only complete the following steps:

1. Create a SpecializablePythia initialisation function.
These functions are defined in the file colliders/Speci

alizablePythia.cpp.9 Each such function must have
its own namespace and a call signature of void init

(SpecializablePythia* specializeMe).
Within the init function, settings can be sent to Pythia8
as strings using the SpecializablePythia::addToSet

tings function. For example, the following would be a
valid init function:

9 Within this section, all header files (*.hpp) mentioned are found
in the ColliderBit/include/gambit/ColliderBit direc-
tory, while source files (*.cpp) are found in theColliderBit/src
directory. Ta

bl
e
7

T
he

ca
pa

bi
lit

ie
s

pr
ov

id
ed

by
C
ol
lid
er
B
it

th
at

co
nt

ro
l

th
e

si
m

ul
at

io
n

ev
en

t
lo

op
an

d
ca

lc
ul

at
e

th
e

lik
el

ih
oo

d.
T

he
o
p
e
r
a
t
e
L
H
C
L
o
o
p

fu
nc

tio
n

re
qu

ir
es

cl
as

se
s

fr
om

P
yt
hi
a
8,

w
hi

ch
is

co
nn

ec
te

d
to

G
A
M
B
IT

vi
a
B
O
S
S

[1
].

T
he

op
tio

ns
ar

e
re

ad
at

ru
nt

im
e

fr
om

th
e
G
A
M
B
IT

YA
M
L

fil
e

(o
r

co
nfi

gu
re

d
in

th
e
C
ol
lid
er
B
it

st
an

da
lo

ne
co

de
).

Fo
r

re
ad

ab
ili

ty
,h

er
e

an
d

in
th

e
fo

llo
w

in
g

ta
bl

es
w

e
su

pp
re

ss
th

e
na

m
es

pa
ce

s
t
d

fo
r

st
an

da
rd

C
+
+

ty
pe

s
su

ch
as

s
t
d
:
:
v
e
c
t
o
r

an
d
s
t
d
:
:
s
t
r
i
n
g

.T
he

p
y
t
h
i
a
N
a
m
e
s

op
tio

n
te

lls
th

e
o
p
e
r
a
t
e
L
H
C
L
o
o
p

fu
nc

tio
n

th
e

na
m

es
of

th
e
P
yt
hi
a
8

co
nfi

gu
ra

tio
ns

fo
r

w
hi

ch
it

sh
ou

ld
ru

n
si

m
ul

at
io

n
lo

op
s

(o
ne

lo
op

pe
r

co
nfi

gu
ra

tio
n)

.T
he

n
E
v
e
n
t
s

op
tio

n
te

lls
it

ho
w

m
an

y
ev

en
ts

to
ge

ne
ra

te
pe

r
lo

op
,w

hi
le

th
e
s
i
l
e
n
c
e
L
o
o
p

op
tio

n
(d

ef
au

lt
t
r
u
e

)
is

us
ed

to
su

pp
re

ss
ou

tp
ut

to
s
t
d
o
u
t

du
ri

ng
th

e
si

m
ul

at
io

n
lo

op
s

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
D

ep
en

de
nc

ie
s

B
ac

ke
nd

re
qu

ir
em

en
ts

O
pt

io
ns

(t
yp

e)

C
o
l
l
i
d
e
r
O
p
e
r
a
t
o
r

o
p
e
r
a
t
e
L
H
C
L
o
o
p

(v
o
i
d

):
co

nt
ro

ls
th

e
pa

ra
lle

lis
at

io
n

an
d

ex
ec

ut
io

n
of

th
e

en
tir

e
ev

en
tl

oo
p

of
th

e
co

lli
de

r
si

m
ul

at
io

n

P
yt
hi
a
8

p
y
t
h
i
a
N
a
m
e
s

(v
e
c
t
o
r
<
s
t
r
i
n
g
>

)
n
E
v
e
n
t
s

(v
e
c
t
o
r
<
i
n
t
>

)
s
i
l
e
n
c
e
L
o
o
p

(b
o
o
l

)

L
H
C
_
C
o
m
b
i
n
e
d
_
L
o
g
L
i
k
e

c
a
l
c
_
L
H
C
_
L
o
g
L
i
k
e

(d
o
u
b
l
e

):
C

om
bi

ne
s

th
e

re
su

lts
fr

om
di

ff
er

en
t

an
al

ys
es

to
ge

th
er

in
to

a
si

ng
le

de
lta

-l
og

-l
ik

el
ih

oo
d

va
lu

e

D
e
t
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

A
T
L
A
S
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

C
M
S
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

(T
ab

le
10

)

nu
lik
e

123

Eur. Phys. J. C (2017) 77:795 Page 19 of 36 795

Ta
bl
e
8

T
he

co
lli

de
rc

ap
ab

ili
tie

s
pr

ov
id

ed
by

C
ol
lid
er
B
it.

In
ad

di
tio

n
to

th
e

de
pe

nd
en

ci
es

sh
ow

n
ab

ov
e,

al
lo

ft
he

se
fu

nc
tio

ns
al

so
de

pe
nd

on
th

e
C
o
l
l
i
d
e
r
O
p
e
r
a
t
o
r

ca
pa

bi
lit

y
in

Ta
bl

e
7,

be
ca

us
e

th
ey

al
le

xe
cu

te
w

ith
in

th
e

ev
en

tl
oo

p.
T

he
se

fu
nc

tio
ns

ne
ed

cl
as

se
s

fr
om

P
yt
hi
a
8,

w
hi

ch
is

co
nn

ec
te

d
to

G
A
M
B
IT

vi
a
B
O
S
S

[1
].

T
he

d
e
c
a
y
_
r
a
t
e
s

an
d
M
S
S
M
_
s
p
e
c
t
r
u
m

de
pe

nd
en

ci
es

ca
n

be
fu

lfi
lle

d
by

D
ec

ay
B
it

an
d
S
pe

cB
it

[4
0]

,r
es

pe
ct

iv
el

y.
T

he
op

tio
ns

ar
e

re
ad

at
ru

nt
im

e
fr

om
th

e
G
A
M
B
IT

YA
M
L

fil
e

(o
rc

on
fig

ur
ed

in
th

e
C
ol
lid
er
B
it

st
an

da
lo

ne
co

de
).

T
he

P
y
t
h
i
a
_
d
o
c
_
p
a
t
h

op
tio

n
po

in
ts

to
th

e
x
m
l
d
o
c

di
re

ct
or

y
of

P
yt
hi
a.

T
he

P
yt
hi
a_
co
nfi
g

op
tio

n
is

a
lis

to
f
P
yt
hi
a

se
tti

ng
s.

O
ne

su
ch

P
yt
hi
a_
co
nfi
g

lis
ti

s
re

qu
ir

ed
pe

r
P
yt
hi
a

co
nfi

gu
ra

tio
n

na
m

e,
as

gi
ve

n
in

p
y
t
h
i
a
N
a
m
e
s

(T
ab

le
7)

.T
he

S
L
H
A
_
f
i
l
e
n
a
m
e
s

op
tio

n
is

a
lis

to
f

th
e

SL
H

A
fil

es
th

at
th

e
us

er
w

an
ts

to
ru

n
us

in
g
g
e
t
P
y
t
h
i
a
F
i
l
e
R
e
a
d
e
r

.F
in

al
ly

,t
he

x
s
e
c
_
v
e
t
o
s

op
tio

n
sp

ec
ifi

es
lim

its
on

th
e

m
ax

im
um

to
ta

l
cr

os
s-

se
ct

io
n

(i
n

fb
),

as
es

tim
at

ed
by

P
yt
hi
a

at
th

e
be

gi
nn

in
g

of
a

ru
n,

be
lo

w
w

hi
ch

th
e

si
m

ul
at

io
n

sh
ou

ld
be

sk
ip

pe
d.

O
ne

cr
os

s-
se

ct
io

n
lim

it
ca

n
be

se
tp

er
P
yt
hi
a

co
nfi

gu
ra

tio
n

(d
ef

au
lt
0

)

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
D

ep
en

de
nc

ie
s

B
ac

ke
nd

re
q.

O
pt

io
ns

(t
yp

e)

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

g
e
t
P
y
t
h
i
a

(C
o
l
l
i
d
e
r
B
i
t
:
:
S
p
e
c
i
a
l
i
z
a
b
l
e
P
y
t
h
i
a

):
pr

ov
id

es
a
P
yt
hi
a
8

in
st

an
ce

w
ith

in
a

co
nt

ai
ne

r
th

at
is

re
ad

y
to

si
m

ul
at

e
co

lli
si

on
ev

en
ts

fo
r

a
m

od
el

ch
os

en
by

S
ca

nn
er
B
it

d
e
c
a
y
_
r
a
t
e
s

A
re

le
va

nt
S
p
e
c
t
r
u
m

ob
je

ct
P
yt
hi
a
8

P
y
t
h
i
a
_
d
o
c
_
p
a
t
h

(s
t
r
i
n
g

)
P
yt
hi
a_
co
nfi
g

(v
e
c
t
o
r
<
s
t
r
i
n
g
>

)
x
s
e
c
_
v
e
t
o
s

(v
e
c
t
o
r
<
d
o
u
b
l
e
>

)

g
e
t
P
y
t
h
i
a
F
i
l
e
R
e
a
d
e
r

(C
o
l
l
i
d
e
r
B
i
t
:
:
S
p
e
c
i
a
l
i
z
a
b
l
e
P
y
t
h
i
a

):
pr

ov
id

es
a
P
yt
hi
a
8

in
st

an
ce

w
ith

in
a

co
nt

ai
ne

r
th

at
is

re
ad

y
to

si
m

ul
at

e
co

lli
si

on
ev

en
ts

ba
se

d
up

on
so

m
e

SL
H

A
fil

es

P
yt
hi
a
8

P
y
t
h
i
a
_
d
o
c
_
p
a
t
h

(s
t
r
i
n
g

)
P
yt
hi
a_
co
nfi
g

(v
e
c
t
o
r
<
s
t
r
i
n
g
>

)
S
L
H
A
_
f
i
l
e
n
a
m
e
s

(v
e
c
t
o
r
<
s
t
r
i
n
g
>

)
x
s
e
c
_
v
e
t
o
s

(v
e
c
t
o
r
<
d
o
u
b
l
e
>

)

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

g
e
n
e
r
a
t
e
P
y
t
h
i
a
8
E
v
e
n
t

(P
y
t
h
i
a
8
:
:
E
v
e
n
t

):
us

es
th

e
gi

ve
n
H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

to
ge

ne
ra

te
th

e
ne

xt
ev

en
to

f
th

e
co

lli
de

r
si

m
ul

at
io

n
ch

ai
n

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

P
yt
hi
a
8

123

 795 Page 20 of 36 Eur. Phys. J. C (2017) 77:795

Ta
bl
e
9

T
he

de
te

ct
or

ca
pa

bi
lit

ie
s

pr
ov

id
ed

by
C
ol
lid
er
B
it.

In
ad

di
tio

n
to

th
e

de
pe

nd
en

ci
es

sh
ow

n
ab

ov
e,

al
lo

f
th

es
e

fu
nc

tio
ns

al
so

de
pe

nd
on

th
e
C
o
l
l
i
d
e
r
O
p
e
r
a
t
o
r

ca
pa

bi
lit

y
in

Ta
bl

e
7,

si
nc

e
th

ey
al

l
ex

ec
ut

e
w

ith
in

th
e

ev
en

t
lo

op
.S

om
e

of
th

es
e

fu
nc

tio
ns

ne
ed

cl
as

se
s

fr
om

P
yt
hi
a
8,

w
hi

ch
is

co
nn

ec
te

d
to

G
A
M
B
IT

vi
a
B
O
S
S

[1
].

T
he

op
tio

ns
ar

e
re

ad
at

ru
nt

im
e

fr
om

th
e
G
A
M
B
IT

YA
M
L

fil
e

(o
r

co
nfi

gu
re

d
in

th
e
C
ol
lid
er
B
it

st
an

da
lo

ne
co

de
).

T
he

d
e
l
p
h
e
s
C
o
n
f
i
g
F
i
l
e
s

op
tio

n
sp

ec
ifi

es
th

e
T

C
L

fil
es

us
ed

by
D
el
ph

es
fo

r
its

co
nfi

gu
ra

tio
n.

T
he

a
n
t
i
k
t
R

op
tio

ns
(d

ef
au

lt
0
.
4

)
co

nt
ro

l
th

e
R

va
lu

e
us

ed
by

Fa
st
Je

t’s
an

ti-
k T

je
t

al
go

ri
th

m
.T

he
p
a
r
t
o
n
O
n
l
y

op
tio

ns
(d

ef
au

lt
f
a
l
s
e

)
te

ll
th

e
sm

ea
ri

ng
si

m
s

to
co

ns
id

er
on

ly
th

e
pa

rt
on

ic
st

at
es

of
th

e
ev

en
t.

Fi
na

lly
,t

he
u
s
e
D
e
t
e
c
t
o
r

op
tio

n
sw

itc
he

s
a

gi
ve

n
de

te
ct

or
si

m
ul

at
io

n
on

or
of

f,
al

on
g

w
ith

al
la

na
ly

se
s

re
ly

in
g

on
th

at
de

te
ct

or
(d

ef
au

lt
t
r
u
e

fo
r
g
e
t
B
u
c
k
F
a
s
t
A
T
L
A
S

an
d
g
e
t
B
u
c
k
F
a
s
t
C
M
S

an
d
f
a
l
s
e

fo
r

g
e
t
D
e
l
p
h
e
s

an
d
g
e
t
B
u
c
k
F
a
s
t
I
d
e
n
t
i
t
y

).
A

ll
th

e
op

tio
ns

in
th

is
ta

bl
e

ar
e

ve
ct

or
s

th
at

re
qu

ir
e

on
e

en
tr

y
pe

r
P
yt
hi
a

co
nfi

gu
ra

tio
n

in
p
y
t
h
i
a
N
a
m
e
s

(T
ab

le
7)

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
D

ep
en

de
nc

ie
s

B
ac

ke
nd

re
q.

O
pt

io
ns

(t
yp

e)

D
e
t
e
c
t
o
r
S
i
m

g
e
t
D
e
l
p
h
e
s

(C
o
l
l
i
d
e
r
B
i
t
:
:
D
e
l
p
h
e
s
V
a
n
i
l
l
a

):
pr

ov
id

es
a
D
el
ph

es
in

st
an

ce
w

ith
in

a
co

nt
ai

ne
r

th
at

is
re

ad
y

to
pe

rf
or

m
de

te
ct

or
si

m
ul

at
io

n

P
yt
hi
a
8

d
e
l
p
h
e
s
C
o
n
f
i
g
F
i
l
e
s

(v
e
c
t
o
r
<
s
t
r
i
n
g
>

)
u
s
e
D
e
t
e
c
t
o
r

(v
e
c
t
o
r
<
b
o
o
l
>

)

S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

g
e
t
B
u
c
k
F
a
s
t
A
T
L
A
S

(C
o
l
l
i
d
e
r
B
i
t
:
:
B
u
c
k
F
a
s
t
S
m
e
a
r
A
T
L
A
S

):
pr

ov
id

es
a

se
to

f
B
uc

kF
as

tf
un

ct
io

ns
w

ith
in

a
co

nt
ai

ne
r

th
at

is
re

ad
y

to
ap

pl
y

A
T

L
A

S
sm

ea
ri

ng
an

d
re

co
ns

tr
uc

tio
n

ef
fic

ie
nc

ie
s

to
an

ev
en

t

a
n
t
i
k
t
R

(v
e
c
t
o
r
<
d
o
u
b
l
e
>

)
p
a
r
t
o
n
O
n
l
y

(v
e
c
t
o
r
<
b
o
o
l
>

)
u
s
e
D
e
t
e
c
t
o
r

(v
e
c
t
o
r
<
b
o
o
l
>

)

g
e
t
B
u
c
k
F
a
s
t
C
M
S

(C
o
l
l
i
d
e
r
B
i
t
:
:
B
u
c
k
F
a
s
t
S
m
e
a
r
C
M
S

):
pr

ov
id

es
a

se
to

f
B
uc

kF
as

tf
un

ct
io

ns
w

ith
in

a
co

nt
ai

ne
r

th
at

is
re

ad
y

to
ap

pl
y

C
M

S
sm

ea
ri

ng
an

d
re

co
ns

tr
uc

tio
n

ef
fic

ie
nc

ie
s

to
an

ev
en

t

a
n
t
i
k
t
R

(v
e
c
t
o
r
<
d
o
u
b
l
e
>

)
p
a
r
t
o
n
O
n
l
y

(v
e
c
t
o
r
<
b
o
o
l
>

)
u
s
e
D
e
t
e
c
t
o
r

(v
e
c
t
o
r
<
b
o
o
l
>

)

g
e
t
B
u
c
k
F
a
s
t
I
d
e
n
t
i
t
y

(C
o
l
l
i
d
e
r
B
i
t
:
:
B
u
c
k
F
a
s
t
I
d
e
n
t
i
t
y

):
pr

ov
id

es
a

fu
nc

tio
n

th
at

do
es

ab
so

lu
te

ly
no

th
in

g
to

a
gi

ve
n

ev
en

tw
ith

in
a

co
nt

ai
ne

r
si

m
ila

r
to

th
os

e
re

tu
rn

ed
by

ot
he

r
S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

ca
pa

bi
lit

ie
s

a
n
t
i
k
t
R

(v
e
c
t
o
r
<
d
o
u
b
l
e
>

)
p
a
r
t
o
n
O
n
l
y

(v
e
c
t
o
r
<
b
o
o
l
>

)
u
s
e
D
e
t
e
c
t
o
r

(v
e
c
t
o
r
<
b
o
o
l
>

)

R
e
c
o
n
s
t
r
u
c
t
e
d
E
v
e
n
t

r
e
c
o
n
s
t
r
u
c
t
D
e
l
p
h
e
s
E
v
e
n
t

(H
E
P
U
t
i
l
s
:
:
E
v
e
n
t

):
U

se
s

th
e

gi
ve

n
D
e
t
e
c
t
o
r
S
i
m

to
pe

rf
or

m
de

te
ct

or
si

m
ul

at
io

n
up

on
th

e
gi

ve
n
H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

(T
ab

le
8)

D
e
t
e
c
t
o
r
S
i
m

P
yt
hi
a
8

A
T
L
A
S
S
m
e
a
r
e
d
E
v
e
n
t

s
m
e
a
r
E
v
e
n
t
A
T
L
A
S

(H
E
P
U
t
i
l
s
:
:
E
v
e
n
t

):
U

se
s

th
e

gi
ve

n
S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

to
ap

pl
y

sm
ea

ri
ng

an
d

re
co

ns
tr

uc
tio

n
ef

fic
ie

nc
ie

s
up

on
th

e
gi

ve
n

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

(T
ab

le
8)

S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

of
ty

pe
B
u
c
k
F
a
s
t
S
m
e
a
r

-
A
T
L
A
S

C
M
S
S
m
e
a
r
e
d
E
v
e
n
t

s
m
e
a
r
E
v
e
n
t
C
M
S

(H
E
P
U
t
i
l
s
:
:
E
v
e
n
t

):
U

se
s

th
e

gi
ve

n
S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

to
ap

pl
y

sm
ea

ri
ng

an
d

re
co

ns
tr

uc
tio

n
ef

fic
ie

nc
ie

s
up

on
th

e
gi

ve
n

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

(T
ab

le
8)

S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

of
ty

pe
B
u
c
k
F
a
s
t
S
m
e
a
r
C
M
S

C
o
p
i
e
d
E
v
e
n
t

c
o
p
y
E
v
e
n
t

(H
E
P
U
t
i
l
s
:
:
E
v
e
n
t

):
U

se
s

th
e

gi
ve

n
S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

to
do

ab
so

lu
te

ly
no

th
in

g
to

th
e

gi
ve

n
H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
E
v
e
n
t

(T
ab

le
8)

S
i
m
p
l
e
S
m
e
a
r
i
n
g
S
i
m

of
ty

pe
B
u
c
k
F
a
s
t
I
d
e
n
t
i
t
y

123

Eur. Phys. J. C (2017) 77:795 Page 21 of 36 795

Ta
bl
e
10

T
he

an
al

ys
is

ca
pa

bi
lit

ie
s

pr
ov

id
ed

by
C
ol
lid
er
B
it.

In
ad

di
tio

n
to

th
e

de
pe

nd
en

ci
es

sh
ow

n
ab

ov
e,

al
l

of
th

es
e

fu
nc

tio
ns

de
pe

nd
on

th
e
C
o
l
l
i
d
e
r
O
p
e
r
a
t
o
r

ca
pa

bi
lit

y
in

Ta
bl

e
7,

si
nc

e
th

ey
al

l
ex

ec
ut

e
w

ith
in

th
e

ev
en

t
lo

op
.

T
he

op
tio

ns
ar

e
re

ad
at

ru
nt

im
e

fr
om

th
e
G
A
M
B
IT

YA
M
L

fil
e

(o
r

co
nfi

gu
re

d
in

th
e
C
ol
lid
er
B
it

st
an

da
lo

ne
co

de
).

T
he

a
n
a
l
y
s
e
s

op
tio

ns
te

ll
th

e
g
e
t
D
e
t
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

,g
e
t
A
T
L
A
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

,g
e
t
C
M
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

an
d
g
e
t
I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

fu
nc

tio
ns

th
e

na
m

es
of

al
lt

he
an

al
ys

es
th

e
us

er
w

is
he

s
to

in
cl

ud
e

fo
r

th
e

co
lli

de
r

si
m

ul
at

io
ns

.O
ne

ve
ct

or
of

an
al

ys
is

na
m

es
(p

os
si

bl
y

em
pt

y)
is

re
qu

ir
ed

pe
r
P
yt
hi
a

co
nfi

gu
ra

tio
n

in
p
y
t
h
i
a
N
a
m
e
s

(T
ab

le
7)

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
D

ep
en

de
nc

ie
s

O
pt

io
ns

(t
yp

e)

D
e
t
A
n
a
l
y
s
i
s

C
o
n
t
a
i
n
e
r

g
e
t
D
e
t
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

(C
o
l
l
i
d
e
r
B
i
t
:
:
H
E
P
U
t
i
l
s
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

):
pr

ov
id

es
a

lis
to

f
an

al
ys

es
w

ith
in

a
co

nt
ai

ne
r

th
at

is
re

ad
y

to
ap

pl
y

th
em

to
an

ev
en

t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

a
n
a
l
y
s
e
s

(v
e
c
t
o
r
<
v
e
c
t
o
r
<
s
t
r
i
n
g
>
>

)

A
T
L
A
S
A
n
a
l
y
s
i
s

C
o
n
t
a
i
n
e
r

g
e
t
A
T
L
A
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

(C
o
l
l
i
d
e
r
B
i
t
:
:
H
E
P
U
t
i
l
s
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

):
pr

ov
id

es
a

lis
to

f
A

T
L

A
S

an
al

ys
es

w
ith

in
a

co
nt

ai
ne

r
th

at
is

re
ad

y
to

ap
pl

y
th

em
to

an
ev

en
t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

a
n
a
l
y
s
e
s

(v
e
c
t
o
r
<
v
e
c
t
o
r
<
s
t
r
i
n
g
>
>

)

C
M
S
A
n
a
l
y
s
i
s

C
o
n
t
a
i
n
e
r

g
e
t
C
M
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

(C
o
l
l
i
d
e
r
B
i
t
:
:
H
E
P
U
t
i
l
s
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

):
pr

ov
id

es
a

lis
to

f
C

M
S

an
al

ys
es

w
ith

in
a

co
nt

ai
ne

r
th

at
is

re
ad

y
to

ap
pl

y
th

em
to

an
ev

en
t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

a
n
a
l
y
s
e
s

(v
e
c
t
o
r
<
v
e
c
t
o
r
<
s
t
r
i
n
g
>
>

)

I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s

C
o
n
t
a
i
n
e
r

g
e
t
I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

(C
o
l
l
i
d
e
r
B
i
t
:
:
H
E
P
U
t
i
l
s
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

):
pr

ov
id

es
a

lis
to

f
“i

de
nt

ity
”

an
al

ys
es

(n
o

de
te

ct
or

sm
ea

ri
ng

)
w

ith
in

a
co

nt
ai

ne
r

th
at

is
re

ad
y

to
ap

pl
y

th
em

to
an

ev
en

t

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

a
n
a
l
y
s
e
s

(v
e
c
t
o
r
<
v
e
c
t
o
r
<
s
t
r
i
n
g
>
>

)

D
e
t
A
n
a
l
y
s
i
s

N
u
m
b
e
r
s

r
u
n
D
e
t
A
n
a
l
y
s
e
s

(C
o
l
l
i
d
e
r
B
i
t
:
:
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

):
U

se
s

th
e

gi
ve

n
D
e
t
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

to
pe

rf
or

m
al

l
its

an
al

ys
es

up
on

th
e

gi
ve

n
R
e
c
o
n
s
t
r
u
c
t
e
d
E
v
e
n
t

R
e
c
o
n
s
t
r
u
c
t
e
d
E
v
e
n
t

(T
ab

le
9)

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

D
e
t
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

A
T
L
A
S
A
n
a
l
y
s
i
s

N
u
m
b
e
r
s

r
u
n
A
T
L
A
S
A
n
a
l
y
s
e
s

(C
o
l
l
i
d
e
r
B
i
t
:
:
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

):
U

se
s

th
e

gi
ve

n
A
T
L
A
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

to
pe

rf
or

m
al

li
ts

an
al

ys
es

up
on

th
e

gi
ve

n
A
T
L
A
S
S
m
e
a
r
e
d
E
v
e
n
t

A
T
L
A
S
S
m
e
a
r
e
d
E
v
e
n
t

(T
ab

le
9)

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

A
T
L
A
S
A
n
a
l
y
s
i
s

C
o
n
t
a
i
n
e
r

C
M
S
A
n
a
l
y
s
i
s

N
u
m
b
e
r
s

r
u
n
C
M
S
A
n
a
l
y
s
e
s

(C
o
l
l
i
d
e
r
B
i
t
:
:
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

):
U

se
s

th
e

gi
ve

n
C
M
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

to
pe

rf
or

m
al

l
its

an
al

ys
es

up
on

th
e

gi
ve

n
C
M
S
S
m
e
a
r
e
d
E
v
e
n
t

C
M
S
S
m
e
a
r
e
d
E
v
e
n
t

(T
ab

le
9)

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

C
M
S
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s

N
u
m
b
e
r
s

r
u
n
I
d
e
n
t
i
t
y
A
n
a
l
y
s
e
s

(C
o
l
l
i
d
e
r
B
i
t
:
:
A
n
a
l
y
s
i
s
N
u
m
b
e
r
s

):
U

se
s

th
e

gi
ve

n
I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s
C
o
n
t
a
i
n
e
r

to
pe

rf
or

m
al

li
ts

an
al

ys
es

up
on

th
e

gi
ve

n
C
o
p
i
e
d
E
v
e
n
t

C
o
p
i
e
d
E
v
e
n
t

(T
ab

le
9)

H
a
r
d
S
c
a
t
t
e
r
i
n
g
S
i
m

(T
ab

le
8)

I
d
e
n
t
i
t
y
A
n
a
l
y
s
i
s

-
C
o
n
t
a
i
n
e
r

123

 795 Page 22 of 36 Eur. Phys. J. C (2017) 77:795

namespace Pythia_ttbar_LHC_13TeV
{

void init(SpecializablePythia* specializeMe)
{

specializeMe->addToSettings(
"Beams:eCM = 13000");

specializeMe->addToSettings(
"Top:qqbar2ttbar = on");

specializeMe->addToSettings(
"Top:gg2ttbar = on");

}
}

This would initialize a Pythia8 configuration named
Pythia_ttbar_LHC_13TeV to simulate t t̄ production through
qq̄ → t t̄ and gg → t t̄ at 13 TeV. Init functions may also
“inherit” from other existing init functions by explicitly
calling them. For instance:

namespace Pythia_alltop_LHC_13TeV
{

void init(SpecializablePythia* specializeMe)
{

Pythia_ttbar_LHC_13TeV::init
(specializeMe);

specializeMe->addToSettings(
"Top:qq2tq(t:W) = on");

specializeMe->addToSettings(
"Top:ffbar2ttbar(s:gmZ) = on");

specializeMe->addToSettings(
"Top:ffbar2tqbar(s:W) = on");

specializeMe->addToSettings(
"Top:gmgm2ttbar = on");

}
}

This creates a second Pythia8 configuration named
Pythia_alltop_LHC_13TeV for simulating the full set of
top quark production processes. The first line of the init
function calls the init function of Pythia_ttbar_LHC_13

TeV, which sets the energy to 13 TeV and turns on the
qq̄ → t t̄ and gg → t t̄ processes. Then follows four calls
to addToSettings that switch on the simulation of the
additional production processes qq ′ → tq ′′ (t-channel
W exchange), f f̄ → t t̄ (s-channel γ /Z exchange),
f f̄ ′ → tq ′′ (s-channel W exchange) and γ γ → t t̄ .

2. Add the initialisation function namespace within Speci

alizablePythia::resetSpecialization. This function is
located at the end of colliders/Specializable

Pythia.cpp, and it allows for runtime selection of the
Pythia8 specialisation via a std::string. The names-
paces for the new init functions must be included here
using the IF_X_SPECIALIZEX macro. Thus, for our exam-
ple top production init functions above, we would add:

IF_X_SPECIALIZEX(Pythia_ttbar_LHC_13TeV)
IF_X_SPECIALIZEX(Pythia_alltop_LHC_13TeV)

3. Recompile GAMBIT. (See Appendix A).
4. Activate the new init function. The choice of init func-

tion is specified within the GAMBIT YAML file in the
“Rules” section for the operateLHCLoop module function.

For example, to activate our “alltop” Pythia8 configura-
tion, this would be the YAML entry:

- capability: ColliderOperator
function: operateLHCLoop
options:

nEvents: [1000]
pythiaNames: [

"Pythia_alltop_LHC_13TeV"]
silenceLoop: true

The last of these options removes much of the output
from the Pythia event generator. We may also supply
our chosen configuration with additional options right in
the YAML file. We do this in the rules for the getPythia

module function:

- capability: HardScatteringSim
function: getPythia
options:

Pythia_alltop_LHC_13TeV: [
"Print:quiet = on",

"PartonLevel:MPI = off",
"PartonLevel:ISR = on",
"PartonLevel:FSR = on",
"HadronLevel:all = on"]

We recommend registering commonly-used Pythia8
configurations in colliders/SpecializablePythia.cpp

as described above. However, it is also possible to set
up custom Pythia configurations directly in the YAML
file by specifying all relevant Pythia options there. In
this case the configuration name given in pythiaNames

must not match any of the registered init functions in
colliders/SpecializablePythia.cpp.

For each Pythia configuration, the choice of analyses
and detector simulations can be varied. Many of the options
detailed in Tables 8, 9 and 10 are therefore vectors expecting
one element per Pythia configuration, in the same order as
the configurations in pythiaNames.

Adding a new analysis is nearly as simple as adding a
Pythia8 configuration. An annotated minimal example is
given in analyses/Analysis_Minimum.cpp. This contains
the minimum required to print out the number of jets, b-jets
and leptons, and the missing energy in each event, plus pass
an arbitrary set of signal region cuts. To add a new analysis:

1. Copy the template example, Analysis_Minimum.cpp,
to a new location in the analyses folder, for exam-
ple analyses/Analysis_ATLAS_TYPE_20invfb.cpp.
Within the new file, replace every instance of Minimum

by ATLAS_TYPE_20invfb.
2. Edit the new analysis file to include the required cuts.

This includes the option to add extra signal regions. The
existing repository of analyses provides examples of how
to apply complex cuts.

123

Eur. Phys. J. C (2017) 77:795 Page 23 of 36 795

3. Add an analysis factory declaration to analyses/

HEPUtilsAnalysisContainer.cpp, by adding the line:

DECLARE_ANALYSIS_FACTORY(ATLAS_TYPE_20invfb);

4. Adda factory definition toanalyses/HEPUtilsAnalysis

Container.cpp, by adding a line:

IF_X_RTN_CREATEX(ATLAS_TYPE_20invfb);

5. Recompile GAMBIT. (See Appendix A).
6. Activate the new analysis. The user may now run the

analysis by adding it to the list of analyses in the YAML
file, within the rules for the relevant AnalysisContainer.
For our ATLAS_TYPE_20invfb example, we would add it
here:

- capability: ATLASAnalysisContainer
function: getATLASAnalysisContainer
options:

analyses: [["ATLAS_0LEP_20invfb",
"ATLAS_TYPE_20invfb"]]

Although the current framework only supports cut-and-
count analyses, the user could easily add more complicated
likelihoods by adding new module functions.

3.1.2 LEP supersymmetry limit capabilities

ColliderBit contains functions that calculate the cross-
section for various SUSY particle productions within the con-
text of the LEP collider. The capabilities for these functions
are described in Table 11. Using these functions along with
SUSY particle decay information, we calculate the cross-
section times branching ratio for each production mechanism
associated with LEP model-independent limits. The capabil-
ities and functions that compare this calculation with each
LEP limit are described in Tables 12 and 13.

3.1.3 Higgs likelihood capabilities

ColliderBit provides likelihoods from experimental searches
for Higgs bosons at LEP and the LHC, through inter-
faces to HiggsBounds and HiggsSignals. The capability
LEP_Higgs_LogLike is provided by the function calc_HB_LEP

_LogLike, which uses HiggsBounds to calculate an approx-
imate likelihood constructed from the results from searches
for neutral and charged Higgs bosons at LEP. Similarly, capa-
bility LHC_Higgs_LogLike is provided by function calc_HS_LHC

_LogLike, which employs HiggsSignals to compute a likeli-
hood including constraints from measurements of the Higgs
boson production rates and mass at the LHC. These functions
are detailed in Table 14, along with their dependencies.

Both functions depend on being provided with a Hig-
gsBounds/Signals-specific data object containing all the
input parameters needed to run either of these two external

codes. ColliderBit constructs one of these objects from the
Higgs_Couplings provided by SpecBit. There are separate
functions to do this for a pure SM Higgs, an MSSM Higgs
sector with three neutral and one charged Higgs, and a Higgs
sector containing just one SM-like Higgs and possible invis-
ible states for it to decay to, as in the scalar singlet and other
such singlet Higgs portal models (e.g. [109,110]).

3.2 Standalone interface

As described in [1], GAMBIT routines can be called in a
standalone code provided that the code specifies the module
functions and backend functions that the user requires, along
with any necessary options. In addition, the user must resolve
the dependencies of each module function “by hand”.

An annotated example program for running ColliderBit
independently of the GAMBIT framework can be found
in ColliderBit/examples/ColliderBit_standalone_

example.cpp. This example uses ColliderBit with a cus-
tom version of Pythia (8.212.EM) to calculate the LHC
likelihood for a simple BSM model, with the required cou-
plings, masses and branching ratios input via an SLHA
file. The details of how to connect the custom Pythia ver-
sion to ColliderBit and run the standalone are given in
Sect. 4.2. Here we go through the structure of the code in
ColliderBit_standalone_example.cpp.

The program consists of three main parts: dependency res-
olution, configuration of ColliderBit and Pythia, and execu-
tion of the simulation loop plus calculation of the LHC log-
likelihood. It is the second part that the user typically will
want to edit, as this is where the settings for event generation
and detector simulation are specified, along with which LHC
analyses to include.

To simplify the syntax a bit we use the following typedefs
in ColliderBit_standalone_example.cpp:

using namespace std;
typedef vector<int> vint;
typedef vector<double> vdouble;
typedef vector<bool> vbool;
typedef vector<string> vstr;
typedef vector<vector<string> > vvstr;

The configuration section begins by setting up the func-
tion operateLHCLoop with settings for the LHC simulation
loop. In this example we set up two Pythia configurations,
"Pythia_EM_8Tev" and "Pythia_EM_13Tev", which will gen-
erate 20,000 events each. We will also allow detailed output
to stdout during the event loops:

operateLHCLoop.setOption<vstr>("pythiaNames",
vstr {"Pythia_EM_8Tev",

↪→"Pythia_EM_13TeV"});
operateLHCLoop.setOption<vint>("nEvents",

vint {20000, 20000});
operateLHCLoop.setOption<bool>("silenceLoop",

false);

123

 795 Page 24 of 36 Eur. Phys. J. C (2017) 77:795

Ta
bl
e
11

T
he

ca
pa

bi
lit

ie
s

pr
ov

id
ed

by
C
ol
lid
er
B
it

th
at

ca
lc

ul
at

e
SU

SY
pa

rt
ic

le
pr

od
uc

tio
n

cr
os

s-
se

ct
io

ns
w

ith
in

th
e

co
nt

ex
to

f
th

e
L

E
P

co
lli

de
r.

A
ll

of
th

es
e

fu
nc

tio
ns

re
tu

rn
a

tr
ip

le
to

f
d
o
u
b
l
e

s.
T

he
se

co
rr

es
po

nd
to

th
e

m
ax

im
um

,c
en

tr
al

,a
nd

m
in

im
um

cr
os

s-
se

ct
io

ns
ca

lc
ul

at
ed

w
hi

le
va

ry
in

g
th

e
SU

SY
pa

rt
ic

le
m

as
se

s
ac

co
rd

in
g

to
th

ei
re

st
im

at
ed

un
ce

rt
ai

nt
ie

s.
A

ll
of

th
es

e
fu

nc
tio

ns
de

pe
nd

on
G
A
M
B
IT

’s
M
S
S
M
3
0
a
t
M
G
U
T

m
od

el
pa

ra
m

et
er

s
[1

],
S
pe

cB
it’

s
M
S
S
M
_
s
p
e
c
t
r
u
m

,a
nd

D
ec

ay
B
it’

s
Z
_
d
e
c
a
y
_
r
a
t
e
s

[4
0]

.V
er

si
on

s
of

th
es

e
fu

nc
tio

ns
ex

is
tw

ith
m

an
y

di
ff

er
en

tE
,X

an
d
Y

va
lu

es
,

co
rr

es
po

nd
in

g
to

th
e

en
er

gy
(i

n
G

eV
)

an
d

pa
rt

ic
le

ei
ge

ns
ta

te
s

us
ed

in
th

e
ca

lc
ul

at
io

n

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
E

ne
rg

ie
s

fo
r
E

E
ig

en
st

at
es

fo
r
X

an
d
Y

L
E
P
E
_
x
s
e
c
_
s
e
X
s
e
Y
b
a
r

L
E
P
E
_
S
L
H
A
1
_
c
o
n
v
e
n
t
i
o
n
_
x
s
e
c
_
s
e
X
s
e
Y
b
a
r

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
C

al
cu

la
te

s
th

e
L

E
P

se
le

ct
ro

n
pa

ir
pr

od
uc

tio
n

cr
os

s-
se

ct
io

n
fo

r
ce

nt
re

of
m

as
s

en
er

gy
E

,w
ith

se
le

ct
ro

n
ei

ge
ns

ta
te

s
X

an
d
Y

2
0
8

l
,r

(h
el

ic
ity

)
2
0
5

1
,2

(m
as

s)
1
8
8

L
E
P
E
_
x
s
e
c
_
s
m
u
X
s
m
u
Y
b
a
r

L
E
P
E
_
S
L
H
A
1
_
c
o
n
v
e
n
t
i
o
n
_
x
s
e
c
_
s
m
u
X
s
m
u
Y
b
a
r

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
C

al
cu

la
te

s
th

e
L

E
P

sm
uo

n
pa

ir
pr

od
uc

tio
n

cr
os

s-
se

ct
io

n
fo

r
ce

nt
re

of
m

as
s

en
er

gy
E

,w
ith

sm
uo

n
ei

ge
ns

ta
te

s
X

an
d
Y

2
0
8

l
,r

(h
el

ic
ity

)
2
0
5

1
,2

(m
as

s)
1
8
8

L
E
P
E
_
x
s
e
c
_
s
t
a
u
X
s
t
a
u
Y
b
a
r

L
E
P
E
_
S
L
H
A
1
_
c
o
n
v
e
n
t
i
o
n
_
x
s
e
c
_
s
t
a
u
X
s
t
a
u
Y
b
a
r

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
C

al
cu

la
te

s
th

e
L

E
P

st
au

pa
ir

pr
od

uc
tio

n
cr

os
s-

se
ct

io
n

fo
r

ce
nt

re
of

m
as

s
en

er
gy

E
,

w
ith

st
au

ei
ge

ns
ta

te
s
X

an
d
Y

2
0
8

l
,r

(h
el

ic
ity

)
2
0
5

1
,2

(m
as

s)
1
8
8

L
E
P
E
_
x
s
e
c
_
c
h
i
0
0
_
X
Y

L
E
P
E
_
S
L
H
A
1
_
c
o
n
v
e
n
t
i
o
n
_
x
s
e
c
_
c
h
i
0
0
_
X
Y

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
C

al
cu

la
te

s
th

e
L

E
P

ne
ut

ra
lin

o
pa

ir
pr

od
uc

tio
n

cr
os

s-
se

ct
io

n
fo

r
ce

nt
re

of
m

as
s

en
er

gy
E

,w
ith

ne
ut

ra
lin

o
m

as
s

ei
ge

ns
ta

te
s
X

an
d
Y

2
0
8

1
,2

,3
,4

2
0
5

1
8
8

L
E
P
E
_
x
s
e
c
_
c
h
i
p
m
_
X
Y

L
E
P
E
_
S
L
H
A
1
_
c
o
n
v
e
n
t
i
o
n
_
x
s
e
c
_
c
h
i
p
m
_
X
Y

(t
r
i
p
l
e
t
<
d
o
u
b
l
e
>

):
C

al
cu

la
te

s
th

e
L

E
P

ch
ar

gi
no

pa
ir

pr
od

uc
tio

n
cr

os
s-

se
ct

io
n

fo
r

ce
nt

re
of

m
as

s
en

er
gy

E
,w

ith
ch

ar
gi

no
m

as
s

ei
ge

ns
ta

te
s
X

an
d
Y

2
0
8

1
,2

2
0
5

1
8
8

123

Eur. Phys. J. C (2017) 77:795 Page 25 of 36 795

Table 12 The slepton LEP limit capabilities provided by ColliderBit.
In addition to the dependencies shown above, all of these functions
also depend on GAMBIT’s MSSM30atMGUT [1] model parameters and

SpecBit’s MSSM_spectrum [40] capability. Each of the decay_rates

can be provided by DecayBit [40]. These functions have no options to
be specified in the YAML file

Capability Function (return type): brief description Dependencies

ALEPH_Selectron_LLike ALEPH_Selectron_Conservative_LLike (double):
Compares the cross section times branching ratio for
selectron pair production to the model-independent limit
according to the ALEPH collaboration. Returns a log
likelihood value

LEP208_xsec_selselbar

LEP208_xsec_serserbar

selectron_l_decay_rates

selectron_r_decay_rates

ALEPH_Smuon_LLike ALEPH_Smuon_Conservative_LLike (double):
Compares the cross section times branching ratio for
smuon pair production to the model-independent limit
according to the ALEPH collaboration. Returns a log
likelihood value

LEP208_xsec_smulsmulbar

LEP208_xsec_smursmurbar

smuon_l_decay_rates

smuon_r_decay_rates

ALEPH_Stau_LLike ALEPH_Stau_Conservative_LLike (double):
Compares the cross section times branching ratio for stau
pair production to the model-independent limit according
to the ALEPH collaboration. Returns a log likelihood
value

LEP208_xsec_stau1stau1bar

LEP208_xsec_stau2stau2bar

stau_1_decay_rates

stau_2_decay_rates

L3_Selectron_LLike L3_Selectron_Conservative_LLike (double):
Compares the cross section times branching ratio for
selectron pair production to the model-independent limit
according to the L3 collaboration. Returns a log
likelihood value

LEP205_xsec_selselbar

LEP205_xsec_serserbar

selectron_l_decay_rates

selectron_r_decay_rates

L3_Smuon_LLike L3_Smuon_Conservative_LLike (double):
Compares the cross section times branching ratio for
smuon pair production to the model-independent limit
according to the L3 collaboration. Returns a log
likelihood value

LEP205_xsec_smulsmulbar

LEP205_xsec_smursmurbar

smuon_l_decay_rates

smuon_r_decay_rates

L3_Stau_LLike L3_Stau_Conservative_LLike (double):
Compares the cross section times branching ratio for stau
pair production to the model-independent limit according
to the L3 collaboration. Returns a log likelihood value

LEP205_xsec_stau1stau1bar

LEP205_xsec_stau2stau2bar

stau_1_decay_rates

stau_2_decay_rates

Then the getPythiaFileReader function can be configured
with vectors of settings for the twoPythia configurations. For
"Pythia_EM_8Tev" we have:

getPythiaFileReader.setOption<vstr>(
"Pythia_EM_8Tev", vstr {

"UserModel:all = on",
"Beams:eCM = 8000",
"PartonLevel:MPI = off",
"PartonLevel:ISR = on",
"PartonLevel:FSR = off",
"HadronLevel:all = off",
"TauDecays:mode = 0",
"Random:setSeed = on"});

Here the "UserModel:all = on" setting turns on the pro-
cesses in the new BSM model, as detailed in Sect. 4.2. The
"Pythia_EM_13Tev" configuration is set up in a similar way,
this time using "Beams:eCM = 13000". The getPythiaFile

Reader function must also be given the path to theXML direc-
tory of Pythia 8.212.EM:

getPythiaFileReader.setOption<string>(
"Pythia_doc_path", "Backends/installed/

Pythia/8.212/share/Pythia8/xmldoc/");

In ColliderBit_standalone_example.cpp the path to a
single input SLHA file is taken as a command line argument
and stored in a variable inputFileName, which can then be
passed to getPythiaFileReader:

getPythiaFileReader.setOption<vstr>(
"SLHA_filenames", vstr {inputFileName});

Finally, we choose which detector simulators and LHC
analyses to include. To use the ATLAS configuration of
BuckFast with both "Pythia_EM_8Tev" and "Pythia_EM_13

123

 795 Page 26 of 36 Eur. Phys. J. C (2017) 77:795

Table 13 The gaugino LEP limit capabilities provided by ColliderBit.
In addition to the dependencies shown above, all of these functions
also depend on GAMBIT’s MSSM30atMGUT [1] model parameters and
SpecBit’s MSSM_spectrum [40] capability. Each of the decay_rates

can be provided by DecayBit [40]. These functions have no options to

be specified in the YAML file. Note that the All_Channels likelihoods
assume that the neutralino or chargino decay to fermions follows the
same branching pattern as the corresponding on-shell gauge boson, and
should be used with care

Capability Function (return type): brief description Dependencies

L3_Neutralino_ L3_Neutralino_All_Channels_Conservative_LLike

(double):
Compares the cross section times branching ratio for neutralino
pair production to the model-independent limit according to the
L3 collaboration. Returns a log likelihood value

LEP188_xsec_chi00_12

All_Channels_LLike LEP188_xsec_chi00_13

LEP188_xsec_chi00_14

decay_rates

L3_Neutralino_ L3_Neutralino_Leptonic_Conservative_LLike (double):
Compares the cross section times branching ratio for neutralino
pair production (with leptonically decaying Z bosons) to the
model-independent limit according to the L3 collaboration.
Returns a log likelihood value

LEP188_xsec_chi00_12
Leptonic_LLike LEP188_xsec_chi00_13

LEP188_xsec_chi00_14
decay_rates

L3_Chargino_ L3_Chargino_All_Channels_Conservative_LLike

(double):
Compares the cross section times branching ratio for chargino
pair production to the model-independent limit according to the
L3 collaboration. Returns a log likelihood value

LEP188_xsec_chipm_11

All_Channels_LLike LEP188_xsec_chipm_22
decay_rates

L3_Chargino_ L3_Chargino_Leptonic_Conservative_LLike (double):
Compares the cross section times branching ratio for chargino
pair production (with leptonically decaying W bosons) to the
model-independent limit according to the L3 collaboration.
Returns a log likelihood value

LEP188_xsec_chipm_11
Leptonic_LLike LEP188_xsec_chipm_22

decay_rates

OPAL_Neutralino_ OPAL_Neutralino_Hadronic_Conservative_LLike

(double):
Compares the cross section times branching ratio for neutralino
pair production (with hadronically decaying Z bosons) to the
model-independent limit according to the OPAL collaboration.
Returns a log likelihood value

LEP208_xsec_chi00_12

Hadronic_LLike LEP208_xsec_chi00_13
LEP208_xsec_chi00_14
decay_rates

OPAL_Chargino_ OPAL_Chargino_All_Channels_Conservative_LLike

(double):
Compares the cross section times branching ratio for chargino
pair production to the model-independent limit according to the
OPAL collaboration. Returns a log likelihood value

LEP208_xsec_chipm_11
All_Channels_LLike LEP208_xsec_chipm_22

decay_rates

OPAL_Chargino_ OPAL_Chargino_Hadronic_Conservative_LLike (double):
Compares the cross section times branching ratio for chargino
pair production (with hadronically decaying W bosons) to the
model-independent limit according to the OPAL collaboration.
Returns a log likelihood value

LEP208_xsec_chipm_11
Hadronic_LLike LEP208_xsec_chipm_22

decay_rates

OPAL_Chargino_ OPAL_Chargino_Leptonic_Conservative_LLike (double):
Compares the cross section times branching ratio for chargino
pair production (with leptonically decaying W bosons) to the
model-independent limit according to the OPAL collaboration.
Returns a log likelihood value

LEP208_xsec_chipm_11
Leptonic_LLike LEP208_xsec_chipm_22

decay_rates

OPAL_Chargino_ OPAL_Chargino_SemiLeptonic_Conservative_LLike

(double):
Compares the cross section times branching ratio for chargino
pair production (with one leptonic and one hadronic decaying W
boson) to the model-independent limit according to the OPAL
collaboration. Returns a log likelihood value

LEP208_xsec_chipm_11

SemiLeptonic_LLike LEP208_xsec_chipm_22
decay_rates

Tev"we configure theColliderBit function getBuckFastATLAS

as follows:

getBuckFastATLAS.setOption<vbool>(
"useDetector", vbool {true, true});

getBuckFastATLAS.setOption<vdouble>(
"antiktR", vdouble {0.4, 0.4});

getBuckFastATLAS.setOption<vbool>(
"partonOnly", vbool {false, false});

The names of the ATLAS analyses to include are then passed
to the function getATLASAnalysisContainer. Here we include
the 0-lepton searches at 8 and 13 TeV:

getATLASAnalysisContainer.setOption<vvstr>(
"analyses", vvstr {{"ATLAS_0LEP_20invfb"},

{"ATLAS_13TeV_0LEP_13invfb"}});

123

Eur. Phys. J. C (2017) 77:795 Page 27 of 36 795

Ta
bl
e
14

T
he

ca
pa

bi
lit

ie
s

pr
ov

id
ed

by
C
ol
lid
er
B
it

fo
rc

al
cu

la
tin

g
L

E
P

an
d

L
H

C
lik

el
ih

oo
ds

fr
om

H
ig

gs
-s

ec
to

r-
re

la
te

d
ex

pe
ri

m
en

ta
lc

on
st

ra
in

ts
.F

in
al

lik
el

ih
oo

d
ca

lc
ul

at
io

ns
ar

e
pe

rf
or

m
ed

by
th

e
ex

te
rn

al
co

de
pa

ck
ag

es
H
ig
gs

B
ou

nd
s

an
d
H
ig
gs

S
ig
na

ls
,u

si
ng

in
te

rf
ac

es
fo

r
in

pu
ta

nd
ou

tp
ut

of
m

od
el

pa
ra

m
et

er
s

in
co

rp
or

at
ed

in
to

th
e
G
A
M
B
IT

fr
am

ew
or

k.
H
i
g
g
s
_
C
o
u
p
l
i
n
g
s

ar
e

ty
pi

ca
lly

pr
ov

id
ed

by
S
pe

cB
it

[4
0]

C
ap

ab
ili

ty
Fu

nc
tio

n
(r

et
ur

n
ty

pe
):

br
ie

f
de

sc
ri

pt
io

n
D

ep
en

de
nc

ie
s

B
ac

ke
nd

re
qu

ir
em

en
ts

L
E
P
_
H
i
g
g
s
_
L
o
g
L
i
k
e

c
a
l
c
_
H
B
_
L
E
P
_
L
o
g
L
i
k
e

(d
o
u
b
l
e

):
Pr

ov
id

es
lo

g-
lik

el
ih

oo
d

fo
r

co
m

bi
ne

d
m

od
el

-i
nd

ep
en

de
nt

L
E

P
ne

ut
ra

lH
ig

gs
se

ar
ch

es

H
B
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

H
ig
gs

B
ou

nd
s

L
H
C
_
H
i
g
g
s
_
L
o
g
L
i
k
e

c
a
l
c
_
H
S
_
L
H
C
_
L
o
g
L
i
k
e

(d
o
u
b
l
e

):
Pr

ov
id

es
lo

g-
lik

el
ih

oo
d

fo
r

L
H

C
H

ig
gs

m
as

s
an

d
si

gn
al

st
re

ng
th

m
ea

su
re

m
en

ts

H
B
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

H
ig
gs

S
ig
na

ls

H
B
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

S
M
H
i
g
g
s
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

(h
b
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

):
Pr

ov
id

es
in

pu
ts

fo
r

L
E

P
an

d
L

H
C

H
ig

gs
lik

el
ih

oo
d

ca
lc

ul
at

io
ns

w
ith

H
ig
gs

B
ou

nd
s

an
d
H
ig
gs

S
ig
na

ls
,f

or
a

H
ig

gs
se

ct
or

co
ns

is
tin

g
on

ly
of

an
SM

H
ig

gs

H
i
g
g
s
_
C
o
u
p
l
i
n
g
s
S
M
_
s
p
e
c
t
r
u
m

S
M
H
i
g
g
s
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

(h
b
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

):
Pr

ov
id

es
in

pu
ts

fo
r

L
E

P
an

d
L

H
C

H
ig

gs
lik

el
ih

oo
d

ca
lc

ul
at

io
ns

w
ith

H
ig
gs

B
ou

nd
s

an
d
H
ig
gs

S
ig
na

ls
,f

or
a

H
ig

gs
se

ct
or

co
ns

is
tin

g
on

ly
of

a
si

ng
le

ne
ut

ra
lH

ig
gs

,w
ith

po
ss

ib
le

de
ca

ys
to

ad
di

tio
na

li
nv

is
ib

le
pa

rt
ic

le
s

H
i
g
g
s
_
C
o
u
p
l
i
n
g
s

A
re

le
va

nt
S
p
e
c
t
r
u
m

ob
je

ct

M
S
S
M
H
i
g
g
s
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

(h
b
_
M
o
d
e
l
P
a
r
a
m
e
t
e
r
s

):
Pr

ov
id

es
in

pu
ts

fo
r

L
E

P
an

d
L

H
C

H
ig

gs
lik

el
ih

oo
d

ca
lc

ul
at

io
ns

w
ith

H
ig
gs

B
ou

nd
s

an
d
H
ig
gs

S
ig
na

ls
,f

or
an

M
SS

M
H

ig
gs

se
ct

or

H
i
g
g
s
_
C
o
u
p
l
i
n
g
s
M
S
S
M
_
s
p
e
c
t
r
u
m

F
H
_
H
i
g
g
s
P
r
o
d

F
H
_
H
i
g
g
s
P
r
o
d

(f
h
_
H
i
g
g
s
P
r
o
d

):
Pr

ov
id

es
es

tim
at

ed
M

SS
M

H
ig

gs
pr

od
uc

tio
n

cr
os

s
se

ct
io

ns
th

ro
ug

h
an

in
te

rf
ac

e
to

F
ey

nH
ig
gs

F
ey

nH
ig
gs

123

 795 Page 28 of 36 Eur. Phys. J. C (2017) 77:795

Note that the two analyses are given in separate subvectors,
one for each Pythia configuration (see Table 10). CMS anal-
yses are similarly included by configuring getBuckFastCMS

and getCMSAnalysisContainer. In our example, we only use
a Run I CMS analysis, which is therefore only applied to the
8 TeV Pythia configuration.

The full LHC simulation loop and likelihood calcula-
tion is run in the third part of the main program, by
executing the ColliderBit functions operateLHCLoop and
calc_LHC_LogLike:

operateLHCLoop.reset_and_calculate();
calc_LHC_LogLike.reset_and_calculate();

4 Examples

4.1 CMSSM example

An annotated example of a YAML file for scanning the
CMSSM with GAMBIT using only functions from Collider-
Bit is provided in yaml_files/ColliderBit_CMSSM.yaml.
The file demonstrates how to specify the model parameters
(and priors), choose and configure a sampler, choose a printer
(either hdf5 or ascii), run the LHC and LEP collider likeli-
hoods, run theHiggsBounds and HiggsSignalsHiggs like-
lihoods, and configure details of the detector simulation and
Monte Carlo event generator.

4.2 Generic Pythia model example

The recommended method of using ColliderBit with a new
model is to define and run the model within the full GAM-
BIT framework, allowing access to the model declaration
and scanning routines, in addition to non-collider likelihood
functions should these be of interest. However, if the user
only wants to check single parameter points with Collider-
Bit, the standalone interface described in the previous section
presents a more minimal alternative. Regardless of which
interface is used, ColliderBit must be set up to work with a
version of Pythia that can generate events for the new model.
Here we go through an example of how to achieve this.

Our physics model example consists of the SM augmented
by a new scalar singlet field φ1 and a new, coloured Dirac
fermion U . The model is a stripped down version of that
featured in [111], which contains a complete tutorial for how
to implement the model in Monte Carlo generators. The new
particles have the following mass terms:

Lmass = −m2
1

2
φ2

1 + MUŪU. (8)

The new fermion interacts with the new scalar via the
Lagrangian term

Lyuk = λ1φ1Ū PRu + h.c., (9)

where u is the SM up-quark field. We will simulate the
process pp → ŪU where the U subsequently decays via
U → uφ1.

To use this model with ColliderBit, we make use of the
MadGraph5_aMC@NLO–Pythia8 interface to generate
matrix element code that can be used to supplement the
internal processes in Pythia. Sample Mathematica note-
book and Feynrules model files for generating UFO output
are provided in ColliderBit/data/ExternalModel. The
MadGraph5_aMC@NLO commands for generating matrix
element code for coloured fermion production in proton col-
lisions are as follows, assuming that the UFO model has been
placed in the MadGraph5_aMC@NLO models directory:

import model GambitDemo_UFO
generate p p > uv uv∼
output pythia8

The resulting C++ code can be found in the src and
include subdirectories of Backends/patches/

pythia/8.212.EM/ExternalModel. This directory also
contains two Pythia XML files that declare a new Pythia
setting UserModel:all, and a version of the Pythia file
ProcessContainer.cc that connects this setting to the gen-
erated matrix element code.

The GAMBIT build system can be used to make a new
version of the Pythia backend (8.212.EM) with

make pythia_8.212.EM

This command performs the following tasks:

– downloads Pythia in the usual way, but into a new loca-
tion;

– copies the new matrix element code to the new location;
– updates the Pythia XML configuration files to define the

new UserModel setting;
– updates the Pythia file ProcessContainer.cc to allow

the user to run the new matrix elements using the setting
UserModel:all = on;

– runs Pythia through BOSS [1] to construct the interface
to GAMBIT;

– builds the new Pythia version.

To implement a different BSM physics model, the existing
MadGraph5_aMC@NLO-generated files in Backends/

patches/pythia/8.212.EM/ExternalModel must be
replaced with the files generated for the new model, and
ProcessContainer.cc must be updated accordingly. The
GAMBIT build system will then take care of updating the
Pythia backend to use the new code.

It remains to tell ColliderBit to use the new Pythia
8.212.EM backend rather than the old one. Since this con-

123

Eur. Phys. J. C (2017) 77:795 Page 29 of 36 795

tains all previous Pythia functionality in addition to the
new matrix elements, it can be used in all places where
Pythia 8.212 was previously used. To change the version
of Pythia used, the user must change the default version in
Backends/include/gambit/Backends/default_bossed

_versions.hpp, using:

#define Default_Pythia 8_212_EM

Note that GAMBIT must be rebuilt after this change.
Also, the ColliderBit option Pythia_doc_path (Table 8)
must be set to Backends/installed/Pythia/8.212.EM/

share/Pythia8/xmldoc in the input YAML file when Col-
liderBit is used as part of a GAMBIT run, or directly in
the standalone code as shown in ColliderBit_standalone

_example.cpp.
An example YAML file showing how to run GAMBIT

with the new Pythia 8.212.EM backend can be found in
yaml_files/ColliderBit_ExternalModel.yaml.

After compilation (see Appendix A), the standalone exam-
ple that makes use of the newPythia 8.212.EM backend can
be run as

./ColliderBit_standalone
ColliderBit/data/ExternalModel_point.slha

This instructs Pythia to produce ŪU pairs in proton
collisions, but they will not decay unless instructed to
do so via the input SLHA file. An example SLHA file
generated with MadGraph5_aMC@NLO is provided in
ColliderBit/data/ExternalModel_point.slha. This
file contains a decay table for the U particle with a 100%
branching ratio to an up quark and a φ1.

We remind the reader that the standalone example is only
intended as a minimal way of running single points of a
new model through ColliderBit. For a comprehensive study,
including scanning over model parameters, the user should
add the model in the GAMBIT model database and imple-
ment spectrum and decay calculations through the GAMBIT
modules SpecBit and DecayBit as required.

Finally, there is an important subtlety regarding invisible
particles. At the time of writing, the default PDG ID codes of
new particles inFeynrules do not always correspond to those
of invisible, uncharged particles. In the ColliderBit simula-
tion chain, this means that the particles will not appear as
missing energy in the detector simulation. According to the
PDG ID code standard, invisible particles may have a PID of
12, 14 or 16 (SM neutrinos), 1000022 (lightest neutralino in
a superysmmetric model), or 50–60 (for generic new BSM
particles). The user can thus obtain correct behaviour for an
invisible species by including the PDG code definition in the
Feynrules field definition as in the following example:

S[10] == {
ClassName -> p1,
SelfConjugate -> True,

Indices -> {},
Mass -> {Mp1, 10},
PDG -> {51},
Width -> {Wp1, 0}

}

A less satisfactory option is to change the following code
in contrib/heputils/include/HEPUtils/Event.h that
implements the PDG ID standard for invisibles:

if (p->abspid() == 12 || p->abspid() == 14 ||
p->abspid() == 16 || p->pid() == 1000022 ||
in_range(p->pid(), 50, 60))

_invisibles.push_back(p);

5 Conclusions

ColliderBit is a new modular software code for the appli-
cation of high-energy collider constraints to generic BSM
physics models, written in the GAMBIT framework. This
paper serves as an introduction to the code, and as a reference
manual for users wishing to add new analyses or features.

The code provides a rigorous and fast implementation of
LHC constraints through a parallelised Monte Carlo sim-
ulation interfaced with several detector simulation options,
including a new simulation based on four-vector smearing. A
custom event analysis class allows the user to apply the same
LHC analysis code to any level of detector simulation, and
we supply likelihood routines capable of reproducing LHC
cut and count searches, or binned shape fits. An interface to
the Pythia8 event generator allows the user to add matrix
elements for new models.

LEP constraints are handled via a new code based on a
sophisticated interpolation of the cross-section limits on slep-
ton, neutralino and chargino pair production. Higgs limits, for
both LEP and the LHC, are currently handled via an inter-
face to the HiggsSignals and HiggsBounds packages, but
there exists scope to provide and interface new likelihood
calculations in future ColliderBit releases.

The code can function either as a standalone tool for quick
checks of specific model points, or it can be run within the
GAMBIT framework to provide a complete tool for BSM
inference from high energy collider data.

Acknowledgements We thank the other members of the GAMBIT
Collaboration for helpful discussions, comments and support. We are
very grateful to Torbjörn Sjöstrand and Peter Skands for helpful dis-
cussions on the use of the Pythia event generator, and for code modifi-
cations to improve the efficiency and flexibility of its process selection
and settings database. We warmly thank the Casa Matemáticas Oaxaca,
affiliated with the Banff International Research Station, for hospitality
whilst part of this work was completed, and the staff at Cyfronet, for
their always helpful supercomputing support. GAMBIT has been sup-
ported by STFC (UK; ST/K00414X/1, ST/P000762/1), the Royal Soci-
ety (UK; UF110191), Glasgow University (UK; Leadership Fellow-
ship), the Research Council of Norway (FRIPRO 230546/F20), NOTUR

123

 795 Page 30 of 36 Eur. Phys. J. C (2017) 77:795

(Norway; NN9284K), the Knut and Alice Wallenberg Foundation (Swe-
den; Wallenberg Academy Fellowship), the Swedish Research Coun-
cil (621-2014-5772), the Australian Research Council (CE110001004,
FT130100018, FT140100244, FT160100274), The University of Syd-
ney (Australia; IRCA-G162448), PLGrid Infrastructure (Poland), Pol-
ish National Science Center (Sonata UMO-2015/17/D/ST2/03532), the
Swiss National Science Foundation (PP00P2-144674), the European
Commission Horizon 2020 Marie Skłodowska-Curie actions (H2020-
MSCA-RISE-2015-691164), the ERA-CAN+ Twinning Program (EU
and Canada), the Netherlands Organisation for Scientific Research
(NWO-Vidi 680-47-532), the National Science Foundation (USA;
DGE-1339067), the FRQNT (Québec) and NSERC/The Canadian Tri-
Agencies Research Councils (BPDF-424460-2012).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Quick start guide

Instructions for how to get ColliderBit and GAMBIT can be
found at gambit.hepforge.org. Here, we give a list of steps to
follow in order to build and run ColliderBit, either in its stan-
dalone version or linked with GAMBIT. Additional details
about configuring and buildingGAMBIT can be found in [1].

A.1: Building and running the standalone example

The basic commands to build the standalone example are:

cd gambit
mkdir build
cd build
cmake ..
make -jn ColliderBit_standalone

Here, n is the number of logical cores the user wishes to use
during the compilation.

The backends used by the standalone example must also
be built:

make nulike
make pythia_8.212.EM

The user can set the number of OpenMP threads to use
during ColliderBit’s parallelisation step with a system vari-
able:

export OMP_NUM_THREADS=m

Here, m is the number of threads to use during runtime.
Finally, the standalone example can be run from the main

GAMBIT directory:

cd ..
./ColliderBit_standalone

ColliderBit/data/ExternalModel_point.slha

A.2: Running the ColliderBit example in GAMBIT

The basic commands to build GAMBIT and run a minimal
ColliderBit example are very similar to those shown above,
except that we now also need the backend SUSY-HIT, and
we use the default version Pythia (8.212):

cd gambit
mkdir build
cd build
cmake ..
make -jn gambit
make nulike
make pythia
make susyhit
export OMP_NUM_THREADS=m
cd ..
./gambit -f yaml_files/ColliderBit_CMSSM.yaml

Appendix B: ColliderBit classes

Users who wish to add their own custom functions to Col-
liderBit may find it useful to use our inheritance scheme.
For such users, we here describe the main base classes and
inheritance scheme of ColliderBit. We expect such users to
be familiar with adding capabilities, module functions, and
(possibly) backend functions, as described in the mainGAM-
BIT paper [1].

There are four categories of functions within Collider-
Bit associated with abstract base classes: Collider simulation
is associated with the BaseCollider class, detector simula-
tion with BaseDetector, analysis with BaseAnalysis, and the
limit-setting application with BaseLimitContainer.

The BaseCollider class is templated on the type of
collider event (EventT) that it can provide. Each sub-
class of BaseCollider<EventT> will inherit the virtual func-
tions described in Table 15. Thus, creating a subclass of
BaseCollider will force the user to define these functions,
which are the usual things to be expected of collider simula-
tion tools. A very simple example of this can be found in the
header file10 colliders/SimplePythia.hpp.

Within this file, we see the definition of the SimplePythia

class, which inherits from BaseDetector<Pythia8::Event>.
The class defines overrides for each of the virtual functions
shown in Table 15. A more complicated example of this can
be seen for the SpecializablePythia class, which also inher-
its from BaseDetector<Pythia8::Event>. It is declared and
defined within the filescolliders/SpecializablePythia.
hpp and colliders/SpecializablePythia.cpp.

10 Within this Appendix, the headers paths (*.hpp) are realtive
to ColliderBit/ include/gambit/ColliderBit , while
source files (*.cpp) are in ColliderBit/src.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://gambit.hepforge.org

Eur. Phys. J. C (2017) 77:795 Page 31 of 36 795

Table 15 Inherited functions
for subclasses of
BaseCollider<EventT>.
Functions marked with a do
nothing unless overridden by the
subclass author. Functions
marked with b must be
overridden by the subclass
author

C++ function signature Intended purpose

virtual void clear()a Clear the internal memory of this instance so that
it may be reused

virtual void nextEvent(EventT &

event) constb
Generate the next collider event, storing the

result into the given event

virtual double xsec_pb() constb Return the total cross section (in pb) of generated
events

virtual double xsecErr_pb()

constb
Return the absolute error estimate of the cross

section (in pb) of generated events

virtual void init(const

std::vector<std::string>&)a
Initialise the collider simulator with a set of

options given as a vector of strings

virtual void init()a Initialise the collider simulator with no options.

Table 16 Inherited functions for subclasses of BaseDetector<EventIn, EventOut>. Functions marked with a do nothing unless overridden
by the subclass author. Functions marked with b must be overridden by the subclass author

C++ function signature Intended purpose

virtual void clear()a Clear the internal memory of this instance so that it may be reused

virtual void processEvent(const EventIn&, EventOut&)

constb
Apply detector simulation to the given EventIn, storing the result

into the EventOut

virtual void init(const std::vector<std::string>&)a Initialise the collider simulator with a set of options given as a
vector of strings

virtual void init()a Initialise the collider simulator with no options

The addition of custom detectors to ColliderBit involves
subclasses of the BaseDetector class, which is templated
on both the type of event that it can accept for simulation
(EventIn), and the type of event that it will return after detec-
tor simulation (EventOut). In a similar way as described above
for colliders, a user may add a fully custom detector by cre-
ating a subclass of BaseDetector<EventIn, EventOut> and
writing overrides for the virtual functions, as described in
Table 16.

The analysis base class, BaseAnalysis, is templated on
the type of event that it can analyze (EventT). Subclasses of
BaseAnalysis<EventT> inherit the functions as described in

Table 17, some of which must be overridden by the subclass
author. Existing analyses provide examples of how to do this.

The addition of custom limits and limit curve interpola-
tion to ColliderBit requires that the user declare new mod-
ule functions in ColliderBit_rollcall.hpp and define
them in ColliderBit.cpp. However, if the user wishes to
use ColliderBit’s limit interpolation system (as described in
Sect. 2.2), they can create a subclass of the
BaseLimitContainer class and override the functions shown
in Table 19.

123

 795 Page 32 of 36 Eur. Phys. J. C (2017) 77:795

Table 17 Inherited functions for subclasses ofBaseAnalysis<EventT>.
Functions that are virtual and marked with a perform only simple
operations on variables in the base class, unless they are overridden
by the subclass author. Functions that are virtual and marked with

b must be overridden by the subclass author. Non-virtual functions
are not intended to be overridden. Analysis results are contained within
each subclass in a SignalRegionData instance, which is described in
Table 18

C++ function signature Intended purpose

virtual void clear()a Clear the internal memory of this instance so that it may be reused

void analyze(const EventT& e) This version of analyze simply calls the pointer version below

virtual void analyze(const EventT*)a Analyze the given event, storing the result internally

double num_events() Return the total number of events analyzed

double xsec() Return the total cross section (in fb) of events analyzed

double xsec_err() Return the cross section uncertainty (in fb)

double xsec_relerr() Return the relative cross section uncertainty

double xsec_per_event() Return the cross section per event (in fb) of events analyzed

double luminosity() Return the integrated luminosity (in fb−1) of events analyzed

void set_xsec(double xs, double

xserr)

Set the cross section, and its uncertainty (in fb)

void set_luminosity(double lumi) Set the luminosity (in fb−1)

std::vector<SignalRegionData>

get_results()

Return the results as a vector of SignalRegionData objects

void add_result(const

SignalRegionData& res)

Add a result to the internal results list

virtual void collect_results()b Collect all results of this analysis together in preparation for a likelihood
calculation

virtual void init(const

std::vector<std::string>&)a
Initialise the analysis with a set of options given as a vector of strings

virtual void init()a Initialise the analysis with no options

virtual void scale(double factor)a Scale the results of this analysis by the given factor, which is optional. If no
factor is given, the scale factor is set instead by the luminosity

virtual void add(BaseAnalysis*

other)a
Adds the results of an identical analysis to this one

void add_xsec(double xs, double

xserr)

Add the given cross section to the stored total and recompute the uncertainty

void improve_xsec(double xs, double

xserr)

Improve the stored cross section by averaging it with the given one, and
recompute the uncertainty

Table 18 Member variables of the SignalRegionData struct, which is used in the BaseAnalysis class as a container for the analysis results of
each signal region. The BaseAnalysis class is described in Table 17

C++ Member Variable Intended purpose

std::string analysis_name The name of the analysis that contains this signal region

std::string sr_label A label for this particular signal region

double n_observed The number of events passing selection for this signal region, as reported by the
experiment

double n_signal The number of simulated model events passing selection for this signal region

double n_signal_at_lumi The number of simulated model events passing selection for this signal region, scaled to
the experimental luminosity

double n_background The number of Standard Model events passing selection for this signal region, as
reported by the experiment

double signal_sys The absolute systematic error of n_signal

double background_sys The absolute systematic error of n_background

123

Eur. Phys. J. C (2017) 77:795 Page 33 of 36 795

Table 19 Inherited functions for subclasses ofBaseLimitContainer.
Functions that are virtual and marked with b must be overrid-
den by the subclass author. Non-virtual functions are not intended

to be overridden. Note that P2 is a simple class that represents a
point found on the limit plane and is defined in the header file
limits/PointsAndLines.hpp

C++ function signature Intended purpose

virtual P2 convertPt() constb Convert a point from pixel units to axis units, creating a P2

virtual bool isWithinExclusionRegion(double x, double y,

double mZ)const

Check to see if the point specified by x and y is within the
exclusion region. This may depend on the Z boson mass,
mZ

virtual double specialLimit(double, double) const Return a special value for the limit when outside of the
exclusion region. This function returns zero unless
overridden

double limitAverage(double x, double y, double mZ) const Uses the limit interpolation described in Sect. 2.2 to return a
limit at the point specified by x and y. This may depend
on the Z boson mass, mZ

void dumpPlotData(double xlow, double xhigh, double ylow,

double yhigh, double mZ, std::string

filename, int ngrid) const

Creates a file, filename, containing the results of
limitAverage calls using a grid of ngrid × ngrid

points within the rectangle defined by xlow, xhigh,
ylow, and yhigh

void dumpLightPlotData(std::string filename,

int nperLine) const

Creates a file, filename, containing the limit contour data
as a series of points, using nperLine points for each line
of the contour

Appendix C: Glossary

Here we explain some terms that have specific technical def-
initions in GAMBIT.

backend An external code containing useful functions (or
variables) that one might wish to call (or read/write) from
a module function.

backend function A function contained in a backend. It
calculates a specific quantity indicated by its capability.
Its capability and call signature are defined in the back-
end’s frontend header.

backend requirement A declaration that a given module
function needs to be able to call a backend function or
use a backend variable, identified according to its capa-
bility and type(s). Backend requirements are declared in
module functions’ entries in rollcall headers.

backend variable A global variable contained in a back-
end. It corresponds to a specific quantity indicated by
its capability. Its capability and type are defined in the
backend’s frontend header.

capability A name describing the actual quantity that is cal-
culated by a module or backend function. This is one
possible place for units to be noted; the other is in the
documented description of the capability (see Sec. 10.7
of Ref. [1]).

dependency A declaration that a given module function
needs to be able to access the result of another module
function, identified according to its capability and type.
Dependencies are declared in module functions’ entries
in rollcall headers.

frontend The interface betweenGAMBIT and a givenback-
end, consisting of a frontend header plus optional
source files and type headers.

frontend header The C++ header in which the frontend to
a given backend is declared.

module A subset of GAMBIT functions following a com-
mon theme, able to be compiled into a standalone
library. Although module often gets used as shorthand
for physics module, this term technically also includes
the GAMBIT scanning module ScannerBit.

module function A function contained in a physics mod-
ule. It calculates a specific quantity indicated by its capa-
bility and type, as declared in the module’s rollcall
header. It takes only one argument, by reference (the
quantity to be calculated), and has a void return type.

physics module Any module other than ScannerBit, con-
taining a collection of module functions following a
common physics theme.

rollcall header The C++ header in which a given physics
module and its module functions are declared.

type A general fundamental or derivedC++ type, often refer-
ring to the type of the capability of a module function.

References

1. GAMBIT Collaboration: P. Athron, C. Balazs et. al., GAMBIT:
The Global and Modular Beyond-the-Standard-Model Inference
Tool. arXiv:1705.07908

2. ATLAS Collaboration: G. Aad et. al., The ATLAS experiment at
the CERN Large Hadron Collider. JINST3, S08003 (2008)

123

http://arxiv.org/abs/1705.07908

 795 Page 34 of 36 Eur. Phys. J. C (2017) 77:795

3. CMS Collaboration: S. Chatrchyan et al., The CMS experiment
at the CERN LHC. JINST 3, S08004 (2008)

4. L3 Collaboration: M. Acciarri et al., Search for charginos and
neutralinos in e+e− collisions at

√
s = 189 GeV. Phys. Lett. B

472, 420–433 (2000). arXiv:hep-ex/9910007
5. L3 Collaboration: M. Acciarri et al., Search for charginos with

a small mass difference with the lightest supersymmetric par-
ticle at

√
s = 189 GeV. Phys. Lett. B 482, 31–42 (2000).

arXiv:hep-ex/0002043
6. L3 Collaboration: P. Achard et al., Search for scalar leptons

and scalar quarks at LEP. Phys. Lett. B 580, 37–49 (2004).
arXiv:hep-ex/0310007

7. ALEPH Collaboration: A. Heister et. al., Search for charginos
nearly mass degenerate with the lightest neutralino in e+e− col-
lisions at center-of-mass energies up to 209 GeV. Phys. Lett. B
533, 223–236 (2002). arXiv:hep-ex/0203020

8. ALEPH Collaboration: A. Heister et. al., Search for scalar leptons
in e+e− collisions at center-of-mass energies up to 209 GeV. Phys.
Lett. B 526, 206–220 (2002). arXiv:hep-ex/0112011

9. ALEPH Collaboration: A. Heister et. al., Absolute lower limits
on the masses of selectrons and sneutrinos in the MSSM. Phys.
Lett. B 544, 73–88 (2002). arXiv:hep-ex/0207056

10. ALEPH Collaboration: A. Heister et. al., Absolute mass lower
limit for the lightest neutralino of the MSSM from e+e− data at√
s up to 209 GeV. Phys. Lett. B 583, 247–263 (2004)

11. ALEPH Collaboration: A. Heister et al., Search for scalar quarks
in e+e− collisions at

√
s up to 209 GeV. Phys. Lett. B 537, 5–20

(2002). arXiv:hep-ex/0204036
12. OPAL Collaboration: G. Abbiendi et al., Search for chargino and

neutralino production at
√
s = 192GeV to 209 GeV at LEP. Eur.

Phys. J. C 35, 1–20 (2004). arXiv:hep-ex/0401026
13. OPAL Collaboration: G. Abbiendi et al., Search for anomalous

production of dilepton events with missing transverse momentum
in e+e− collisions at

√
s = 183 GeV to 209 GeV. Eur. Phys. J. C

32, 453–473 (2004). arXiv:hep-ex/0309014
14. OPAL Collaboration: G. Abbiendi et al., Search for scalar top and

scalar bottom quarks at LEP. Phys. Lett. B 545, 272–284 (2002).
arXiv:hep-ex/0209026

15. DELPHI Collaboration: J. Abdallah et al., Searches for supersym-
metric particles in e+e− collisions up to 208 GeV and interpreta-
tion of the results within the MSSM. Eur. Phys. J. C 31, 421–479
(2003). arXiv:hep-ex/0311019

16. ATLAS Collaboration: G. Aad et al., Observation of a new par-
ticle in the search for the Standard Model Higgs boson with the
ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).
arXiv:1207.7214

17. S. Chatrchyan, V. Khachatryan et al., Observation of a new boson
at a mass of 125 GeV with the CMS experiment at the LHC. Phys.
Lett. B 716, 30–61 (2012). arXiv:1207.7235

18. S. Kraml, S. Kulkarni et al., SModelS: a tool for interpreting
simplified-model results from the LHC and its application to
supersymmetry. Eur. Phys. J. C 74, 2868 (2014). arXiv:1312.4175

19. M. Papucci, K. Sakurai, A. Weiler, L. Zeune, Fastlim: a fast LHC
limit calculator. Eur. Phys. J. C 74, 3163 (2014). arXiv:1402.0492

20. S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Austri, B. Stienen,
The BSM-AI project: SUSY-AIâĂŞgeneralizing LHC limits on
supersymmetry with machine learning. Eur. Phys. J. C 77, 257
(2017). arXiv:1605.02797

21. H.K. Dreiner, M. Krämer, J.M. Lindert, B. O’Leary, SUSY param-
eter determination at the LHC using cross sections and kinematic
edges. JHEP 4, 109 (2010). arXiv:1003.2648

22. M. Bridges, K. Cranmer et al., A coverage study of CMSSM
based on ATLAS sensitivity using fast neural networks tech-
niques. JHEP 3, 12 (2011). arXiv:1011.4306

23. A. Buckley, A. Shilton, M.J. White, Fast supersymmetry phe-
nomenology at the Large Hadron Collider using machine learn-

ing techniques. Comput. Phys. Commun. 183, 960–970 (2012).
arXiv:1106.4613

24. B.O’Leary, LHC-FASER. http://github.com/benoleary/
LHC-FASER

25. C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White, Should
we still believe in constrained supersymmetry? Eur. Phys. J. C 73,
2563 (2013). arXiv:1205.1568

26. ATLAS Collaboration: ATLAS Collaboration, Summary of the
ATLAS experiment’s sensitivity to supersymmetry after LHC Run
1 – interpreted in the phenomenological MSSM. JHEP 10, 134
(2015). arXiv:1508.06608

27. N. Bornhauser, M. Drees, Determination of the CMSSM param-
eters using neural networks. Phys. Rev. D 88, 075016 (2013).
arXiv:1307.3383

28. P. Bechtle, S. Belkner et al., SCYNet: testing supersymmetric
models at the LHC with neural networks. arXiv:1703.01309

29. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, J.S. Kim,
CheckMATE: confronting your favourite new physics model
with LHC data. Comput. Phys. Commun. 187, 227–265 (2014).
arXiv:1312.2591

30. J. de Favereau et al., DELPHES 3. A modular framework for
fast simulation of a generic collider experiment. JHEP 1402, 057
(2014). arXiv:1307.6346

31. S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast
simulation of a generic collider experiment. arXiv:0903.2225

32. J. Alwall, R. Frederix et al., The automated computation of
tree-level and next-to-leading order differential cross sections,
and their matching to parton shower simulations. JHEP 07, 079
(2014). arXiv:1405.0301

33. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams,
HiggsBounds: confronting arbitrary Higgs sectors with exclusion
bounds from LEP and the Tevatron. Comput. Phys. Commun. 181,
138–167 (2010). arXiv:0811.4169

34. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams,
HiggsBounds 2.0.0: confronting neutral and charged Higgs
sector predictions with exclusion bounds from LEP and the
Tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011).
arXiv:1102.1898

35. P. Bechtle, O. Brein et al., HiggsBounds-4: improved tests of
extended Higgs sectors against exclusion bounds from LEP,
the Tevatron and the LHC. Eur. Phys. J. C 74, 2693 (2014).
arXiv:1311.0055

36. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein,
Applying exclusion likelihoods from LHC searches to extended
Higgs sectors. Eur. Phys. J. C 75, 421 (2015). arXiv:1507.06706

37. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein,
HiggsSignals: confronting arbitrary Higgs sectors with measure-
ments at the Tevatron and the LHC. Eur. Phys. J. C 74, 2711
(2014). arXiv:1305.1933

38. J. Bernon, B. Dumont, Lilith: a tool for constraining new physics
from Higgs measurements. Eur. Phys. J. C 75, 440 (2015).
arXiv:1502.04138

39. GAMBIT Scanner Workgroup: G.D. Martinez, J. McKay et al.,
Comparison of statistical sampling methods with ScannerBit, the
GAMBIT scanning module. arXiv:1705.07959

40. GAMBITModels Workgroup: P. Athron, C. Balázs et al., SpecBit,
DecayBit and PrecisionBit: GAMBIT modules for computing
mass spectra, particle decay rates and precision observables.
arXiv:1705.07936

41. GAMBIT Flavour Workgroup: F.U. Bernlochner, M. Chrzaszcz
et al., FlavBit: a GAMBIT module for computing flavour observ-
ables and likelihoods. arXiv:1705.07933

42. GAMBITDark Matter Workgroup: T. Bringmann, J. Conrad et al.,
DarkBit: a GAMBIT module for computing dark matter observ-
ables and likelihoods. arXiv:1705.07920

123

http://arxiv.org/abs/hep-ex/9910007
http://arxiv.org/abs/hep-ex/0002043
http://arxiv.org/abs/hep-ex/0310007
http://arxiv.org/abs/hep-ex/0203020
http://arxiv.org/abs/hep-ex/0112011
http://arxiv.org/abs/hep-ex/0207056
http://arxiv.org/abs/hep-ex/0204036
http://arxiv.org/abs/hep-ex/0401026
http://arxiv.org/abs/hep-ex/0309014
http://arxiv.org/abs/hep-ex/0209026
http://arxiv.org/abs/hep-ex/0311019
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1312.4175
http://arxiv.org/abs/1402.0492
http://arxiv.org/abs/1605.02797
http://arxiv.org/abs/1003.2648
http://arxiv.org/abs/1011.4306
http://arxiv.org/abs/1106.4613
http://github.com/benoleary/LHC-FASER
http://github.com/benoleary/LHC-FASER
http://arxiv.org/abs/1205.1568
http://arxiv.org/abs/1508.06608
http://arxiv.org/abs/1307.3383
http://arxiv.org/abs/1703.01309
http://arxiv.org/abs/1312.2591
http://arxiv.org/abs/1307.6346
http://arxiv.org/abs/0903.2225
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/0811.4169
http://arxiv.org/abs/1102.1898
http://arxiv.org/abs/1311.0055
http://arxiv.org/abs/1507.06706
http://arxiv.org/abs/1305.1933
http://arxiv.org/abs/1502.04138
http://arxiv.org/abs/1705.07959
http://arxiv.org/abs/1705.07936
http://arxiv.org/abs/1705.07933
http://arxiv.org/abs/1705.07920

Eur. Phys. J. C (2017) 77:795 Page 35 of 36 795

43. ATLAS Collaboration: G. Aad et al., Search for direct third-
generation squark pair production in final states with missing
transverse momentum and two b-jets in

√
s = 8 TeV pp collisions

with the atlas detector. JHEP 1310, 189 (2013). arXiv:1308.2631
44. ATLAS Collaboration: G. Aad et al., Search for direct top-squark

pair production in final states with two leptons in pp collisions at√
s = 8 TeV with the ATLAS detector. JHEP 1406, 124 (2014).

arXiv:1403.4853
45. ATLAS Collaboration: G. Aad et al., Search for direct pair produc-

tion of the top squark in all-hadronic final states in proton–proton
collisions at

√
s = 8 TeV with the ATLAS detector. JHEP 1409,

015 (2014). arXiv:1406.1122
46. ATLAS Collaboration: Aad, Georges and others, Search for direct

production of charginos, neutralinos and sleptons in final states
with two leptons and missing transverse momentum in pp col-
lisions at

√
s = 8 TeV with the ATLAS detector. JHEP 05, 071

(2014). arXiv:1403.5294
47. ATLAS Collaboration: G. Aad et al., Search for direct produc-

tion of charginos and neutralinos in events with three leptons and
missing transverse momentum in

√
s = 8 TeV pp collisions with

the atlas detector. JHEP 1404, 169 (2014). arXiv:1402.7029
48. ATLAS Collaboration, Search for direct top squark pair produc-

tion in final states with one isolated lepton, jets, and missing trans-
verse momentum in

√
s = 8 TeV pp collisions using 21fb−1 of

ATLAS data. ATLAS-CONF-2013-037, 2013
49. ATLAS Collaboration: G. Aad et al., Search for squarks and

gluinos with the ATLAS detector in final states with jets and
missing transverse momentum using

√
s = 8 TeV proton–proton

collision data. JHEP 09, 176 (2014). arXiv:1405.7875
50. CMS Collaboration: V. Khachatryan et al., Searches for elec-

troweak production of charginos, neutralinos, and sleptons decay-
ing to leptons and W , Z , and Higgs bosons in pp collisions at 8
TeV. Eur. Phys. J. C 74, 3036 (2014). arXiv:1405.7570

51. CMS Collaboration: V. Khachatryan et al., Search for the pro-
duction of dark matter in association with top-quark pairs in the
single-lepton final state in proton–proton collisions at

√
s = 8

TeV. JHEP 06, 121 (2015). arXiv:1504.03198
52. CMS Collaboration, Search for the production of dark matter in

association with top quark pairs in the di-lepton final state in pp
collisions at

√
s = 8 TeV. CMS-PAS-B2G-13-004 (2014)

53. CMS Collaboration, V. Khachatryan et al., Search for dark matter,
extra dimensions, and unparticles in monojet events in proton–
proton collisions at

√
s = 8 TeV. Eur. Phys. J. C 75, 235 (2015).

arXiv:1408.3583
54. T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and

manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175
55. T. Sjostrand, S. Ask et al., An introduction to PYTHIA 8.2. Com-

put. Phys. Commun. 191, 159–177 (2015). arXiv:1410.3012
56. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys.

J. C 72, 1896 (2012). arXiv:1111.6097
57. P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY – a

spectrum generator generator for supersymmetric models. Com-
put. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319

58. B.C. Allanach, SOFTSUSY: a program for calculating supersym-
metric spectra. Comput. Phys. Commun. 143, 305–331 (2002).
arXiv:hep-ph/0104145

59. P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY
spectrum calculators, decay packages, and event generators. JHEP
07, 036 (2004). arXiv:hep-ph/0311123

60. B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys.
Commun. 180, 8–25 (2009). arXiv:0801.0045

61. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
SupersymmetryPublicResults

62. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
ExoticsPublicResults

63. https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsSUS

64. https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsEXO

65. A. Berlin, D. Hooper, S.D. McDermott, Simplified dark matter
models for the galactic center gamma-ray excess. Phys. Rev. D
89, 115022 (2014). arXiv:1404.0022

66. M.R. Buckley, D. Feld, D. Goncalves, Scalar simplified models
for dark matter. Phys. Rev. D 91, 015017 (2015). arXiv:1410.6497

67. ATLAS Collaboration, Further searches for squarks and gluinos
in final states with jets and missing transverse momentum at√
s = 13 TeV with the ATLAS detector. ATLAS-CONF-2016-

078 (2016)
68. CMS Collaboration, Search for supersymmetry in events with jets

and missing transverse momentum in proton–proton collisions at
13 TeV. CMS-PAS-SUS-16-014 (2016)

69. ATLAS: M. Aaboud et al., Search for new phenomena in a
lepton plus high jet multiplicity final state with the ATLAS
experiment using

√
s = 13 Tev proton–proton collision data.

arXiv:1704.08493
70. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Squark and

gluino production at hadron colliders. Nucl. Phys. B 492, 51–103
(1997). arXiv:hep-ph/9610490

71. W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for
the production of supersymmetric particles in next-to-leading
order QCD. arXiv:hep-ph/9611232

72. W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Stop
production at hadron colliders. Nucl. Phys. B 515, 3–14 (1998).
arXiv:hep-ph/9710451

73. M. Beneke, J. Piclum, C. Schwinn, C. Wever, NNLL soft and
Coulomb resummation for squark and gluino production at the
LHC. JHEP 10, 054 (2016). arXiv:1607.07574

74. W. Beenakker, C. Borschensky, M. Krämer, A. Kulesza, E. Lae-
nen, NNLL-fast: predictions for coloured supersymmetric particle
production at the LHC with threshold and Coulomb resummation.
JHEP 12, 133 (2016). arXiv:1607.07741

75. A. Kulesza, L. Motyka, Threshold resummation for squark–
antisquark and gluino-pair production at the LHC. Phys. Rev. Lett.
102, 111802 (2009). arXiv:0807.2405

76. A. Kulesza, L. Motyka, Soft gluon resummation for the production
of gluino–gluino and squark–antisquark pairs at the LHC. Phys.
Rev. D 80, 095004 (2009). arXiv:0905.4749

77. W. Beenakker, S. Brensing et al., Soft-gluon resummation for
squark and gluino hadroproduction. JHEP 0912, 041 (2009).
arXiv:0909.4418

78. W. Beenakker, S. Brensing et al., Supersymmetric top and bot-
tom squark production at hadron colliders. JHEP 08, 098 (2010).
arXiv:1006.4771

79. W. Beenakker, S. Brensing et al., Squark and gluino hadroproduc-
tion. Int. J. Mod. Phys. A 26, 2637–2664 (2011). arXiv:1105.1110

80. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton dis-
tributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009).
arXiv:0901.0002

81. P.M. Nadolsky, H.-L. Lai et al., Implications of CTEQ global
analysis for collider observables. Phys. Rev. D 78, 013004 (2008).
arXiv:0802.0007

82. C.G. Lester, M.A. Parker, M.J. White, Determining SUSY
model parameters and masses at the LHC using cross-sections,
kinematic edges and other observables. JHEP 01, 080 (2006).
arXiv:hep-ph/0508143

83. B.C. Allanach et al., The Snowmass points and slopes: Bench-
marks for SUSY searches. Eur. Phys. J. C 25, 113–123 (2002).
arXiv:hep-ph/0202233

84. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis:
SPA convention and project. Eur. Phys. J. C 46, 43–60 (2006).
arXiv:hep-ph/0511344

123

http://arxiv.org/abs/1308.2631
http://arxiv.org/abs/1403.4853
http://arxiv.org/abs/1406.1122
http://arxiv.org/abs/1403.5294
http://arxiv.org/abs/1402.7029
http://arxiv.org/abs/1405.7875
http://arxiv.org/abs/1405.7570
http://arxiv.org/abs/1504.03198
http://arxiv.org/abs/1408.3583
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/1111.6097
http://arxiv.org/abs/1406.2319
http://arxiv.org/abs/hep-ph/0104145
http://arxiv.org/abs/hep-ph/0311123
http://arxiv.org/abs/0801.0045
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
http://arxiv.org/abs/1404.0022
http://arxiv.org/abs/1410.6497
http://arxiv.org/abs/1704.08493
http://arxiv.org/abs/hep-ph/9610490
http://arxiv.org/abs/hep-ph/9611232
http://arxiv.org/abs/hep-ph/9710451
http://arxiv.org/abs/1607.07574
http://arxiv.org/abs/1607.07741
http://arxiv.org/abs/0807.2405
http://arxiv.org/abs/0905.4749
http://arxiv.org/abs/0909.4418
http://arxiv.org/abs/1006.4771
http://arxiv.org/abs/1105.1110
http://arxiv.org/abs/0901.0002
http://arxiv.org/abs/0802.0007
http://arxiv.org/abs/hep-ph/0508143
http://arxiv.org/abs/hep-ph/0202233
http://arxiv.org/abs/hep-ph/0511344

 795 Page 36 of 36 Eur. Phys. J. C (2017) 77:795

85. M. Cacciari, G.P. Salam, Pileup subtraction using jet areas. Phys.
Lett. B 659, 119–126 (2008). arXiv:0707.1378

86. Calibration of ATLAS b-tagging algorithms in dense jet environ-
ments. ATLAS-CONF-2016-001 (2016)

87. A. Buckley, J. Butterworth et al., Rivet user manual. Comput.
Phys. Commun. 184, 2803–2819 (2013). arXiv:1003.0694

88. M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering
algorithm. JHEP 0804, 063 (2008). arXiv:0802.1189

89. Electron efficiency measurements with the ATLAS detector using
the 2012 LHC proton–proton collision data. ATLAS-CONF-
2014-032 (2014)

90. Electron identification measurements in ATLAS using
√
s = 13

TeV data with 50 ns bunch spacing. ATL-PHYS-PUB-2015-041
(2015)

91. ATLAS Collaboration: G. Aad et al., Performance of miss-
ing transverse momentum reconstruction in proton–proton col-
lisions at 7 TeV with ATLAS. Eur. Phys. J. C 72, 1844 (2012).
arXiv:1108.5602

92. J. Conrad, O. Botner, A. Hallgren, C. Pérez de Los Heros,
Including systematic uncertainties in confidence interval con-
struction for Poisson statistics. Phys. Rev. D 67, 012002 (2003).
arXiv:hep-ex/0202013

93. P. Scott, J. Conrad et al., Direct constraints on minimal supersym-
metry from Fermi-LAT observations of the dwarf galaxy Segue
1. JCAP 1, 31 (2010). arXiv:0909.3300

94. P. Scott, C. Savage, J. Edsjö, and the IceCube Collaboration:
R. Abbasi et al., Use of event-level neutrino telescope data in
global fits for theories of new physics. JCAP 11, 57 (2012).
arXiv:1207.0810

95. IceCube Collaboration: M.G. Aartsen et al., Improved limits
on dark matter annihilation in the Sun with the 79-string Ice-
Cube detector and implications for supersymmetry. JCAP 04, 022
(2016). arXiv:1601.00653

96. CMS Collaboration, Simplified likelihood for the re-interpretation
of public CMS results. CMS-NOTE-2017-001 (2017)

97. CMS Collaboration, Search for new physics in the all-hadronic
final state with the MT2 variable. CMS-PAS-SUS-16-036 (2017)

98. P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersymmet-
ric dark matter properties numerically. JCAP 0407, 008 (2004).
arXiv:astro-ph/0406204

99. G.Bélanger, F. Boudjema, A. Pukhov, A. Semenov,
micrOMEGAs4.1: two dark matter candidates. Comput.
Phys. Commun. 192, 322–329 (2015). arXiv:1407.6129

100. OPAL Collaboration: G. Abbiendi et al., Search for anomalous
production of acoplanar di-lepton events in e+e− collisions at√
s = 183 GeV and 189 GeV. Eur. Phys. J. C 14, 51–71 (2000).

arXiv:hep-ex/9909052
101. S. Dawson, E. Eichten, C. Quigg, Search for supersymmetric par-

ticles in hadron–hadron collisions. Phys. Rev. D 31, 1581 (1985)
102. A. Bartl, H. Fraas, W. Majerotto, Gaugino–Higgsino mixing in

selectron and sneutrino pair production. Z. Phys. C 34, 411 (1987)
103. A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of super-

symmetric particles: the program SUSY-HIT (SUspect-SdecaY-
Hdecay-InTerface). Acta Phys. Polon. 38, 635–644 (2007).
arXiv:hep-ph/0609292

104. D. Shepard, A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the 1968 23rd ACM
National Conference, ACM ’68 (ACM, New York, 1968), pp 517–
524

105. A. Bartl, H. Fraas, W. Majerotto, Production and decay of neu-
tralinos in e+e− annihilation. Nucl. Phys. B 278, 1 (1986)

106. A. Bartl, H. Fraas, W. Majerotto, Signatures of chargino produc-
tion in e+e− collisions. Z. Phys. C 30, 441 (1986)

107. H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata, ISAJET 7.48: a
Monte Carlo event generator for pp, anti-p, p, and e+ e− reac-
tions. arXiv:hep-ph/0001086

108. DELPHI Collaboration, OPAL Collaboration, ALEPH Collab-
oration, LEP Working Group for Higgs Boson Searches and
L3 Collaboration: S. Schael et al., Search for neutral MSSM
Higgs Bosons at LEP. Eur. Phys. J. C 47, 547–587 (2006).
arXiv:hep-ex/0602042

109. J.M. Cline, K. Kainulainen, P. Scott, C. Weniger, Update on
scalar singlet dark matter. Phys. Rev. D 88, 055025 (2013).
arXiv:1306.4710

110. Collaboration: P. Athron, C. Balázs et al., Status of the scalar
singlet dark matter model. Eur. Phys. J. C 77, 568 (2017). https://
doi.org/10.1140/epjc/s10052-017-5113-1

111. S. Ask et al., From Lagrangians to events: computer tutorial at the
MC4BSM-2012 workshop. arXiv:1209.0297

123

http://arxiv.org/abs/0707.1378
http://arxiv.org/abs/1003.0694
http://arxiv.org/abs/0802.1189
http://arxiv.org/abs/1108.5602
http://arxiv.org/abs/hep-ex/0202013
http://arxiv.org/abs/0909.3300
http://arxiv.org/abs/1207.0810
http://arxiv.org/abs/1601.00653
http://arxiv.org/abs/astro-ph/0406204
http://arxiv.org/abs/1407.6129
http://arxiv.org/abs/hep-ex/9909052
http://arxiv.org/abs/hep-ph/0609292
http://arxiv.org/abs/hep-ph/0001086
http://arxiv.org/abs/hep-ex/0602042
http://arxiv.org/abs/1306.4710
https://doi.org/10.1140/epjc/s10052-017-5113-1
https://doi.org/10.1140/epjc/s10052-017-5113-1
http://arxiv.org/abs/1209.0297

	ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods
	Abstract
	1 Introduction
	2 Physics and implementation
	2.1 LHC likelihood calculation
	2.1.1 Overview of LHC constraints included in ColliderBit
	2.1.2 Strategy for applying LHC constraints without model-dependent assumptions
	2.1.3 Cross-section calculations
	2.1.4 Monte Carlo event generation
	2.1.5 Event record
	2.1.6 Detector simulation
	2.1.7 LHC event analysis framework
	2.1.8 LHC statistics calculations
	2.1.9 Validation of ColliderBit LHC constraints

	2.2 LEP likelihood calculation
	2.3 Higgs likelihood calculation

	3 User interface
	3.1 GAMBIT interface
	3.1.1 LHC simulation capabilities
	3.1.2 LEP supersymmetry limit capabilities
	3.1.3 Higgs likelihood capabilities

	3.2 Standalone interface

	4 Examples
	4.1 CMSSM example
	4.2 Generic Pythia model example

	5 Conclusions
	Acknowledgements
	Appendix A: Quick start guide
	A.1: Building and running the standalone example
	A.2: Running the ColliderBit example in GAMBIT

	Appendix B: ColliderBit classes
	Appendix C: Glossary
	References

