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Abstract—The binomial-tree model is a numerical method
widely used in finance with a computational complexity which
is quadratic with respect to the solution accuracy. Existing
research has employed reconfigurable computing to provide
faster solutions compared to general-purpose processors, but
they require low-level manual design by a hardware engineer,
and can only solve American options. This paper presents a
formal mathematical framework that captures a large class of
binomial-tree problems, and provides a systolic data-movement
template that maps the framework into digital hardware. The
article also presents a fully-automated design flow, which takes
C-level user descriptions of binomial trees, with custom data
types and tree operations, and automatically generates fully-
pipelined reconfigurable hardware solutions in FPGA bit-stream
files. On a Xilinx Virtex-7 xc7vx980t FPGA at a 100-MHz clock
frequency, we require 54-µs latency to solve three 876-step 32-
bit fixed-point American option binomial trees, with a pricing
rate of 114k trees/s. From the same device and in comparison to
existing solutions with equivalent FPGA technology, we always
achieve better throughput. This ranges from 1.4× throughput
compared to a hand-tuned register-transfer level systolic design,
to 9.1× and 5.6× improvement with respect to scalar and vector
architectures, respectively.

Index Terms—binomial-tree numerical method, hardware de-
sign automation, field-programmable gate arrays (FPGA), re-
configurable hardware accelerators, high-level synthesis (HLS),
option pricing, systolic arrays

I. INTRODUCTION

THE binomial-tree numerical method is used to solve
option pricing problems which have no closed-form

analytical solutions. The model is widely employed in finance
for pricing many types of options [1], such as American and
Bermudan options. Workloads range from making a single
option evaluation for a trader, to performing millions of eval-
uations in order to obtain the implied volatility of underlying
assets. The method models the price of underlying assets
in discretised time and space domains, where in an n-step
binomial tree, O(n2) node evaluations must be performed.
Problems with higher n produce more accurate results, but
also require more computation, making the classic CPU-based
solvers very slow when dealing with thousands of options [2].

In the past few years, the inherent parallelism of option
valuations has been exploited using reconfigurable comput-
ing platforms. Some binomial-tree FPGA implementations
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use small degrees of spatial parallelism [3]–[6], so although
they offer considerable acceleration over general purpose
processing approaches, they still require latencies in O(n2).
In contrast, the systolic approach [7] achieves O(n) latency
and gives orders of magnitude acceleration over previous
FPGA solutions. However, in this design [7], hand-coding
the entire solution in register-transfer level (RTL) not only
provides a low-level interface to the application user, but
also makes it difficult to reuse the design. Besides, all of
the aforementioned methods only work for American options,
which limits the scope of pricing problems they can cover.
Automated frameworks [8] have been created which generate
FPGA accelerators for different options with different asset
price models, but they only use Monte Carlo methods and do
not provide the widely-used binomial-tree solvers.

This paper presents a novel high-level design framework
for creating binomial-tree solvers. The framework lets the end-
user describe any problem that can be discretised to a binomial
tree in a high-level form (like C) and provides automatically,
with the press of a button, a massively parallel systolic FPGA
solution, ready to be loaded onto reconfigurable hardware.

The main contributions of this paper are:
1) A framework for precisely defining binomial trees using

a mathematical description which allows a large and
important class of lattice-based problems to be captured.

2) A parametrisable data-movement template which repre-
sents the framework in digital hardware, which is fully
pipelined using a systolic architecture.

3) A fully-automated design flow which converts user-
defined problems described using the framework into
high performance systolic reconfigurable hardware
solvers, using the parametrisable data-movement tem-
plate.

4) An evaluation of the approach showing it can maintain
high performance with up to 90% of FPGA resource
utilisation, with a rate of more than 114k options/s for
876-step trees on a Virtex-7 device. We also show the
breadth of the problems that can be solved with the
framework, including multiple financial option types.

5) A comparison to existing reconfigurable hardware ap-
proaches, showing that the improved design productivity
does not limit performance, with throughput improved
by orders of magnitude on modern 28-nm FPGAs and
achieving better latency compared to previous hand-
tuned systolic designs.

In this article, Section II describes the binomial-tree numer-
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ical method and the motivation behind this research. Section
III suggests a formal framework that captures the binomial-
tree problems. Section IV presents the hardware architecture
we designed to implement the framework on reconfigurable
hardware. Section V explains the automated design flow used
to generate hardware solutions. Section VI contains perfor-
mance and accuracy results for different problems and data
types. Section VII explains how the framework compares
with existing FPGA solutions in terms of performance and
productivity measures. Section VIII concludes the paper.

II. BACKGROUND

A. The Binomial-Tree Option Pricing Model

An option is a contract between a writer and an investor
(option holder), which gives the investor the right, but not the
obligation, to buy from or sell to the writer some underlying
asset(s) at an agreed-upon price (strike price) by a specific
date (expiry date or maturity date). In case of buying, it is
a call option, while with a put option the holder can sell the
asset. The option is a valuable instrument due to the flexibility
for the holder in whether or not to exercise the right to trade
the asset. Therefore, options are traded for a price, which is
derived from multiple parameters, including those specified by
the sides of the contract, such as the expiry date and the strike
price. Other parameters are taken from market conditions, such
as the asset’s current price (spot price) and the interest rate.

Options are classified into several categories with respect
to different features that the contract can have, such as the
allowed exercise times, or the way the option pay-off is cal-
culated. For instance, European options can only be exercised
at the expiry date, while an American option can be exercised
at any time before the option matures. There are other types of
options with exotic exercise features, such as barrier options,
where the pay-off depends on whether the underlying reaches
a predetermined price. Many types of options, such as the
widely-traded American options, have no analytical solutions
and are priced using numerical methods. For instance, when
the contract has complicated exotic features or there are
multiple sources of uncertainty in modelling the asset price,
Monte Carlo methods are often used [9]–[12]. These methods
have the main disadvantage of being slow compared to other
numerical models for American-style options [13], while also
early exercise features are either difficult or impossible to
implement using Monte Carlo methods [14]. In such cases,
other numerical methods such as tree-based models are used.

The binomial-tree model, as a tree-based method, discretise
time and asset price into a regular lattice, then consider
the possible paths that the asset price can take. While the
binomial-tree model is applied to different types of options,
we take the American option as the standard use-case in order
to describe the method. The model is based on the assumption
that at any time step the asset price can either increase by a
factor u or decrease by a factor d, with probabilities p and
1-p, respectively. This is shown generically in Figure 1(a).
To construct a tree, the three parameters u, d and p must be
known, which requires three equations. Two of the equations
are obtained by matching the expected return and the variance
of the tree model with those in a risk-free world. For the
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Fig. 1. Binomial tree of n=3 (a) One time step (b) Asset space (c) Coordinate
space

third equation, a standard approach is to use the Cox-Ross-
Rubinstein [15] formula where ud = 1. The tree parameters
are therefore:

u = eσ
√
δt, d = 1/u, p =

erδt − d
u− d

(1)

where σ is the volatility of the asset price, r is the risk-free
interest rate, δt is the time step defined as δt = T/n and
T is the time to expiration. To construct a tree, the starting
point is the node at time 0 with a spot price value S0, as
demonstrated in Figure 1(b). Nodes in the next time steps are
constructed according to the 1-step model in Figure 1(a) until
it reaches the expiry date. After the tree is constructed, the
pay-off of exercising the option at the expiry at any node is
calculated, which is max(s−K, 0) for a call option, where s
and K are the node and strike prices, respectively. The pay-offs
are then discounted backwards until time 0 where the option
price is returned. For an American option, the discounted value
at every node is compared against the pay-off from an early
exercise, and the higher of the two is taken as the value of
that node. The node values are defined in Equation 2, where
V0,0 is the final option price.

Vi,j =


Bj , when i = n

max

e−rδtpVi+1,j+1

+ , Bj

e−rδt(1− p)Vi+1,j−1

 otherwise

(2)
where

i ∈ {0, 1, ..., n}

∀i : j ∈ {−i,−i+ 2, ..., i− 2, i}

The pay-off values are:

Bj =

{
max(K − S0u

j , 0), put options
max(S0u

j −K, 0), call options
(3)

B. Design Architecture Space

Many different hardware architectures have been used to im-
plement the binomial-tree model in computing platforms, with
task parallelism and data movement significantly impacting
the performance of each solution. We will now briefly explore
these architecturally distinct hardware solutions. We define a
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node evaluator (hereafter NE) as a hardware computing unit
which can evaluate the value of a single node in the tree.
At any time in the tree, there are up to n intermediate node
values which can be computed in parallel, but this decreases
during backwards induction as t goes to zero. Maximum task
parallelism can therefore be achieved by using n NEs. We
refer to the 2n+1 B parameters as the spatial constants as
their values depend only on their spatial location, shown in
Figure 1 as the j index. In solving binomial trees, we lay out
the following architectural design space:

1) Scalar Approach: A scalar approach uses a single NE
for the whole tree. Dedicated control logic is required to
provide the evaluator with read/write access to an O(n) array
of memory elements, as illustrated in Figure 2(a). With a
latency of O(n2), this approach is slow compared to modern
parallel implementations. The use of single-core CPUs and
FPGA solutions [3], [4] with one NE per pricing solver are
examples of taking this classical approach.

2) Vector Approach: The vector approach uses a small
number NV of NEs operating in parallel to reduce the latency
of the solver to O( n

2

NV
), as shown in Figure 2(b). Similar

to the scalar form, the vectorised evaluators use a central
memory to read and update intermediate node values. This
introduces a high memory bandwidth requirement which de-
grades performance for large trees. For this reason, previous
FPGA solutions [5], [6] have not used more than NV =10 node
evaluators in their vector approach.

3) Systolic Approach: The systolic approach provides sig-
nificant acceleration [7] over the scalar and vector forms.
While the systolic method also works on parallel NEs, the
acceleration comes from two major sources: the large number
of compute resources in modern FPGAs and the provision of
custom data-movement structures. The first argument states
that the large number of compute resources in modern FPGAs
matches the size of those trees which provide sufficient accu-
racy for real applications. As a consequence, full-exploitation
of the resources provide fully-parallel binomial solvers. The
systolic design, is therefore, based on using exactly n parallel
NEs, as shown in Figure 2(c). Also, the systolic nature of
data-movement provides zero-overhead in accessing the model
constants, leaving a hardware solution with an O(n) latency.

C. Motivation: Combining Performance and Productivity

The scalar and vector approaches are slow as they require
long execution runs to produce accurate results. The previous
systolic approaches [7], on the other side, significantly lacked

design productivity and user customisability, as they were only
able to solve a single problem, namely American options, and
only in fixed-point precision. The problem and the hardware
solution were both defined using hardware description lan-
guages (HDLs). Therefore, adaptation of the design for other
types of binomial trees (like barrier or Bermudan options)
required hand-coded RTL in almost every part of the design,
from arithmetic operations to data-movement architecture. In
the following Sections III to V, we provide a design framework
which automatically generates hardware solutions for any
binomial tree defined in the new formal framework. The
framework gives the user the flexibility to either define a single
binomial problem, like a barrier option, or multiple trees (such
as American and barrier options) to be priced simultaneously.

III. FORMAL FRAMEWORK

In this section, we propose a high-level mathematical frame-
work in order to capture binomial-tree problems. The main
feature of this framework is that it forms the problem in a
way that can be easily mapped into parallel computing models.
We will also propose a computing design framework, which
enables representing the mathematical model in the computing
world (using programming languages). The design framework
can automatically turn user-defined computing abstraction of
the problem into parallel reconfigurable hardware solutions.
The end-user is not required to define or understand hardware
implementation details. Such a decoupling of the user-defined
problem specification from the implementation effort increases
productivity, while also ensuring high performance.

A. Mathematical Model

We define a binomial-tree problem as a quintuple
(P,G,S,N ,R, g, s, f0, f, r) with sets and functions defined in
Table I. The tuple defines the problem regardless of the tree
size n: a free variable which sets the level of discretisation. In
other words, the binomial-tree problem represented by a tuple
x, can be solved with one value of n (n=n1) or another (n=n2).
n can be defined by the end-user or the hardware engineer
according to accuracy versus execution time requirements.
Indices i and j are also free parameters which represent a
node’s position in the tree and are dependent on n.

From the tuple, an instance of the input parameters set P
defines the option(s). Some parameters are used everywhere in
the model, such as u in Equation 1. We call them the global
constants set G, and they are generated by the function g.
The constants Bj of an American option (Equation 3) imply
a set of spatial constants S whose values depend only on the
spatial tree index j, and are generated by the function s. The
set of intermediate node values, shown by N (Equation 2), are
produced by the node evaluator function f. Equation 4 gives
the evaluation model of the mathematical framework:

Vi,j = f
(
g(P ), s

(
P, g(P ), j

)
, Vi+1,j−1, Vi+1,j+1

)
i ∈ {0, 1, ..., n− 1}

Vn,j = f0

(
s
(
P, g(P ), j

))
R = r

(
g(P ), V0,0

)
(4)
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TABLE I
VARIABLES, SETS AND FUNCTIONS OF THE FORMAL FRAMEWORK – CALC.: CALCULATE

Symbol Type C Declaration Description Example: American Option

n Natural number const int n Tree size
i {i ∈ Z ∧ 0 ≤ i ≤ n} int i Temporal indices
j {j ∈ Z ∧ −n ≤ j ≤ n} int j Spatial indices

P Finite set struct P t Input parameters
{
S0,K, r, σ, T ∈ R, type ∈ {−1, 1}

}
G Finite set struct G t Global constants

{
δt, u, wd, wu ∈ R

}
S Finite set struct S t Spatial constants

{
Bj ∈ R

}
N Finite set struct N t Node values

{
Vi,j ∈ R

}
R Finite set struct R t Results

{
Q ∈ R

}
g P 7→ G G t fGlobal(P t) Calc. global constants u = eσ

√
δt, wd = e−rδt(1− p), wu = e−rδtp

s P × G × j 7→ S S t fSpatial(P t, G t, j) Calc. spatial constants max
{
type ∗ (S0uj −K), 0

}
f0 S 7→ N N t fNodeInit(S t) Give initial node values B

f G × S ×N ×N 7→ N N t fNode(G t, S t, N t, N t) Evaluate nodes max
{
wdVd + wuVu, B

}
r G ×N 7→ R R t fResult(G t, N t) Extract results V

where Vi,j ∈ N , P ∈ P, R ∈ R. Node values at time T are
chosen from the set of spatial constants using the function f0.
In some cases the node value at time 0 is not the final result
of the solver. With an American option, for instance, prices
can be normalised by dividing initial node values by the asset
price S0 and multiplying back V0,0 with S0 [7]. Function r
is defined in such cases to generate the set of final results R
by transforming the node value at time 0. Capturing binomial-
tree problems by the model provided in Equation 4 provides
an easy way of mapping the problem abstraction to systolic
hardware architectures, as will be described in the next section.

B. Minimal Executable Implementation

To clarify how the model is executed, we now give a
minimal sequential realisation of the framework written in
C++ shown in Figure 3, which we call as the C Solver. The
actual definitions of the C data structures and C functions are
provided by the user, and we refer to them as the User C
Model. The User C Model defines the framework’s sets and
functions (Table I), and is opaque to the framework. When the
User C Model is created, the C Solver can be compiled into
different platforms, such as CPUs and GPUs, depending on
the user’s cost and performance requirements. When the user
chooses an FPGA platform, our design framework does not
use the C Solver to generate a hardware solution, but instead
uses the User C Model to automatically create an FPGA solver.
The C Solver in our framework is merely used for software
modelling and verification purposes. This way, the problem
representation is made easy by only asking the user to define
a few C data structures and functions.

IV. HARDWARE ARCHITECTURE

To realise our framework in digital hardware, we propose
an architecture in this section based on the systolic approach.
We describe the customisability of the hardware architecture
in terms of user-defined functionality and data-movement
channels. To explain the parallelism behind the systolic ar-
chitecture, Algorithm 1 is presented. It is an alternative form

1 R t B i n o m i a l T r e e S o l v e r ( P t P ) {
2 S t S [2∗ n + 1 ] ; / / S p a t i a l c o n s t a n t s
3 N t V[ n +1 ] , V next [ n + 1 ] , V tmp ; / / Node Values
4 G t G = f G l o b a l ( P ) ; / / C a l c u l a t e g l o b a l c o n s t a n t s
5 / / C a l c u l a t e s p a t i a l c o n s t a n t s
6 f o r ( i n t j=−n ; j<=n ; j ++) {
7 S [ j +n ] = f S p a t i a l ( P , G, j ) ;}
8 / / Give i n i t i a l node v a l u e s
9 f o r ( i n t j=−n ; j<=n ; j +=2) {

10 V[ ( j +n ) / 2 ] = f N o d e I n i t ( S [ j +n ] ) ;}
11 / / Node e v a l u a t i o n s
12 f o r ( i n t i =n−1; i >=0; i−−) { / / Time loop
13 f o r ( i n t j=− i ; j<=i ; j +=2) { / / Space loop
14 V tmp=fNode (V[ ( j + i ) / 2 ] ,V[ ( j + i ) / 2 + 1 ] ,G, S [ j +n ] ) ;
15 V next [ ( j + i ) / 2 ] = V tmp ;}
16 / / Update c u r r e n t node v a l u e s
17 memcpy (V, V next , s i z e o f (V) ) ;}
18 / / E x t r a c t f i n a l r e s u l t s
19 r e t u r n f R e s u l t (G, V[ 0 ] ) ;}

Fig. 3. The C Solver: A C++ Implementation of the Formal Framework

of the model in Figure 3, but is defined using the framework
notations of sets and functions, and uses parallel constructs.
Stepping the node values backwards occur sequentially in n
time steps, as shown in function NodeEvaluation (line 12) with
a parallel inner loop (line 15). The parameters used throughout
the node evaluations (sets G, S and Vn) are calculated in n+1
steps with a single for loop in function ConstantCalculation
(line 2). The sequential calls (line 21) to ConstantCalculation,
NodeEvaluation and the result extraction function r completes
the pricing model.

A. Base Systolic Approach

The parallel form of the binomial-tree method shown in
Algorithm 1 demonstrates the systolic nature of the model in
terms of generation and consumption of the constants, and
through their ordered access pattern. A systolic binomial-tree
solver [7] uses an array of n parallel systolic cells with one
NE in each cell. In the first phase of a coarse-grained pipeline,
the cells receive streams of problem constants (propagation
phase) over n+1 time steps, as shown in Figure 4. In the
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Algorithm 1 Parallel Binomial-tree Solver
1: input n, P
2: function CONSTANTCALCULATION(P )
3: G = g(P )
4: for k = 0 to n
5: j ← −n+ 2k
6: Sj ← s(P,G, j)
7: Sj+1 ← s

(
P,G, j + 1

)
8: Vn,j ← f0(Sj)
9: end

10: return (G,S, Vn)
11: end function
12: function NODEEVALUATION(G,S, Vn)
13: for k = 0 to n− 1
14: i← n− 1− k
15: parfor j = −i to i, j = j + 2
16: Vi,j ← f(G,Sj , Vi+1,j−1, Vi+1,j+1)
17: end
18: end
19: return V0,0
20: end function
21: main
22: (G,S, Vn)← CONSTANTCALCULATION(P )
23: V0,0 ← NODEEVALUATION(G,S, Vn)
24: return r(G,V0,0)
25: end

second pipeline phase, the systolic array then performs node
evaluations in exactly n time steps (evaluation phase), after
which the solver result is generated. With separate propagation
and evaluation phases for a problem in the coarse-grained
pipeline, while one problem is in its evaluation phase, the
constants of a second problem are propagated through the
array. The periodic occurrence of the two phases is called a
systolic cycle, where each cycle takes n+1 time steps.

The block on the top in Figure 4, called setup logic,
provides streams of constants (function ConstantCalculation in
Algorithm 1). While the latency of the node evaluation phase
in the systolic array is n time steps (line 13), the setup logic
divides the 2n+1 spatial constants into two streams of lengths
n and n+1 words. Using two streams means that the latency

of the setup logic is matched with that of the systolic array so
that the coarse-grained pipeline (lines 22 & 23) has almost no
bubbles, providing higher throughput. Control in the systolic
array is localised in order to avoid global fan-outs to the large
number of cells, enabling decent clock rates to be achieved.
Hence, a small number of cells, known as the parameter b, are
grouped into clusters, and are controlled by a local controller
(Figures 4 & 5). The variable b must be limited to avoid long
combinational delays due to large local fan-outs. It also must
not be very low so that unnecessary area is dedicated to local
controllers. In practical cases [7], b is less than 10. The value
of b and the size of target reconfigurable platform define how
many clusters are implemented.

B. Systolic Hardware Realisation of the Framework

To realise our framework in systolic hardware we pro-
pose an architecture based on the systolic model laid out
in Algorithm 1 and Figure 4. The architecture must be a
generic template which is customisable in terms of the user-
defined functionality and data-movement channels. In simpler
terms, the systolic architecture is a data-movement template
with functionality holes (user-defined functions) and variable-
width and length systolic communication channels between
the holes, and between the I/O and the holes. Our design
framework must take the User C Model, fill in the functionality
holes and customise the data-movement channels. The main
challenges in designing such a data-movement architecture are
linked to the implementation of the following: (a) hardware
blocks representing the user-defined C functions (we call them
user-defined fn. blocks), (b) for loops in Algorithm 1, (c) the
mechanism which provides streaming constants to the systolic
array at the right time of a systolic cycle. To gain sufficient
accuracy, the hardware resources must be employed for the
systolic array in an efficient way so that maximum number of
NEs are implemented. This means that the setup logic must
take a relatively small area compared to the systolic array. We
will now describe these challenges in more detail and explain
how we have overcome them.

1) User-defined Function Blocks: To implement the five
user-defined fn. blocks in the framework with acceptable clock
rates there are two options. One is to synthesise the blocks
into finite state machines, which adds handshaking interface
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logic to the blocks. The second approach, is to turn the blocks
into pipelines which increases the efficiency by using the
resources in every clock cycle. We chose the second approach,
as it simplifies the design and increases the throughput in a
C-slow [16] fashion. This way, m problems can be priced
concurrently, which we refer as one problem set.

Existing HLS tools can be used to generate the user-defined
fn. blocks from the User C Model, but we must ensure they can
be pipelined. To direct the HLS tool to make pipelines, the user
C functions must be in the Static Single Assignment (SSA)
form. SSA means each variable must be assigned exactly once
and defined before it is used. If the code is not in the SSA
form, loops are synthesised to blocks with initiation intervals
of more than one, and hence multiple trees cannot be handled
this way. Higher m increases the throughput and allows for
higher clock rates. When there is a clock frequency target
defined by the user, the HLS tool chooses the best m to meet
the timing constraint. A great feature of our framework is that
the user is not required to define any form of task scheduling.

2) Systolic Array: The outputs of the ConstantCalculation
function (Algorithm 1) are fed to the systolic array in four
streams: G ∈ G, S0, S1 ∈ S and Vn ∈ N . The streams
pass through every cell, as shown in Figure 5. Intermediate
node values are transferred systolically between the cells. To
account for the concurrent evaluation of m trees, the function
block f and the constant propagator are each C-slow pipelined
[16] with m levels of registers (Figure 5).

The parfor loop in Algorithm 1 (line 15) is represented by
the parallel n systolic cells. The sequential outer loop (line
13) is executed during the evaluation phase, when one less
NE is active as the number of nodes in the tree decreases by
one in every time step. When the node evaluation is active the
cell is in evaluation mode, and when it is only propagating
constants for the next problem set it is in propagation mode.
In evaluation mode, the multiplexers create a sequential path
between the shift registers of the two spatial constant channels,
as shown by small arrowed circles in Figure 5. During the
propagation mode, in contrast, spatial constants are carried in
parallel through the shift registers. With this higher bandwidth

provided, the 2n+1 spatial constants can be present in n cells
in n+1 clock cycles.

At the beginning of a systolic cycle, all cells make a
simultaneous transition from propagation to evaluation mode,
using signals generated by the Control block in every cluster
(Figure 5). During the systolic cycle, the gradual transition
from evaluation to propagation modes of the cells is managed
by a single signal, which is generated by the Ctrl. block at the
beginning of the systolic cycle. This signal shifts through cells
one by one, letting a new cell make a transition every m clock
cycles. The array initially starts operation with a power reset
and then follows periodic systolic cycles forever, regardless
of whether constants are streamed into it. The challenge is
to know when the setup logic should start processing, so that
constants are streamed at exactly the right clock cycle. For
this purpose, the Counter of a local Control block in the array
is monitored by the setup logic (Figure 5).

3) Setup Logic: The setup logic is responsible for trans-
forming the input parameters into 2n+1 streaming constants
fed to the systolic array. This is done by applying the user-
defined fn. blocks g, s, f0, and by using dedicated logic
for running the for loop in the ConstantCalculation function
(Algorithm 1 line 4). The setup logic also provides I/O flags
to inform the user logic when to enter the input parameters,
which are usually in the orders of kilo-bytes and are often read
from a host processor software application or from a network
port. The variables of the for loop are stored in the registers of
the Feeder Logic, which is controlled by the Setup Controller.
The spatial indices j start from −n and a comparator detects
+n when the loop ends. At this time, the feedback signal
LoopDone is triggered indicating to the Setup Controller that
the parameters for all the loop iterations has been fed to the s
blocks. Pipeline registers with lengths Ls and Lg in the setup
logic ensure routes have the same latency. The m-levels deep
registers on the streams G and S0 make them reach the systolic
array in the correct time, compared to the streams S1 and Vn.

4) Performance Model: We define the performance of the
binomial-tree solver based on three metrics as defined in Table
II: tree latency, tree throughput and node throughput. The
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TABLE II
PERFORMANCE MODEL OF THE HARDWARE ARCHITECTURE - CC: CLOCK CYCLES. LTY.: LATENCY

Parameter Symbol Unit Expression Definition

Problem size n time steps Size of binomial tree
Concurrency parameter m trees Number of trees solved concurrently
Implementation frequency f MHz Clock frequency of the implemented design

Lty. of setup logic LSL CC m+ Lg + Ls Lty. of setup logic: port Inputs to port S1 (Fig. 5)
Lty. of array constant transfer LCT CC m(n+ 1) Lty. of loading constants into systolic array (Fig. 4)
Lty. of array node evaluation LNE CC m.n Lty. of NEs producing a result (Fig. 4)

Tree latency L s
(
Lg + Ls + 2m(n+ 1)

)
/f Input-output lty. of solving a single binomial tree

Node throughput S nodes/s (n/s) n.f/2 Avg. number of node evaluations per unit of time
Tree throughput Thp trees/s (t/s) f/(n+ 1) Sustained avg. no. of solved trees per unit of time

table contains other parameters such as Lg and Ls for the
latencies of the user-defined fn. blocks g and s, respectively.
The tree latency L is the sum of the setup logic latency and
the latencies of the two phases in the systolic array: constants
transfer and node evaluation, i.e. L = (LSL+LCT +LNE)/f ,
which simplifies to the expression given in Table II. As shown
in Figure 4, the NEs on average are utilised during half of
the systolic cycle, assuming a full work-load of incoming
binomial-tree parameters; the node throughput is hence nf
divided by 2. The tree throughput Thp is the rate of trees
solved per second. In this case, we can feed m problems
in every iteration of the coarse-grained pipeline which has a
latency of LCT (Figure 4) with a clock frequency f . Therefore,
Thp = fm/LCT which simplifies to Thp = f/(n+ 1).

V. DESIGN FLOW

We now propose a methodology which takes (a) user-
defined problem instances (User C Model), with (b) hardware
representations of the data-movement architecture (Figure 5),
and then automatically produces an FPGA bit stream.

A. User-Defined Problem Instance
Based on the formal framework presented in Section III, the

end-user needs to define three categories of design inputs in the
User C Model: problem size, data structures and framework
functions, as listed in Table I. An example User C Model is
given in Figure 6 for an American option whose mathematical
model was presented in Section II. This example demonstrates
the simplicity of defining problem instances in our design
framework. In choosing the problem size, the user has two
options. With the first option, the user can instruct the design
framework to choose the maximum n that fits the FPGA target.
For this option, the framework first automatically implements
the setup logic and a small systolic array (e.g. n=100) as
two separate designs. Following that, based on the resource
usage of these two implementations, and the device’s available
resources, the design framework estimates a maximum n for
the target, and implements a design with that maximum n, all
of which is automated. With this feature, the design framework
provides a solution with the best accuracy to the user. For the
second option, if the framework is not instructed to estimate
the maximum n, the user has the flexibility to choose a desired
n based on the accuracy and performance requirements.

1 c o n s t i n t n = T r e e S i z e ;
2 / / Data S t r u c t u r e s :
3 s t r u c t P t {
4 f l o a t So , K, r , sg , T ;
5 boo l OT; /∗ Opt ion t y p e ; c a l l : t r u e , p u t : f a l s e ∗ / } ;
6 s t r u c t G t {
7 f l o a t u , w1 , w2 ; } ;
8 s t r u c t S t {
9 f l o a t Csk ; } ;

10 s t r u c t N t {
11 f l o a t v ; } ;
12 s t r u c t R t {
13 f l o a t r e s u l t ; } ;
14 / / F u n c t i o n s :
15 G t f G l o b a l ( P t P ) {
16 f l o a t u = exp ( ( P . sg ) ∗ s q r t ( ( P . T ) / n ) ) ;
17 f l o a t a = exp ( ( P . r ) ∗ ( ( P . T ) / n ) ) ;
18 f l o a t p = ( a−(1/ u ) ) / ( u−(1/ u ) ) ;
19 r e t u r n G t{u , ( 1 / a ) ∗(1−p ) , ( 1 / a ) ∗ ( p ) } ;}
20 S t f S p a t i a l ( P t P , G t G, i n t j ) {
21 f l o a t S = ( P . So ) ∗ pow (G. u , j ) ; / / P i p e l i n e d power
22 r e t u r n S t{ fmax ( 0 , ( P . OT?S : P .K)−(P . OT?P .K: S ) ) } ;}
23 N t fNode ( N t N1 , N t N2 , G t G, S t S ) {
24 r e t u r n N t{ fmax ( S . Csk , G. w1∗N1 . v + G. w2∗N2 . v ) } ;}
25 N t f N o d e I n i t ( S t S ) {
26 r e t u r n N t{S . Csk } ;}
27 R t f R e s u l t ( G t G, N t N) {
28 r e t u r n R t{N. v } ;}

Fig. 6. An example User C Model: Standard American option defined in C++

B. Automation Methodology

Our proposed automation methodology is shown in Figure
7. The flow uses a data-movement hardware description of the
systolic architecture (Figure 5) which we built in RTL, called
the Design Template Files in Figure 7. The User C Model
consists of header and source files (C++), and is used by the
HLS Tool, along with Run Script and project setting files,
to generate user-defined fn. blocks (RTL Function Blocks).
We observed in our experiments that some HLS tools do not
provide the I/O port connections of their output RTL file in
a structured form. They rather expand the I/O connections
across the individual variables (or signals in RTL) of every
structure used for that function. This is shown in Figure 8 for
the NE function f in the HLS-Generated Fn. Block. On the
other side, the Design Template Files (Figures 7 and 8) are
problem independent and have implicit references to the user-
defined fn. blocks. Therefore, one challenge is to apply the
explicit user-dependent RTL function blocks, to the generic
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Fig. 8. The HDL Wrapper file acting as an intermediate layer

problem-independent data-movement template.
To address the above challenge, an intermediate RTL layer

is required to map the signal structures to their corresponding
signal members: an RTL Function Wrapper File (Figure 8). To
generate such files automatically, we made a program called
HLS-Block HDL Wrapper (Figure 7). This program, for each
user-defined fn. block, parses through the HLS-generated top-
level RTL text file, finds all I/O signals, and creates an RTL
wrapper file. The wrapper file has an instantiation of the HLS-
generated RTL function, and maps the signal structures to
individual signal elements (Figure 8). On the other side, the
RTL signal structures used in the data-movement template
must be defined. But the HLS tool we used does not provide
such definitions. To address this challenge, we made a sec-
ond program called RTL Structure Generator, which parses
through the HLS-generated top-level RTL files and creates
signal structures in a separate RTL file (Signal Structures RTL
Package in Figure 7).

C. Automated Tool Chain
In order to implement our proposed automation method-

ology, we used the following tools and methods. The tool

flow was scripted in a Makefile and the GNU Make tool was
used to run the framework. We used Vivado HLS 2015.4 for
high-level synthesis and Vivado 2015.4 for logic synthesis
and implementation. To work with the Vivado tools, Tool
Command Language (TCL) scripts were used to build projects
and run synthesis automatically. We coded our executable
programmes in C++, and compiled them using the GNU g++
compiler with the c++11 switch. The hardware RTL model
was described in VHDL. The Design Template Files (Figure 7)
have entity declarations of the user-defined fn. blocks, and the
actual definitions reside in the RTL Functions Wrapper Files.
VHDL record types were used to define signal structures. The
Design Parameters RTL Package contains parameters for the
width and latencies of the data communication channels.

Our tool chain is fully automated. The design framework
is executed by running a single command line which asks
the Make tool to run the Makefile. The framework then reads
all the user-defined and other design files, performs all the
steps mentioned in the translation methodology (Figure 7),
and produces the FPGA hardware solution in a bit stream.

VI. RESULTS

In this section we explore the performance and productivity
of our framework for contemporary FPGAs. We will imple-
ment six different problem instances to evaluate the accuracy
and performance characteristics, and to explore the trade-off
between accuracy and performance.

A. Applied Real-world Problem Instances

We have applied our framework to six problem instances
of commonly used option types, given in Table III. Although
European options are priced analytically, we used it for FPGA
area comparison as it requires the least amount of logic
compared to other types of options. For the American barrier
option problem instance, we used the down-and-out type,
which means it cannot be exercised if the asset price falls
below a certain barrier. The user can price all four types of
barrier options using our framework. In Bermudan options, the
value of a tree node is a function of the node’s time step, unlike
other options with no time dependencies. Pricing of Bermudan
options demonstrates that our framework is capable of not only
providing spatial constants, but also constants whose values
depend on their temporal location in the binomial tree.

We also implemented problem instances with two options
defined on a shared asset: American or barrier; and American
and barrier. The former allows the user to choose which
option to price at run-time, with the benefit that most of the
logic is shared between the two options. The latter problem
instance is suitable for users who require pricing of multiple
types of options at the same time. To our knowledge, this is
the first design framework with the flexibility to price different
types of options concurrently using the binomial-tree model.

Inefficient use of the resources in the setup logic can limit
the size of systolic array and hence the solution accuracy.
For example, the single-precision pipelined power function in
Figure 6 (line 21) on its own takes 23 DSP blocks in a modern
FPGA running at 100 MHz. For this reason, the arithmetic
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TABLE III
APPLIED PROBLEM INSTANCES — B = {0, 1}, B′ = {−1, 1}

Problem Instance P G S N f f0

American
Option

S0,K, r, σ, T

∈ R, ot ∈ B′
u,w1, w2

∈ R
Csk = max(0, ot

∗(S0.uj −K)) ∈ R
Vi,j
∈ R

Vi,j ← max(Csk,

w1.Vi+1,j−1 + w2.Vi+1,j+1)

Vn,j ←
Csk(j)

European
Option

S0,K, r, σ, T

∈ R, ot ∈ B′
u,w1, w2

∈ R
Csk = max(0, ot

∗(S0.uj −K)) ∈ R
Vi,j
∈ R

Vi,j ←
{w1.Vi+1,j−1 + w2.Vi+1,j+1)

Vn,j ←
Csk(j)

Bermudan
Option

S0,K, r, σ,

T, TB ∈ R
ot ∈ B′

u,w1, w2,

∈ R
B = n×
TB/T ∈ Z

Csk = max(0, ot

∗(S0.uj −K)) ∈ R
t0 = n ∈ Z

Vi,j
∈ R
t
∈ Z

s = w1.Vi+1,j−1 + w2.Vi+1,j+1

m = max(Csk, s)

Vi,j ← (t > B ? m : s)

t← t− 1

Vn,j ←
Csk(j)
t←
t0

American
Barrier
Option

S0,K, r, σ,

T,B ∈ R
ot ∈ B′

u,w1, w2,

B ∈ R

b = (S0.uj ≤ B) ∈ B
Csk = b ? 0 : max(0,

ot ∗ (S0.uj −K)) ∈ R

Vi,j
∈ R

Vi,j ← !b ∗max(Csk,

w1.Vi+1,j−1 + w2.Vi+1,j+1)

Vn,j ←
Csk(j)

American or
Barrier (Amer.)

Option
(Shared Asset)

S0,K, r, σ,

T,B ∈ R
ot ∈ B′
s ∈ B

u,w1, w2,

B ∈ R
s ∈ B

c = max(0, ot

∗(S0.uj −K))

b = (S0.uj ≤ B) ∈ B
Csk = (s ? c : !b ∗ c) ∈ R

Vi,j
∈ R

Vtemp ← max(Csk,

w1.Vi+1,j−1 + w2.Vi+1,j+1)

Vi,j ← s ? Vtemp : !b ∗ Vtemp

Vn,j ←
Csk(j)

American and
Barrier (Amer.)

Options
(Shared Asset)

S0,K, r, σ,

T,B ∈ R
ot ∈ B′

u,w1, w2,

B ∈ R

Csk|A = max(0, ot

∗(S0.uj −K)) ∈ R
b = (S0.uj ≤ B) ∈ B

Csk|B = (!b ∗ Csk|A) ∈ R

VA|i,j
∈ R
VB|i,j
∈ R

VA|i,j ← max(Csk|A,

w1.VA|i+1,j−1 + w2.VA|i+1,j+1)

VB|i,j ← !b ∗max(Csk|B ,

w1.VB|i+1,j−1 + w2.VB|i+1,j+1)

VA|n,j ←
Csk|A(j)

VB|n,j ←
Csk|B(j)

Adder (Fig. 12) p ∈ Z g ∈ Z s ∈ Z Vi,j ∈ Z Vi,j ← {s+ Vi+1,j+1} Vn,j ← s

in the setup logic must be using a data type which finds a
good balance between resource usage and accuracy. As a user
of the framework, we did all arithmetic in the setup logic
using single-precision data types, and converted the constants
to their appropriate data types before streaming them. With this
approach, we never had more than 3% of resource usage in the
setup logic, and in the remaining area we obtained sufficient
number of NEs to get good accuracy.

We targeted the modern Xilinx Virtex-7 xc7vx980t FPGA
as our default platform, as it is the largest across all 7 Series
families with 3600 DSPs, in order to have as many NEs as
possible. We verified the functionality of our hardware design
using the Vivado Simulator. To reduce compile time, we set
the synthesis option flatten hierarchy to none which keeps the
design hierarchy during synthesis.

We also applied some platform-specific optimisations to the
user-level source code to increase n in our implementations.
Since the node prices of an option can never have negative
values, we used unsigned data types for the fixed-point solvers
with an equal number of integer and fractional bits. Also, as
the weight constants are always positive fractions, we omitted
their integer parts from the data type. For instance, a 32-bit
fixed-point implementation has unsigned 16.16 price variables
and unsigned 0.16 weight constants.

For the floating-point implementations, we applied the
Vivado HLS source-code synthesis directives FMul meddsp
(single precision) and DMul meddsp (double precision), to
the results of multiplications in the NEs. This had the effect
of balancing the use of DSPs and LUTs to implement the
multipliers, so that we could increase n. With half-precision
arithmetic, Virtex 7 can fit large trees up to a point when the
pay-offs at the maturity reach infinity, causing the solution to
fail. However, since those tree leaves carry small probabilities

in the binomial distribution of the prices at the maturity, we
can omit them with negligible damage on the accuracy, as will
be demonstrated later. Therefore, for the half-precision solvers,
we have set all the infinite-valued spatial constants to zero in
s. This is a user-level modification, so can be tested in the C
Solver, independent of hardware.

B. Accuracy Analysis
To evaluate the accuracy of our framework applied to mod-

ern FPGAs, we first implemented American option solvers on
the Virtex 7 device to find out the maximum achievable n for
each implementation. We then simulated the problem instances
with the same n values using Vivadlo HLS and its bit-accurate
libraries to obtain the accuracy. The inputs were randomly
sampled from a parameter space of (1 ≤ S0 ≤ 1000, 16−1 ∗
So ≤ k ≤ 16∗So, 0 < r ≤ 40%, 0 < σ ≤ 60%, 0 < T ≤ 2).
This space covers for most applications and is a superset of the
spaces used by existing FPGA solvers [7], [13]. The accuracy
was calculated based on the average relative error for N=1000
input samples. For each implementation, error is:

e =
1

N

N∑
i=1

ei (5)

ei =


0, when Ri, R̂i < 0.01 or

Ri
S0
,
R̂i
S0

< 10−5

|Ri − R̂i|
Ri

, otherwise

(6)
∀i ∈ (1, ..., N) : pi ∈ P, Ri, R̂i ∈ R

where pi: input samples, Ri: results, R̂i: reference results. To
make the error formula ei meaningful for financial applica-
tions, we forced it to zero when reference and solver results
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Fig. 9. Accuracy of custom-precision fixed-point American option results
on Virtex-7 xc7vx980t, with 95MHz clock frequency for 34 & 50 bits and
100MHz for the rest

are either (a) below 0.01 (1 cent) for very cheap options, or (b)
are small compared to the underlying asset price for relatively
cheap options. For the reference solver, we used option pricing
libraries from the Financial Toolbox in MATLAB R2016a.
Tree sizes reported in the literature to provide highly accurate
results included values of 10000 [17] and 15000 [2] time steps.
We also used 15000 time-step trees in the reference program,
using double-precision arithmetic. The accuracy of the solvers
we implemented was affected by two major sources of error:
discretisation error and arithmetic error. The discretisation
error is due the degree on which the binomial tree is descritised
in time and space, i.e. higher n produces more accurate results.
The arithmetic error comes from the precision chosen for the
data variables. In the following, we will analyse our results
and show how these types of error affects the accuracy.

1) Fixed-Point: We varied the fixed-point bit-width w of
the systolic array’s data variables from 16 to 64 bits, as shown
in Figure 9. For each w, we chose n so that the utilisation is
near 100%. The utilisation was dominated by DSP blocks, with
more than 98% usage for w=16:56. For 60 to 64 bits, near-
100% utilisation caused significant congestion and failure in
routing. For these three cases, therefore, we relaxed the routing
by targeting 95% DSP utilisation. Increasing w (less arithmetic
error), required more compute resources in NEs, and hence
smaller trees were implemented, causing an increase in the
discretisation error. Between 16 and 26 bits, although large
trees of n=1748 were implemented, arithmetic error dominated
the accuracy with more than 2% of mean error. The best
balance of discretisation versus arithmetic errors was obtained
for solvers with w=30:48 and e<0.7%, which includes the
optimum fixed-point solver of wopt=40 with eopt=0.5%.

2) Floating-Point: We implemented floating-point solvers
in half, single and double precisions with 96%, 95% and 89%
utilisations, respectively, with the single-precision as the most
accurate solver as shown in Figure 10. Assuming custom-
precision floating-point logic is available, with larger FPGAs,
the optimum accuracy point would move from the left of
the plot to the right by getting closer to the double-precision
point. This means better accuracy is achieved with wider data
words as FPGAs grow in size. A strength of our framework
is that, since it supports targeting different devices, it can take
advantage of the growth in FPGA size to improve accuracy.
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Fig. 10. Accuracy results for floating-point American option solvers on
Virtex-7 xc7vx980t, with clock frequencies 100MHz for half & single, and
90MHz for double precisions

C. Area–Performance Results

While we looked at how the accuracy changes when w is
varied, we now want to find out the performance for different
problem instances. We also look at how the FPGA resources
are shared between different components of the hardware
architecture. Table IV demonstrates area and performance
results for different problem instances and data types, with
maximum n for each implementation. The first four rows are
standard American solvers with different data types, whose n
and accuracy values were presented earlier in Figures 9 and
10. The bottom group in Table IV with five problem instances
demonstrates the breadth of the problems that our framework
can generate solutions for. For four of these five solvers, the
tree sizes are either close to n=500 or well above that. Ac-
cording to Figure 10, such values of n produce accurate results
in single precision. We therefore chose the single-precision
data type for these implementations. Although the American
& barrier problem instance only achieved n=289, it was also
implemented using single precision so that comparison can be
made with the other solvers.

The usage of slices and DSP blocks is balanced in the
solvers, as shown in Table IV. We see good performance
for all three performance measures (defined in Table II), with
tree latencies of 40-200 µs, and tree throughput values above
100k trees/s. Higher values of m increases latency, but the tree
throughput is also enhanced.

D. Performance–Accuracy Trade-off

We observed previously that changing w affects the max-
imum n that can fit on the device, and the combination of
w and n determines the solver’s accuracy. On the other hand,
Table II showed that all three performance metrics are directly
affected by n, so w affects both accuracy and performance. We
will now merge these observations, and show a fundamental
trade-off between the accuracy and the tree throughput. We
will consider the American option fixed-point solvers with
different w, as shown in Figure 11. The lowest w has the
highest n and hence the lowest tree throughput, while it also
has the highest error. By increasing w, error decreases and as
soon as n decreases, the tree throughput is enhanced. For an
error value of 0.5% (n=872), no higher throughput than 114k
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TABLE IV
AREA-PERFORMANCE RESULTS – VIRTEX-7 XC7VX980T WITH 3600 DSP BLOCKS & 153K SLICES – CP: CONCURRENCY PARAMETER

Implementation Setup Logic (Single Prec.) Systolic Cell Binomial-Tree Solver - Maximum n
Data Type Freq. Prob. Instance Latency Resources Resources CP Size Resources Performance

f Lg Ls Slice DSP Slice DSP m n Slice DSP L S Thp
(MHz) (CC) (CC) (%) (%) (%) (%) (µs) (Gn/s) (Kt/s)

Fixed 16.16 100

American

50 23 2.6 2.44 205 4 3 876 45 100 54 43.8 114
Half 100 51 23 2.5 2.44 355 2 13 768 96 45 201 38.4 130
Single 100 48 21 2.5 2.44 522 4 10 516 95 60 104 25.8 193
Double 90 48 20 2.6 2.44 859 21 11 148 51 89 38 6.6 604

Single 100

European 48 21 2.5 2.44 434 4 8 708 97 81 114 35.4 141
Bermudan 48 21 2.7 2.53 542 4 10 500 95 58 101 25.0 199
Barrier (Amer.) 48 21 2.5 2.44 579 4 10 516 94 60 104 25.8 193
Amer. or Barr. 48 21 2.6 2.44 509 4 10 504 94 58 102 25.2 198
Amer. & Barr. 48 21 2.6 2.44 955 8 10 284 97 66 58 14.2 350
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Fig. 11. Throughput-error trade-off for different fixed-point American option
solvers with different bit-width on Virtex-7 xc7vx980t with >95% utilisation

trees/s can be achieved. While this point belongs to w of 34 to
40, all the less-accurate and lower-throughput implementations
become useless (corresponding to the right-hand side of the
optimum point). The highest tree throughput is 478k trees/s for
the left-most point in the figure, with a mean error of 1.6%. All
solvers between these two points belong to the Pareto frontier
which give the best accuracy-performance trade-off. Based on
the accuracy-performance requirements, the user can choose
the appropriate w to give the best implementation.

E. Scaling Limits of the Problem-independent Architecture

The spatially-distributed independent controllers are meant
to protect the systolic array’s performance from frequency
degradation for very large trees. To verify this, we defined a
very small NE: a 4-bit signed adder in f, defined in the last row
of Table III. This ensures that the critical path does not occur
within the NE. We also defined a 600 MHz clock constraint,
based on maximum achievable clock rate for n=1000. The
generated NE is pure combinational, and with the registers
added by the flow we have m=2. Figure 12 demonstrates the
frequency and node throughput of the 4-bit adder solvers for
very large trees of up to n=25000, showing no degradation
in the overall behaviour of the clock frequency. The 5%
fluctuation in the frequency, between 570 MHz and 600 MHz,
is due to the varying value of n which affects the maximum
value of the counters used in the Setup Controller. The node
throughput values confirm that the systolic infrastructure by its
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Fig. 12. Scaling the frequency and performance (node throughput) of the
problem-independent architecture for designs as large as n=25000

own and independent to the problem instance, provides linear
scaling in the overall design performance.

VII. RELATED WORKS

In Section II we classified the computational approaches of
the existing binomial-tree solvers into three main categories;
scalar, vector and systolic designs. In this section, we will
describe the existing FPGA binomial-tree solutions in terms
of their computational structures and the design productivity
they offered. We will also make comparisons to our work in
terms of both qualitative and quantitative measures.

A. Qualitative Analysis

Table V provides measures of design productivity and area-
performance complexities for the existing binomial-tree FPGA
solvers. Jin [3], [4] presents a scalar FPGA design, based on R
replications of an American option pricer. Each pricer consists
of one NE which is C-slowed by a fixed factor C, preventing
them from trading off throughput for latency. They can price
R × C independent options concurrently, with trees of n ≤
1000. Wynnyk [5] presents a vector FPGA design which prices
American options by using four parallel NEs (NV =4). They
use memory management techniques to solve single trees of
up to 64000 time steps in double precision, but do not provide
any argument for why such large trees must be evaluated in
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TABLE V
COMPARING EXISTING FPGA BINOMIAL SOLVERS. SOM: SCOPE OF MODIFICATION, CLT: CONFIGURABLE L-Thp, HSTREAMS: HYPERSTREAMS

Design Productivity Hardware Architecture

Problem Coverage User Interface Impl. Flexibility Type Performance Resource

Instances Size Prog. Lang. SoM Precision CLT Latency Tree Thrput. Compute Mem.

Jin [3], [4]
2008, 09 American Med. Handel-C,

HStreams global Fx. 16.16,
Sgl., Dbl.

No Scalar O(C.n2) O

(
1

C.n2

)
O(1) O(C.n)

Wynnyk
2009 [5] American Lrg. Verilog

Altera IP global Double No Vector O

(
n2

NV

)
O

(
NV

n2

)
O(NV ) O(n)

Morales
2014 [6] American Med. OpenCL global Single

Double
No Vector O

(
n2

NV

)
O

(
NV

n2

)
O(NV ) O(n)

Tavakkoli
2014 [7] American Med. VHDL,

FloPoCo global Fixed Yes Systolic O(n) O

(
1

n

)
O(n) O(1)

Ours Any Med. C/C++ local Any Yes Systolic O(n) O

(
1

n

)
O(n) O(1)

practice. While they solve large single trees, there is no way to
increase their tree throughput. Their design is coded in Verilog
HDL and it is not clear whether they can port their design to
different FPGA targets.

The work in [6] by Morales is another vector solver
(NV =8) of American options with medium-sized binomial
trees (n=1024) using GPUs and energy-efficient FPGA im-
plementations. They use the OpenCL language and Altera’s
OpenCL compiler to synthesise their design. Our own previous
American option pricer in [7] provides a systolic reconfig-
urable architecture with n systolic cells. The work presented
fixed-point FPGA solvers with hand-coded RTL blocks and
FloPoCo [18] floating-point cores. It gained considerable ac-
celerations, both in terms of latency and throughput, compared
to scalar and vector approaches, and showed practical appli-
cations for medium-sized (n=768) fixed-point trees. However,
relocation of the hand-coded RTL solution to other data
precisions limited the productivity of this design.

In contrast to the works above, which can only solve
American options, our current design framework can take
any binomial-tree problem instance and is capable of pricing
different types of options concurrently. The user is not required
to define the problem using HDL languages and the scope of
user modification is limited to certain parts of the framework
(User C Model). The user is able to move the design in the
latency-throughput space by changing the clock constraint.

B. Quantitative Comparison
Table VI demonstrates the FPGA implementation details of

existing binomial-tree solvers, which includes our American
pricing results for comparison. From Jin’s results in [3] and
[4] with the same architecture, we chose those from [4] as
they are better for all performance measures. The value of
C is not reported in [4], so we estimated C based on the
number of pipeline registers in their diagram (C=6), whose
generated clock frequency matches what both we and [7]
obtained for the same pipeline depth. We have also scaled
up their utilisation results by the R value they reported, to
account for the maximum concurrency they can achieve. All
other data in Table VI are directly copied from the published
papers. The variable m is a design parameter in [7] whose

value affects the clock frequency. We have included the best-
case m in [7] in terms of the frequency.

1) Accuracy: Wynnyk [5] has not reported accuracy values
of their results, which is acceptable as they price very large
trees of up to n=64000. In [3]–[5] it has not been mentioned
for what input samples they get their reported error values. In
[7], the absolute error is reported to be under the application-
level boundary of 1 cent, for their reported specific range of
input parameters which is a subset of our input sample set. It
is true that the values of n in our results is less than of those
in most of the related works. However, we showed in Section
VI that a single-precision solver of n=516 provides enough
accuracy for practical applications, particularly for low latency
and high throughput use cases.

2) Performance: As shown in Table VI, while one previous
work used the same FPGA target with a 28-nm technology [7],
all other implementations were on FPGAs using older tech-
nologies. To compare our results against the latter group, we
have taken two approaches. One is to scale down our Virtex-
7 results to older Xilinx devices with the same technologies
as listed by others. The other is to scale up the results of
others (including Xilinx and Altera) to the corresponding 28-
nm technologies for their same FPGA brand (Virtex-7 for
Xilinx and Stratix V for Altera). The different FPGAs used in
our comparison are the following: 90-nm: Virtex-4 xc4vsx55
(V4); 65-nm: Virtex-5 xc5vsx240t (V5), Stratix III ep3se260
(S3); 40-nm: Virtex-6 xc6vsx475t (V6), Stratix IV ep4sgx530
(S4); 28-nm: Virtex-7 xc7vx980t (V7), Stratix V 5sgsd8 (S5).
The scaled results are shown in Table VII and were used
to compare performance. Direct comparison (without scaling)
was made for our previous work [7], shown as Tav in Figure
13 which demonstrates the speed-ups we achieved compared
to existing works in terms of latency and throughput.

While on Virtex-7 we achieved n=876 for 32-bit fixed-point
solvers, we used our n=764 results to compare against Tav [7],
that is the largest tree the work could implement. All other n
values are the maximums implementable by us. For instance,
the n values in Table VII are the worst-case maximums that
we can achieve in the old devices for the data type in any
column. These were calculated by assuming the same DSP
and slice count for the setup logic and the systolic cell in
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TABLE VI
FPGA IMPLEMENTATIONS OF AMERICAN OPTION PRICERS WHICH ARE USED FOR PERFORMANCE COMPARISON. DATA WITH * ARE SCALED BY R.

Jin [4] Wynnyk [5] Morales [6] Tavakkoli [7] Ours

Precision Fix 16.16 Single Double Double Double Fix 16.16 Fix 16.16 Single Double

FPGA@MHz V4@82.7 V4@76 V4@67.3 S3@150 S4@163 V7@143 V7@150 V7@200 V7@65 V7@40

Max Size (n) 1000 1000 1000 64000 1024 768 876 764 516 148

HW Specs. C:6, R:14 C:6, R:6 C:6, R:3 NV :4 NV :8 m:8 m:6 m:8 m:6 m:6

Slice Usage 99% * 93% * 87% * 10% logic 66% logic 29% 54% 48% 95% 49%

DSP Usage 112 (22%) * 48 (9%) * 96 (19%) * 148 (19%) 760 (76%) 85% 100% 87% 60% 89%

BRAM Usage 252 (79%) * 108 (34%) * 60 (19%) * 84% bits 39% bits 1% 0 0 0 0

Perf. (Kt/s) 1.16 Gn/s * 0.46 Gn/s * 0.2 Gn/s * 1.152 2.4 4.4 171 261 125 268

TABLE VII
SCALED DATA USED FOR COMPARISON OF FIGURE 13. SU: SCALED UP, SD: SCALED DOWN. L: LOGIC, M: MULTIPLIER.

Ours SD Jin [4] SU Wyn. [5] SU Mor. [6] SU

Precision Fix 16.16 Single Double Single Single Fix 16.16 Single Double Double Double

FPGA@MHz V4@65 V4@65 V4@65 V5@65 V6@65 V7@82.7 V7@76 V7@67.3 S5@150 S5@163

Prob. Size (n) 104 43 19 75 156 – – – – –

HW Specs. m:6 m:6 m:6 m:6 m:6 C:6, R:87 C:6, R:40 C:6, R:21 NV :20 NV :30

Utilisation M’100% L’100% M’100% L’100% L’100% L’100% L’100% L’100% M’19% M’76 %

10-1 100 101 102
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Fig. 13. Our throughput and latency gains compared to related FPGA works

the old device and estimating the number of replications of
the systolic cell. The maximum n in comparisons for floating-
point solvers was n=516. For this n, the difference in accuracy
of a single-precision solver compared to a double-precision is
negligible (less than 0.01%). Therefore, we used our single-
precision results to compare against the works of Wynnyk [5]
and Morales [6] which were both in double precision.

We gained higher throughput in all cases, as shown in Figure
13. For the scalar implementations, although they also use C-
slow pipelining to increase throughput, since their execution
time is quadratic we achieve better overall throughput, and
also latency speed-ups of up to 390×. The vector designs [5],
[6], in contrast to our C-slowed NE, used their pipeline for a
single option. Compared to them, we have orders of magnitude
better throughput, but also lower latency. However, given that
we can decrease m by relaxing the clock constraint, we expect

to get slightly better latency values. Compared to our old
systolic design [7], we gain latency and throughput speed-ups
(both at 1.4×) due to the increased clock frequency that we
achieved for m=8 (f=200MHz) compared to [7] (f=143MHz)
with the same m. This demonstrates that our automated design
framework with a high-level user interface performs better than
a hand-tuned RTL design with a manual flow. In moving from
old to new FPGAs with larger trees, as shown in Figure 13, we
achieve higher speed-ups, with the work of Morales [6] as the
only exception. This is because their Stratix IV FPGA is not
the largest device of that family of 40-nm technology. While
we obtained 79% of extra DSP blocks moving from Virtex-
6 to Virtex-7, the scaled results for Morales were based on
186% extra multiplier blocks.

VIII. CONCLUSION

This paper presented a high-level design framework which
captures binomial-tree problems in a highly-abstract form
and converts them automatically into high-throughput systolic
FPGA solvers. The user effort is limited to defining mathemat-
ical sets and functions of the binomial-tree formal framework
in a high-level language like C. In this framework, the problem
definition is decoupled from the hardware realisation, where
the user is not required to define any task scheduling (like a for
loop). This is a significant improvement in design productivity
compared to the previous FPGA solutions, where users needed
to define both the tasks and their scheduling, and sometimes
in RTL. Also, to our knowledge, this is the first design
framework for FPGA solutions which can take more than one
type of binomial-tree problems (including American, barrier
and Bermudan options). This is in contrast to the previous
methods which could only solve American options.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 14

With our fully pipelined systolic implementation on a
Virtex-7 we achieve latencies in the range of 40 to 200
micro-seconds for different problems and data types with
practical tree sizes. The same implementations give us higher
throughput compared to all the previous FPGA solutions,
ranging from 1.4× speed-up compared to a hand-coded RTL
systolic design, to orders of magnitude gain (of up to 9.1×)
with respect to scalar and vector approaches.

A weakness of the systolic architecture that we employed
is that the maximum problem size is limited by the number
of FPGA multipliers. However, we showed that medium-
sized trees on a Virtex-7 can produce results with practical
accuracies. Also, newer FPGAs with more multipliers, such
as the Xilinx Virtex UltraScale+ [19] with 3× as many DSPs
as a Virtex-7, would allow even more accurate results.

For future work, we plan to target large trees by using the
extensive memory in the block RAMs which is completely
untouched in our current implementations. This way O(n) of
memory resources will be sufficient to hold intermediate node
values at any time step for large trees. Other plans include
providing data-movement templates for trinomial trees [4] and
explicit finite difference models [20]. To enhance efficiency,
two-point Richardson extrapolation techniques [2] can be
employed by very simple modifications to the framework. For
instance, two solvers of n=50 and n=100 can be instantiated
on the same chip to give a result as accurate as a 1000-step
binomial tree [2] with 10× better throughput.
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